Conditions for Well-posedness in Gevrey Classes of the Cauchy Problems for Fuchsian Hyperbolic Operators II

By

Shigeharu ITOH* and Hitoshi URYU** Detected to Professor Shoji IRIE on his sixtieth birthday

Introduction

In this article we shall present a sufficient condition for well-posedness in Gevrey classes of some Fuchsian hyperbolic Cauchy problems. Namely we show that we can determine a function space in which the Cauchy problem for a given Fuchsian hyperbolic operator is well-posed.

In the case that the initial surface is non-characteristic, there are many results.

The results independent of the lower order terms were obtained by Ohya [12], Leray-Ohya [8], Steinberg [13], Ivrii [5], Trepreau [15], Bronstein [2], Kajitani [7] and Nishitani [11], which show that the multiplicity of the characteristic roots determines the well-posed class.

On the other hand, it is an interesting problem to study how the lower order terms have an effect on the well-posed class. Ivrii showed the following in [6].

(I) Let $P = \partial_t - t^2 \partial_x^2 + at^s \partial_x$, where ℓ and s are non-negative integers and a is a non-zero constant. When $0 \le s < \ell - 1$, the Cauchy problem for P is $\tau_{loc}^{(\kappa)}$ -well-posed if and only if $1 \le \kappa < (2\ell - s)/(\ell - s - 1)$.

(II) Let $P = \partial_t^2 - x^{2\mu} \partial_x^2 + ax^{\nu} \partial_x$, where μ and ν are non-negative integers and a is a non-zero constant. When $0 \le \nu < \mu$, the Cauchy problem for P is $r_{1oc}^{(\kappa)}$ -well-posed if and only if $1 \le \kappa < (2\mu - \nu)/(\mu - \nu)$.

Communicated by S. Matsuura, April 25, 1986.

^{*} Department of Mathematics, School of Science and Engineering, Waseda University, Tokyo 160, Japan.

^{**} Department of Information Management, School of Business Administration, Senshu University, Kanagawa 214, Japan.

These examples are extended for more general operators by Igari [3], Uryu [17] and Tahara [14] concerning (I) and Uryu-Itoh [18] and Itoh [4] concerning (II).

Furthermore we propose the following operator.

(III) $P = \partial_t^2 - t^{2\ell} x^{2\mu} \partial_x^2 + at^s x^{\nu} \partial_x$, where ℓ , μ , s and ν are non-negative integers and a is a non-zero constant.

In this paper we consider the Cauchy problem for the operators which are the most general extension of (III), noting that Fuchsian partial differential operators introduced by Baouendi-Goulaouic [1] are the natural extension of noncharacteristic operators.

§1. Main Result and Remarks

Let $(x, t) \in \mathbb{R}^n \times [0, T]$ and $(D_x, D_t) = (D_{x_1}, \dots, D_{x_n}, D_t) = (-\sqrt{-1}\partial/\partial x_1, \dots, -\sqrt{-1}\partial/\partial x_n, -\sqrt{-1}\partial/\partial t)$. Let us denote by (ξ, τ) the dual variable of (x, t).

Now we shall define the Gevrey classes.

Definition 1.1. $(\tau_{\text{loc}}^{(\kappa)}, \tau^{(\kappa)}; \kappa \ge 1) f(x) \in \tau_{\text{loc}}^{(\kappa)}$ implies that $f(x) \in C^{\infty}(\mathbb{R}^n)$ and for any compact set $K \subset \mathbb{R}^n$, there exist constants c, R > 0 such that

(1.1)
$$|D_x^{\alpha}f(x)| \leq c R^{|\alpha|} |\alpha|!^{\kappa}, x \in K, \quad \text{for any } \alpha.$$

 $f(x) \in r^{(\kappa)}$ implies that $f(x) \in C^{\infty}(\mathbb{R}^n)$ and (1.1) holds for any $x \in \mathbb{R}^n$.

Next we shall define Fuchsian partial differential operators according to Baouendi-Goulaouic [1].

Let

$$L = L(x, t, D_x, D_t)$$

= $t^k D_t^m + L_1(x, t, D_x) t^{k-1} D_t^{m-1} + \dots + L_k(x, t, D_x) D_t^{m-k} + L_{k+1}(x, t, D_x) D_t^{m-k-1} + \dots + L_m(x, t, D_x).$

Then L is said to be of Fuchsian type with weight m-k with respect to t when it has the following properties:

(A-1) $k \in \mathbb{Z}, 0 \leq k \leq m$, (A-2) ord $L_j(x, t, D_x) \leq j$, (A-3) ord $L_j(x, 0, D_x) = 0$ for $1 \leq j \leq k$.

From (A-3), we can set $L_j(x, 0, D_x) = a_j(x)$ for $1 \le j \le k$. A characteristic polynomial associated with L is

(1.2)
$$C(\lambda, x) = \lambda(\lambda - 1) \cdots (\lambda - m + 1) + \sqrt{-1} a_1(x) \lambda(\lambda - 1) \cdots (\lambda - m + 2) + \cdots + \sqrt{-1}^k a_k(x) \lambda(\lambda - 1) \cdots (\lambda - m + k + 1).$$

It's roots, called characteristic exponents, are denoted by $0, 1, \dots, m-k-1$, $\lambda_1(x), \dots, \lambda_k(x)$.

(A-4) there exists a constant c > 0 such that

$$|(\lambda - \lambda_1(x))\cdots(\lambda - \lambda_k(x))| \ge c/\lambda(\lambda - 1)\cdots(\lambda - m + k + 1)$$
 for $\lambda \in \mathbb{Z}, \lambda \ge m - k$.

In this paper we deal with the following Fuchsian partial differential operator. Let

$$t^{m-k}L = \tilde{L}(x, t, D_x, D_t) = \tilde{L}_0(x, t, D_x, D_t) + \tilde{L}_1(x, t, D_x, D_t),$$

where

(1.3)
$$\widetilde{L}_{0}(x, t, D_{x}, D_{t}) = t^{m} D_{t}^{m} + \sum_{\substack{|\alpha|+j=m\\j\leq m-1}} t^{|\alpha|\ell+j} \sigma(x)^{|\alpha|\mu} a_{\alpha,j}(x, t) D_{x}^{\alpha} D_{t}^{j}$$

and

(1.4)
$$\widetilde{L}_1(x, t, D_x, D_t) = \sum_{|\alpha| + j \leq m^{-1}} t^{s(\alpha, j) + j} \sigma(x)^{\nu(\alpha, j)} a_{\alpha, j}(x, t) D_x^{\alpha} D_t^j .$$

We assume the following conditions on \tilde{L} .

(A-5)
$$\lambda$$
-roots of $\lambda^m + \sum_{\substack{\alpha \\ j \leq m-1}} a_{\alpha,j}(x,t) \xi^{\alpha} \lambda^j = 0$ are real and distinct.

(A-6)
$$a_{\alpha,j}(x,t) \in \mathscr{B}([0,T], \gamma^{(\kappa)}).$$

- (A-7) $\sigma(x) \in r^{(\kappa)}$ and is a real-valued function.
- (A-8) l is a positive rational number and μ , $s(\alpha, j)$ and $\nu(\alpha, j)$ are integers such that $\mu \ge 1$, $s(\alpha, j) \ge 0$ and $\nu(\alpha, j) \ge 0$.

We define ρ as follows:

(1.5)
$$\rho = \max_{|\alpha|+j \le m-1} \{ (m-j-s(\alpha, j)/\ell)/(m-j-|\alpha|), \\ (m-j-\nu(\alpha, j)/\mu)/(m-j-|\alpha|), 1 \} .$$

Then we have

Theorem 1.1. Under (A-1)~(A-8), if $1 \leq \kappa < \rho/(\rho-1)$, the Cauchy problem for L:

(1.6)
$$\begin{cases} Lu(x, t) = f(x, t) & \text{in } \mathbb{R}^n \times (0, T] \\ D_i^i u(x, t)|_{t=0} = u^i(x), \quad 0 \le i \le m - k - 1 \quad \text{on } \mathbb{R}^n \end{cases}$$

is $r_{loc}^{(\kappa)}$ -well-posed, i.e. for any $f(x, t) \in \mathcal{B}([0, T], r_{loc}^{(\kappa)})$ and any $u^i(x) \in r_{loc}^{(\kappa)}, 0 \leq i \leq m-k-1$, there exists a unique solution $u(x,t) \in \mathcal{B}([0, T], r_{loc}^{(\kappa)})$ of (1.6).

Remark 1.1. From the definition of ρ , we may only consider the case that $s(\alpha, j) \leq |\alpha| l$ and $\nu(\alpha, j) \leq |\alpha| \mu$.

Remark 1.2. From (A-3), $s(\alpha, j) > 0$ if $|\alpha| > 0$.

Remark 1.3. In the case that k=0, $\sigma(x)$ is a polynomial and $a_{\alpha,j}(x,t) \in \mathcal{B}([0, T], r^{(1)})$, Ivrii showed in [6] that if (1.6) is locally $r_{loc}^{(\kappa)}$ -well-posed, then $1 \leq \kappa \leq \rho/(\rho-1)$.

§2. Proof of Theorem 1.1

In this section we shall reduce Theorem 1.1 to Theorem 2.1.

Definition 2.1. We say that $f(x) \in H^{\infty}(\mathbb{R}^n)$ belongs to $\Gamma^{(\kappa)}$ if there exist constants c, R > 0 such that

(2.1) $||D_x^{\alpha}f(x)|| \leq c R^{|\alpha|} |\alpha|!^{\kappa}$ for any α ,

where $|| \cdot ||$ denotes L²-norm with respect to x.

Theorem 2.1. Under (A-1)~(A-8), if $1 \le \kappa < \rho/(\rho - 1)$, then the assertions (1°) and (2°) hold.

- (1°) (1.6) is $\Gamma^{(\kappa)}$ -well-posed.
- (2°) If supp $u^i(x) \subset K$, $0 \leq i \leq m-k-1$ and supp $f(x, t) \subset C_l(K)$ for any compact set $K \subset \mathbb{R}^n$, then supp $u(x, t) \subset C_l(K)$. Here

$$C_{l}(K) = \{(x, t) \in \mathbb{R}^{n} \times [0, T]; \min |x-y| \leq \lambda_{\max} |t|^{2}/\ell\},\$$

where $\lambda_{\max} = \max_{1 \leq j \leq m} \sup_{\substack{(x,t) \in \mathbb{R}^n \times [0,T], |\xi|=1 \\ roots in (A-5).}} |\sigma(x)^{\mu} \lambda_j(x,t,\xi)|$ and $\lambda_j(x,t,\xi)$ are λ -

Lemma 2.1. Theorem 1.1 follows from Theorem 2.1.

Proof. (I; the case that $\kappa > 1$) First we shall show the existence of a solution of (1.6). Let $\{\phi_p(x)\}\$ be a partition of unity. Namely $\phi_p(x)$ are compactly supported $r^{(\kappa)}$ -functions satisfying the following three conditions: (i) $0 \le \phi_p(x) \le 1$, (ii) $\sum \phi_p(x)$ is locally finite and (iii) $\sum \phi_p(x) \equiv 1$ on \mathbb{R}^n . For any $u^i(x) \in \tau_{1oc}^{(\kappa)}$, $0 \le i \le m - k - 1$ and any $f(x, t) \in \mathcal{B}([0, T], \tau_{1oc}^{(\kappa)})$, we set $u_p^i(x) = \phi_p(x)u^i(x) \in \Gamma^{(\kappa)}$ and $f_p(x, t) = \phi_p(x)f(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$. Then from (1°) in Theorem 2.1, there exists a unique solution $u_p(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ of the Cauchy problem:

$$\begin{cases} Lu_p(x, t) = f_p(x, t) \\ D_t^i u_p(x, t)|_{t=0} = u_p^i(x), \quad 0 \leq i \leq m - k - 1. \end{cases}$$

We note that $\Gamma^{(\kappa)} \subset r^{(\kappa)}$ by Sobolev's lemma. Therefore $u_p(x, t) \in \mathcal{B}([0, T], r^{(\kappa)})$. Furthermore since the summation $\sum u_p(x, t)$ is locally finite, then $u(x, t) = \sum u_p(x, t)$ belongs to $\mathcal{B}([0, T], r_{loc}^{(\kappa)})$ and is a solution of (1.6).

Next we shall show the uniqueness of solutions. For any $(x_0, t_0) \in \mathbb{R}^n \times (0, T]$, we set

$$D_0(x_0, t_0) = \{(x, t) \in \mathbb{R}^n \times [0, T]; |x - x_0| < \lambda_{\max}(t_0^\ell - t^\ell)/\ell\} \text{ and } K = D_0(x_0, t_0) \cap \{(x, 0); x \in \mathbb{R}^n\}.$$

Let $\phi(x)$ be a compactly supported $\gamma^{(\kappa)}$ -function such that $\phi(x)=1$ on K. Let us assume that $u(x, t) \in \mathcal{B}([0, T], \gamma_{loc}^{(\kappa)})$ satisfies the following equation:

$$\begin{cases} Lu(x, t) = 0 & \text{in } \mathbb{R}^n \times (0, T] \\ D_t^i u(x, t)|_{t=0} = 0, \quad 0 \le i \le m - k - 1 & \text{on } \mathbb{R}^n. \end{cases}$$

Since $L(\phi u) = \phi Lu + [L, \phi]u = [L, \phi]u \equiv \tilde{f}(x, t)$ and L is a differential operator, we get that $\operatorname{supp} \tilde{f}(x, t) \subset C_{\ell}(K^{c})$. Here $[\cdot, \cdot]$ is the commutator. Therefore from (2°) in Theorem 2.1, we find that $\operatorname{supp} \phi u \subset C_{\ell}(K^{c})$. Then $u \equiv 0$ on $D_{0}(x_{0}, t_{0})$. Hence $u(x_{0}, t_{0}) = 0$.

(II; the case that $\kappa = 1$) In (I), we have already showed that if $1 < \kappa < \rho/(\rho-1)$, there exists a unique solution $u(x, t) \in \mathcal{B}([0, T], \tau_{loc}^{(\kappa)})$ of (1.6). Therefore it is sufficient to show the analyticity of the solution. If we refer to the method of Mizohata [9] and §5 in this paper, we can easily see this fact. Q.E.D.

We shall prove Theorem 2.1 by the method of successive approximations. Therefore we decompose \tilde{L} as follows and consider the following scheme.

(2.2)
$$\tilde{L} = Q_0(x, t, D_x, D_t) + Q_1(x, t, D_x, D_t)$$

For α , j such that $s(\alpha, j) = |\alpha| l$ and $\nu(\alpha, j) = |\alpha| \mu$, we set

(2.3)
$$Q_0(x, t, D_x, D_t) = \tilde{L}_0(x, t, D_x, D_t) + \sum_{|\alpha| + j \leq m-1} t^{s(\alpha, j) + j} \sigma(x)^{\nu(\alpha, j)} a_{\alpha, j}(x, t) D_x^{\alpha} D_t^j$$

and for α , j such that $s(\alpha, j) < |\alpha| l$ or $\nu(\alpha, j) < |\alpha| \mu$, we set

(2.4)
$$Q_{\mathbf{l}}(x, t, D_{x}, D_{t}) = \sum_{\substack{|\boldsymbol{\alpha}| + j \leq m-1 \\ \boldsymbol{\alpha}| \neq 0}} t^{s(\boldsymbol{\alpha}, j) + j} \sigma(x)^{\nu(\boldsymbol{\alpha}, j)} a_{\boldsymbol{\alpha}, j}(x, t) D_{x}^{\boldsymbol{\alpha}} D_{t}^{j}.$$

(2.5)₀
$$\begin{cases} Q_0 u_0(x, t) = t^{m-k} f(x, t) & \text{in } \mathbb{R}^n \times (0, T] \\ D_i^i u_0(x, t)|_{t=0} = u^i(x), & 0 \le i \le m-k-1 & \text{on } \mathbb{R}^n \end{cases}$$

and for $j \ge 1$

$$(2.5)_{j} \qquad \begin{cases} Q_{0}u_{j}(x, t) = -Q_{1}u_{j-1}(x, t) & \text{in } \mathbb{R}^{n} \times (0, T] \\ D_{i}^{i}u_{j}(x, t)|_{t=0} = 0, \quad 0 \leq i \leq m-k-1 \quad \text{on } \mathbb{R}^{n} \end{cases}$$

The following proposition will be proved in §3.

Proposition 2.1. Under $(A-1)\sim(A-8)$, (1°) and (2°) hold. (1°) The Cauchy problem for Q_0 :

(2.6)
$$\begin{cases} Q_0 v(x, t) = t^{m-k} f(x, t) & in \ \mathcal{R}^n \times (0, T] \\ D_t^i v(x, t)|_{t=0} = v^i(x), & 0 \le i \le m-k-1 & on \ \mathcal{R}^n \end{cases}$$

(2°) If $\operatorname{supp} v^i(x) \subset K$, $0 \leq i \leq m-k-1$ and $\operatorname{supp} f(x, t) \subset C_\ell(K)$ for any compact set $K \subset \mathbb{R}^n$, then $\operatorname{supp} u(x, t) \subset C_\ell(K)$.

Corollary 2.1. When $\rho = 1$, (1.6) is C^{∞} -well-posed.

If we note that Q_1 is a differential operator and $\Gamma^{(\kappa)} \subset H^{\infty}$ and use Proposition 2.1, then we find that $u_j(x, t) \in \mathcal{B}([0, T], H^{\infty})$ for any $j \ge 0$. Therefore our aim is to show the formal solution

(2.7)
$$u(x, t) = \sum_{j=0}^{\infty} u_j(x, t)$$

converges in $\mathscr{B}([0, T], \Gamma^{(\kappa)})$.

Our plan is as follows. In §4, we shall get an energy inequality for Q_0 . In §5, we shall estimate derivatives of a solution of the Cauchy problem:

(2.8)
$$\begin{cases} Q_0 v(x, t) = g(x, t) \\ D_i^i v(x, t)|_{t=0} = 0, \quad 0 \leq i \leq m - k - 1, \end{cases}$$

where $g(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ such that for any sufficiently large fixed integer s, $D_t^i g(x, t)|_{t=0} = 0$, $0 \leq i \leq s-1$. And in §6, we shall obtain an estimate of $Q_1 v(x, t)$. Using the consequence in §5 and §6, we shall prove Theorem 2.1 in §7.

§3. Proof of Proposition 2.1

Let us note that

$$\widetilde{L}_0(x, t, \xi, \tau) = \prod_{j=1}^m \left(t\tau - t^j \sigma(x)^\mu \lambda_j(x, t, \xi) \right),$$

where $\lambda_j(x, t, \xi)$ are λ -roots in (A-5). And modifying $\lambda_j(x, t, \xi)$ near $\xi = 0$, we

may assume that if $i \neq j$, there exists a constant $\delta > 0$ such that $|(\lambda_i - \lambda_j)(x, t, \xi)| \ge \delta \langle \xi \rangle$, where $\lambda_j(x, t, \xi) \in \mathcal{B}([0, T], S^1)$ and $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$. Here for real k, S^k is the symbol class of classical pseudo-differential operators.

We shall define the modules W_k , $0 \le k \le m-1$, over the ring of pseudodifferential operators in x of order zero.

Let $\partial_j = tD_t - t^2 \sigma(x)^{\mu} \lambda_j(x, t, D_x)$ and $\Pi_m = \partial_1 \cdots \partial_m$. Let W_{m-1} be the module generated by the monomial operators $\Pi_m / \partial_i = \partial_1 \cdots \partial_{i-1} \partial_{i+1} \cdots \partial_m$ of order m-1 and let W_{m-2} be the module generated by the operators $\Pi_m / \partial_i \partial_j$, $i \neq j$, of order m-2 and so on.

Lemma 3.1. For any *i*, *j*, there exist pseudo-differential operators A_{ij} , B_{ij} and $C_{ij} \in \mathcal{B}([0, T], S^0)$ such that

$$(3.1) \qquad \qquad [\partial_i, \partial_j] = A_{ij}\partial_i + B_{ij}\partial_j + C_{ij},$$

where $[\cdot, \cdot]$ is the commutator.

Proof. Let $\sigma_0([\partial_i, \partial_j])$ be the principal symbol of $[\partial_i, \partial_j]$. Then by the product formula of pseudo-differential operators, we get

$$\begin{split} \sigma_0([\partial_i, \partial_j]) &= \partial_\tau (t\tau - t^\ell \sigma(x)^\mu \lambda_i) D_i (t\tau - t^\ell \sigma(x)^\mu \lambda_j) \\ &\quad -\partial_\tau (t\tau - t^\ell \sigma(x)^\mu \lambda_j) D_i (t\tau - t^\ell \sigma(x)^\mu \lambda_i) \\ &\quad + \sum_{k=1}^n \left\{ \partial_{\xi_k} (t\tau - t^\ell \sigma(x)^\mu \lambda_i) D_{x_k} (t\tau - t^\ell \sigma(x)^\mu \lambda_j) \right. \\ &\quad -\partial_{\xi_k} (t\tau - t \sigma^\ell (x)^\mu \lambda_j) D_{x_k} (t\tau - t^\ell \sigma(x)^\mu \lambda_i) \right\} \\ &= t^\ell \sigma(x)^\mu D_{ij}(x, t, \xi), \quad \text{where} \quad D_{ij} \in \mathcal{B}([0, T], S^1) \,. \end{split}$$

If we set $A_{ij} = D_{ij}/(\lambda_j - \lambda_i)$ and $B_{ij} = D_{ij}/(\lambda_i - \lambda_j)$, then A_{ij} , $B_{ij} \in \mathcal{B}([0, T], S^0)$ and $A_{ij}(x, t, \xi) (t\tau - t^t \sigma(x)^{\mu} \lambda_i) + B_{ij}(x, t, \xi) (t\tau - t^t \sigma(x)^{\mu} \lambda_j) = t^t \sigma(x)^{\mu} D_{ij}(x, i, \xi)$. Q.E.D.

Lemma 3.2. For any monomial $\omega_k^{\alpha} \in W_k$, $0 \leq k \leq m-1$, there exist ∂_i and $\omega_{k+1}^{\beta} \in W_{k+1}$ such that

(3.2)
$$\partial_i \omega_k^{\alpha} = \omega_{k+1}^{\beta} + \sum_{j=1}^{k+1} \sum_{\gamma} C_{\gamma j} \omega_{k+1-j}^{\gamma},$$

where $C_{\gamma j} \in \mathscr{B}([0, T], S^0)$.

Proof. For any $\omega_k^{\alpha} = \partial_{j_1} \cdots \partial_{j_k}$, $1 \le j_1 < \cdots < j_k \le m$, there exists some $i \notin \{j_1, \dots, j_k\}$ with $1 \le i \le m$. Hence if we use Lemma 3.1, we easily obtain (3.2). Q.E.D.

Lemma 3.3. Let

$$\Psi(t) = \sum_{k=0}^{m-1} \sum_{\boldsymbol{\omega}} ||\omega_k^{\boldsymbol{\omega}} u||,$$

then there exists a constant $c_1 > 0$ such that

(3.3)
$$t\frac{d}{dt}\Psi(t) \leq c_1 \{ ||\Pi_m u|| + \Psi(t) \}$$

for $u(x, t) \in \mathcal{B}([0, T], H^{\infty})$.

Proof. From Lemma 3.2 and Lemma A.2 in Appendix, we get that for any k with $0 \le k \le m-1$,

$$t\frac{d}{dt}||\omega_k^{\alpha}u||^2 = 2\operatorname{Re}(\sqrt{-1}t^{\ell}\sigma(x)^{\mu}\lambda_i\omega_k^{\alpha}u + \omega_{k+1}^{\beta}u + \sum_{j=1}^{k+1}\sum_{\gamma}C_{\gamma j}\omega_{k+1-j}^{\gamma}u, \,\omega_k^{\alpha}u)$$
$$\leq c_2(||\omega_k^{\alpha}u|| + ||\omega_{k+1}^{\beta}u|| + \sum_{j=1}^{k+1}\sum_{\gamma}||\omega_{k+1-j}^{\gamma}u||)||\omega_k^{\alpha}u||.$$

Q.E.D.

Therefore we obtain (3.3).

Lemma 3.4. Let $\Pi_s = \partial_{i_1} \cdots \partial_{i_s}$, $1 \leq i_1 < \cdots < i_s \leq m$. Then (Π_s) , the symbol of Π_s , is expressed in the form:

(3.4)
$$\sigma(\Pi_s) = \prod_{j=1}^s (t\tau - t^\ell \sigma(x)^{\mu} \lambda_{ij}) + R_{s-1} + \cdots + R_0,$$

where $R_{s-j} = \sum_{p+q=s-j} t^{p\ell+q} \sigma(x)^{p\mu} b_{pj}(x, t, \xi) \tau^q$ for some $b_{pj} \in \mathcal{B}([0, T], S^p)$.

Proof. We carry out the proof by induction on s. When s=1, (3.4) is trivial. Suppose (3.4) holds for s. Since $\Pi_{s+1}=\Pi_s\partial_{i_{s+1}}$,

$$\sigma(\Pi_{s+1}) = \sigma(\Pi_s) \left(t\tau - t^{\ell} \sigma(x)^{\mu} \lambda_{i_{s+1}} \right) + \sum_{|\alpha| \neq 0} \partial_{\xi,\tau}^{\alpha} \sigma(\Pi_s) D_{x,i}^{\alpha} \left(t\tau - t^{\ell} \sigma(x)^{\mu} \lambda_{i_{s+1}} \right).$$

Substituting the right hand side of (3.4) for $\sigma(\Pi_s)$, we have (3.4) with s+1. Q.E.D.

Lemma 3.5. There exist $A_j(x, t, \xi) \in \mathcal{B}([0, T], S^0)$ such that for $i'+j' = m-k, 1 \leq k \leq m$,

(3.5)
$$t^{i'\ell+j'}\sigma(x)^{i'\mu}b_{i'j'}(x, t, \xi)\tau^{j'} = \sum_{j=k}^{m} A_j(x, t, \xi) \prod_{i \neq j, i \geq k} (t\tau - t^{\ell}\sigma(x)^{\mu}\lambda_i(x, t, \xi)),$$

where $b_{ij} \in \mathcal{B}([0, T], S^i)$.

Proof. Substituting $t^{\ell}\sigma(x)^{\mu}\lambda_{j}(x, t, \xi)$ for $t\tau$, then we obtain

222

.

$$t^{(m-k)\ell}\sigma(x)^{(m-k)\mu}K_j(x, t, \xi) = A_j(x, t, \xi)t^{(m-k)\ell}\sigma(x)^{(m-k)\mu}\prod_{i\neq j, i\geq k} (\lambda_j - \lambda_i),$$

where $K_j(x, t, \xi) \in \mathcal{B}([0, T], S^{m-k})$. Therefore if we set $A_j(x, t, \xi) = K_j(x, t, \xi)$ $\times \{\sum_{\substack{i \neq j, i \geq k}} (\lambda_j - \lambda_i)\}^{-1}$, (3.5) is realized. Q.E.D.

Corollary 3.1. There exist pseudo-differential operators $C_k(x, t, D_x) \in \mathcal{B}([0, T], S^0)$ such that

(3.6)
$$Q_0 - \Pi_m = \sum_{k=0}^{m-1} \sum_{\omega} C_k(x, t, D_x) \omega_k^{\omega}$$

Proof. From (3.4) with s=m,

$$\sigma(Q_0-\Pi_m)=\sum_{j=1}^m\sum_{\substack{b+q=m-j}}t^{pl+q}\sigma(x)^{p\mu}b_{pj}(x, t, \xi)\tau^q$$

where $b_{pj}(x, t, \xi) \in \mathcal{B}([0, T], S^p)$. Using Lemma 3.5, the principal symbol of $Q_0 - \prod_m$ is

$$\sum_{j=1}^m A_j(x, t, \xi) \prod_{i \neq j} \left(t\tau - t^{\ell} \sigma(x)^{\mu} \lambda_i(x, t, \xi) \right),$$

where $A_j(x, t, \xi) \in \mathcal{B}([0, T], S^0)$. Applying (3.4) for s=m-1,

$$\sigma(Q_0-\Pi_m-\sum_{j=1}^m A_j\prod_{i\neq j}\partial_i)=\sum_{j=1}^{m-1}\sum_{p+q=m-1-j}t^{p\ell+q}\sigma(x)^{p\mu}\tilde{b}_{jj}(x, t, \xi)\tau^q,$$

where $\tilde{b}_{pj}(x, t, \xi) \in \mathcal{B}([0, T], S^p)$. Repeating these steps, (3.6) is verified.

Q.E.D.

Lemma 3.6. There exists a constant $c_3 > 0$ such that

(3.7)
$$t\frac{d}{dt}\Psi(t) \leq c_3\{||Q_0u|| + \Psi(t)\}.$$

Proof. Using Lemma 3.3 and Corollary 3.1, we obtain that

$$t\frac{d}{dt}\Psi(t) \leq c_1 \{ ||\Pi_m u|| + \Psi(t) \} \leq c_1 \{ ||Q_0 u|| + ||(Q_0 - \Pi_m)u|| + \Psi(t) \} \leq c_3 \{ ||Q_0 u|| + \Psi(t) \} .$$
Q.E.D.

For a sufficiently large integer N, we put

$$u_N(x, t) = u(x, t) - \sum_{j=0}^{m+M} \frac{t^j}{j!} \partial_t^j u(x, 0).$$

Then $u_N(x, t)$ satisfies the equation:

Shigeharu Itoh and Hitoshi Uryu

$$Q_0 u_N(x, t) = f(x, t) - Q_0(\sum_{j=0}^{m+N} t^j \partial_i^j u(x, 0)) \equiv f_N(x, t).$$

Here we note that from (A-4), for any $i \ge 0$, $D_i^i u(x, 0)$ is represented by f(x, t) and $u^i(x)$, $0 \le i \le m - k - 1$ (cf. Baouendi-Goulaouic [1]).

Lemma 3.7. For sufficiently large N, the following energy estimate holds.

(3.8)
$$||u(\cdot, t)||_{s} \leq \text{const.} \left\{ \sum_{j=0}^{m+N} \frac{t^{j}}{j!} ||\partial_{t}^{j}u(\cdot, 0)||_{s} + t^{N} \int_{0}^{t} ||D_{\tau}^{N+1}f_{N}(\cdot, \tau)||_{s} d\tau \right\},$$

where $|| \cdot ||_s$ denotes H^s -norm with respect to x.

Proof. If we redefine $\Psi(t)$ replacing u(x, t) by $u_N(x, t)$, then from Lemma 3.6,

$$\frac{d}{dt}(t^{-c_3}\Psi(t)) \leq c_3 t^{-c_3-1} ||f_N(\cdot, t)|| .$$

We can choose N such that $t^{-c_3}\Psi(t)|_{t=0}=0$. Then

$$\Psi(t) \leq c_3 t^{c_3} \int_0^t \tau^{-c_3-1} ||f_N(\cdot, \tau)|| d\tau$$
.

On the other hand, since $D_t^i f_N(x, 0) = 0$ for $0 \le i \le N$,

$$f_N(x, t) = \frac{1}{N!} \int_0^t (t-\tau)^N \partial_\tau^{N+1} f_N(x, \tau) d\tau .$$

Thus

$$||u_N(\cdot, t)|| \leq \text{const. } t^N \int_0^t ||D_{\tau}^{N+1}f_N(\cdot, \tau)||d\tau$$

Similarly we get that for real s,

$$||u_N(\cdot, t)||_s \leq \text{const. } t^N \int_0^t ||D_\tau^{N+1} f_N(\cdot, \tau)||_s d\tau.$$

Therefore we can obtain the desired estimate.

Proof of Proposition 2.1. For any *i* with $m-k \le i \le m-1$, we calculate $D_i^i v(x, 0)$ and let them $v^i(x), m-k \le i \le m-1$. Next we define the δ -translation $Q_0^{\delta}(x, t, D_x, D_t)$ of Q_0 by

$$(3.9) Q_0^{\delta}(x, t, D_x, D_t) = Q_0(x, t+\delta, D_x, D_t) for 0 \leq \delta \leq 1.$$

Now we consider the following non-characteristic Cauchy problem:

(3.10)
$$\begin{cases} \mathcal{Q}_0^{\delta} v_{\delta}(x, t) = t^{m-k} f(x, t) & \text{in } \mathbb{R}^n \times (0, T] \\ D_t^i v_{\delta}(x, t)|_{t=0} = v^i(x), \quad 0 \leq i \leq m-1 \quad \text{on } \mathbb{R}^n. \end{cases}$$

224

Q.E.D.

For $\delta > 0$, (3.10) is H^{∞} -well-posed (cf. Uryu [16]). Further from Lemma 3.7, the following energy estimate holds uniformly in δ :

$$||v_{\delta}(\circ, t)||_{s} \leq \text{const.} \left\{ \sum_{j=0}^{m+N} \frac{t^{j}}{j!} ||\partial_{t}^{j} v_{\delta}(\circ, 0)||_{s} + t^{N} \int_{0}^{t} ||D_{t}^{N+1} f_{N}(\circ, \tau)||_{s} d\tau \right\} .$$

Therefore there exists a subsequence $\{v_{\delta_j}\}$ which converges weakly in $\mathcal{B}([0, T], H^s)$ as $\delta_j \rightarrow 0$. This limit function v is a unique solution of (2.6). Hence (1°) has proved.

In order to prove (2°), we note the following fact. For $\delta > 0$, initial surface $\{t=0\}$ is non-characteristic with respect to Q_0^{δ} and Q_0^{δ} is invariant under the Holmgren transformation:

$$\begin{cases} x' = x \\ t' = t + |x|^2 \end{cases}$$

Thus by the well-known method (for example, see Mizohata [10]), we find that the domain of dependence is finite, i.e. for any $(x_0, t_0) \in \mathbb{R}^n \times (0, T]$, if $f(x, t) \equiv 0$ in D_{δ} and $v^i(x) \equiv 0$ on $D_{\delta} \cap \{(x, 0); x \in \mathbb{R}^n\}$, then $v_{\delta}(x, t) \equiv 0$ in D_{δ} , where $D_{\delta} = \{(x, t) \in \mathbb{R}^n \times [0, T]; |x - x_0| < \lambda_{\max} \{(t_0 + \delta)^{\ell} - (t + \delta)^{\ell}\}/l\}$.

Then the following fact holds for limit function v(x, t). If $f(x, t) \equiv 0$ in \tilde{D} and $v^i(x) \equiv 0$ on $\tilde{D} \cap \{(x, 0); x \in \mathbb{R}^n\}$, then $v(x, t) \equiv 0$ in \tilde{D} , where $\tilde{D} = \bigcap_{\delta > 0} D_{\delta}$. Since we can easily see that $\tilde{D} = D_0$, (2°) is verified.

This completes the proof.

§4. Energy Inequality for Q_0

The aim of this section is to show the following lemma.

Lemma 4.1. Let

$$\Psi_r(t) = \sum_{k=0}^{m-1} \sum_{\alpha} || \Lambda^r \omega_k^{\alpha} u ||,$$

where Λ is the pseudo-differential operator with symbol $\langle \xi \rangle$. Then there exist constants c_4 , $\hat{R} > 0$ such that

(4.1)
$$t \frac{d}{dt} \Psi_{r}(t) \leq c_{4} \{ \|A^{r} Q_{0} u\| + \Psi_{r}(t) + t^{\ell} \sum_{j=1}^{r^{*}} \hat{R}^{j-1}(j-1) \|^{\kappa} {r^{*} \choose j} \Psi_{r+1-j}(t) + \sum_{j=1}^{r^{*}-1} \hat{R}^{j} j \|^{\kappa} {r^{*} \choose j} \Psi_{r-j}(t) + \hat{R}^{r} r \|^{\kappa} \Psi_{0}(t) \}.$$

Proof. For r > 0, operating Λ^r on both sides of (3.2), we get that

Q.E.D.

$$\partial_i \Lambda^r \omega_k^{\alpha} u = [\partial_i, \Lambda^r] \omega_k^{\alpha} u + \Lambda^r \omega_{k+1}^{\beta} u + \sum_{j=1}^{k+1} \sum_{\gamma} \left(C_{\gamma j} \Lambda^r \omega_{k+1-j}^{\gamma} u + [\Lambda^r, C_{\gamma j}] \omega_{k+1-j}^{\gamma} u \right).$$

Similar to the proof of Lemma 3.3, we have that for any k with $0 \le k \le m-1$,

$$t \frac{d}{dt} ||\Lambda^r \omega_k^{\alpha} u|| \leq c_5 \{ ||\Lambda^r \omega_k^{\alpha} u|| + ||[\Lambda^r, \partial_i] \omega_k^{\alpha} u|| + ||\Lambda^r \omega_{k+1}^{\beta} u||$$
$$+ \sum_{j=1}^{k+1} \sum_{\gamma} (||\Lambda^r \omega_{k+1-j}^{\gamma} u|| + ||[\Lambda^r, C_{\gamma j}] \omega_{k+1-j}^{\gamma} u||) \}.$$

It follows from Lemma A.3 in Appendix that

$$||[\Lambda^r, \partial_i]\omega_k^{\alpha}u|| \leq t^{\prime} \sum_{j=1}^{r^*} \hat{c}\hat{R}^{j-1}(j-1)!^{\kappa} \binom{r^*}{j} ||\Lambda^{r+1-j}\omega_k^{\alpha}u|| + t^{\prime}\hat{c}\hat{R}^r r!^{\kappa}||\omega_k^{\alpha}u||$$

and

$$||[\Lambda^r, C_{\gamma_i}]\omega_{k+1-i}^{\gamma}u|| \leq \sum_{j=1}^{r^{*-1}} \hat{c}\hat{R}^j j!^{\kappa} {r^* \choose j} ||\Lambda^{r-j}\omega_{k+1-i}^{\gamma}u|| + \hat{c}\hat{R}^r r!^{\kappa} ||\omega_{k+1-i}^{\gamma}u||.$$

Therefore we obtain that

$$t \frac{d}{dt} \Psi_{r}(t) \leq c_{6} \{ || \Lambda^{r} \Pi_{m} u|| + \Psi_{r}(t) + t^{\ell} \sum_{j=1}^{r^{*}} \hat{R}^{j-1}(j-1)!^{\kappa} {r^{*} \choose j} \Psi_{r+1-j}(t) + \sum_{j=1}^{r^{*}-1} \hat{R}^{j} j!^{\kappa} {r^{*} \choose j} \Psi_{r-j}(t) + \hat{R}^{r} r!^{\kappa} \Psi_{0}(t) \} .$$

If we use Corollary 3.1 and refer to the proof of Lemma 3.6, then we get (4.1). Q.E.D.

Here $r!=\Gamma(r+1)$ and r^* is the lowest integer greater than or equal to r, where $\Gamma(\cdot)$ is the gamma function.

§5. Estimate of $\Lambda^r v(x, t)$

We assume the existence of solutions of the following Cauchy problem:

$$\begin{cases} Q_0 v(x, t) = g(x, t) \\ D_i^i v(x, t)|_{t=0} = 0, \quad 0 \leq i \leq m - k - 1, \end{cases}$$

where $g(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ such that for any sufficiently large fixed integer $s, D_i^i g(x, t)|_{t=0} = 0, 0 \le i \le s-1$.

Therefore we may assume that for any $r \ge 0$, there exist constants c, R, M > 0 such that

(5.1)
$$||A^r g(x, t)|| \leq c R^r r!^{\kappa} t^s \exp((Mr^* t^t)).$$

For simplification we use the notation

$$w_r(s, t, R) = R^r r!^{\kappa} t^s \exp\left(Mr^* t^{\ell}\right).$$

Lemma 5.1. For any $r \ge 0$, there exists a constant A' > 0 such that for sufficiently large R, M, s,

(5.2)
$$\Psi_r(t) \leq cA' s^{-1} w_r(s, t, R) \, .$$

Proof. We carry out the proof by induction on r. When r=0, it follows from Lemma 3.6 and (5.1) that

$$t\frac{d}{dt}\Psi_0(t) \leq c_3 \{cw_0(s, t, R) + \Psi_0(t)\}.$$

From this inequality,

$$\frac{d}{dt}(t^{-c_3}\Psi_0(t)) \leq cc_3 t^{-c_3-1} w_0(s, t, R) .$$

If we note that s is sufficiently large,

$$\Psi_0(t) \leq t^{c_3} \int_0^t cc_3 \tau^{s-c_3-1} d\tau = cc_3 t^{c_3} (s-c_3)^{-1} t^{s-c_3} \leq cA' s^{-1} w_0(s, t, R) ,$$

if we choose A' such that $A' \ge 2c_3$.

We assume (5.2) is valid for any r such that $0 \le r \le n$. Let us show that (5.2) is valid for $n < r \le n+1$. It follows from Lemma 4.1 that

$$\frac{d}{dt} \{ t^{-c_4} \exp\left(-c_4 r^* t^{\ell} / \ell\right) \Psi_r(t) \} \leq c_4 t^{-c_4 - 1} \exp\left(-c_4 r^* t^{\ell} / \ell\right) \{ || \Lambda^r Q_0 v|| + t^{\ell} \sum_{i=2}^{r^*} \hat{R}^{i-1}(j-1)!^{\kappa} {r^* \choose j} \Psi_{r+1-j}(t) + \sum_{j=1}^{r^{i-1}} \hat{R}^j j!^{\kappa} {r^* \choose j} \Psi_{r-j}(t) + \hat{R}^r r!^{\kappa} \Psi_0(t) \}.$$

Hence we get that

$$\begin{split} \Psi_{r}(t) &\leq c_{4}t^{c_{4}} \exp\left(c_{4}r^{*}t^{\ell}/\ell\right) \int_{0}^{t} \tau^{-c_{4}-1} \exp\left(-c_{4}r^{*}\tau^{\ell}/\ell\right) \{ ||A^{r}Q_{0}v|| \\ &+ \tau^{\ell} \sum_{j=2}^{j^{*}} \hat{R}^{j-1}(j-1)!^{\kappa} {r \choose j} \Psi_{r+1-j}(\tau) + \sum_{j=1}^{r^{*}-1} \hat{R}^{j}j!^{\kappa} {r^{*} \choose j} \Psi_{r-j}(\tau) + \hat{R}^{r}r!^{\kappa} \Psi_{0}(\tau) \} d\tau \\ &\leq c_{4}t^{c_{4}} \exp\left(c_{4}r^{*}t^{\ell}/\ell\right) \int_{0}^{t} \tau^{-c_{4}-1} \exp\left(-c_{4}r^{*}\tau^{\ell}/\ell\right) \{ c_{W_{r}}(s, \tau, R) \\ &+ \tau^{\ell} \sum_{j=2}^{r^{*}} \hat{R}^{j-1}(j-1)!^{\kappa} {r^{*} \choose j} cA' s^{-1} w_{r+1-j}(s, \tau, R) \\ &+ \sum_{j=1}^{r^{*}-1} \hat{R}^{j}j!^{\kappa} {r^{*} \choose j} cA' s^{-1} w_{r-j}(s, \tau, R) + \hat{R}^{r}r!^{\kappa}cA' s^{-1} w_{0}(s, \tau, R) \} d\tau \\ &\leq c_{4}t^{c_{4}} \exp\left(c_{4}r^{*}t^{\ell}/\ell\right) \int_{0}^{t} \tau^{-c_{4}-1} \exp\left(-c_{4}r^{*}\tau^{\ell}/\ell\right) \end{split}$$

$$\times \{ cw_{r}(s, \tau, R) + \tau^{t} \sum_{j=2}^{r^{*}} (\hat{R}/R)^{j-1} {r \choose j-1}^{-\kappa} {r^{*} \choose j} cA's^{-1}w_{r}(s, \tau, R)$$

+
$$\sum_{j=1}^{r^{*}-1} (\hat{R}/R)^{j} {r \choose j}^{-\kappa} {r^{*} \choose j} cA's^{-1}w_{r}(s, \tau, R) + (\hat{R}/R)^{r}cA's^{-1}w_{r}(s, \tau, R) \} d\tau$$

Let $R \ge 2\hat{R}$, then

$$\begin{split} \Psi_{r}(t) &\leq c_{7}t^{c_{4}}\exp\left(c_{4}r^{*}t^{\ell}/\ell\right)\int_{0}^{t}\tau^{-c_{4}-1}\exp\left(-c_{4}r^{*}\tau^{\ell}/\ell\right) \\ &\times \left\{cw_{r}(s,\,\tau,\,R) + \tau^{\ell}r^{*}cA's^{-1}w_{r}(s,\,\tau,\,R) + cA's^{-1}w_{r}(s,\,\tau,\,R)\right\}d\tau \\ &\leq cc_{7}t^{c_{4}}\exp\left(c_{4}r^{*}t^{\ell}/\ell\right)R^{r}r!^{\kappa}\exp\left\{(M-c_{4}/\ell)r^{*}t^{\ell}\right\}\int_{0}^{t}\tau^{s-c_{4}-1}d\tau \\ &+ r^{*}cA's^{-1}c_{7}t^{c_{4}}\exp\left(c_{4}r^{*}t^{\ell}/\ell\right)R^{r}r!^{\kappa}t^{s-c_{4}}\int_{0}^{t}\tau^{\ell-1}\exp\left\{(M-c_{4}/\ell)r^{*}\tau^{\ell}\right\}d\tau \\ &+ cA's^{-1}c_{7}t^{c_{4}}\exp\left(c_{4}r^{*}t^{\ell}/\ell\right)R^{r}r!^{\kappa}\exp\left\{(M-c_{5}/\ell)r^{*}t^{\ell}\right\}\int_{0}^{t}\tau^{s-c_{4}-1}d\tau \\ &\leq cA's^{-1}w_{r}(s,\,\ell,\,R)\,, \end{split}$$

if we choose A' such that $A' \ge 3c_4^{-1}c_7$ and note that s and M are sufficiently large. Q.E.D.

Lemma 5.2. Let

$$\varPhi_r(t) = \sum_{i+j \leq m-1} t^{i\ell+j} || \Lambda^r \{ \sigma(x)^{i\mu} \Lambda^i D_i^j v \} ||,$$

then

$$\mathscr{P}_{r}(t) \leq c_{\mathfrak{g}} \left\{ \sum_{j=0}^{r^{*}-1} \hat{R}^{j} j!^{\kappa} {r^{*} \choose j} \mathscr{\Psi}_{r-j}(t) + \hat{R}^{r} r!^{\kappa} \mathscr{\Psi}_{0}(t) \right\} .$$

Proof. From Lemma 3.4 and Lemma 3.5, we get that

$$t^{i\ell+j}||\Lambda^{r} \{\sigma(x)^{i\mu}\Lambda^{i}D_{i}^{j}v\}|| = ||\Lambda^{r} \{\sum_{k=0}^{i+j}\sum_{\alpha} A_{k}(x, t, D_{x})\omega_{k}^{\alpha}v\}||$$
$$\leq c_{9}\sum_{k=0}^{i+j}\sum_{\alpha} (||\Lambda^{r}\omega_{k}^{\alpha}v|| + ||[\Lambda^{r}, A_{k}]\omega_{k}^{\alpha}v||)$$

Using Lemma A.3 in Appendix, we have

$$||[\Lambda^r, A_k]\omega_k^{\alpha}v|| \leq \sum_{j=1}^{r^*-1} \hat{c} \hat{R}^j j!^{\kappa} {r^* \choose j} ||\Lambda^{r-j}\omega_k^{\alpha}v|| + \hat{c} \hat{R}^r r!^{\kappa} ||\omega_k^{\alpha}v||$$

Thus we can obtain the desired inequality.

Corollary 5.1. For any $r \ge 0$, there exists a constant $\tilde{A} > 0$ such that for sufficiently large R, M, s,

Q.E.D.

(5.3)
$$\varPhi_r(t) \leq c \tilde{A} s^{-1} w_r(s, t, R) .$$

Proof. Applying Lemma 5.1 to Lemma 5.2, we find that

$$\begin{aligned} \varPhi_{r}(t) &\leq c_{8} \{ \sum_{j=0}^{r^{*}-1} \hat{R}^{j} j!^{\kappa} {r^{*} \choose j} cA' s^{-1} w_{r-j}(s, t, R) + \hat{R}^{r} r!^{\kappa} cA' s^{-1} w_{0}(s, t, R) \} \\ &\leq c_{8} \{ \sum_{j=0}^{r^{*}-1} (\hat{R}/R)^{j} {r \choose j}^{-\kappa} {r^{*} \choose j} cA' s^{-1} w_{r}(s, t, R) + (\hat{R}/R)^{r} cA' s^{-1} w_{r}(s, t, R) \} \\ &\leq c \tilde{A} s^{-1} w_{r}(s, t, R) , \end{aligned}$$

if we make $R \ge 2\hat{R}$ and choose \tilde{A} such that $\tilde{A} \ge 3c_8A'$. Q.E.D.

Lemma 5.3. For any $r \ge 0$ and $i+j \le m-1$, there exists a constant A>0 such that for sufficiently large R, M, s,

(5.4)
$$t^{il+j} || \Lambda^r \{ \sigma(x)^{i\mu} \Lambda^i D_i^j v \} || \leq c A s^{-(m-i-j)} w_r(s, t, R) .$$

Proof. It follows from Corollary 5.1 that

$$\|A^{r} \{\sigma(x)^{i\mu} A^{i} D_{t}^{j+(m-i-j-1)}v\}\| \leq c \widetilde{A} s^{-1} w_{r}(s-i\ell-m+i+1, t, R).$$

Hence we get that if we put q=m-i-j-1,

$$\begin{split} ||\Lambda^{r} \{ \sigma(x)^{i\mu} \Lambda^{i} D_{t}^{j} v \} || &\leq \int_{0}^{t} \cdots \int_{0}^{\tau_{2}} ||\Lambda^{r} \{ \sigma(x)^{i\mu} \Lambda^{i} D_{\tau}^{j+q} v \} || d\tau_{1} \cdots d\tau_{q} \\ &\leq c \widetilde{A} s^{-1} R^{r} r!^{\kappa} \exp\left(M r^{*} t^{\ell}\right) \int_{0}^{t} \cdots \int_{0}^{\tau_{2}} \tau_{1}^{s-i\ell-j-q} d\tau_{1} \cdots d\tau_{q} \\ &\leq c (2^{q} \widetilde{A}) s^{-(q+1)} w_{r}(s-i\ell-j, t, R) \,. \end{split}$$

If we set $A = 2^{q} \tilde{A}$, we get (5.4).

Q.E.D.

Lemma 5.4. For any $r \ge 0$ and i, j such that $i+j=0, \dots, m-1$,

(5.5)
$$t^{i\ell+j} \|\sigma(x)^{i\mu} \Lambda^{r+i} D_t^j v\| \leq c_{10} c A w_{r+i}(s, t, R) \\ \times \sum_{k=0}^i s^{-(m-i-j+k)} \{(r+i)\cdots(r+k+1)\}^{-\kappa} \{(r+k)\cdots(r+1)\}^{1-\kappa}.$$

Proof. We carry out the proof by induction on *i*. When i=0, (5.5) is trivial from (5.4). Using (5.4) and Lemma A.3 in Appendix and noting $\mu \ge 1$, we obtain that

$$\begin{split} t^{il+j} ||\sigma(x)^{i\mu} \Lambda^{r+i} D_{i}^{j} v|| \\ &\leq t^{il+j} ||\Lambda^{r} \{\sigma(x)^{i\mu} \Lambda^{i} D_{i}^{j} v\} ||+t^{il+j} ||[\Lambda^{r}, \sigma(x)^{i\mu}] \Lambda^{i} D_{i}^{j} v|| \\ &\leq cAs^{-(m-i-j)} w_{r}(s, t, R) + \sum_{k=1}^{r-1} \hat{c} \hat{R}^{k} k \,!^{\kappa} \binom{r^{*}}{k} t^{(i-k)l+j} ||\sigma(x)^{(i-k)\mu} \Lambda^{r+i-k} D_{i}^{j} v|| \\ &+ \sum_{k=i}^{r^{*-1}} \hat{c} \hat{R}^{k} k \,!^{\kappa} \binom{r^{*}}{k} t^{j} ||\Lambda^{r+i-k} D_{i}^{j} v|| + \hat{c} \hat{R}^{r} r \,!^{\kappa} t^{j} ||\Lambda^{i} D_{i}^{j} v|| \end{split}$$

$$\leq cAs^{-(m-i-j)}w_{r}(s, t, R) + \sum_{k=1}^{i-1} \hat{c}\hat{R}^{k}k!^{\kappa} {\binom{r^{*}}{k}} cAw_{r+i-k}(s, t, R) \times \sum_{k'=0}^{i-k} s^{-(m-i-j+k+k')} \{(r+i-k)\cdots(r+k'+1)\}^{-\kappa} \{(r+k')\cdots(r+1)\}^{1-\kappa} + \sum_{k=i}^{r^{*}-1} \hat{c}\hat{R}^{k}k!^{\kappa} {\binom{r^{*}}{k}} cAs^{-(m-j)}w_{r+i-k}(s, t, R) + \hat{c}\hat{R}^{r}r!^{\kappa}cAs^{-(m-j)}w_{i}(s, t, R) \leq cAs^{-(m-i-j)} \{(r+i)\cdots(r+1)\}^{-\kappa}w_{r+i}(s, t, R) + c_{11}cAw_{r+i}(s, t, R) \times \sum_{k=1}^{i-1} \sum_{k'=0}^{i-k} s^{-(m-i-j+k+k')} \{(r+i)\cdots(r+k+k'+1)\}^{-\kappa} \{(r+k+k')\cdots(r+1)\}^{1-\kappa} + cAs^{-(m-j)}w_{r+i}(s, t, R) \sum_{k=i}^{r^{*}-1} \hat{c}(\hat{R}/R)^{k} {\binom{r+i}{k}}^{1-\kappa} + \hat{c}(\hat{R}/R)^{r} {\binom{r+i}{i}}^{-\kappa}cAs^{-(m-j)}w_{r+i}(s, t, R) \leq cAs^{-(m-i-j)} \{(r+i)\cdots(r+1)\}^{-\kappa}w_{r+i}(s, t, R) \leq cAs^{-(m-i-j)} \{(r+i)\cdots(r+1)\}^{1-\kappa}w_{r+i}(s, t, R) + c_{11}cAw_{r+i}(s, t, R) \sum_{k=1}^{i} s^{-(m-i-j+k)} \{(r+i)\cdots(r+k+1)\}^{-\kappa} \{(r+k)\cdots(r+1)\}^{1-\kappa} + \hat{c}cAs^{-(m-j)} \{(r+i)\cdots(r+1)\}^{1-\kappa}w_{r+i}(s, t, R)$$

 $\leq c_{10}cAw_{r+i}(s, t, R) \sum_{k=0}^{i} s^{-(m-i-j+k)} \{(r+i)\cdots(r+k+1)\}^{-\kappa} \{(r+k)\cdots(r+1)\}^{1-\kappa}$
 Q.E.D.

§6. Estimate of $A'Q_1v(x, t)$

Lemma 6.1. If $\sigma(x) \in \mathcal{B}(\mathbb{R}^n)$ and $0 \leq \nu < \mu$, then (6.1) $||\sigma(x)^{\nu}u|| \leq ||u||^{1-\nu/\mu} ||\sigma(x)^{\mu}u||^{\nu/\mu}$.

Proof. By Holder's inequality,

$$\begin{aligned} ||\sigma(x)^{\nu}u||^{2} &= \int |\sigma(x)^{\nu}u|^{2}dx = \int |u|^{2(1-\nu/\mu)} |\sigma(x)^{\mu}u|^{2\nu/\mu}dx \\ &\leq (\int |u|^{2}dx)^{1-\nu/\mu} (\int |\sigma(x)^{\mu}u|^{2}dx)^{\nu/\mu} \\ &= ||u||^{2(1-\nu/\mu)} ||\sigma(x)^{\mu}u||^{2\nu/\mu}. \end{aligned}$$
Q.E.D.

Lemma 6.2. Let

(6.2)
$$\rho_{\theta}(\alpha, j) = \begin{cases} \nu(\alpha, j) | \alpha | \mu \quad if \quad l\nu(\alpha, j) < \mu s(\alpha, j) \\ s(\alpha, j) / (|\alpha|l + \theta) \quad if \quad l\nu(\alpha, j) \ge \mu s(\alpha, j) \end{cases}$$

with respect to $0 < \theta \leq 1$, then for any $r \geq 0$,

(6.3)
$$t^{s(\mathfrak{G},j)+j} || \sigma(x)^{\nu(\mathfrak{G},j)} A^{r+|\mathfrak{G}|} D_t^j v ||$$
$$\leq c_{12} c A w_{r+|\mathfrak{G}|} (s+\varepsilon_1, t, R) \sum_{k=0}^{|\mathfrak{G}|} s^{-\{m-j-(|\mathfrak{G}|-k)\rho_{\theta}(\mathfrak{G},j)\}} \times \{(r+|\alpha|)\cdots(r+k+1)\}^{-\kappa\rho_{\theta}(\mathfrak{G},j)} \{(r+k)\cdots(r+1)\}^{-(\kappa-1)\rho_{\theta}(\mathfrak{G},j)},$$

where $\varepsilon_1 = \min \{s(\alpha, j) - \ell \nu(\alpha, j) / \mu, s\theta / (|\alpha|\ell + \theta)\} > 0.$

Proof. First we consider the case that $l\nu(\alpha, j) < \mu s(\alpha, j)$. If we use Lemma 5.4 and Lemma 6.1, we get

$$\begin{split} t^{s(\mathfrak{G},j)+j} &||\sigma(\mathbf{x})^{\mathbf{v}(\mathfrak{G},j)} A^{r+|\mathfrak{G}|} D_{i}^{j} \mathbf{v}|| \\ &\leq \{t^{j(1-\varrho_{\theta}(\mathfrak{G},j))} || A^{r+|\mathfrak{G}|} D_{i}^{j} \mathbf{v}||^{1-\varrho_{\theta}(\mathfrak{G},j)} \} \\ &\times \{t^{s(\mathfrak{G},j)+j\varrho_{\theta}(\mathfrak{G},j)} ||\sigma(\mathbf{x})^{\mathbf{v}(\mathfrak{G},j)\rho_{\theta}(\mathfrak{G},j)^{-1}} A^{r+|\mathfrak{G}|} D_{i}^{j} \mathbf{v}||^{\varrho_{\theta}(\mathfrak{G},j)} \} \\ &\leq c_{13} t^{s(\mathfrak{G},j)-t\mathbf{v}(\mathfrak{G},j)/\mu} \{t^{j} || A^{r+|\mathfrak{G}|} D_{i}^{j} \mathbf{v}||^{1-\varrho_{\theta}(\mathfrak{G},j)} \\ &\times \{t^{|\mathfrak{G}|t+j} ||\sigma(\mathbf{x})^{|\mathfrak{G}|\mu} A^{r+|\mathfrak{G}|} D_{i}^{j} \mathbf{v}||^{2} \rho_{\theta}(\mathfrak{G},j) \\ &\leq c_{14} cA w_{r+|\mathfrak{G}|} (s+s(\mathfrak{G},j)-t\mathbf{v}(\mathfrak{G},j)/\mu, t, R) s^{-(m-j)(1-\varrho_{\theta}(\mathfrak{G},j))} \\ &\times \{\sum_{k=0}^{|\mathfrak{G}|} s^{-(m-|\mathfrak{G}|-j+k)} \{(r+|\alpha|)\cdots(r+k+1)\}^{-\kappa} \{(r+k)\cdots(r+1)\}^{1-\kappa} \rho_{\theta}(\mathfrak{G},j) \\ &\leq c_{14} cA w_{r+|\mathfrak{G}|} (s+s(\mathfrak{G},j)-t\mathbf{v}(\mathfrak{G},j)/\mu, t, R) \sum_{k=0}^{|\mathfrak{G}|} s^{-(m-j-(|\mathfrak{G}|-\kappa)\rho_{\theta}(\mathfrak{G},j))} \\ &\times \{(r+|\alpha|)\cdots(r+k+1)\}^{-\kappa\rho_{\theta}(\mathfrak{G},j)} \{(r+k)\cdots(r+1)\}^{-(\kappa-1)\rho_{\theta}(\mathfrak{G},j)} . \end{split}$$

Next in the case that $l\nu(\alpha, j) \ge \mu s(\alpha, j)$, we have

$$\begin{split} t^{s(\mathfrak{a},j)+j} ||\sigma(x)^{v(\mathfrak{a},j)} A^{r+|\mathfrak{a}|} D_{t}^{j} v|| \\ & \leq \{t^{j(1-\rho_{\theta}(\mathfrak{a},j))} ||A^{r+|\mathfrak{a}|} D_{t}^{j} v||^{1-\rho_{\theta}(\mathfrak{a},j)}\} \\ & \times \{t^{s(\mathfrak{a},j)+j\rho_{\theta}(\mathfrak{a},j)} ||\sigma(x)^{v(\mathfrak{a},j)\rho_{\theta}(\mathfrak{a},j)^{-1}} A^{r+|\mathfrak{a}|} D_{t}^{j} v||^{\rho_{\theta}(\mathfrak{a},j)}\} \\ & \leq c_{15} t^{s\theta/(|\mathfrak{a}|\ell+\theta)} \{t^{j} ||A^{r+|\mathfrak{a}|} D_{t}^{j} v||\}^{1-\rho_{\theta}(\mathfrak{a},j)} \\ & \times \{t^{|\mathfrak{a}|\ell+j|} ||\sigma(x)^{|\mathfrak{a}|\mu} A^{r+|\mathfrak{a}|} D_{t}^{j} v||\}^{\rho_{\theta}(\mathfrak{a},j)} \\ & \leq c_{16} cA_{w_{r+|\mathfrak{a}|}} (s+s\theta/(|\alpha|\ell+\theta), t), R) \sum_{k=0}^{|\mathfrak{a}|} s^{-(m-j-(|\mathfrak{a}|-k)\rho_{\theta}(\mathfrak{a},j))} \\ & \times \{(r+|\alpha|)\cdots(r+k+1)\}^{-\rho_{\kappa}} \theta^{(\mathfrak{a},j)} \{(r+k)\cdots(r+1)\}^{-(\kappa-1)^{\rho}} \theta^{(\mathfrak{a},j)} . \end{split}$$
Setting $\varepsilon_{1} = \min\{s(\alpha,j) - \ell\nu(\alpha,j)/\mu, s\theta/(|\alpha|\ell+\theta)\}$, then we obtain (6.3).

Q.E.D.

We note that for any α , j such that $|\alpha| \neq 0$,

(6.4) $\nu(\alpha, j) = 0$ or there exists a non-negative integer $p(\alpha, j)$ such that $p(\alpha, j) \times \mu$ $< \nu(\alpha, j) \leq (p(\alpha, j)+1)\mu$. And there exists a non-negative integer $q(\alpha, j)$ such that $q(\alpha, j)\ell < s(\alpha, j) \leq (q(\alpha, j)+1)\ell$. **Lemma 6.3.** For any $r \ge 0$ and $|\alpha| > 0$,

$$(6.5) \quad t^{\mathfrak{s}(\mathfrak{a},j)+j}||[\Lambda^{r},\,\sigma(x)^{\nu(\mathfrak{a},j)}a_{\mathfrak{a},j}(x,t)D_{x}^{\alpha}]D_{t}^{j}\nu||$$

$$\leq c_{17}cAw_{r+|\mathfrak{a}|}(s+\varepsilon_{2},t,R)\sum_{k=0}^{h(\mathfrak{a},j)+1}s^{-(m-j-h(\mathfrak{a},j)-1+k)}$$

$$\times \{(r+|\alpha|)\cdots(r+|\alpha|-h(\alpha,j)+k)\}^{-\kappa}$$

$$\times \{(r+|\alpha|-h(\alpha,j)+k-1)\cdots(r+|\alpha|-h(\alpha,j))\}^{-(\kappa-1)},$$
where $h(\alpha,j) = \begin{cases} p(\alpha,j) & \text{if } \ell\nu(\alpha,j) < \mu s(\alpha,j) \\ q(\alpha,j) & \text{if } \ell\nu(\alpha,j) \geq \mu s(\alpha,j) \end{cases}$ and $\varepsilon_{2} = s(\alpha,j) - \ell h(\alpha,j) > 0.$

Proof. First we consider the case that $l\nu(\alpha, j) < \mu s(\alpha, j)$. Since

$$\sigma([\Lambda^{r}, \sigma(x)^{\nu(\boldsymbol{\omega}, j)} a_{\boldsymbol{\omega}, j}(x, t) D_{x}^{\boldsymbol{\omega}}]) = \sum_{k=1}^{r^{*} + |\boldsymbol{\omega}| - 1} \sum_{|\boldsymbol{\beta}| = k} \frac{1}{\boldsymbol{\beta}!} \partial_{\boldsymbol{\xi}}^{\boldsymbol{\beta}} \langle \boldsymbol{\xi} \rangle^{r} D_{x}^{\boldsymbol{\beta}} \{\sigma(x)^{\nu(\boldsymbol{\omega}, j)} a_{\boldsymbol{\omega}, j}(x, t)\} \boldsymbol{\xi}^{\boldsymbol{\omega}} + r(x, t, \boldsymbol{\xi}),$$

if we note that

$$\nu(\alpha, j) - k = (p(\alpha, j) + 1 - k)\mu + (\nu(\alpha, j) - p(\alpha, j)\mu - 1) + (k - 1)(\mu - 1),$$

then we obtain that

$$\begin{split} I(\alpha, j) &\equiv t^{s(^{(\omega, j)}+j} || [A^{r}, \sigma(x)^{v(^{(\omega, j)}a_{_{(\omega, j)}}(x, t)D_{x}^{^{(\omega)}}]D_{t}^{j}v|| \\ &\leq \sum_{k=1}^{p(^{(\omega, j)+1}} t^{s(^{(\omega, j)})-(p(^{(\omega, j)+1-k})\ell} {\binom{r^{*}}{k}} t^{(p(^{(\omega, j)+1-k})\ell+j} \\ &\times ||\sigma(x)^{(p(^{(\omega, j)+1-k})\mu}A^{r+|^{(\omega)}|-k}D_{t}^{j}v|| \\ &+ \hat{c}t^{s(^{(\omega, j)})} \sum_{k=p(^{(\omega, j)})+2}^{r^{*}} {\binom{r^{*}}{k}} t^{j} ||A^{r+|^{(\omega)}|-k}D_{t}^{j}v|| \\ &+ \hat{c}t^{s(^{(\omega, j)})} \sum_{k=|^{(\omega)}|+1}^{r^{*}} {\binom{r^{*}}{k}} t^{j} ||A^{r+|^{(\omega)}|-k}D_{t}^{j}v|| \\ &+ \hat{c}t^{s(^{(\omega, j)})} \sum_{k=r^{*}+1}^{r^{*}} {\binom{r^{*}}{k}} {\binom{r^{*}}{k}} (k-|\alpha|)!^{\kappa}t^{j} ||A^{r+|^{(\omega)}|-k}D_{t}^{j}v|| \\ &+ \hat{c}t^{s(^{(\omega, j)})} {\binom{r^{*}}{k}} r^{j} r!^{\kappa}t^{j} ||D_{t}^{j}v|| . \end{split}$$

Using Lemma 5.4 and noting Remark 1.2,

$$I(\alpha, j) \leq c_{18} t^{\mathfrak{e}_2} \left[\sum_{k=1}^{p(\alpha, j)+1} \sum_{k'=0}^{p(\alpha, j)+1-k} {\binom{r}{k}} cAs^{-(m-j-p(\alpha, j)-1+k+k')} \right. \\ \times \left\{ (r+|\alpha|-k)\cdots(r+|\alpha|-p(\alpha, j)+k') \right\}^{-\kappa} \\ \times \left\{ (r+|\alpha|-p(\alpha, j)+k'-1)\cdots(r+|\alpha|-p(\alpha, j)) \right\}^{1-\kappa} w_{r+|\alpha|-k}(s, t, R) \\ + \left. \sum_{k=p(\alpha, j)+2}^{|\alpha|} {\binom{r}{k}} cAs^{-(m-j)} w_{r+|\alpha|-k}(s, t, R) \right\}$$

$$\begin{split} &+ \sum_{k=\lceil\alpha\rceil+1}^{r^{*}} \hat{R}^{k-\lceil\alpha\rceil} (k-|\alpha|)!^{\kappa} {\binom{r^{*}}{k}} cAs^{-(m-j)} w_{r+\lceil\alpha\rceil-k}(s,t,R) \\ &+ \sum_{k=r^{*}+1}^{r^{*}+\lfloor\alpha\rceil-1} \hat{R}^{k-\lceil\alpha\rceil} (k-|\alpha|)!^{\kappa} cAs^{-(m-j)} w_{r+\lceil\alpha\rceil-k}(s,t,R) \\ &+ \hat{R}^{r}r!^{\kappa} cAs^{-(m-j)} w_{0}(s,t,R)] \\ &\leq c_{18} cAw_{r+\lceil\alpha\rceil} (s+\epsilon_{2},t,R) \left[\sum_{k=1}^{p(\alpha,j)+1} \sum_{k'=0}^{p(\alpha,j)+1-k} s^{-(m-j-p(\alpha,j)-1+k+k')} \right. \\ &\times \left\{ (r+\mid\alpha\mid)\cdots(r+\mid\alpha\mid-p(\alpha,j)+k+k') \right\}^{-\kappa} \\ &\times \left\{ (r+\mid\alpha\mid-p(\alpha,j)+k+k'-1)\cdots(r+\mid\alpha\mid-p(\alpha,j)) \right\}^{1-\kappa} \\ &+ s^{-(m-j)} \sum_{k=p(\alpha,j)+2}^{l\alpha!} \left((r+\mid\alpha\mid)\cdots(r+\mid\alpha\mid-k+1) \right)^{1-\kappa} \\ &+ s^{-(m-j)} \sum_{k=r^{*+1}(k-1)}^{r^{*}} (\hat{R}/R)^{k-\lceil\alpha\rceil} \binom{r}{k-\lceil\alpha\rceil} \right)^{-\kappa} \left\{ (r+\mid\alpha\mid)\cdots(r+1) \right\}^{-\kappa} \\ &+ s^{-(m-j)} (\hat{R}/R)^{r} \left\{ (r+\mid\alpha\mid-p(\alpha,j)+k) \right\}^{-\kappa} \\ &\times \left\{ (r+\mid\alpha\mid)\cdots(r+\mid\alpha\mid-p(\alpha,j)+k) \right\}^{-\kappa} \\ &\times \left\{ (r+\mid\alpha\mid-p(\alpha,j)+k-1)\cdots(r+\mid\alpha\mid-p(\alpha,j)) \right\}^{1-\kappa} . \end{split}$$

The calculation of the case that $l\nu(\alpha, j) \ge \mu s(\alpha, j)$ is quite similar to the first case. Q.E.D.

From $\Lambda^r Q_1 = [\Lambda^r, Q_1] + Q_1 \Lambda^r$, Lemma 6.2 and Lemma 6.3, we obtain

Lemma 6.4.

(6.6)
$$||A^{r}Q_{1}v|| \leq \tilde{c}cA \sum_{\substack{|\alpha|+j \leq m-1 \\ |\alpha| \neq 0}} K_{j}^{\alpha}(s,r)w_{r+|\alpha|}(s+\varepsilon,t,R),$$

where $\tilde{c} > 0$, $\varepsilon = \min \{ \varepsilon_1, \varepsilon_2 \} > 0$ and

$$\begin{split} K_{j}^{\alpha}(s,r) &= \sum_{k=0}^{|\alpha|} s^{-(m-j-(|\alpha|-k))} \theta^{(\alpha,j)} \\ &\times \{(r+|\alpha|)\cdots(r+k+1)\}^{-\kappa_{0}} \theta^{(\alpha,j)} \{(r+k)\cdots(r+1)\}^{-(\kappa-1))} \theta^{(\alpha,j)} \\ &+ \sum_{k=0}^{h(\alpha,j)+1} s^{-(m-j-h(\alpha,j)-1+k)} \\ &\times \{(r+|\alpha|)\cdots(r+|\alpha|-h(\alpha,j)+k)\}^{-\kappa} \\ &\times \{(r+|\alpha|-h(\alpha,j)+k-1)\cdots(r+|\alpha|-h(\alpha,j))\}^{-(\kappa-1)} . \end{split}$$

§7. Proof of Theorem 2.1

In order to prove Theorem 2.1, we prepare several lemmas.

Lemma 7.1. For any $f(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ and $u^i(x) \in \Gamma^{(\kappa)}, 0 \leq i \leq m-k-1$, there exists a unique solution $u(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ of the equation:

(7.1)
$$\begin{cases} Q_0 u(x,t) = t^{m-k} f(x,t) \\ D_t^i u(x,t)|_{t=0} = u^i(x), \quad 0 \le i \le m-k-1. \end{cases}$$

And especially, if $u^i(x) \equiv 0$, $0 \leq i \leq m-k-1$ and $D^i_t f(x,t)|_{t=0} = 0$, $0 \leq i \leq \hat{s}-1$, then we obtain that $D^i_t u(x,t)|_{t=0} = 0$, $0 \leq i \leq m-k-1+\hat{s}$, where \hat{s} is a positive integer.

Proof. It follows from Proposition 2.1 that there exists a unique solution $u(x, t) \in \mathcal{B}([0, T], H^{\infty})$ of (7.1). Therefore let us show that $u(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$.

From (A-4), we note that we can calculate the derivatives of u(x, t) at t=0 and each derivatives belongs to $\Gamma^{(\kappa)}$.

For any fixed integer $s \ge 1$, let

$$u_{s}(x, t) = u(x, t) - \sum_{j=0}^{s-1} \frac{t^{j}}{j!} \partial_{t}^{j} u(x, 0)$$

then $u_s(x, t)$ satisfies the equation

$$Q_0 u_s(x, t) = f(x, t) - Q_0 \left(\sum_{j=0}^{s-1} \frac{t^j}{j!} \partial_t^j u(x, 0) \right) \equiv f_s(x, t) .$$

Thus we get that $f_s(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ such that $D_t^i f_s(x, t)|_{t=0} = 0, 0 \le i \le s-1$. From the consequence of §5, it is easily seen that $u_s(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$. Hence $u(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$.

The second assertion is clear from (A–4). Q.E.D.

Lemma 7.2. Let $u_j(x, t)$ be the solution of $(2.5)_j$, then $u_j(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ for $j \ge 0$. Moreover there exists an integer $\tilde{s} \ge 1$ such that for $j \ge 1$, $D_i^i u_j(x, t)|_{t=0} = 0, 0 \le i \le m - k - 1 + \tilde{s}(j-1)$.

Proof. It follows from the first assertion of Lemma 7.1 that $u_0(x,t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$. If we remember (2.2)~(2.4), then we find that

$$-Q_1 u_0(x, t) = t^{m-k} f_1(x, t)$$

such that $f_1(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$. Using Lemma 7.1 once more, we can get that $u_1(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$. Therefore repeating these steps, we have $u_j(x, t) \in$

 $\mathscr{B}([0, T], \Gamma^{(\kappa)})$ for $j \ge 0$.

Let us consider the second assertion. From $(2.5)_1$, $D_t^i u_1(x, t)|_{t=0} = 0$, $0 \le i \le m-k-1$. Put

$$\tilde{s} = \min_{\substack{|\alpha|+j \leq m-1 \\ |\alpha| \neq 0}} \{s(\alpha, j)\} \ge 1.$$

Thus from (2.4) and the second assertion of Lemma 7.1, we obtain that $D_t^i u_2(x, t)|_{t=0} = 0, \ 0 \le i \le m - k - 1 + \tilde{s}$. Similarly we conclude the second assertion of Lemma 7.2. Q.E.D.

From Lemma 7.2, for any fixed integer $s \ge 1$, there exists $N = N(s) \in \mathbb{N}$ such that for any $j \ge N-1$, $D_t^i u_j(x, t)|_{t=0} = 0$, $0 \le i \le s-1$.

Therefore we may assume that for any $r \ge 0$, there exist positive constants c and R such that

(7.2)
$$||\Lambda^r Q_1 u_{N-1}|| \leq c w_r(s, t, R)$$
.

Lemma 7.3. Under (7.2), if $1 \le \kappa < \rho/(\rho - 1)$, there exist constants \tilde{A} , B, q > 0 which are independent of r such that

(7.3)
$$||A^{r}u_{N+n}|| \leq c\widetilde{A}B^{n}n^{-qn}w_{r}(s, t, 2^{\kappa}R)$$

for $n = 0, 1, 2, \dots$.

Proof. From (7.2) and Lemma 5.3, we get that

$$||\Lambda^r u_N|| \leq cAs^{-m} w_r(s, t, R)$$

It follows from Lemma 6.4 that

$$||\Lambda^{r}Q_{1}u_{N}|| \leq \tilde{c}cA \sum_{\substack{|\alpha_{1}|+j_{1}\leq m-1\\|\alpha_{1}|\neq 0}} K_{j_{1}}^{\alpha_{1}}(s,r)w_{r+|\alpha_{1}|}(s+\varepsilon,t,R).$$

If we use Lemma 5.3, we have that

$$||\Lambda^{\mathbf{r}} u_{N+1}|| \leq \tilde{c} c \Lambda^2 \sum_{\substack{|\alpha_1|+j_1 \leq |m-1 \\ |\alpha_1| \neq 0}} (s+\varepsilon)^{-m} K_{j_1}^{\alpha_1}(s,r) w_{\mathbf{r}+|\alpha_1|}(s+\varepsilon,t,R) .$$

Applying Lemma 6.4 again, we obtain that

$$\begin{aligned} ||A^{r}Q_{1}u_{N+1}|| &\leq \tilde{c}^{2}cA^{2} \sum_{\substack{|\alpha_{1}|+j_{1}\leq m-1 \\ |\alpha_{1}|\neq 0 \\ |\alpha_{2}|\neq 0 \\ \\ \times w_{r+|\alpha_{1}|+|\alpha_{2}|}(s+2\varepsilon, t, R) . \end{aligned}$$

Using Lemma 5.3 again, we get that

$$\begin{aligned} ||A^{r}u_{N+2}|| &\leq \tilde{c}^{2}cA^{3} \sum \sum (s+2\varepsilon)^{-m}K_{j_{1},j_{2}}^{\alpha_{1}}(s,r)K_{j_{1},j_{2}}^{\alpha_{1},\alpha_{2}}(s,r)w_{r+|\alpha_{1}|+|\alpha_{2}|}(s+2\varepsilon,t,R), \\ \text{where } K_{j_{1},j_{2}}^{\alpha_{1},\alpha_{2}}(s,r) &= K_{j_{2}}^{\alpha_{2}}(s+\varepsilon,r+|\alpha_{1}|). \end{aligned}$$

Setting

$$K_{j_1,\cdots,j_i}^{\alpha_{1,\cdots,j_i}}(s,r)=K_{j_i}^{\alpha_{i}}(s+(i-1)\varepsilon,r+|\alpha_1|+\cdots+|\alpha_{i-1}|),$$

inductively we obtain that for any $n \ge 0$,

$$\begin{aligned} ||A^{r}u_{N+n}|| &\leq cA(\tilde{c}A)^{n} \sum \cdots \sum K_{j1}^{\omega_{1}}(s,r) \cdots K_{j1}^{\omega_{1}} \cdots A_{jn}^{\omega_{n}}(s,r) \\ &\times w_{r+|\omega_{1}|+\cdots+|\omega_{n}|}(s+n\varepsilon,t,R) . \end{aligned}$$

By the way,

$$\begin{split} K_{j_1}^{\alpha_1}(s,r) \cdots K_{j_1}^{\alpha_1, \dots, \alpha_n}(s,r) \\ &= \sum \cdots \sum s^{-a_1}(r+1)^{-b_1^1} \cdots (r+|\alpha_1|)^{-b_1^{|\alpha_1|}} \\ &\times (s+\varepsilon)^{-a_2}(r+|\alpha_1|+1)^{-b_2^1} \cdots (r+|\alpha_1|+|\alpha_2|)^{-b_2^{|\alpha_2|}} \cdots \\ &\times (s+(n-1)\varepsilon)^{-a_n}(r+|\alpha_1|+\cdots+|\alpha_{n-1}|+1)^{-b_n^1} \cdots (r+|\alpha_1|+\cdots+|\alpha_n|)^{-b_n^{|\alpha_n|}}, \end{split}$$

where

$$a_d \in \{m - j_d - (|\alpha_d| - k_d)\rho_{\theta}(\alpha_d, j_d), m - j_d - h(\alpha_d, j_d) - 1 + k_d\}$$

and

$$b_d^{d'} \in \{\kappa \rho_{\theta}(\alpha_d, j_d), (\kappa - 1) \rho_{\theta}(\alpha_d, j_d), \kappa, \kappa - 1, 0\} \ .$$

We note the following.

(7.4) If
$$a_d = m - j_d - (|\alpha_d| - k_d)\rho_{\theta}(\alpha_d, j_d)$$
, then $b_d^1, \dots, b_d^{k_d} = (\kappa - 1)\rho_{\theta}(\alpha_d, j_d)$
and $b_k^{k_d+1}, \dots, b_d^{|\alpha_d|} = \kappa \rho_{\theta}(\alpha_d, j_d)$.
(7.5) If $a_d = m - j_d - h(\alpha_d, j_d) - 1 + k_d$, then $b_d^1, \dots, b_d^{|\alpha_d| - h(\alpha_d, j_d) - 1} = 0$,
 $b_d^{|\alpha_d| - h(\alpha_d, j_d)}, \dots, b_d^{|\alpha_d| - h(\alpha_d, j_d) + k_d - 1} = \kappa - 1$,
and $b_d^{|\alpha_d| - h(\alpha_d, j_d) + k_d}, \dots, b_d^{|\alpha_d|} = \kappa$.

Let $s \ge \epsilon$ and $a = \min \{a_d\}$ and if we use Lemma A.4 in Appendix, then we have that

$$s^{-a_1}\cdots(s+(n-1)\varepsilon)^{-a_n} \leq \varepsilon^{-a_1}\cdots(n\varepsilon)^{-a_n}$$
$$= \varepsilon^{-(a_1+\cdots+a_n)}1^{-a_1}\cdots n^{-a_n} \leq \varepsilon^{-a_n}A_1R_1^n n^{-(a_1+\cdots+a_n)}$$

.

Let r=0 and using Lemma A.4 again,

$$\begin{aligned} (r+1)^{-b_1^1} \cdots (r+|\alpha_1|)^{-b_1^{|\alpha_1|}} \times \cdots \times (r+|\alpha_1|+\cdots+|\alpha_{n-1}|+1)^{-b_n^1} \cdots \\ \times (r+|\alpha_1|+\cdots+|\alpha_n|)^{-b_n^{|\alpha_n|}} \\ & \leq A_1 R_1^n (|\alpha_1|+\cdots+|\alpha_n|)^{-(b_1^1+\cdots+b_n^{|\alpha_n|})} \leq A_1 R_1^n n^{-(b_1^1+\cdots+b_n^{|\alpha_n|})} \end{aligned}$$

Further we estimate $w_{r+|\alpha_1|+\cdots+|\alpha_n|}(s+n\varepsilon, t, R)$ as follows:

$$R^{r+|\alpha_1|+\cdots+|\alpha_n|} \leq R^r R^{(m-1)n},$$

by Lemma A.5 in Appendix,

$$(r+|\alpha_{1}|+\cdots+|\alpha_{n}|)!^{\kappa} \leq 2^{(r+|\alpha_{1}|+\cdots+|\alpha_{n}|)\kappa}r!^{\kappa}(|\alpha_{1}|+\cdots+|\alpha_{n}|)!^{\kappa}$$
$$\leq 2^{\kappa}r^{2(m-1)\kappa_{n}}r!^{\kappa}A_{2}R_{2}^{n}n^{(|\alpha_{1}|+\cdots+|\alpha_{n}|)\kappa},$$
$$t^{s+e_{n}} \leq t^{s}T^{e_{n}}$$

and

$$\exp \{M(r^* + |\alpha_1| + \dots + |\alpha_n|)t^{l}\} \le \exp (Mr^*t^{l}) \exp \{M(m-1)T^{l}n\}.$$

Hence we find that

$$||A^{r}u_{N+n}|| \leq cAA_{1}^{2}A_{2}\{\tilde{c}AR_{1}^{2}R_{2}\epsilon^{-a}R^{m-1}T^{*}2^{(m-1)\kappa}\exp\left(M(m-1)T\right)\}^{n}w_{r}(s, t, 2^{\kappa}R)$$
$$\times \sum \cdots \sum n^{(|\alpha_{1}|+\cdots+|\alpha_{n}|)\kappa-(a_{1}+\cdots+a_{n})-(b_{1}^{1}+\cdots+b_{n}^{|\alpha_{n}|})}.$$

Let *i* be the number of $\{m-j_d-(|\alpha_d|-k_d)\rho_{\theta}(\alpha_d, j_d)\}s$ in $\{a_d\}_{1\leq d\leq n}$. If we recall (7.4) and (7.5), then

$$\begin{split} I &\equiv (a_1 + \dots + a_n) + (b_1^1 + \dots + b_n^{|\alpha_n|}) - (|\alpha_1| + \dots + |\alpha_n|)\kappa \\ &= \{m - j_1 - (|\alpha_1| - k_1)\rho_{\theta}(\alpha_1, j_1)\} + \dots + \{m - j_i - (|\alpha_i| - k_i)\rho_{\theta}(\alpha_i, j_i)\} \\ &+ \{m - j_{i+1} - h(\alpha_{i+1}, j_{i+1}) - 1 + k_{i+1}\} + \dots + \{m - j_n - h(\alpha_n, j_n) - 1 + k_n\} \\ &+ (\kappa - 1)\rho_{\theta}(\alpha_1, j_1)k_1 + \kappa\rho_{\theta}(\alpha_1, j_1) (|\alpha_1| - k_1) \\ &+ \dots + (\kappa - 1)\rho_{\theta}(\alpha_i, j_i)k_i + \kappa\rho_{\theta}(\alpha_i, j_i) (|\alpha_i| - k_i) \\ &+ (\kappa - 1)k_{i+1} + \kappa \{h(\alpha_{i+1}, j_{i+1}) - k_{i+1} + 1\} + \dots + (\kappa - 1)k_n + \kappa \{h(\alpha_n, j_n) - k_n + 1\} \\ &- (|\alpha_1| + \dots + |\alpha_n|)\kappa \\ &= \{m - j_1 - |\alpha_1|\rho_{\theta}(\alpha_1, j_1) + |\alpha_1|\kappa\rho_{\theta}(\alpha_1, j_1) - |\alpha_1|\kappa\} \\ &+ \dots + \{m - j_i - |\alpha_i|\rho_{\theta}(\alpha_i, j_i) + |\alpha_i|\kappa\rho_{\theta}(\alpha_i, j_i) - |\alpha_i|\kappa\} \\ &+ \{m - j_{i+1} - h(\alpha_{i+1}, j_{i+1}) - 1 + \kappa h(\alpha_{i+1}, j_{i+1}) + \kappa - |\alpha_{i+1}|\kappa\} \\ &+ \dots + \{m - j_n - h(\alpha_n, j_n) - 1 + \kappa h(\alpha_n, j_n) + \kappa - |\alpha_n|\kappa\} . \end{split}$$

Now recalling (6.2) and (6.4), then

$$\begin{split} &\{m-j-h(\alpha,j)-1+\kappa h(\alpha,j)+\kappa-|\alpha|\kappa\}-\{m-j-|\alpha|\rho_{\theta}(\alpha,j)+|\alpha|\kappa\rho_{\theta}(\alpha,j)-|\alpha|\kappa\}\\ &=(\kappa-1)\{h(\alpha,j)+1-|\alpha|\rho_{\theta}(\alpha,j)\}\\ &=(\kappa-1)\times\begin{cases} p(\alpha,j)+1-\nu(\alpha,j)/\mu & \text{if } l\nu(\alpha,j)<\mu s(\alpha,j)\\ q(\alpha,j)+1-|\alpha|s(\alpha,j)/(|\alpha|l+\theta) & \text{if } l\nu(\alpha,j)\geqq\mu s(\alpha,j)\\ &\geqq 0. \end{split}$$

Let us set

$$\rho_{\theta} = \max_{|\alpha|+j \leq m^{-1}} \left\{ (m-j-|\alpha|\rho_{\theta}(\alpha,j))/(m-j-|\alpha|) \right\}.$$

If $1 \leq \kappa < \rho_{\theta}/(\rho_{\theta}-1)$, then we find that

$$\begin{split} I &\geq \{m - j_1 - |\alpha_1| \rho_{\theta}(\alpha_1, j_1) + |\alpha_1| \kappa \rho_{\theta}(\alpha_1, j_1) - |\alpha_1| \kappa\} \\ &+ \dots + \{m - l_n - |\alpha_n| \rho_{\theta}(\alpha_n, j_n) + |\alpha_n| \kappa \rho_{\theta}(\alpha_n, j_n) - |\alpha_n| \kappa\} \\ &= (m - j_1 - |\alpha_1|)[(m - j_1 - |\alpha_1| \rho_{\theta}(\alpha_1, j_1))/(m - j_1 - |\alpha_1|) \\ &- \{(m - j_1 - |\alpha_1| \rho_{\theta}(\alpha_1, j_1))/(m - j_1 - |\alpha_1|) - 1\} \kappa] \\ &+ \dots + (m - j_n - |\alpha_n|)[(m - j_n - |\alpha_n| \rho_{\theta}(\alpha_n, j_n))/(m - j_n - |\alpha_n|) \\ &- \{(m - j_n - |\alpha_n| \rho_{\theta}(\alpha_n, j_n))/(m - j_n - |\alpha_n|) - 1\} \kappa] \\ &\geq n \{\rho_{\theta} - (\rho_{\theta} - 1)\kappa\} > qn, \quad \text{where} \quad q > 0 \,. \end{split}$$

If we note that for fixed κ such that $1 \leq \kappa < \rho/(\rho-1)$, we can choose $0 < \theta \leq 1$ such that $1 \leq \kappa < \rho_{\theta}/(\rho_{\theta}-1) \leq \rho/(\rho-1)$, then this completes the proof. Q.E.D.

Corollary 7.1. If $1 \leq \kappa < \rho/(\rho - 1)$, the formal solution

$$u(x,t)=\sum_{j=0}^{\infty}u_j(x,t)$$

converges in $\mathscr{B}([0, T], \Gamma^{(\kappa)})$.

Proof. If we devide u(x, t) as

$$u(x,t) = \sum_{j=0}^{N-1} u_j(x,t) + \sum_{j=N}^{\infty} u_j(x,t) ,$$

then this corollary immidiately follows from Lemma 7.2 and Lemma 7.3. Q.E.D.

Therefore we get the existence of solutions.

Next we shall show the uniqueness of solutions.

Lemma 7.4. If $u(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ is a solution of the Cauchy problem:

$$\begin{cases} Lu(x, t) = 0 \\ D_t^i u(x, t)|_{t=0} = 0, & 0 \le i \le m - k - 1, \end{cases}$$

where $1 \leq \kappa < \rho/(\rho - 1)$, then $u(x, t) \equiv 0$.

Proof. We may assume that for sufficiently large s, there exist constants c, R>0 such that

$$||\Lambda^r u|| \leq c w_r(s, t, R)$$
 for any $r \geq 0$.

therefore similar to the proof of Lemma 7.3, we can obtain that

$$||\Lambda^{r}u|| \leq c \widetilde{A} B^{n} n^{-qn} w_{r}(s, t, \widetilde{R})$$
 for some constant \widetilde{R} .

Let $n \rightarrow \infty$, then we find that $u(x, i) \equiv 0$.

Finally we shall prove assertion (2°) .

Lemma 7.5. If supp $u^i(x) \subset K$, $0 \leq i \leq m-k-1$ and $\operatorname{supp} f(x, t) \subset C_l(K)$ for compact set $K \subset \mathbb{R}^n$, then $\operatorname{supp} u(x, t) \subset C_l(K)$, where $u(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ is a solution of (1.6).

Proof. From (2°) in Proposition 2.1 and (2.5)₀, $\sup u_0(x, t) \subset C_{\ell}(K)$. any Next if we note how to make Q_1 and that Q_1 is a differential operator, then

$$-Q_1u_0(x, t) = t^{m-k}f_1(x, t),$$

where $f_1(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ and $\operatorname{supp} f_1(x, t) \subset C_\ell(K)$. Hence using (2°) in Proposition 2.1 again, $\operatorname{supp} u_1(x, t) \subset C_\ell(K)$. Repeating these steps, we obtain that $\operatorname{supp} u_j(x, t) \subset C_\ell(K)$ for any $j \ge 0$. Thus from the convergence of the formal solution, we find that $\operatorname{supp} u(x,t) \subset C_\ell(K)$. Q.E.D.

This completes the proof of Theorem 2.1.

Appendix

Following Igari [3] and Uryu [17], we introduce a certain class of pseudodifferential operators.

Definition A.1. (1) For any $m \in \mathbb{R}$ and $\kappa > 1$, we denote by $S^{m}(\kappa)$ the set of functions $h(x, \xi) \in C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n})$ satisfying the property that for any α, β , there exist constants c_{α} and R such that

$$|\partial_{\xi}^{\alpha} D_{x}^{\beta} h(x,\xi)| \leq c_{\alpha} \mathcal{R}^{|\beta|} |\beta| !^{\kappa} \langle \xi \rangle^{m-|\alpha|} \quad \text{for} \quad (x,\xi) \in \mathcal{R}^{n} \times \mathcal{R}^{n}.$$

(2) For any $h(x, \xi) \in S^{m}(x)$, we shall define a semi-norm of $h(x, \xi)$ such that for any integer $\ell \geq 0$,

$$|h(x,\xi)|_{\ell} = \max_{|\omega+\beta| \leq \ell} \sup_{(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^n} |\partial_{\xi}^{\omega} D_{x}^{\beta}h(x,\xi)| \langle \xi \rangle^{-m+|\omega|}.$$

Now we can define a pseudo-differential operator with a symbol $h(x, \xi) \in S^{m}(\kappa)$ as follows:

$$H(x, D_x)u(x) = (2\pi)^{-n} \int \exp(ix \cdot \xi)h(x, \xi)\hat{u}(\xi)d\xi .$$

Lemma A.1. (see Igari [3]). Let $h(x, \xi) \in S^m(\kappa)$ and $r \ge 0$. Then

Q.E.D.

$$\sigma(\Lambda^r H) = \sum_{j=1}^{N-1} \sum_{|\alpha|=j} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} \langle \xi \rangle^r D_x^{\alpha} h(x,\xi) + r_N(x,\xi) ,$$

where $N=r^*+m$. And for any integer $l \ge 0$, there exist constants c_l , R>0 such that

$$|D_x^{\alpha}h(x,\xi)\langle\xi\rangle^{-m}|_{\ell}\leq c_{\ell}R^{|\alpha|-m}(|\alpha|-m)!^{\kappa}$$

and

$$|r_N(x,\xi)|_{\ell} \leq c_{\ell} R^{\gamma} r!^{\kappa}.$$

The following lemma is well-known.

Lemma A.2. For any $h(x, \xi) \in S^0$, there exist a constant c and non-negative integer *l* dependent only on dimension n such that

$$||H(x, D_x)u|| \leq c |h(x, \xi)|_{\ell} ||u||.$$

Lemma A.3. (see Uryu [17] and Igari [3]). Under the assumptions of Lemma A.1, if we denote $h_j(x, \xi)$ by

$$h_j(x,\xi) = \sum_{|\alpha|=j} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} \langle \xi \rangle^r D_x^{\alpha} h(x,\xi) ,$$

then there exist \hat{c} , $\hat{R} > 0$ such that

$$\begin{aligned} ||H_{j}(x, D_{x})u|| &\leq \hat{c}\hat{R}^{j-m}(j-m)!^{\kappa}\binom{r^{*}}{j}||A^{m+r-j}u|| \quad for \quad 1 \leq j \leq r^{*}, \\ ||H_{j}(x, D_{x})u|| &\leq \hat{c}\hat{R}^{j-m}(j-m)!^{\kappa}||A^{m+r-j}u|| \quad for \quad r^{*}+1 \leq j \leq N-1, \end{aligned}$$

and

$$||R_N(x, D_x)u|| \leq \hat{c}\hat{R}^r r!^{\kappa}||u|| .$$

Lemma A.4. Let $\{i_1, \dots, i_n\}$ be a subset of non-negative numbers a_1, \dots, a_m , then there exist constants $A_1, R_1 > 0$ such that

$$n^{i_1+\cdots+i_n} \leq A_1 R_1^n 1^{i_1} 2^{i_2} \cdots n^{i_n}$$
.

Proof. Set $S = n^{i_1 + \dots + i_n}/1^{i_1} \dots n^{i_n}$. Then

$$S = (n/1)^{i_1 \cdots (n/n)^{i_n}}$$

$$\leq (n/1)^{a_1 \cdots (n/n)^{a_n}}$$

$$= (n^a/n!)^{a_1}, \text{ where } a = \max\{a_1, \cdots, a_n\}.$$

Using Stirling's formula, we can get the desired inequality. Q.E.D.

Lemma A.5. Let $\{i_1, \dots, i_n\} \subset \{1, \dots, m-1\}$, then there exist constants $A_2, R_2 > 0$ such that

$$(i_1 + \dots + i_n)! \leq A_2 \mathbb{R}_2^n n^{i_1 + \dots + i_n}$$

Proof. By Stirling's formula, there exists $R_3 > 0$ such that

$$\begin{aligned} (i_1 + \dots + i_n)! &\leq A_2 R_3^{i_1 + \dots + i_n} (i_1 + \dots + i_n)^{i_1 + \dots + i_n} \\ &\leq A_2 \{R_3(n_1 - 1)n\}^{i_1 + \dots + i_n} \\ &\leq A_2 \{R_3(m_1 - 1)\}^{(m-1)n} n^{i_1 + \dots + i_n} . \end{aligned}$$
 Q.E.D.

References

- Baouendi M.S. and Goulaouic, C., Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26 (1973), 455–475.
- [2] Bronstein M.D., The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, *Trans. Moscow Math. Soc.*, 41 (1982), 87–103.
- [3] Igari, K., An admissible data class of the Cauchy problem for non-strictly hyperbolic operators, J. Math. Kyoto Univ., 21 (1981), 351-373.
- [4] Itoh, S., On a sufficient condition for well-posedness in Gevrey classes of some weakly hyperbolic Cauchy problems, *Publ. RIMS*, *K*;oto Univ., 21 (1985), 949–967.
- [5] Ivrii, V. Ja., Correctness of the Cauchy problem in Gevrey classes for nonstrictly hyperbolic operators, *Math. USSR Sb.*, 25 (1975), 365–387.
- [6] ——, Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, Siberian Math. J., 17 (1976), 921–931.
- [7] Kajitani, K., Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes, J. Math. Kyoto Univ., 23 (1983), 599-616.
- [8] Leray J. and Ohya, Y., Systemes lineaires, hyperboliques nonstricts, Colloque de Liege, C. B. R. M., 1964, 105-144.
- [9] Mizohata S., Analyticity of solutions of hyperbolic systems with analytic coefficients, Comm. Pure Appl. Math., 14 (1961), 547-559.
- [10] —, The theory of partial differential equations, Cambridge Univ. Press, Cambridge, 1973.
- [11] Nishitani, T., Energy inequality for non strictly hyperbolic operators in the Gevrey class, J. Math. Kyoto Univ., 23 (1983), 739–773.
- [12] Ohya, Y., Le problème de Cauchy pour les équations hyperboliques à caractéristique multiple, J. Math. Soc. Japan, 16 (1964), 268-286.
- [13] Steinberg, S., Existence and uniqueness of solutions of hyperbolic equations which are not necessarily strictly hyperbolic, J. Diff. Eq., 17 (1975), 119–153.
- [14] Tahara, H., Cauchy problems for Fuchsian hyperbolic equations in spaces of functions of Gevrey classes, Proc. Japan Acad., 61A (1985), 63-65.
- [15] Trepreau, J.M., Le problème de Cauchy hyperbolique dans les classes d'ultrafonctions et d'ultradistributions, *Comm. in P.D.E.*. 4 (1979), 339–387.
- [16] Uryu H., The Cauchy problem for weakly hyperbolic equations (II): Infinite degenerate case, Tokyo J. Math., 3 (1980), 99–113.
- [18] Uryu, H. and Itoh S., Well-posedness in Gevrey classes of the Cauchy problems for some second order weakly hyperbolic operators, *Funkcial. Ekvac.*, 28 (1985), 193– 211.