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In this article we shall present a sufficient condition for well-posedness in
Gevrey classes of some Fuchsian hyperbolic Cauchy problems. Namely we
show that we can determine a function space in which the Cauchy problem for
a given Fuchsian hyperbolic operator is well-posed.

In the case that the initial surface is non-characteristic, there are many
results.

The results Independent of the lower order terms were obtained by Ohya [12],
Leray-Ohya [8], Steinberg [13], Ivrii [5], Trepreau [15], Bronstein [2], Kajitani [7]
and Nishitani [11], which show that the multiplicity of the characteristic roots
determines the well-posed class.

On the other hand, it is an interesting problem to study how the lower
order terms have an effect on the well-posed class. Ivrii showed the following
In [6].

(I) Let P=df—t2^dl-\-atsdx.> where / and s are non-negative integers and a

is a non-zero constant. When 0^5r</—1, the Cauchy problem for P is rSc"
well-posed If and only if 1 fg£<(2/—s)l(l—s—1).

(II) Let P=d2
t—x2^dlj

raxvdx, where ju, and v are non-negative integers
and a is a non-zero constant. When 0^y<#, the Cauchy problem for P is
rioc-well-posed if and only if 1 fg/c<(2/*—v)l(v—v).
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These examples are extended for more general operators by Igari [3], Uryu
[17] and Tahara [14] concerning (I) and Uryu-Itoh [18] and It oh [4] concerning
(II).

Furthermore we propose the following operator.
(Ill) P=d}—t^x2^dl+atsxudx, where /, /*, s and v are non-negative in-

tegers and a is a non-zero constant.
In this paper we consider the Cauchy problem for the operators which are

the most general extension of (III), noting that Fuchsian partial differetial op-
erators introduced by Baouendi-Goulaouic [1] are the natural extension of non-
characteristic operators.

§le Main Result and Remarks

Let (x, Oe/Z*x[0, T\ and (Dx, Dt)=(DXl, .-, DXn, Dt)=(-^S=i^|^xl, -,
—^/^ld/dxn, — v^fd/dO- Let us denote by (£, r) the dual variable of
(x, t).

Now we shall define the Gevrey classes.

1.1. (rgc, r(/c) ; * ̂  1) /(x) e rSc implies that /(*) e C~(R*) nad
for any compact set KdRn, there exist constants c, R>0 such that

(1.1) \D*xf(x)\^cR\*l\a\lK, x^K, for any a .

/(x)er(K) implies thatf(x)^C°°(Rn) and (1.1) holds for any x<=Rn.

Next we shall define Fuchsian partial differential operators according to
Baouendi-Goulaouic [1].

Let

L = L(x, t, DS9 Dt)
Lk(x, t, D,)D?-k

m(x, t, Dx) .

Then L is said to be of Fuchsian type with weight m—k with respect to t when
it has the following properties :

(A-l)
(A-2)

(A-3) ord LJ(X, 0, Dx) =Q for l^j^k.

From (A-3), we can set Lj(x, 0, Dx)=aj(x) for l^j^/c.
A characteristic polynomial associated with L is
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(1.2) C(19 x) = ^-l)-(^-

It's roots3 called characteristic exponents, are denoted by 0, 1, •••, m— k— 1,

*i(x), — ,^(*)-

(A-4) there exists a constant c>Q such that

|(^-^(jc))---(^-^W)|^c/^-l)---(^-/w+A:+l) for ;ieE^3^m-/c.

In this paper we deal with the following Fuchsian partial differential op-
erator. Let

t"-*L=L(x, t, Dx, Dt)=L0(x, t9 DS9 A)+£i(*, *, An A),
where

(1.3) L£x9t9DX9Dt)=tmDT + I] t^^a(xr^tj
\a\+j = m

j^m-l

and

(1.4) Ix(jc, r, /)„ A) ̂  2 t^'^a(xy^a^
\<&\+j<^m-l

We assume the following conditions on L.

(A-5) ^-roots of ̂ m+ 1] ^ ,(x, r)f *^'=0 are real and distinct.
• '

(A-6) a.,,(x5

(A-7) a(^)er(K) and is a real- valued function.
(A-8) /is a positive rational number and v,s(a,j) and v(a,j) are integers

such that ^^1, j(a,7)^0 and

We define p as follows :

(1.5) P = max {(m—j—s(a9 j)/f)/(m—j— I a | ) ,

Then we have

Theorem ILL E/wrfer (A-l)^(A-S), // l^/c<p/(p — 1), /Ae Cauchy prob-
lem for L:

ILu(x9t)=f(x9t) in Ifx(09T]

\ D\u(x9 t)\t=0 = u*(x) , O^i^/w-fc-1 o/i lgw

ij rftc-well-posed, i.e. for anyf(x9 r)e^([0, T], rS) *«<*
m—k—l, there exists a unique solution u(x,t )e^([0, T], rioc) o/(1.6).
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Remark 1.1. From the definition of p, we may only consider the case
that s(a,j)<^ | a \t and v(aj)<^ \a\ju.

Remark 1.2. From (A-3) , s(a,j)>0 if | a | >0.

Remark 1.3. In the case that k=Q, a(x) is a polynomial and aaj(x9 t)^

<B([Q, T], r(1)), Ivrii showed in [6] that if (1.6) is locally riSrwell-posed, then

1.1

In this section we shall reduce Theorem 1.1 to Theorem 2.1.

2eL We say that f(x)<=H°°(Rn) belongs to r<K) if there exist
constants c9 R>0 such that

(2.1) \\D«xf(x)\\^cR^\a\\« forany^,

where ||«|| denotes jL2-norm with respect to x.

Theorem 2.1. Under (A-l)~(A-8), if l^/c<p/(p — l), then the assertions
(1°) and (2°) hold.
(1 °) (1.6) is F(/c) - well-posed.
(2°) Ifsupp u^x^dK, O^i^m—k—l and supp/(^? t)C.Ct(K) for any compact

set KdRn, then suppw(x9 t)dQ(K).

where /lmax = max sup ( CT(A;)%-(X, t, f) | and ^j(x, t, <f) are ̂ t-
igy^w C* f / )ejKnxCo<r] , 151=11 in (A-5).

Lemma 2010 Theorem 1.1 follows from Theorem 2.1.

Proof. (I ; the case that /e> 1) First we shall show the existence of a solution
of (1.6). Let {0/x)} be a partition of unity. Namely <f>p(x) are compactly sup-
ported r(K)-functions satisfying the following three conditions: (i) 0^0/

(ii) S0/X) is locally finite and (iii) S#j(*) = 1 on -B*. For any w'^
O^i^m-k-1 and any /(*? Oe^([0, T}9 r%&, we set «;(jc)=^(jcy

and fp(x, t) =<t>p(xtf(x, i) e ^([0, r], r(K)). Then from (1 °) in Theorem 2. 1 , there
exists a unique solution up(x, t)^£B([Q, T\, r(K)) of the Cauchy problem:

Lup(x, t) =fp(x, t)

D\up(x9 t) 1 1=0 = ui(
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We note that F(;c) Cr(/c) by Sobolev's lemma. Therefore up(x9 f)e.3([0, T\, r(K))«
Furthermore since the summation ^up(x,t) Is locally finite, then u(x,t) =

2 M/JC, 0 belongs to ,3([0, J], rfec) and is a solution of (1.6).
Next we shall show the uniqueness of solutions. For any (XQ, t^^Rn x (0, T]9

we set

A)(*o? tQ) = {(x, OeJZ"x[0, T]; \ X - X Q \ <4>«(tf-fO/4 and

Let $(X) be a compactly supported r(K) -function such that 0(x) = l on K. Let

us assume that u(x9 f)^j3([0, T], rio}c) satisfies the following equation:

JLz/fo 0 = 0 in «nx(0, T]

I A'wOc, 0 1 *=o = 0 , 0^f^m-/c-l on

Since L(<j>u)=(t>Lu+[Ly <f>]u=[L, <f>]u = f(x, t) and L is a differential operator,

we get that suppf(x,t)c:Ct(Kc). Here [-, •] is the commutator. Therefore
from (2°) in Theorem 2.1, we find that supp 0wC C^(KC). Then w = 0 on

A)(*o> ^o)- Hence w(x0, t0)=0.
(II; the case that /c = l) In (I), we have already showed that if l</c<

Pl(p — l\ there exists a unique solution u(x, t)^<B([Q, T], r(ioc) of (1.6). There-
fore it is sufficient to show the analyticity of che solution. If we refer to the

method of Mizohata [9] and § 5 in this paper, we can easily see this fact. Q.E.D.

We shall prove Theorem 2.1 by the method of successive approximations.

Therefore we decompose L as follows and consider the following scheme,

(2.2) L = Q0(x, t, Df, A)+a(A', t, Dt, A) -

For a, j such that s(a,j)=\a\J. and v(a, j) = | a \ ft, we set

(2.3) Q0(x, t, Dt, A) = L0(x. t, Df, Dt)

and for a, j such that s(a, j) < \ a \ I or v(a, j)<\a JJL, we set

(2.4) Q,(x9 t, DS9 A) = S t*™+ia(xy™a.9i(x9 t}D«D{
-

J eo^? 0 ^ '"-*/(*, 0 in 12M X (0, T]

° 1 D {HO(JC, 0 1 M = "' W 5 0 ̂  / ̂  /7z -/c - 1 on

and for 7 ̂  1



220 SHIGEHARU ITOH AND HITOSHI URYU

I Q*Uj(*' ^ = ~QlU'-l(X> f) ln ^ X(°9 T}

j { Diuj(x, 0 1 /=o = 0 , O^i^m-k-l on Rn .

The following proposition will be proved in §3.

Proposition 20L Under (A-l)~(A-8), (1°) and (2°) hold.
(1°) The Cauchy problem for QQ:

(26) I 2ov(*, 0 = *"-*>(*, 0 in JR"x(0,r]
l/>fr(*, 01 /=o = *'(*), 0^/^/w-fc-l o« Rn

is H°° -well-posed.

(2°) #" suppv''(jc)c£, O^i^m-k-l and supp/(*, t^dC^K) for any

compact set KdMn, then supp w(;c,

Corollary 2010 RPTi^/i p = l, (1.6) w C°° -well-posed.

If we note that gx is a differential operator and r(K)c H°° and use Proposi-
tion 2.1, then we find that n/x, f)e.S([0, T], ^f00) for any j^O. Therefore
our aim is to show the formal solution

(2.7) u(x, 0 = 2 «/*, 0
y=o

converges in ̂ ([0, T], r(K)).

Our plan is as follows. In §4, we shall get an energy inequality for g0.
In §5, we shall estimate derivatives of a solution of the Cauchy problem:

, o = *(*, o

where g(x, t)^£B([Q, T], F(fC)) such that for any sufficiently large fixed integer
s, Dtg(x9t)\i=0=Q, O^i^s—l. And in §6, we shall obtain an estimate of
Qiv(x, 0- Using the consequence in §5 and §6, we shall prove Theorem 2.1
in §7.

§3. Proof of Proposition 2.1

Let us note that

L0(x, t, f, r) = ft (tT-t'a(xT*,<x, t, f)) ,

where Aj(x91, f) are /l-roots in (A-5). And modifying Aj(x91, f) near £=Q, we
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may assume that if / = f = y > there exists a constant d>0 such that (<*,•— Aj)(x, t, f) |

^a<£>, where ^.(jc, /, e)ej2([0, J], 51) and<f>=(l + <?I2)1/2- Here for real jfc,
Sk is the symbol class of classical pseudo-differential operators.

We shall define the modules Wk, 0^&fgw — 1, over the ring of pseudo-

differential operators in x of order zero.

Let d~tDt—tla(xY^j(x9 t, Dx) and Hm=d1"-dm. Let Wm_1 be the module
generated by the monomial operators ^•mldi=d1^'di_1di+1'^dm of order m — \

and let Wm_2 be the module generated by the operators HJdfl^ f= t=y , of order

772—2 and so on.

Lemma 3010 For any i,j, there exist pseudo-differential operators Aijf B^

and Cf-ye^([0, T], S°) such that

(3.1) [di,dj]=Aijdi+Bijdj+Cij9

where [-, »] w ?Ae commutator.

Proof. Let a0([5,-, 9y]) be the principal symbol of [dh dj]. Then by the

product formula of pseudo-differential operators? we get

= t'ofrYDifr, t, f) , where Aye^O, T], S s) .

If we set Ali=Diil(lJ-li) and Btj = A,7(^/ - *y), then ^y, B;VS
, T ], 5°) and ^../x, f, f) (/r - r'a(jeA) + B,j(x, t, f)(tr- t'ofrTtj) =

.O- Q.E.D.

Lemma 3.2. For a/ijF monomial o>"^Wk,0^k^m — l, there exist d( and

1e Wk+1 such that

(3.2)

/! For any ct>* = dji • • • 5;^? 1 <^ j\ < • • • <jk^ m, there exists some

/€)E {jl3
 m"Jk} with l^i^m. Hence if we use Lemma 3.1, we easily obtain (3.2).

Q.E.D,

Lemma 3.3. Let
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then there exists a constant Cj> 0 such that

(3.3) td-

Proof. From Lemma 3.2 and Lemma A.2 in Appendix, we get that for

any k with O^k^m— 1,

g+i«+ S
v

Therefore we obtain (3.3). Q.E.D.

3a4o Let Hs=dil'"dis9 I ̂ /!<••• <is^m. Thena (IIS)5

0/IIs, z'j expressed in the form:

where /?,_,-= S tpi+qa(x}p^bpj(x, t, ̂  for some bpA
p+q=s-j

Proof. We carry out the proof by induction on s. When ,£=1., (3.4) is

trivial. Suppose (3.4) holds for s. Since ns+1=nse?f-j+1,

Substituting the right hand side of (3.4) for a(Us), we have (3.4) with s+l.

Q.E.D.

Lemma 3.5. There exist Aj(x, t, £)e .3([0, T], S°) such that for i'+f =

m—k, l-^k^m,

(3.5) ti/M/a(X

where bij

Proof. Substituting t^a(xY^j(x9 1, f ) for tr, then we obtain
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* <«-*>'a(x)<«-*>MJr/jc, r, f ) - x,<*, r? £)* °"~*)/*(*)(lli~*)'1 II (*/-*.•) ,

where Kj(x, t9 £)e.S([0, T], Sm'k). Therefore If we set As(x9 1, £)=Kj(x9 t, f)
X { 2 (*,— ^O}"1, (3.5) is realized. Q.E.B.

*=fcy't»s*

Corolary 3B10 There exist pseudo-differential operators Ck(x9 t, Dx)&
^([0, T], 5°) such that

(3.6) e0-nm - ss Q(JC, r9 DO®; .
&=o ^

Proo/. From (3.4) with s=m,

ff(2o-nj = S 23 ^+M*r V. '• *>f .
j=l P+q=m-j

where 6 .̂(x, f, f)e-S([°» rL S'*)- Using Lemma 3.59 the principal symbol of
QQ-Um is

2 -̂(̂  r' f) H (rr-^(xA(^, r3 f)) ,y=i »*/

where ^/x, /, f)e^([03 J], 5°). Applying (3.4) for s=m-l,

^(2o-nw- 2 AJ n 90 - 2 2 f*+M*r*,/*, ̂  f)r« ,
j = l ijpj j = l p-rq=m-l-j

where &pj(x9 1, €)&<B([Q9 T]9 S
p). Repeating these steps, (3.6) is verified.

Q.E.D.

Lemma 306e There exists a constant c3> 0 such that

(3.7) t^-W(f)^ci{\\Q^\\ + W(f)} .
at

Proof. Using Lemma 3.3 and Corollary 3,19 we obtain that

Q.E.D.
For a sufficiently large integer N, we put

«w(*, o = u(X, o-"if v,^«(*, o) •y=o j !

Then UN(X, t) satisfies the equation:
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Q0uN(x, 0 =/(*, 0-fi/l d>u(x, 0))=/*(x, 0 .
y=o

Here we note that from (A-4), for any i^O, D\u(x, 0) Is represented
by/(X /) and «'(*)> O^S/^w— &— 1 (cf. Baouendi-Goulaouic [1]).

Lemma 3Je For sufficiently large N, the following energy estimate holds,

(3.8)
o

where ||-1|, denotes Hs-norm with respect to x,

Proof, If we redefine ¥(t) replacing u(x, t) by UN(X, t\ then from Lemma
3.65

We can choose N such that t~c*¥(t) | i=0
=0-

o

On the other hand, since D\fN(x9 0)^0 for Q<^i<^N,

A(x, 0 =
J

Thus

IM-, 011^ const t" f
Jo

Similarly we get that for real s9

IM-, 011.̂  const t» f ||Df+%(% r)\\.dr .
Jo

Therefore we can obtain the desired estimate. Q.E.D.

Proof of Proposition 2.1. For any i with m—k^i^m — l, we calculate
D\v(x9 0) and let them vl(x), m—k^i^m—l. Next we define the ^-translation
Ql(x, t, Dx, Dt) of QQ by

(3.9) Ql(x, t, DX5 A) = 2o(^ *+*, D» Dt) for 0^5^ 1 .

Now wre consider the following non-characteristic Cauchy problem:

8v«(x, 0 = f*'Vfa 0 in J
1 >{v8(^, 01 ,=0 = vf'(x), 0^/^m-l on
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For S>05 (3.10) Is jy-well-posed (cf. Uryu [16]). Further from Lemma 3.7,

the following energy estimate holds uniformly In d:

"||v,(., 011.̂  const. {
j=o j!

Therefore there exists a subsequence {vSj.} which converges weakly In

.3([0, 21, .H5) as dj->0. This limit function v Is a unique solution of (2.6).

Hence (1°) has proved.

In order to prove (2°), we note the following fact. For S>03 Initial surface

{t=Q} is non-characteristic with respect to Ql and go Is Invariant under the

Holmgren transformation :

' x1 = x

t' = t+\x\*.

Thus by the well-known method (for example, see Mizohata [10]), we find that

the domain of dependence Is finite, i.e. for any (*0, t^GR*x(Q9 T], iff(x, 0 = 0

in Ds and v'(x) = 0 on Dsn {(X 0); x^R*}, then v d ( x 9 l ) = 0 In DS5 where

Then the following fact holds for limit function v(x,t). If f(x,t)=Q In

D and vf"(^) = 0 on Dn {(x, 0); x&R*}, then v(x3 1) = 0 In D, where D= n Ds.

Since we can easily see that D=DQ, (2°) Is verified.

This completes the proof. Q.E.B,

§ 40 Energy

The aim of this section is to show the following lemma.

Lemma 4eL Let

where A is the pseudo-differential operator with symbol <<? >. Then there exist

constants c4? R>® such that

(4.1) t-Vr(t)^c4t\\A>-Q0u\\+Vr(t)+tt
at j=i

21

Proof. For r>0, operating Ar on both sides of (3.2), we get that
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Similar to the proof of Lemma 3.3, we have that for any k with O^k^m— 1,

S S (IMf

It follows from Lemma A. 3 in Appendix that

and

Therefore we obtain that

S

If we use Corollary 3.1 and refer to the proof of Lemma 3.6, then we get (4.1).
Q.E.D.

Here r!=/1(r+l) and r* is the lowest integer greater than or equal to r3

where F(») is the gamma function.

§50 of Arv(x,t)

We assume the existence of solutions of the following Cauchy problem:

A*> 0 ^ g(x, 0

where g(x, 0^-S([0, J1], r(K)) such that for any sufficiently large fixed integer

s,Dig(x9 OIM=0,0^i^j-l.
Therefore we may assume that for any r^O, there exist constants c? jR5M>0

such that

(5.1) \\Arg(x, Oll^

For simplification we use the notation
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wr(s, t, R) = If r!V exp (AfrV) .

5.1. For any r^O, there exists a constant A'>® such that for suf-

ficiently large R, M, s}

(5.2) Wr(t)^cA's-lwr(s, t, R) .

{cw0(s, t,
at

Proof. We carry out the proof by induction on r.

When r=05 it follows from Lemma 3.6 and (5.1) that

From this inequality.,

at

If we note that s is sufficiently large,

S i
ccj:s-c*-ldT = cc^(s—c^~lts'c^cA's-lw^(s, t, R) ,

0

if we choose A' such that A'

We assume (5.2) is valid for any r such that O^rfgn. Let us show that

(5.2) is valid for n<r^n+l. It follows from Lemma 4.1 that

{f< exp (-cf*t'l£)¥r(t)} ^c^-1 exp (-cf
at

+t* 2 ft-'v-i)

Hence we get that

¥r(t)^cjc* exp (c4r*^//) f r'^1 exp
Jo

+i-X^)+r|]

^cje* exp (c#*tl\t) r-^"1 exp (—

\J /

^c4r*exp(c4r*^/<JV
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X {cwr(s, T, R)+r* f] (R/Ry-1 ( r } ( r*) cA's-^s, r, R>
j=2 VJ""1/ \JJ

's-l
Wr(S, r, R)+(R/RYcA's-1wr(s, r,

3=1

Let R^2R, then

rt^c7t* exp

X {cwr(j, ^

^cc7r
c^ exp (c^tl/^)Rrr!K exp {(M-

o

r!^s-^ V^exp {(M-cJty
Jo

l^ exp {(M-Cg//)/- V} f rs-c^l

Jo

if we choose A' such that A'^3c^lc7 and note that s and M are sufficiently

large. Q.E.D.

§820 Let

^
Proof. From Lemma 3.4 and Lemma 3.5, we get that

t, D>?v}||
k=Q 05

Using Lemma A. 3 in Appendix, we have

y=i

Thus we can obtain the desired inequality. Q.E.D0

5010 For any r^O, ̂ ere e^w/j a constant A>Q such that for

sufficiently large R, M, s,

(5.3) 4>r(i)^cAs-lwT(s, t, R) .
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Proof. Applying Lemma 5.1 to Lemma 5.2, we find that

's-1wr-J(s, t, R)+Rrr^cA'S-
lw,(s, t, R)}

3=0 \J

^ca{ g(A/l?y(*:) fflcA's-Ws, t, R)+(R/RrcAfs-1wr(s9 t, R)}

<LcAs~lwr(s, t, R),

if we make R^2R and choose A such that !:> 3c8A'. Q.E.D,

Lemma 53* For any r^O and f+j^m — l, there exists a constant A>0
such that for sufficiently large R, M, s,

(5.4) tii+j\\Ario(xrAiDj
tv}\\^cAs-^-i-jhvr(s, t, R) .

Proof. It follows from Corollary 5.1 that

llA^G^y^^Di^^^'^h^ll^cAs-^^s-U-m+i+l, t5 R) .

Hence we get that if we put q=m—i—j—l,

-Wrl* exp (Mr*t<) f'— f2 rJ-'^-^—rfr.
Jo Jo

£)s-<*+1>wr(s-U-j, t, R) .

If we set A =2* A, we get (5.4). Q.E.D.

Lemma 5 A For any r^O a/^J i,j such that i-\-j=Q, •-- , w — 1,

(5.5) ^W||a(^^

. We carry out the proof by induction on i. When z'=0, (5.5) is

trivial from (5.4). Using (5.4) and Lemma A.3 in Appendix and noting

ju^> 1, we obtain that

^ tu+*\ | Ar {a(x)ilLAiDJiv}- \ | + til+J\\[Ar, o(x)^]AiD{
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^cAs-^-^w^s, t, R)+ S cRkklK('^ }cAwr+i_k(s, t, R)

^* _ C m _ $ . _ _ -

m-»wi(s, t, R)

uc4wr+,(j, f, J?)

X S s
t=l ,s'=o

s, t,

»<-»wr+i(S, t, R)

£cAs-<--'-fi{(r+i)-(r+l)}-*wr+ts, t, R)

r*-l / rc f E\ v n ly^if-i&^n>3 3 15 JTvy X ^ \_ 1 / -trf/ *V \ 7

i)-(r + k+ 1)} -K{

Q.E.D.

§60 of jfQjDfr, t)

Lemma 60L If o(x) e (̂1SW) andQ^v<ju, then

Proof. By Holder's inequality,

(x)vM | *dx = j | « 1 2(1-v/fl) | o (*)"ii

^ ( J | « | *dx?-*l\ \ | »(*)"« 1 2<fe)v/"

= ||«||2(1-V|i)||o(*yiii|r"' . Q.E.D.

Lemma 6.2. Let

v(a,j)l \a\ii. if lv(a,j)<fj.s(a,j)
(6.2) , , .,,,. . . , . ... ., .._ . .

if Jv(a,jfeiis(a,j

with respect to 0<0^1, then for any r ^0,
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(6.3) f*<"'-»+'||a(*)v<'-

X {(r+ \a | )...

e j =min {s(a9 j) —b(a9 j)/#9 s6/( | a | /+ 0)} > 0.

Proof. First we consider the case that fa(a,j)<&s(a9j). If we use Lemma
5.4 and Lemma 6.1, we get

X {t'<*-»+SW*-»\\a(x)v™^^

^+i*i/){ v ^^c*./)

l)}-*i^

a,j)ln, t, K) £s-i*-i-W-

X

Next in the case that fa(a9j)^tJis(a,j), we have

X its(*>»+jW*'»\\o(x)v^^

X i(r+\a\)..-(r+k+l)}-'KeW>{(r+^^ .

Setting e1=-imn{s(a9j)—^(a9j)/^9 s0/( \ a \ /+ 6)} 9 then we obtain (6.3).
Q.E.D.

We note that for any a, j such that j a \ 4:0,

(6.4) v(a9 j) =0 or there exists a non-negative integer p(aj) such that p(aj) X #

<Ka? j)^(p(a> j)+l)^- And there exists a non-negative integer q(a9j)
such that q(a9jy<s(a9j)^(q(a9j)+iy.
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Lemma 6.3. For any r ̂  0 and \ a \ > 03

(6.5) f '<--»+'-| ||X , aCx)*™*../*,
*Cfl»f/)

*, *) S

X

X r+ a _A(a,_/)+A:-l)...(r+ a | -

(a-J} if M> ,where h(a,j) = i ' ' and e2=s(a,j)-th(a,j)>0.

Proo/. First we consider the case that lv(a, j)<ns(a, j). Since

if we note that

then we obtain that

o(xr™a.j(x9 t)D«x]D{v\\

Using Lemma 5.4 and noting Remark 1.2,

*'=0

X

X

S (C) C^-C-^WH.,.,.^, f, /J)
p((*,j) + 2 \K I
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"-'(fc-1a |)!< c^-<'»-'>wr+ul^, t, R)

X

a !)•..(;'+ 1)}

a -

The calculation of the case that h(a,j)^fjts(a,j) is quite similar to the

first case. Q.E.D.

From -drQi=[Ar, Q]]+QiSlr, Lemma 6.2 and Lemma 6.35 we obtain

(6.6) \\ArQlV\\^ccA 2 Kfts, r^w^^s+e, t, R) ,
i*l-t-y^w-i

IQJJ^O

where c>03 e=min{e1, ^^0 a/7^

^yfc /O = S j-^-'-O'i-^V0^}
& = 0

)}-*^^^

X{(r+ |ff |)-(r+ |ff | -/»(

X {(r+|ff 1 _A(0,y)+A:-l
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§7o Proof of Theorem 2.1

In order to prove Theorem 2.1, we prepare several lemmas.

Lemma 7,1, For anyf(x, f)e.S([0, T], r«) and !/•'(*
1, there exists a unique solution u(x, t)^*B([Q, T]9 r

(K)) of the equation:

| Qou(x, t) = t™-kf(x, t)

And especially, jfu?(x) = 0, Q^i^m-k-l owrf />}/(*, 0 1 *-0=0» Q^i^s-l,
then we obtain that Dlu(x, t)\t==0=Q, Q^i^m—k—l-\-s9 where s is a positive
integer.

Proof. It follows from Proposition 2.1 that there exists a unique solution
u(x, Oe.3([0, T\9 H°°) of (7.1). Therefore let us show that u(x, Oe.3([0, T],
r«).

From (A-4), we note that we can calculate the derivatives of u(x9 1) at
/=0 and each derivatives belongs to r(K).

For any fixed integer s^ 1, let
,-i V .

u,(x, t) = u(x, 0- S 77 dtu(x, 0) ,
y=o ]\

then us(x, t) satisfies the equation

QQus(x, t) =f(x, 0-2o( S-^J- ^X^ 0))=/f(x, 0 .

Thus we get that/s(%5 0^^([0, T]9 r&) such that D\fs(x, t} \ ,=0=05

From the consequence of §5, it is easily seen that us(x9t)^<B([Q9 T]9 r
(K)).

Hence w(>, 0^^([0, 7], r(K)).

The second assertion is clear from (A-4). Q.E.D.

Lemma 7.2. Letu^x, t) be the solution of (2.5)y, then U;(x9 t)G<B([Q9 T],
r(K)) for j^O. Moreover there exists an integer s^l such that for j"^l,

Dluj(x9 01 1-0=0, 0£i£m-k

Proof. It follows from the first assertion of Lemma 7.1 that u0(x,t)^
.S([0, T]9 r

(^). If we remember (2.2)~(2.4), then we find that

-Qiu0(x, t) = f»-Vi(*, 0

such that ffa, 0^^([0, T]9 r
(K)). Using Lemma 7.1 once more, we can get

that Uj(x9 0^5([0, T}9 r
(K)). Therefore repeating these steps, we have Uj(x9 r)e
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Let us consider the second assertion. From (2.5)]? Dlu^x, t)\t^Q=Q,
^i^m—k—l. Put

3 =

Thus from (2.4) and the second assertion of Lemma 7.1, we obtain that
Dlu2(x, r)|,=0=0, O^f^ra — k— 1+5. Similarly we conclude the second asser-
tion of Lemma 7.2. Q.E.D.

From Lemma 7.2, for any fixed integer s^l, there exists N =
such that for any j^N—1, Dfrfa, t)\t=Q=0, Q^i^s-l.

Therefore we may assume that for any r^O, there exist positive constants
c and R such that

(7.2) UTQv»-i\\^™r(s9t9R).

Lemma 703o Under (7.2), if l^ic<p/(p — l), there exist constants A,B,q

>0 which are independent of r such that

(7.3) | ] A'uN+n\ I ̂  cASrn-"wr(s, t, 2KR)

for n=Q, 1, 2, ••• .

Proof. From (7.2) and Lemma 5.3, we get that

\\AruN\\^cAs-aw,(s,t,R).

It follows from Lemma 6.4 that

69 r, R) .

If we use Lemma 5.3, we have that

Applying Lemma 6.4 again, we obtain that

Xwr+|a>1|+l-2|(j+2e,

Using Lemma 5.3 again, we get that
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23 (s+W-Kfts, r)K%fts, r)^l-ll+l-t,(*+2e, t, R) ,

where K«tf$.s, r)=Kfts+e, r+ | o, | ).
Setting

Kfcfts, r) = K?{(*+(i-l)e, r+ Kl +-+ k^l)

inductively we obtain that for any «3:0,

MV^II^c^O" 23-23 Kjfr r)-*'{::.":':te r)
Xwr+}aj]+...+]an](s+ne, t, R) .

By the way,

8.(r+|^

where

arf e {m -jd -(\ad\ -kd}pe(ad, jd\ m ~jd —h(ad9 jd) -l+kd}

and

fef e {KpB(ad*jd)9 (K — l)Po(<*d,jd), A:, A: — 1, 0} .

We note the following.

(7.4) If arf = m-jd-(\ad\-kd)p9(adjd), then #, — , ̂  = (K-l)p9(<*d,jd)

and 6j<+1,-,6i-'i = tpfajj .

(7.5) If a, - m-j.-^^/^-H-^, then Ai5 -., bfW'-V-1 = 0 ,

and 61-rfi-*c

Let ^^e and a=-mm{ad} and if we use Lemma A.4 in Appendix, then we have

that

Let r=0 and using Lemma A.4 again,
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Further we estimate wr+|tfl|+...+|tfj(,s+we, t, R) as follows:

by Lemma A. 5 in Appendix,

( r+l^l+.- .+ KI)!'^'^^

and

exp {M(r* + K! + — 4- \an\)t'} ^ exp (Mr*^) exp

Hence we find that

exp (M(m-l)T)}*wr(s, t, 2KR)

Let i be the number of {m—jd—(\ad\ —kd)p0(ad,jd)}s in {aj^^,,. If we

recall (7.4) and (7.5), then

( 1 ai 1 "k1)pe(a1, j\)} + ... + {m -j{ -( \ a{ \ -k^pQ(ah jt)}

Ji+i —h(ai+l9 ji+1) - 1 +ki+1} + • • • + {m —jn —h(an, j J - 1 +kn}

(ai9ji) (\at\ — /rf-)

+ (*-l)fcm+*{/i(^^

-(|ail+- -+|a.l)«

{™—J\— \ ai I Pe(ai>J\)+ \ ai i KPB(<*i>ti— I ai I 4
+ — + {m—ji— \ a{ | P9(ai9ji)+ \ ai \ Kp0(ahj^- \ af \ 4

+ {m—Ji+i—h(ai+l9ji+l) — l+Kh(ai+l9ji+^

_| ----- ̂ im—jn—h(an9jn) — l+Kh(aH9jtt)+ic—\an 4 .

Now recalling (6.2) and (6.4), then

H^

if

Let us set
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P6 = max {(m -j-\a\ pe(a, jj)/(m -j-\a\)}.
\*\+j£m-l

If l^K<pe/(pe~ 1), then we find that

| «! I Kpe(al9jJ — \ ̂  1 4

(«„, 7.)+ <*w I *P0K> 7«) - I a n\ 4

= O — 7i - K I )[("* — 7i - K I ^0(ai» 7i))/(w -Ji - I ai I )

- {(m -in -\<*n\ Pe(an, Jj)/(™ ~jn - I a „ I ) - 1} «]

^ « {^0 —(^0 — 1)4 > #« 5 where q> 0 .

If we note that for fixed K such that 1 ^/c<p/(p — 1), we can choose 0<0^ 1 such

that l^K<pQ/(p& — l)^p/(p — 1), then this completes the proof. Q.E.D.

Corollary 7.1. I f l ^ / c <p/(p — 1 ), the formal solution

u(x, 0 = S «X^ r)
y=o

converges in ̂ ([0, T], r^>).

Prao/. If we devide u(x, t) as

w(x, 0 - 'SuJ(x, 0+ 2 «X^ 0 >
y=o y=jjr

then this corollary immidiately follows from Lemma 7.2 and Lemma 1.3,

Q.E.D.

Therefore we get the existence of solutions.

Next we shall show the uniqueness of solutions.

Lemma 7.4. If u(x9 f)e.S([0, J],r(ie)) w a solution of the Cauchy problem:

Lu(x, 0 = 0

AX*» 01 f-o = 0, O^/^iw-fc-l ,

— 1), ^Ae« M(JC, 0 = 0.

. We may assume that for sufficiently large s9 there exist constants
such that

1 1 Aru\ | ̂  cwr(s, t, R) for any r ̂  0 .

therefore similar to the proof of Lemma 7.3, we can obtain that
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1 1 Aru\ | ̂  cAffn~**wr(s9 1, R) for some constant R.

Let ,T— >oos then we find that u(x9 /) = 0. Q.EoB0

Finally we shall prove assertion (2°).

7o5o Tjf supp w'O) C /£, 0 <; i ̂  m — fe — 1 am/ supp/fe f ) c Ct(K) for

compact set KC.R", then supp u(x, t)c:CL(K\ where u(x, r)eS([05 T], F(K)) w a
solution of (1.6).

Proo/. From (2°) In Proposition 2.1 and (2.5)0, suppw0(xs

Next If we note how to make Ql and that Ql is a differential operators

-a^ofc o - r--*/^, o ,
where f f a , t)&&([0, T}9 F^) and supp/^x r)cQ(/0. using (2°) in
Proposition 2.1 again, supp%(^:3 t)C.Ci(K). Repeating these stepss we obtain
that supp Uj(x9 1) C Ci(K) for any j ^ 0. Thus from the convergence of the
formal solution, we find that supp u(x9i)c:Cj(K). Q.E.B,

This completes the proof of Theorem 2.1.

Following Igari [3] and Uryu [17], we introduce a certain class of pseudo-
differential operators.

do (1) For any m^R and /c> 1, we denote by Sm(ic) the set
of functions h(x, S)^C°°(RnxRn) satisfying the property that for any «3 ft9

there exist constants ca and R such that

| ft | !-<f >"-|-l for (;

(2) For any h(x9 £)^Sm(n), we shall define a semi-norm of h(x9 f) such that
for any Integer /^09

1 h(x, f) L= max sup

Now we can define a pseudo-differential operator with a symbol
c) as follows:

exp f

Lemma A01B (see Igari [3]). Ler A(^, £ ) e *Sm(/c) a/1 J r ̂  0.
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y=i 1*1=.; a!

where N=r*-}-m. And for any integer <Q^O, if/zere ex/ls/ constants ci9

The following lemma is well-known.

Lemma A020 For any h(x, f ) e 5"°, rAere ejra-f a constant c and non-negative

integer I dependent only on dimension n such that

Lemma A3* (see Uryu [17] and Igari [3]). Under the assumptions of Lemma

A.I, if we denote hj(x5 f) by

*/*,£)= S.-y

there exist c, R> 0 swcA £/zar

4*+r-yM|| for l^j^r*,

'«ll /or

. Ao4, Let {il9 *••, in} be a subset of non-negative numbers al9 ° 8 ° 9 am,

then there exist constants Alf R!> 0 such that

Proof. Set 5=/i/i+>"+/«/l'1—«1'"- Then

= (na/n!)fl
 5 where a = max {a1? - • •, an}.

Using Stirling's formula, we can get the desired inequality. Q.E.D.

L5o Let {il9 -", in} d {1, ••- , m—1}, ?/7e« ^/zere e^w^ constants

A2,R2>Q such that
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Proof. By Stirling's formula, there exists _^3>0 such.

Q.E.D.
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