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The purpose of the present paper is to develop differentiation theory of
measures on infinite dimensional vector spaces. Differentiable measures have
been studied by several authors. See, for instance., Averbuh-Smolyanov-Fomin
[1], Kuo [3] and Skorohod [4], The derivative of a measure ju, is defined by con-

sidering lim-—(^L t a—jui) for a vector a with respect to a certain topology on the
t->o t

space of measures. In general a measure # on an infinite dimensional space is
not differentiate along every direction. So we shall study the space of vectors
along which ju is differentiate (such vectors are called differentiable shifts of

V).
In Chapter 1, taking ASF fl] as the starting point, we develop general

theories on differentiation of measures on vector spaces. In Chapter 23 we
apply these theories to product-type measures on M°° and estimate the space of
differentiable shifts. In particular differentiability w.r.t. (/2) is discussed in
detail.
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Chapter L Centers! Theory OE BMeremtiatioE off Measures

§ lo Several Topologies oil the Space of Measures

Let X be a real vector space and 3 a linear subspace of Xa (algebraic dual
of X) separating X. Then <Z3 By is called a dual pairing. 3) denotes the
minimal a-field on X w.r.t. which all elements of 3 are measurable. A real-
valued a-additive set function defined on a measurable space (X, *B) is called a
real measure on (X93S). M(X) denotes the set of all real measures on (X,<ff).

We consider four topologies TV, Tby rc and rs on M(X) which are defined
respectively by the following families of seminorms;

TV: 11/e|| (total variation norm)

Tb: III f(x)dju(x) |;/is a bounded ^-measurable function on X}
J

T
C • ill f(x)d#(x) I; / is a bounded ^-weakly continuous and ̂ -measurable

function on X}

Now we give some relations between the above topologies,

Proposition 1.1. (1) TV -> T6S ?

where "-»" implies that the left-hand side is stronger than the right-hand side;

(2) For a net t#a}a<=A in M(X), if there exists a positive measure & satisfying
(i) &<&<& (absolutely continuous) for va^A, and

(ii) sup <°° (|| • lU is the essential supremum), then convergence w.r.t.
dfi

rc implies convergence w.r.t. rbi

(3) For a net {M^^A *n M(X) which is bounded w.r.t. rs, convergence w.r.t.
rs implies convergence w.r.t. rb.

Proof. (1) is evident. (2) follows from an inequality

\\f-S\\JM
dfi
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where / Is an arbitrary bounded ^-measurable function and g Is a bounded con-
tinuous function approximating / w.r.t. L^/^-topology.

Noticing that boundedness w.r.t. rs Is equivalent to that w.r.t. ry3 we see
that (3) follows from an Inequality

where / is an arbitrary bounded ^-measurable function and g Is a simple func-

tion approximating / w.r.t. |H|oo. q.e.d.

The following fact is well-known. See9 for instance, Dunford-Schwartz

[2]-

Propositioe L2. M(X) is sequentially complete w.r.i. rs.

Next we consider continuity of an element of M(X) under shifts along a
line. For jjtt=M(X) and az=X9 jua Is defined as ju(°-\-d).

Theorem 1.1. Let ja^M(X}, a^X, a^O and La be the one-dimensional

subspace generated by a. Put "vKO—#*« for t^^- The following conditions
are equivalent';

(1) ty is continuous w.r.t. rU3

(2) -y^ is continuous w.r.t. rS5

(3) £/iere exists an La-quasi-invariant positive measure 1 such that /rfO.

Proof. (1) =^ (2) Is evident.
(2)==>(3): Let -fojT-i be a countable dense subset of lg. Put ^ =

CO

S 2~^ | /«|, a. It follows from the continuity of p.ta in rs that, for .
*=i

^ 0 4 ) ^ 0 ^ \v\fka(A)=G for

« jtt(jfcB(5) = 0 for

<=> j"/«(^) = 0 for

^ Ul^) =0 for
<^> ^^(^4) — 0 for vt

namely ^ is Lfl-quasl-lnvarlant. /e<^ is evident.
(3)=^(1): It is sufficient to prove the continuity at t=Q. Let m be the

Image measure of the one-dimensional Lebesgue measure under the embedding
£h-» la. Put v=m*X. Then ^ is Lfl-invarlant and v~A. We denote the density
dju/dv by p. We can approximate p w.r.t. L1(^)-topology with a function g In
the form of g(x) =<p((Sl9 x\ -, (f,, *)) where fx, f2, -, f.eS and



278 YASUO YAMASAKI AND AKIHITO HORA

Then we have

IK-*II = ( \p(x+td)-p(x)\d»(x)
Jx

<\ \g(x+td)-g(x)\dv(x)+2\ \g(x)-p(x)\dv(x)0Jz Jx
For a fixed g, the first term in the right-hand side tends to zero as f-»0. This
completes the proof, q.e.d.

Definittoiffl. An element a of X is called a continuous shift of /« if it satisfies
the conditions of Theorem 1.1. We denote by Cp the set of all continuous
shifts of fi.

Cp is a linear subspace of X.

Remark, We see Cp=C\p\ by Theorem 1.1.

§20 BifferemtiatiioE of Measures

In this section we define derivatives of measures according to ASF [1],
Proposition 2.1, Proposition 2.2 and Theorem 2.2 are due to them. Theorem
2.1 is a slight modification of a result by them, to which, however, we give here
a quite different proof from the original one.

Let #&M(X) and a^X. a is called a differentiate shift of p.

if — (fjLta—jjL) converges w.r.t. TS as f-*0 (t eJ2). Then the limit is denoted by

dafJL. We denote by Dp the set of all differentiate shifts of ju.
It is clear that C^ contains Dp.

Remark 1. In view of Proposition 1.2, da/J, exists iff — (juta—ja) is of
Cauchy w.r.t. TS.

Remark 2. Some authors define differentiability of ju w.r.t. other topologies
on M(X). See Kuo [3] and Skorohod [4],

2olo a^Dp implies
(1) aeD^+ r\Dp- where ju=ju,+ —j>i~ is the Jordan-Halm decomposition of /JL,

(2)

Proof is omitted. See ASF [1].

Proposition 2o20 Let a^Dp. Then an inequality

(2.1) IK
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holds.

Proof. Since va(A)-/i(A)=daj>i(A+da) (0<6<l) for Xe.3,

(2.2) sup | ti.(A) -v(A) | < sup | day(A) \
ASE$ AEE&

holds. Noting \\v\\ =2 sup | v(A) \ for an element v of M(X) satisfying v(X)=Q9
A&$

we see (2.2) implies (2.1). q.e.d.

Theorem 2.1. aEEZV andbE^Cp imply b^C%ap. In particular, aEED^, im-

plies a eQj(fc.

Pr00/. In view of Proposition 2.1 (2) and Theorem 1.1, there exists an
Lrquasi-invariant positive measure A such that da/^<,l. q.e.do

Using this theorem, we prove that the definition of difTerentiable shifts
does not change even if we adopt r^-topology on M(X) instead of TS.

Theorem 2B20 a^D^ iff — (jata—jLi) converges w.r.t. TV as t-^Q.

Proof. Since (daf*)ta is continuous in t w.r.t. TV by Theorem 2.1, it is con-
tinuous also w.r.t. rs, so that we can express set-wisely

(2.3) /«,.-*

Then, using \\v\\ =2 sup | v(A) \ again, we have

§3a Properties of Differential Operator daf*

Proposition 30L (1) D^ is a linear subspace of X, (2) da°(a^Q) and
dafi (^4=0) are one-to-one linear operators.

Proof. Let a, b^D^. We have

aja—(da/j)-t

by virtue of Theorem 2.1 and Theorem 2.2. Therefore a+b^D^ and da+bju=
daja+dbjLi. As for scalar multiplications, the proof is trivial.

"One-to-one" part follows from Lemma 3.1 below. q.e.d.
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Lemma 3.1. Let juL^M(X) and a^D^. daju=Q implies a=Q or ja=Q.

Proof. By (2.3) it follows from dav=Q that vta=v for vt<=R. Then
(ju+)ta=/jL+ and (v~)ta=]u~. Therefore it is sufficient to prove that, if a^pQ and
M is a positive measure satisfying fJ-ta=P- for vt eJR, then ju=Q. Choose £e£?
(see the opening of §1) such that <a, f> = l. We denote by <?°# the image
measure of p. under £ . Then we have for

(3-D (Jo*), = (£0^^ =

Since f o^ is a finite positive measure on 12, (3.1) implies £ o/^Q, therefore JM=
0. q.e.d.

Theorem 3.18 Lef X Z?^ g/v^w a topology stronger than or equal to the 3-
weak topology and M(X) given rv-topology. Assume that a^^a (A is a directed

set) in X, Vn^v in M(X), a^D^Jor va^A andvn<^N, and {da^n}(o6>n^AxN

is a Cauchy net in M(X) along the directed set AxN. Then a^Dp and

(3.2) dan = lim da vLn
CflJ.M) *

holds.

Corollary. da - and daja are closed operators.

Proof of Theorem 3.1. First we show that (^taa^^ta f°r V* ̂ R> Using

Proposition 2.2, we have

i K/afl -c /o i i < i K/OI -c^)i i + 1 K/O -(^Ji i

and so {(^B)Zfl }(* M)e^xjv is a Cauchy net in M(X). Then we seeat '

(3.3) vta = Hm (/£ J,

by checking the characteristic functional (4«(<f)-* 4(f) and exp(/(<f, taj
exp(f(<f, to)) for v£^3).

Put v=lim da jun. For a^A and m^N, we have

(3.4) (/Oi^-^

The first term in the right-hand side of (3.4) is estimated uniformly w.r.t. t as
follows:
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1

:iim|

3— -0. (Vm)t**—#m
^ •*•

a)

t

+
(#m\ap—(V Jf.,

t

(3-5) lim

< lim {\\9.afl.-d . /IJI
c«^) P

Since the second term in the right-hand side of (3.4) tends to zero as f-»0 for
a fixed (a, m), (3.4) and (3.5) imply dap.=v. q.e.d.

§4a Derivatives of Measures

Proposition 4.L Let dav, dbju and dbdaju exist. Then dadbja exists and is
equal to dbda/j..

Proof. We have

I 1 f* I f*-lim -- 1 {(dafi\a+sb—(dafi\a}du = — I 9b(da^)uadu
5->0 ,y / Jo ^ Jo

(the last equality follows from Lebesgue's convergence theorem). Since db(daw)ua

is continuous in u by Theorem 2.1, (4.1) converges to dbdafjLa q.e.d.

Corollary o Higher derivatives of measures are independent of the order of

the differentiation, if they exist.

Remark. We cannot omit the condition that dbfi exists in Proposition
4.1. A counterexample is given in §7.

Definition* Let E be a linear subspace of X. An element ju, of M(X) is
called w-differentiable w.r.t. E if dai'"danja, exists for arbitrary n elements a1?

—,anofE.

Theorem 4.1. Let ju be n-differentiable w.r.t. E, alf •••, an elements of X and

fai.au} 0*6^ D 8 9 ' fan.^}-^^ »^^ w E. Assume that aki^ak in X (w.r.t. a to-

pology stronger than or equal to the B-weak topology) for k=l9 •••,« and {da

"" ^ - . ^ ^ ^ m x - x ^ /J a Cauchy net in M(X) (w.r.t. ^-topology) for m=

Proof is by induction on « and Theorem 3.1.



282 YASUO YAMASAKI AND AKIHITO HORA

§5. Translations and Linear Transformations

Proposition 5.1. Let X be a measurable vector space, p, an element of M(X),
T a translation on X (i.e. 3z^X, rx=x+zfor vx^X). Then we have
(1) D^^Dpond

(5.1) 0.(ro/i) = T°dafjL for va^D» ,

(2) for E, a linear subspace ofX,
jj, is n-differentiable w.r.t. Es=$ T°IJL is n-differentiable w.r.t. E,

Proposition 5.2. Let X, Y be measurable vector spaces, M an element of
M(X), T a measurable linear map X-* Y. Then we have
(1)

(5.2) dTa(Tofji) = Toda» for

(2) for E, a linear subspace ofX,

fj. is n-differentiable w.r.t. E=$>T°ju. is n-differentiable w.r.t. T(E),

(5.3) dTai ... dT.H(To/i) = T°(dai «.- danM) for al9

Remark. If T is a measurable linear isomorphism in Proposition 5.2, the
same holds also for T"1. Thus we have the equality T(Dp)=DTop in (1), and
the equivalence <=> in (2).

Above propositions are easily proved from definitions.

§6. Conditional Measures and Product Measures

Consider (X, 31), X being a real vector space and .23 the a-field defined by
3 where <X, «£> is a dual pairing. Let aeX, a 3=0, and take f eS such that
<a, £>=!. Then X can be decomposed as X=La@ {f}"1", where La is the one-
dimensional subspace generated by a and {£}^ is the annihilator off,

(6.1) XE>X = Za+y; I = <>, f>, y = x-ta(= {S}-1- .

Similarly 3 can be decomposed as 3=L%@ {0}"1"- Then the measurable space
(X,<33) is isomorphic with the product measurable space CLfl,-S{£}) x({f}"L

5^{c}-L)
where ^^ [resp. ${a]^] is the a-field defined by {f} [resp. {a}^]. Note that
(La,£B(j:}) is isomorphic with the Borel measurable space of R, so we shall
identify them.

Consider ju^M(X). Identifying X with R x {<?}~L
5 we identify the restric-

tion of | fi\ on 3$\a}-^ with a positive measure ]ti{a} on ({f}"1", -Sia}-3-) given by
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(6.2) H(a](A) = \fi\(RxA) for

For any Borel set B of M9 the measure vB(A)=tJi(BxA) is absolutely continuous
w.r.t. M{a}9 so that we get djLtB=fBdJi(a} with some J3 {^-measurable function fB.
Since the Borel field of 12 is standard (namely since it is isomorphic with the in-
finite product measurable space of {0, 1}), {fB(x}} B : Borel determines a measure
ff(E) on the Borel field of R. Therefore we have

(6.3)

From this we see that for any Ce JE,

(6.4) XC) = \»x(C(x))dH(a](x)

where C(x) = {tt=R; Xa+x<=C} .
if is called the conditional measure of /JL at xE=. {S}^* Note that pf has

meaning only for /^ -almost all x.

Theorem 6oL Let ju^M(X) and a^X,a=$=0. Consider the representation

of /i as (6.4).
(1) aeC^leC,** for Jl(a}— a.a.x;
(2) Under the assumption that & is positive, 11 is quasi-invariant under trans-

lation by La <^> jux is quasi-invariant (on R) for Ji{a]~a.a.x;

(3) aeZV^>le/Vr for 71(a}-a.a.x and

(6.5)

where dif is the derivative of ^ along 1.

Proof. (1) From (6.4), we see

(6.6) NI = {ll^

Hence \\fita— ^|| = l||^*|— P*\\dPia}(x) assures the "«=" part of (1).

Conversely if a^C^, then we have y.<v for some Lfl-quasi-invariant posi-
tive measure v (see Theorem 1.1.). Consider the conditional decomposition of v\

(6.7)

Putting dtLldv=f(l, x) ((/I, x)^Rx {f}^), we have

](x) for
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On the other hand, putting dji{a}/dv(a} =g, we have

dv(a](x) for Ce J3 .

Comparing these, we get #*(-)~ I /(/t, x)dv*(X)<v* for ;«{a}-a.a.;t, by virtue of

the uniqueness of the conditional decomposition.

If we admit (2), v* is quasi-invariant for £>{a}-a.a.x. Thus, noting that ff<

v*9 we see tf is translationally continuous for Jt[a}-a.a.x.
(2) "<§=" part is evident.

If jM~y, then as in the second paragraph of the proof of (1), we see fjf^

v* for ^{a}-a.a.x. Suppose that # is Lfl-quasi-invariant. We have fJL~~jj,*X for

any positive measure X on La. Then fjf^(fjL*Xf=tf*X9 so that if ^ is quasi-

invariant, so is #*.

(3) "«=" part is derived from (6.6) as

= J

Conversely assume a^D^. Consider the conditional decomposition of

dafJL. Since Oa^< \ /JL \ , we can write as

(6.8) daju = ^xdH(a](x)

for some measure if on R. Then

/«/.-/* = J (daV)sads = ̂ vx
 sdsdH(a](x) .

From the uniqueness of the decomposition, for any fixed t, we have

S t _
v*$s for ^{fl}-a.a.x

o

Since ^ is continuous along a, /«* and v* are translationally continuous. There-

fore (6.9) holds for all t for T^j-a.a.x. This implies that if is differentiate

and that the derivative is if. From (6.8) we have

which implies (6.5). q.e.d.

Similar discussions are valid even if we consider a finite dimensional sub-

space Y instead of single a. The results are written as follows :

Let Y be an /z-dimensional subspace of X. Then X can be decomposed

as X=Y@Z, so that as a set we have X^=:RnxZ. (X9<Bs) is isomorphic with

the product measurable space of (Rn, Borel field) and (Z, *BY-^). A measure
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can be written uniquely as

(6.10) v

where t£ is a measure on Rn, and JIY is the restriction of | ju, \ on IBy^-

Theorem 6,2, Under the representation (6.10), we have the following : Let

a^Y and a be the corresponding element of Rn.

(1) a^Cju, <^> aEiCiix for JtY-a.a.x

(2) Under the assumption that & is positive, y. is L ̂ quasi-invariant «=> // is

L^ -quasi-invariant for ~jiY-a.a.x

(3) a^Dp <=> a^Dpx for JlY-a.a.x and

(6.11)

Of course this theorem can be applied to the case where ju is continuous

or differentiate along every direction in Y. If # is differentiable along every

direction in 7, then if can be written as Theorem 7.1 (see §7).

Next we consider the case that (X, 3$) is the product measurable space of

(Y, .SO and (Z, .S2) (^
 an(i ^ maY be infinite dimensional).

Theorem 603B Let ^ and ju2 be non-zero elements of M(Y) and M(Z) re-

spectively. Consider the product measure fjL=fjLlXfJL2. Then we have

(6.12) Dlt=Dl

(6.13) d(y.z)V = dyfli* #2+ #1*9,02 for

Proof. First note the equality 1 1 M\ \= \ \ MI \ \ \ \ V2\ I • Then for y e D^9

INI -

This implies (v, G)^D^ and d(yi0-)ju=dyja1xjLt2' In a similar way, if zeD^, then
(0, z)eD^ and d(0^jLi=jLi1xdzju2. Since (y, z)=-(y, 0)+(0, z), these imply D^ X

We must prove Dp C D^ X Z)^. Let (a, b)^Dp. For any ^4 e ^19 since

^c^)~^/ ,^rn (*tit.-VifA. (7.- - - (X x Z) = - - - (^2(Z) ,

if ^2(Z)4=0, then (a, b)^D^ implies a&D^. Thus the proof is completed for

the case /«2(Z)4=0 and /^(T^O.

We shall consider the case j«1(7)=0 or ^2(Z)=0. Again let (0,
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Since (a, b)^D\p\ and \fi\ = \fj,l\ x |#2|, we get at least a^.D\^\ and
So aeCi/tji [resp. 6eC|p2|], hence a&C^ [resp. fteC^J (see Remark In §1).
Since fj.l(A+td)M2(B+tb) is differentiable in f for any A^^ and B^1B2, for
the differentiability of /^(^4+ta) at r=0 it is sufficient to prove that there exists
B$=$2 such that v2(B)3=Q and ju2(B+tb) is differentiable at f=0.

Let Y=P1 U P/tresp. Z-P2 U P2
C] be the Hahn decomposition w.r.t. /«, [resp.

jHj. We can assume that A1(P1)>0 and #?(P2)>0, because we can consider — ^
or — /^2 instead of /^ or /^2 if necessary. Since ju1(P1

Jrta)ju2(P2
Jrtb) is maximal

at r=0, we get from the differentiability

(6.14) lim — {Ai^+to^P^^-^P,)^^} = 0 •
*->o ^

But we have

(6.15) yWPi+to)A2(^2+*)-^(^i)/fi(^2)}

For sufficiently small t we have /*2(P2+r&)>0 from b^C^2. Thus two terms
in the right-hand side of (6.15) have the same sign. Therefore each term must
tend to zero as t -> 0. This means that ^(Pi + to) and M2(P2+ tb) are differentiable
with the derivative zeros at t=Q. q.e.d.

Chapter 2. Applications to Measures on Product Spaces of R

§7e Finite Dimensional Case

We see in this section that differentiation of measures on finite dimensional
spaces is attributed to that of functions. Theorem 7.1 and Theorem 7.2 below
are due to ASF [1].

We denote the Borel field on Rd by <Bd, the Lebesgue measure on Rd by md,
the canonical basis of Rd by {el9"',ed}-9 and by d^/the derivative of /(in dis-
tribution sense) along ek.

Theorem 7.1. Let ju^M(Rd). The following (1) and (2) are necessary and
sufficient for D^=Rd:

(1)

(2) dhf e L\md) fork=l,—,d where f=—, (density of v w.r. t. md).
dd

And then ^^=dkf(k=l9 •-, d) holds.
dmd
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Remark. Under the assumption (1) of Theorem 7.1, we have dkf^
for each k, even if JJL is not differentiable along other directions.

Theorem 7.2, Let ju^M(Md). The following (1) and (2) are necessary and
sufficient for ju. to be infinitely differentiable along all directions:

(1) v<md

(2) &* f e L\md) for every multi-index a where f= — - .
dm*

For the proofs of above theorems, see ASF [1].

Now we give a counterexample notified in the Remark after Proposition
4.1.

Example. Let ̂  be a C2-function on R2 with compact support. For arbi-
trarily given positive sequences {<*jT=i and {pn}~=i, we can take real se-
quences {an}n=i and {bn}^i such that the supports of the functions {^(anx+cin9

ftny+bn)}n=i are mutually disjoint and separated enough. Taking another

positive sequence {rj-~=i5 we put

(7.1) f(x, y) = S rnTK°nX+an, pny+bn} .
n = l

We see that / is a C2-f unction on R2 and

ll/ll = 2 -^-Ihrtl, 11 /̂11 = 2-^110^11 ,
n = l anPn » = 1 Pn

II VII = S -H^H? PA/H = 2 r.PA^Il
« = l «w » = i

where | |«| | is the Z^-norm w.r.t. m2. Therefore, determining {&„}, {@n} and {rj
appropriately., we have/, 6^/5 dydxf^L\m2) and dyf^L\m2) (for example a^=

— 3 pn=n, and r»=-^)- Now we put #=(1, 0), 6=(09 1) and ti=fm2. Remark
n n2

after Theorem 7.1 shows that daja, dbda/JL exist and dbju, does not.

From now on we study differentiable shifts for a product measure #=
*=i

on 12°° where each juk is a probability measure on R. If every /^ is the same
measure til9 we call ju=ju,™ a stationary product measure.

We denote the canonical basis of IS00 by {e1? e2, • • •} and put 1C = {(^*)r= i ^
IS00; ff»e-2V st. xk=0 for fc^/z}. We give ^°° the usual weak topology and
denote by .S(JR°°) the weak Borel field on ̂ °°.
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Definition. Let E be a linear subspace of X. We say fj, to be J^-differ-
entiable if Ed Dp and exactly Is-differentiable if E=DfJl.

Proposition 8.1. The following (1) and (2) are necessary and sufficient for

a product measure /*=!!/** to be R% -differ entiable:
k=i

(1) juk<ml for vk<=N

(2) /JeLV1) for vk(= N where fk= dm1

Then we have

(8.1) dek/j.

Proof is trivial. See Theorem 7.1 and Theorem 6.3.

Proposition 8»20 Ler /* be an RQ°° -differentiate measure on R°° (not necessarily

positive or product-type). Put E= {a=(ak)%=i<=R°° ; S I ** I 1 \deA I < °°} • Then
= *

Proof. Let a<E.E and put an = (a\ — , a", 0, — )• Then aWB-^a in Ji00

«
and {5C /«=S^ei^}*=i is a Cauchy sequence in M(R°°) w.r.t. ry. Therefore,M *=i ft

from Corollary to Theorem 3.1, we have a^D^ and

(8.2) dav = Hlctd M (vconvergent). q.e.d.
*=i *

CO

Corollary. If an RQ°° -differ entiable product measure tt^TLttk satisfies
k=i

sup||c?jttA|l<oo (in particular if fi is an RQ°° -differ entiable stationary product mea-
k

sure), then (I1) d Dp.

DefinittoE (Skorohod [4]). Let # be a positive measure and a^D^. The

density function — — (x) is called the logarithmic derivative of p, along a and
dfi

denoted by l^(a; x).

The following properties of logarithmic derivatives are evident: for a, 6e
Dp and s, t e/2,

(8.3) l^(sa+tb; x) =sl^(a; x)+tlp(b; x) (^-a.e.) ,

(8-4) \\Ua; Ollrtrt = IIMI -

Proposition 8.3. Let v=TLVk be R<T -differ entiable. Then (l^^
k=i

holds, where for t^(l°°) and a^D^ their product is defined by ta=(tkak)^
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Proof. Let t e(/°°) and 0e/V We may assume | tk \ < I foivk^N since
Dnis a linear space. Put tn=(t1

9'-9t
H

909—) and a^^a1,---,fl*,0,---)• Noting
Corollary to Theorem 3.1 and (8.4), we have only to show that l^(jnan; •) con-

verges in L\JJL) as n-^>°°. Since lp(tnan\ x)=S tkak —-^(**), Lemma 8.1 below

completes the proof. q.e.d.

Lemma 8eL Let {gjT=i ^ ^ system of independent random variables on
(X9 JJL) with mean zero. If^gk converges in Ll(ju), then ̂ tkgk also converges in

L\fJL)forvt=(tk)st. \tk\<\.

Proof. In general, ||x||<||^+iy|| implies H^+^ll^ll^+jl l for
For,

\\x+ty\\ = H^+j)+(l-O^II<*lk+j||+(l-OIWI<lk+j|l •

Now that for Sl9 S2dN such that ^C^ and $S2<°o

(8.5) || 2 ^III,1^)^!! S ^HL^M)

holds, putting ek = l [resp. — 1] if tk> 0 [resp. <0], we have

« »-l .. n

k=l &=1

s
00

(8.6) shows that ^tkgk converges in L1^). q.e.d.

oFBt8 (I2)

In this section we study the conditions for U0°°--differentiable measures to
be (/2)-differentiable. In the sequel we consider the product measures such that

(9.1) fi = ^ vkfe=i

or the stationary product measures such that

(9.2) M = tf, ^ =fm\f>®, H/IUW) = \,f'<=L\nf) .

When we say "ju, as (9.1) [resp. ju as (9.2)]" below, jutk &ndfk [resp. ^ and
/] are always assumed to satisfy (9.1) [resp. (9.2)].

nPropositioa 9.1. Let fj.be a product measure as (9.1). J/sup
k fk

then we have (I2) C Dp and, for a e (I2),

<00,
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(9.3) l^a; x) = 2 <tj H / w

Pr0o/. Let flCE^2) and put ^-(c1, —, aw
9 05 —). Then

«
II / (n • -v\ 1 (n • - v M I 2 o ^n\\tit(an, x)—ip(am, ^)\\L2w — 2j

-> 0.

/•/
/ k* ' - a

Therefore {lp(an; -)}r=i is a Cauchy sequence in L1^). This completes the proof

by Corollary to Theorem 3.1. q.e.d.

fCorollarye Let ji be a stationary product measure as (9.2). If -^-eL2^),

then (P)C.Df. holds.

For stationary product measures, the converse of the above result holds.

Theorem 9.1. Let ju. be a stationary product measure as (9.2). If(P)cDp,

then -^-elfyttj) holds.

Proof. Corollary to Theorem 3.1 and the closed graph theorem show

that the map at-*daju, of (I2) into M(R°°) is continuous ((/2) is given the usual

Hilbertian topology)? namely

st

For arbitrary n^.N and tk^R such that | tk \ <1 (k=l, 2, — ), we put

fSince ||0||<<5, putting 9 =— , we have

(9.4) e>IM =|| Wa; OILV) = II ±-£=
*=i v n

Since | ew— 1 1 < 1 6 \ for 6<=R, (9.4) impUes

(9.5) ( |cap(i2-4=^p(^))-l|^W<«.
Jig00 *=i v «

r i i iw
Integrating (9.5) w.r.t. m on — — , — and estimating it from below, we have

5 > | f \ {exp(/ £ ' t* <p Wi-lW-dt'dttx) \
J«~J [-1/2,1/2]" * = i v n
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n S

= I ( nJ*"-

sin — 7= 9 (rt

sin — j= <p (t)

namely

(9.6) (( —^-5 dv1(t)}>l-e for vn^N.
\JM o /^ /

2\/~n

Assuming that n is odd, we see that the integral in (9.6) is positive. Taking

"log" of (9.6) and noting logs^Cs—1 for ,s>0, we have

sin^-7=^W
(9.7) «(!-(

J*

Therefore, by Fatou's inequality^ we see

sin — -=<p(i)

which shows 9 ^L\fi^. q.e.d.

Next we study the converse implication: D^C^2). We prepare two

Lemmas.

Lemma 9elo Le£ {(^M5^J}r=i be a projective system of measurable vector

space, (X,&) its projective limit, pn : X— >Xn its projection and ju a positive measure

on X. Then a^D^ implies that pna^DPn0lil and

(9.8) dpn.(Pn<>ti=Pn09.V,

(9.9) IpH*i*(P*<*i Pn*)^ W«; x) in L\v) and #-a.e.

Proof. Let a^D^. Proposition 5.2 shows pna^DPn0tl. and (9.8). Since

pn's are projections, the L^^-convergence of (9.9) is evident, so that, by mar-

tingale convergence theorem, (9.9) converges also #-a.e. q.e.d.
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Lemma 9.28 Let igk}T=i be a system of independent random variables on

(X, /JL) with mean zero. If^gk converges in LI(IJL), then Sgo-U) °^so converges in

I}(p)for any cre@oo (the set of all bijections of N).

Proof is easy. Note (8.5) in the proof of Lemma 8.1.

Here we introduce a notation. Let g be a real-valued function and C>0,

Put

'C ifg(x)>C

(9.10) gc(x) = - g(x) if |g(*)|<C

.-C ifg(x)<-C.

gc is called the truncation of g at C.

ff

Theorem 9.2* Let /JL be a product measure as (9.1). Put <pk~ • V
fk

limll^f ||L2(jU!(p>0 for some C>0, then D^d(l2) holds.

Corollary, For a stationary product measure p. as (9.2), D^C^2) holds.

Proof of Theorem 9.2. Let a=(ak)k=i^Dv» Applying Lemma 9.1 where
Xn=Rn and X=R°°, we see ̂ £ak<pk(x

k) converges in L\p) and /e-a.e. Therefore,

by Kolmogorov's three series theorem,

\y.Lz,j /! /ij^^[G *Pk\x )\ ) converges

where F^, is the variance and E^ is the mean w.r.t. p.. Since S^^VirC*)^^

converges in LI(/J) for any a^®^ by Lemma 9.2, it also converges /e-a.e. Then,

again by the three series theorem, S^([^(fe)9:Jo-(^(^0'(fe))]c) converges. This im-

plies that (9.12) is absolutely convergent. Therefore,

(9.13) 2

holds. (9.11) and (9.13) imply

(9.14) Sj
k

Noting that [a/3]c>alfic for a, /?>0, we see from (9.14) that

Therefore, from the assumption of Theorem, we have S{[^]1}2<°°3 which is
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equivalent to <ze(/2). q.e.d.

Corollary to Proposition 9.1? Theorem 9.1 and Corollary to Theorem 9.2

characterize the (/2)-differentiability of stationary product measures:

Theorem 9038 For a stationary product measure ju. as (9.2),

holds.

§10. Higher Order Differentiability

Proposition Idol. Let ju. be a product measure as (9.1) satisfying f(™^ e= L\ml)

<oo for 771 = 1, •••, 77, £/Ze72 /*/Or /C = l,2, ••• a77£/ 771 = 1, • ° ° , 72. //" SUp
A

75 n-times differentiable w.r.t, (I1).

Proof. Note that 72-times differentiability w.r.t. 15^ is assured by the

assumption that/^eL^m1) for fc=l, 2, ••- and 771 = !, ••- , n. Using Theorem

4.1, we easily see the assertion. q.e.d.

Theorem 10.1. Let JLI be a product measure as (9.1) satisfying f(*
/•(«)

for k=l, 2, ••• a7?d m=l, • • • , 72 (7i>2). Tf sup

72 — 1 and sup /i"'
< oo /or 771 = 1,

<oo? r/7^72 JM w n-times differentiate w.r.t. (I2).

Proof. In view of Theorem 4.1, it is sufficient to show that, for al9 °°°,am

(10. 1) S a{i • - - «> gyi"" 6j^ (x) converges in L1^) .
JV'-Jm dfJL

We shall consider only the case 771=72 because the case m<n can be discussed
CO

in the same way. The summation (10.1) is divided in ^a{ai °BO aj
nd(dn

e.jj)l

d/j,(x) and the sum 2' of the other terms (containing at least two different j/s).

The inequality

d/JL
= S | f l f l - W , ,. / /

assures the ^(^-convergence of the first sum.
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To prove the ./^(/^-convergence of ]>]'., it is sufficient to show its L2(/0~
convergence :

. ddp
(10.2)

p.
'*

CO dfJL

- S' 23'
co c«

However the integral is equal to zero if j\ does not appear in kl9'~,kH9 because

/,(0 = 0 for m = 1, -, n-1 .

The same holds foTj29—JH. The integral in (10.2) is, if it is not equal to zero,
of the form of

where the number of factors of the product is at most 77, so that its absolute
value is less than

Thus,, it is sufficient to prove

2" being the sum over those terms such that every jp appears in kl9°",kn and

every kp appears mj\9""Jn. In general we see that, for b},*°°9br^(l2).,

for some Cr>0, where 2° means the sum over those terms such that every
jp appears mjl9—Jr at least twice. q.e.d.

§11. An Example — Gaussian Measures on JS°°

In this section we consider Gaussian measures on H°°. Let m=(mk}^i

and c=(ck)™=i be real and positive sequences respectively. Put fk(t) =

( (t-m*?} -
exp| — ̂  —^-> and v-k^fk™1- SmC

=TL^k'ls> called a Gaussian measure on R°
I 2c ) ' k=i

with mean m and variance c. When m=(09 0? - ° a ) and c=(l9 1, ° 8°) ? we denote
simply by g and call it the standard Gaussian measure.

From Theorem 93 and Theorem 10.19 we have the following
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Proposition 11.1. The standard Gaussian measure on R°° is infinitely dif-
ferentiable exactly w.r.t. (I2).

We define Ac and rm, operators on 12°°, by Ac: (xk}-*(\/l*xk) and rm: (xh)
-*(xk+mk). We see gmiC=^mAcog. Then, from Proposition 5.1, Proposition 5.2
and Proposition 11.1, we have the following

CO / k\2

Proposition 11.2. Put Hc={x^R°°; S^-r-<00}" A Gaussian measure
*=i c

gmtC is infinitely differentiate exactly w.r.t. Hc.

Appendix

In this appendix we prove that a measure on an infinite dimensional space
cannot be continuous (therefore cannot be differentiate) along every direction.

Theorem A. Let (X, j3) be a real measurable vector space where IB is the
o-field defined by E, a linear subspace of Xa, separating X. Consider a pro-
bability measure fj. on (X,1B). If ju(Z)=Q for any measurable linear proper
subspace Z of Xt then we have dimX<oo.

Proof. We give E the characteristic topology of & (which is identical with
the restriction of the topology of measure convergence on E) and denote it by
EH. First we show X=E$. Let f*^0 in Ep. Then, taking a subsequence,

we have Ekj r^O #-a.e., namely ja(Z) = l where Z={x^X\ Or,£*y.> -^O}- This

implies by the assumption that Z=X, namely <*,£*/> /S,0 for vx^X. Since

{£k} is an arbitrary sequence which tends to zero in Ep, we see x^Ef for vxG
X. Thus X=E$, so that X is a countable union of the polars of neighborhoods
of zero in E^.

Now we take V, a neighborhood of zero in J^, satisfying #*(F°)>0 (ju* is

the outer measure and VQ is the polar of V). Put ||£||7 = ( Q |<JC, ey\2d#(x) for

fe£". We show that ||-||v determines the characteristic topology of &. Let
H^HF^O. Then, taking a subsequence, we have f*yy^0 A-a.e. on F°. Putting

Z={x(=X; <jc, f*y>^0}, we see jui(Z)>0 because ^*(F°)>0. This implies by

the assumption that Z=X9 therefore f^.^O in E^. Since {£k} is arbitrary, we

see that the topology defined by || • \\v is stronger than the characteristic topology.
The converse is evident since V is a neighborhood of zero in Ep.

Let d>0 be such that ||<f||F <£==><? e V. Take an orthonormal system
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{£*}*-1 w.r.t. | |-Ik then,

# = S ||fJ|7^SUpoS |<JC, f*>|2 = «1IJ

sup sup I <*,<?> 1 2< sup sup

JV

•& / ^"A^9 <9*/ls* \fe=i

'(2 K^^>ir2/
jfe = l

2

Thus E^ is finite dimensional, therefore so is X. q.e.d.

Corollary,, I f X i s infinite dimensional, fJt, is not continuous along every direc-
tion.

Proof. Take a measurable linear proper subspace Z of X such that
>0 and a vector a such that a$Z. If /* is continuous along a9

for sufficiently small t. On the other hand {Z+ta}t^R is mutually disjoint.
This is a contradiction. q.e.d.

Remark. The continuity of /* implies that of ju+ and /T. So the above
Corollary is valid even if p. is a real measure.

From Theorem A some measurable linear proper subspace Z satisfies ^(Z)

>0 in an infinite dimensional X. But we cannot claim j«(Z) = l.

Example. We define a probability measure ju, on -RJT = U (Rn X (0)) as

follows. Let #w be a probability measure on J2n which is equivalent to the
00 1Lebesgue measure. Consider p.n as a measure on Rn x(0) and put #=2— s^*-

«=i2
If a measurable linear subspace Z satisfies #(Z) = 1, 2" must be equal to R%. For,
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