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Differentiable Shifts for Measures
on Infinite Dimensional Spaces

By

Yasuo Yamasaki* and Akihito Hora*

Imtroduction

The purpose of the present paper is to develop differentiation theory of
measures on infinite dimensional vector spaces. Differentiable measures have
been studied by several authors. See, for instance, Averbuh-Smolyanov-Fomin
[1], Kuo [3] and Skorohod [4]. The derivative of a measure # is defined by con-

sidering limlt(,um—,u) for a vector a with respect to a certain topology on the
t->0

space of measures. In general a measure x# on an infinite dimensional space is
not differentiable along every direction. So we shall study the space of vectors
along which u is differentiable (such vectors are called differentiable shifts of
o).

In Chapter 1, taking ASF [1] as the starting point, we develop general
theories on differentiation of measures on vector spaces. In Chapter 2, we
apply these theories to product-type measures on B and estimate the space of
differentiable shifts. In particular differentiability w.r.t. (/%) is discussed in
detail.
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Chapter 1. General Theory on Differentiation of Measures

§1. Several Topologies on the Space of Measures

Let X be a real vector space and & a linear subspace of X“ (algebraic dual
of X) separating X. Then <X, 5> is called a dual pairing. B denotes the
minimal o-field on X w.r.t. which all elements of & are measurable. A real-
valued o-additive set function defined on a measurable space (X, B) is called a
real measure on (X,$). M(X) denotes the set of all real measures on (X, B).

We consider four topologies r,, t;, 7, and v, on M(X) which are defined
respectively by the following families of seminorms;

t,: ||| (total variation norm)

50 {| S J(x)du(x)|; fis a bounded B-measurable function on X}

Ql

{| S f(x)du(x)|; fis a bounded &-weakly continuous and $B-measurable

function on X}
. {|w4)]|; A= B} .

Now we give some relations between the above topologies.
TC

Proposition 1.1. (1) r,,->rb<: ,
TS

where “—” implies that the left-hand side is stronger than the right-hand side;
() For anet {#,} ,eq in M(X), if there exisis a positive measure u satisfying
1) u,<u (absolutely continuous) for Ya = A, and

du,

du

©, implies convergence w.r.t. t,;

(3) For a net {#,} yeq in M(X) which is bounded w.r.t. t,, convergence w.r.t.

<00 (||* ]| is the essential supremum), then convergence w.r.t.

(i) sup
acs/q

©, implies convergence w.r.i. t,.

Proof. (1) is evident. (2) follows from an inequality

w”f_g”Ll(I“)

| o)1 <1 [ o1+ 22
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where f is an arbitrary bounded B-measurable function and g is a bounded con-
tinuous function approximating f w.r.t. L(z)-topology.

Noticing that boundedness w.r.t. 7, is equivalent to that w.r.t. z,, we see
that (3) follows from an inequality

|| e <1 {geaucal +lr—gllallel

where f'is an arbitrary bounded $-measurable function and g is a simple func-
tion approximating f w.r.t. || *||e. g.ed.

The following fact is well-known. See, for instance, Dunford-Schwartz

(2].
Proposition 1.2. M(X) is sequentially complete w.r.i. v

Next we consider continuity of an element of M(X) under shifts along a
line. For s M(X) and a<= X, u, is defined as u(-+a).

Theorem 1.1. Let neM(X), acX, a0 and L, be the one-dimensional
subspace generated by a. Put y(t)=up,, for tER. The following conditions
are equivalent;

(1) v is continuous w.r.1. T,

(2) is continuous w.r.t. T,

(3) there exists an L, ~quasi-invariant positive measure A such that 4<2.

Proof. (1) = (2) is evident.
2)=(3): Let {t,}7-. be a countable dense subset of B. Put A=

E 27*| ul,,,. Tt follows from the continuity of #,, in z, that, for A€,

2(A) =0 |u];(4) =0 for TkeEN
& 4, (B) =0 for VBCA,"kEN
o u,(B) =0 for YBCA4,"IeR
e |(u],{4) =0 for "teR
& 4(4) =0 for "1eR,

namely 2 is L,~-quasi-invariant. <2 is evident.

(3)=(1): It is sufficient to prove the continuity at i=0. Let m be the
image measure of the one-dimensional Lebesgue measure under the embedding
t—ta. Putv=m=2. Then vis L,-invariant and v~2. We denote the density
dujdy by po. We can approximate o w.r.t. LY{y)-topology with a function g in
the form of g(x)=¢((&,, x), +*+, (§,, X)) where &, &,, -+, §,€5 and o= Cy(R").
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Then we have
la—all = | _1ox-+i0)—o(0)| o)
< lse+1a)—g0 a2 180 —o(a)lds) .
For a fixed g, the first term in the right-hand side tends to zero as t—0. This

completes the proof. g.e.d.

Definition. An element a of X is called a continuous shift of u if it satisfies
the conditions of Theorem 1.1. We denote by C. the set of all continuous
shifts of u.

Cy is a linear subspace of X.

Remark. We see Cp=C)y by Theorem 1.1.

§2. Differentiation of Measures

In this section we define derivatives of measures according to ASF [1].
Proposition 2.1, Proposition 2.2 and Theorem 2.2 are due to them. Theorem
2.1 is a slight modification of a result by them, to which, however, we give here
a quite different proof from the original one.

Definition. Let peM(X) and a=X. ais called a differentiable shift of u
if Lt (#;,—#) converges w.r.t. 7, as t—0 (¢ €R). Then the limit is denoted by

d,u4. We denote by D, the set of all differentiable shifts of x.
It is clear that C, contains D,.

Remark 1. In view of Proposition 1.2, 9,4 exists iff i(,u,,,——,u) is of
Cauchy w.r.t. 7. ’

Remark 2. Some authors define differentiability of # w.r.t. other topologies
on M(X). See Kuo [3] and Skorohod [4].

Proposition 2.1. a& Dy implies
(1) a<Du+ N\ Dyu- where p=up*—p~ is the Jordan-Hahn decomposition of v,
@ d.u<|nl.

Proof is omitted. See ASF [1].
Proposition 2.2. Let a&Du. Then an inequality

@D lleza—2l|<118,24|



DIFFERENTIABLE SHIFTS FOR MEASURES 279

holds.
Proof. Since p,(4)—un(A)=0,u(A-+0a) (0<6<1) for A€ B,
22 sup | ,(4) —n(A)| <sup|d,u(4)|
AeB AeB
holds. Noting ||v||=2 sup|¥(4)]| for an element v of M(X) satisfying »(X)=0,
Ae3B
we see (2.2) implies (2.1). q.e.d.

Theorem 2.1. a&€ Dy and b€ Cy imply b€ Cyu.  In particular, a& Dy im-
plies a&€ Cy p.

Proof. In view of Proposition 2.1 (2) and Theorem 1.1, there exists an
L;-quasi-invariant positive measure 4 such that 0,4<C4. q.e.d.

Using this theorem, we prove that the definition of differentiable shifts
does not change even if we adopt r,-topology on M(X) instead of r,.

Theorem 2.2, a= Dy iff % (#;s—2) converges w.r.t. v, as t—0.

Proof. Since (8,4),, is continuous in ¢ w.r.t. =, by Theorem 2.1, it is con-
tinuous also w.r.t. =, so that we can express set-wisely

i
@.3) P go(aau)ma’s.

Then, using ||v}|=2 sup|v(4)| again, we have
Ae3B

t>0 = °

1 1f¢
I a0, < | 1ot =B, ds | 2,0 qed.

8§3. Properties of Differential Operator 3,4
Proposition 3.1. (1) Du is a linear subspace of X, (2) 9,°(a=+0) and

0 u (#==0) are one-to-one linear operators.

Proof. Leta, b&D,.. We have

Eitert) L —(aau+6bu)H£
t

Prarin—HPu_ 5 P
t

a

Ly — M
t

ﬁilt:lf_amu aau—(aa'u)—tb + —abu

-

+

by virtue of Theorem 2.1 and Theorem 2.2. Therefore a4+-b& Dy and 8, ,10=
0,u+0,u. As for scalar multiplications, the proof is trivial.
“One-to-one” part follows from Lemma 3.1 below. q.e.d.
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Lemma 3.1. Let u&M(X) and aED,. 8,1.=0 implies a=0 or n=0.

Proof. By (2.3) it follows from 8,4=0 that g,,=u« for Yt&R. Then
(#*);,=n* and (#7),,=u#". Therefore it is sufficient to prove that, if a3=0 and
4 is a positive measure satisfying #,,=u for "t € R, then #=0. Choose €5
(see the opening of §1) such that <{a, §>=1. We denote by £ou the image
measure of # under &, Then we have for "t R

G3.1) (Eon); = (Cot)iaey = €o(tya) = Eont.

Since £ou is a finite positive measure on R, (3.1) implies §ou=0, thereforc u=
0. q.e.d.

Theorem 3.1. Let X be given a topology stronger than or equal to the =-
weak topology and M(X) given t,-topology. Assume that a, S (4 is a directed
set) in X, p,— nin M(X), a,E Dy, for "ac A and "nEN, and {a,mu,,} (@) AXN
is a Cauchy net in M(X) along the directed set AXN. Then a€ Dy and

(3.2) 0,0 =1lim 8, u,

(@,n)

holds.
Corollary. 08, and 8 u are closed operators.

Proof of Theorem 3.1. First we show that (u,,),m(;;).u,a forVteR. Using

Proposition 2.2, we have

||('um)taw—(lun)tdﬂ|[£!I('um)tam—('um)taﬁl|+H(ﬂm)laﬂ_—(/“n)taﬂn
< lt | ”aaw/“m—aaﬁum”+H'um—ﬂn”

and so {(u,,),aw} (w.meaxny 1S @ Cauchy net in M(X). Then we see

(33) 'uta = hm (/‘Ln)ta

(@,n) @
by checking the characteristic functionals (4,(§)— A(€) and exp(i(¢, ta,))—
exp(i(¢, ta)) for ée 5).
Put v=lim a,,wu,,. For e 4 and m& N, we have

(@,n)
Myg— M Myg— M ('um)iaw_'um
t t

+”aaaﬂm—V“ .

The first term in the right-hand side of (3.4) is estimated uniformly w.r.t. ¢ as
follows:

—Y

(34) l(oum)tatm—lu

<

d

m
—aamﬂm
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(35) lim ('uﬂ)iﬂﬁ — 4y _ (/‘tm)lam —Hon
(n, B> t t
S_ lim { (.un —um)ias -_(:uu _:um) + H ('u’”)‘”;s —(um)iao, }
(n,B) t t

Sli_ln{“aag'un_'aa 'um“—‘—Haap'um—'aa lumH} .
,8) B @

Since the second term in the right-hand side of (3.4) tends to zero as t—0 for
a fixed (a, m), (3.4) and (3.5) imply 0,4=v. g.e.d.
§4. Higher Derivatives of Measures

Proposition 4.1. Ler 0,u, 0,4 and 8,0, exist. Then 8,0, exists and is
equal to 8,0,u.
Proof. We have

@ OO0t _ o, (=t — (L[ (@, 1,0 t)

t t
= lim - L (O Out)uck dt = | 0,0 uatt
>0 § f Jo t Jo

(the last equality follows from Lebesgue’s convergence theorem). Since 6,(9,4),,
is continuous in # by Theorem 2.1, (4.1) converges to 9,0,x. q.e.d.

Corollary. Higher derivatives of measures are independent of the order of
the differentiation, if they exist.

Remark. We cannot omit the condition that 8,u exists in Proposition
4.1. A counterexample is given in §7.

Definition. Let E be a linear subspace of X. An element # of M(X) is

called n-differentiable w.r.t. E if 8, --+8, # exists for arbitrary n elements a;,
e+, a, of E.

Theorem 4.1. Let u# be n-differentiable w.r.t. E, a,, ++-, a, elements of X and
{al_wl}wleAl, vy {8y 0.} a,ca, nets in E.  Assume that Bt B in X (w.r.t. a to-
pology stronger than or equal to the S-weak topology) for k=1,---,n and {aam’wm

. 6,,”,%4&} (o ra)E A ¥ x 4, 15 @ Cauchy net in M(X) (w.r.t. z,-topology) for m=

1,+,n. Thend, - 8, n exists and
aal oo aa u = lim aa oo 8,, u
» @y, ,005) Ly

holds.

Proof is by induction on n and Theorem 3.1.
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§5. Translations and Linear Transformations

Proposition 5.1. Letr X be a measurable vector space, u an element of M(X),
t a translation on X (i.e. 2zE€ X, tx=x-+z for YxEX). Then we have
(1) D,u=Dy and
5.1) 8 (rop) =100, for Vac Dy,

(2) for E, a linear subspace of X,
u is n-differentiable w.r.t. E < top is n-differentiable w.r.t. E.

Proposition 5.2. Let X,Y be measurable vector spaces, 1 an element of
M(X), T a measurable linear map X—Y. Then we have
(1) T(Dw)CDgp and

(5.2) 87,(Toy) = Tod,12 for Yas D,

(2) for E, a linear subspace of X,
& is n-differentiable w.r.t. E= Tou is n-differentiable w.r.t. T(E),

(53) aTa;l ot aTa,,(Totu) = To(aal o aan:u) for a a,€E.

Remark. If T is a measurable linear isomorphism in Proposition 5.2, the
same holds also for 77!, Thus we have the equality T(Du)=Dy.. in (1), and
the equivalence « in (2).

Above propositions are easily proved from definitions.

§6. Conditional Measures and Product Measures

Consider (X, B), X being a real vector space and B the o-field defined by
5 where <X, &) is a dual pairing. Let a€X, a=+0, and take =5 such that
{a,&>=1. Then X can be decomposed as X=L,P {{}*, where L, is the one-
dimensional subspace generated by a and {£}~ is the annihilator of &,

6.1) Xox=2a+y; 2=<x,&, y=x—2ac {}~.

Similarly & can be decomposed as 5=L;P {a} . Then the measurable space
(X, 9B) is isomorphic with the product measurable space (L,, Big) X ({€} -, Biav)
where Bz [resp. B,+] is the o-field defined by {£} [resp. {a}*]. Note that
(L, Bigy) is isomorphic with the Borel measurable space of R, so we shall
identify them.

Consider p& M(X). Identifying X with R X {£}*, we identify the restric-
tion of |u| on B~ with a positive measure Z,; on ({£}+, B,+) given by



DIFFERENTIABLE SHIFTS FOR MEASURES 283

(6.2) /7(,,)(/1) = Iﬂl(R XA) for AE.@(a)-L .

For any Borel set B of B, the measure uz(4)=u(B X A4) is absolutely continuous
w.r.t. Z(,, SO that we get duy=fzdn, with some B, +-measurable function f.
Since the Borel field of & is standard (namely since it is isomorphic with the in-
finite product measurable space of {0, 1}), {/5(X)} 5 : pores determines a measure
4*(B) on the Borel field of B. Therefore we have

6.3) uwx@={jﬁmﬁm@y
From this we see that for any C€ B,
(64) #C) = | w(CCONEW ()

where C(x)={2€R; 2a+x&C}.
4% is called the conditional measure of # at x& {£}. Note that x* has
meaning only for Z,-almost all x.

Theorem 6.1. Let p=M(X) and a= X, a=+0. Consider the representation
of u as (6.4).
(1) aeCuo1€Cyu for i, —a.a.x;
(2) Under the assumption that p is positive, p is quasi-invariant under trans-
lation by L, < 4" is quasi-invariant (on R) for Zy-a.a.x;
(3) a€Du=1&Dus for Hyy-a.a.x and

6 flostiamac< oo
where 84" is the derivative of #* along 1.
Proof. (1) From (6.4), we see

66 ladl = {17 ()

Hence ||#;, ——/4||=Sl},u",—/z"|]dﬁ(,,;(x) assures the “<= part of (1).

Conversely if ae Cy, then we have 4y for some L,-quasi-invariant posi-
tive measure v (see Theorem 1.1.). Consider the conditional decomposition of »:

6.7) u=yW%my
Putting du/dv=f(2, x) (2, X) ER x {{} ), we have

w©) = [ _fa 9avr@dzae for ceB.
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On the other hand, putting dz,/dv,; =g, we have
#(C) = Sﬂ“(C(x))g(x)df'{a)(x) for Ce3.

Comparing these, we get ,u”(-)~g SQ@, x)dv ()<y* for #,-a.a.x, by virtue of
the uniqueness of the conditional decomposition.

If we admit (2), v* is quasi-invariant for ¥,-a.a.x. Thus, noting that x*<<
V", we see #” is translationally continuous for Z;-a.a.x.

(2) “<=" part is evident.

If #~uv, then as in the second paragraph of the proof of (1), we see p*~
v* for #yy-a.a.x. Suppose that u is L,-quasi-invariant. We have g~ u*2 for
any positive measure 2 on L,. Then #"~(u*2)"=u"%2, so that if 2 is quasi-
invariant, so is «”.

(3) ““<=” part is derived from (6.6) as

x . x
& #~fowdmaw) = |t —ow

dhg)(x) .

Conversely assume a=D,. Consider the conditional decomposition of
9, 4. Since 0,4=|u|, we can write as
(6.8) B = Su"dﬁ(,;(x)
for some measure »* on B. Then
gt = [\ @ = ([ dsdia o)
From the uniqueness of the decomposition, for any fixed #, we have
(6.9) o=y = s:v”sds for #-a.a.x.

Since # is continuous along a, #* and " are translationally continuous. There-
fore (6.9) holds for all ¢ for Zy,-a.a.x. This implies that u* is differentiable
and that the derivative is v*. From (6.8) we have

10aal] = {11 lld7a () <oo
which implies (6.5). q.e.d.

Similar discussions are valid even if we consider a finite dimensional sub-
space Y instead of single a. The results are written as follows:

Let Y be an n-dimensional subspace of X. Then X can be decomposed
as X=Y@Z, so that as a set we have X=R" X Z. (X, Bz) is isomorphic with
the product measurable space of (R, Borel field) and (Z, By+). A measure
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~E M(X) can be written uniquely as
(6.10) b= Sﬂ"dﬁy(x),

where #* is a measure on R”", and Zy is the restriction of | x| on By+.

Theorem 6.2. Under the representation (6.10), we have the following: Let
a€ Y and @ be the corresponding element of R".
(1) acCu e adsCus for By-aax
(2) Under the assumption that p is positive, u is L,-quasi-invariant < 4" is
L;-quasi-invariant for ly-a.a.x
(3) a=D, © @a=Dy: for by-a.a.x and

(6.11) Sl[a;ﬂ"lldﬁy(x)<oo .

Of course this theorem can be applied to the case where # is continuous
or differentiable along every direction in Y. If u is differentiable along every
direction in Y, then #* can be written as Theorem 7.1 (see §7).

Next we consider the case that (X, 9) is the product measurable space of
(Y, B) and (Z, B,) (Y and Z may be infinite dimensional).

Theorem 6.3. Let u, and u, be non-zero elements of M(Y) and M(Z) re-
spectively. Consider the product measure u=u, X ,. Then we have

(6.12) Dp, - D“‘l XD”'Z
(6.13) Oyt = O, Xyt X0 1ty for yE Dy, and zE Dy,

Proof. First note the equality ||«||=||x|| ||| . Then for y& Dy,

This implies (y, 0)& Dy and 9, ou=0 4, X #,. In a similar way, if z& D,, then
(0, 2)E Dy and 8y =X 8,4, Since (y, 2)=(y, 0)+(0, z), these imply Dy, X
Dy, C Dy and (6.13).

We must prove DuC Dy, X Dy,. Let (a, b)EDy. For any A€ B, since

Hy(y,00 — 4

P —0,u X 1 [l .

= o

My py— 4 M) — 1
P8 42y = DB (2,
if #y(Z)=+0, then (a, b)E Dy implies aE Dy, Thus the proof is completed for
the case u#,(Z)=0 and #,(Y)=+0.
We shall consider the case #,(Y)=0 or u,(Z)=0. Again let (a, b)E D,.



286 YAsUuO YAMASAKI AND AKIHITO HORA

Since (@, b)E D\ and |#| =|u| X | 4|, we get at least aE Dy, and bE D)y,).
So a&Cyy, [resp. b& Cyy,], hence a& Cy, [resp. bECy,] (see Remark in §1).
Since u,(A+ta)u,(B+1b) is differentiable in ¢t for any A€ .PB, and BB, for
the differentiability of x,(4+1a) at =0 it is sufficient to prove that there exists
Be B, such that p(B)=+0 and u,(B-+1b) is differentiable at r=0.

Let Y=P, U P,[resp. Z=P,U P,’] be the Hahn decomposition w.r.t. , [resp.
#,). We can assume that #,(P;)>0 and u,(P,)>0, because we can consider —u,
or —u, instead of u, or u, if necessary. Since u,(P,-+1a)u,(P,-+1b) is maximal
at t=0, we get from the differentiability

(6.14) tim L (P @+ 10)—(PYP} = 0.
But we have
(6.15) Lt{ﬂl(P 1 Hta) y(Py+th) — sy (P ) 1 Po)}

= —i“{ﬂl(P1+m)—ﬂz(P1)} ﬂz(Pz-f‘tb)+%{ﬂz(P2+tb)_ﬂz(Pz)} w(Py) .

For sufficiently small ¢ we have u,(P,+1b)>0 from b&Cyu,. Thus two terms
in the right-hand side of (6.15) have the same sign. Therefore each term must
tend to zero as t—0. This means that x,(P,4ta) and u,(P,+tb) are differentiable
with the derivative zeros at t=0. g.e.d.

Chapter 2. Applications to Measures on Product Spaces of R

§7. Finite Dimensional Case

We see in this section that differentiation of measures on finite dimensional
spaces is attributed to that of functions. Theorem 7.1 and Theorem 7.2 below
are due to ASF [1].

We denote the Borel field on R? by 4, the Lebesgue measure on R? by m?,
the canonical basis of R? by {e,,--,e,}, and by 8,f the derivative of f (in dis-
tribution sense) along e,.

Theorem 7.1. Let pn= M(R?). The following (1) and (2) are necessary and
sufficient for Du=R"*:
1) a<m’

2) 8,feL\m?) for k=1, .-, d where fz% (density of 1 w.r.t. mé).
m

And then djek”—a,, f k=1, -, d) holds.
m

=
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Remark. Under the assumption (1) of Theorem 7.1, we have 9,f&
L{(m%) = e, D, for each k, even if  is not differentiable along other directions.

Theorem 7.2. Let p= M(R?). The following (1) aad (2) are necessary and
sufficient for p to be infinitely differentiable along all directions:
1) asm’
2) 0% f e L m®) for every multi-index o where fzc%.
m
For the proofs of above theorems, see ASF [1].

Now we give a counterexample notified in the Remark after Proposition
4.1.

Example. Let + be a C3-function on &? with compact support. For arbi-
trarily given positive sequences {e,};.; and {8,};.;, we can take real se-
quences {a,} -1 and {b,} -, such that the supports of the functions {y(e,x+a,,
B.y+b)}tw.: are mutually disjoint and separated enough. Taking another
positive sequence {7,} .., we put

(7.1) fx5,9) = 3 rap@ns-ta, fuy+b) .

We see that f'is a C2-function on R? and

nm=iluwumm=i%mmu

n=1 (x”ﬁn n=1

18,711 = 2 210,11, 119,011 = 33 7l19,0.91

n

where ||-|| is the L*-norm w.r.t. m®. Therefore, determining {a,}, {8,} and {r,}

appropriately, we have f, 8, f, 8,08, f € L'(m*) and 8, f & L'(m?) (for example a,=

l, B,=n, and r,,:%). Now we put a=(1, 0), 5=(0, 1) and x=fm®. Remark
n n

after Theorem 7.1 shows that 8,4, 8,0,4 exist and 8,4 does not.

§8. Product Measures on R
From now on we study differentiable shifts for a product measure u:f}[ o,
k=1

on R~ where each g, is a probability measure on &. If every g, is the same
measure y,, we call x=u7 a stationary product measure.

We denote the canonical basis of B> by {e;,e,, -} and put B ={(x"r..
R>; TneN st. x*=0 for k>n}. We give B> the usual weak topology and
denote by B(R~) the weak Borel field on B™.
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Definition. Let £ be a linear subspace of X. We say u to be E-differ-
entiable if £ C Dy and exactly E-differentiable if E=D,.

Proposition 8.1. The following (1) and (2) are necessary and sufficient for
a product measure uzlﬁl 4, to be Ry-differentiable:

O w<m' for "keN

Q) fireL(mb) for "kE N where f}e=%.

Then we have
(8.1) Ot = X oo X My X Oy X gy X oo

Proof is trivial. See Theorem 7.1 and Theorem 6.3.

Proposition 8.2. Let « be an R,>-differentiable measure on R~ (not necessarily
positive or product-type). Put E={a=(a");..ER>; §‘, |a*|]10,,4|<oo}. Then
ECD, holds. h

Proof. Let a€E and put a,=(d, -+, a", 0,++). Then g, ain R
and {aanuzgakagkﬂ} o1 is a Cauchy sequence in M(R*~) w.r.t. z,. Therefore,
from Corollary to Theorem 3.1, we have a D, and
(8.2) ,u = 2 a9, n (r,convergent). g.e.d.

Corollary. If an R,>-differentiable product measure u :kﬁ u, satisfies
sgpﬂa,uk[[ < oo (in particular if u is an Ry>-differentiable stationary—product mea-
sure), then (IY)C Dy.

Definition (Skorohod [4]). Let # be a positive measure and a=D,. The
density function 91—3”—” (x) is called the logarithmic derivative of x# along a and
denoted by /.(a; x). *

The following properties of logarithmic derivatives are evident: for a, bE
Dy and s, t €R,

8.3) lu(sa+1tb; x) =slu(a; x)+tlu(b; x) (u-ae.),
84 Wu(a; )l = 18,2 -

Proposition 8.3. Let u=II u, be Ry™-differentiable. Then (I)-DuC Dy
holds, where for t €(I°) and aEk},L their product is defined by ta=(t*a");-..
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Proof. Let t=(I°) and acD,. We may assume |t*| <1 for Yk N since

D, is a linear space. Put z,=(t%,---,1",0,-:-) and a,=(d%,-++,a",0,---). Noting

Corollary to Theorem 3.1 and (8.4), we have only to show that /u(7,a,; ) con-

verges in LY(x) as n—oo. Since lu(¢,a,; x)=i that %ﬂ (x*), Lemma 8.1 below
k=1

Hy
completes the proof. g.e.d.

Lemma 8.1. Let {g,}r-1 be a system of independent random variables on
(X, 1) with mean zero. If 3\g, converges in L}(n), then 3} t*g, also converges in
k k

LX) for Ve=(t*) st. |t*| <1.

Proof. 1In general, ||x||<||x+y|| implies ||x-+2y||<||x+y|| for 0<r<1.
For,

llx-Fayll = [[tGe+p)+(1—D)x| | < z|lx+yll A =Dl X< [|x+ Il -
Now that for S}, S,C N such that S;C S, and #S,<<co

(8.5) 123 gall e <11 20 gllztewy
kESl kES,
holds, putting e*=1 [resp. —1]if *> 0 [resp. <<0], we have
” n—1 ”
(8.6) 125 gl <Il X3 t'girte"gull <+ <11 23 gl

<ISal+l 2 all<2 Sl

gk=1 gk=—-1

(8.6) shows that i ttg, converges in LY(x). g.e.d.
k=1

89. Differentiability w.r.t. (%)

In this section we study the conditions for R,”-differentiable measures to
be (/9-differentiable. In the sequel we consider the product measures such that

(CAY] 4= };[;[lﬂk: uy, = fim, 20, |

fillirty = 1, fiELY(mY),
or the stationary product measures such that
02 u=ur, m=fm', f 20, || fllpmy =1, f'ELYm").

When we say “« as (9.1) [resp. «# as (9.2)]” below, u, and f, [resp. &, and
f] are always assumed to satisfy (9.1) [resp. (9.2)].

S

S

Proposition 9.1. Let ¢ be a product measure as (9.1). If sup
k
then we have (I*) C Dyu and, for aE (%),

oo,

L)
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©.3) l(a; ») = 3} ak}’ :Ex’; in L{4) .
Proof. Let a= (/) and put a,=(a", «--,a", 0, ---). Then
e )l iz =, 33 @ L

Therefore {/u(a,; )} ;-1 is a Cauchy sequence in L'(«). This completes the proof
by Corollary to Theorem 3.1. q.e.d.

Corollary., Let u be a stationary product measure as (9.2). If ?eLz(,ul),
then (I C D, holds.

For stationary product measures, the converse of the above result holds.

Theorem 9.1. Let u be a stationary product measure as (9.2). If (I®)C Dy,
then %ELz(ﬂl) holds.

Proof. Corollary to Theorem 3.1 and the closed graph theorem show
that the map ar8,u of (?) into M(R™) is continuous ((/) is given the usual
Hilbertian topology), namely

Ve(0<e<<1), 76>0 st. Vacs (P, ||a]| <d = ||8,4]| <e .

For arbitrary n€ N and t*€ R such that |t*| <1 (k=1, 2, -+-), we put
) 0 .
am (2t 20, ).
( n vV'n
Since ||a|| <0, putting ¢ —; , we have

©4) > 18,4 =l lu(a; )

e = || 2 T t* @ ()] -
Since |€—1| < |6]| for =R, (9.4) implies

9.5) S |exp(i 3] \/_ o () —1|du()<e .

Integrating (9.5) w.r.t. m" on I:—% ) %} and estimating it from below, we have

n 6 . i
¢ ljR""Sf-l/z,llzl”{exp( EW ? (xk))_l}dt -dt"dp(x) |
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, sin j_ o (x5
= IS (2" 1ydu)|
R*® k=1 0 (xh)
2 ?
sin j— o () "
= 1_<S _2Vn dﬂl(t)) ,
Ay )
2V n
namely
S0 |,
9.6) (§3—26—n—— dul(t)> >1—e for 'nEN.

m?’(t)

Assuming that 7 is odd, we see that the integral in (9.6) is positive. Taking
“log” of (9.6) and noting log s<s—1 for s>0, we have
. 0
sin——¢ (¢
2V n e ()
R 0
— ot
2V'n 49

Therefore, by Fatou’s inequality, we see

du(t))<log

©.7) n(l —S

—&

.0
smmgo ®

log ! 25 Tim 7 (1— )d,ul(t) - SR% (%ga(t))zd,u,(t),

l1—e JRrme 0
. —0 (I
»n:odd 2\/ n @ ( )
which shows ¢ € L%(u,). q.ed.

Next we study the converse implication: D.C(/%). We prepare two
Lemmas.

Lemma 8.1. Let {(X,, B,)}r-1 be a projective system of measurable vector
space, (X, B) its projective limit, p,: X —X,, its projection and p a positive measure
on X. Then a€ Dy implies that p,a& Dy .. and

(CRY) aﬁna(pno'u) = p,o0,.,
9.9) Ly ou(Pa; Pu%) 52 lu(a; x) in LNu) and p-a.e.

n-»oo

Proof. Let a€D,. Proposition 5.2 shows p,a€D; .. and (9.8). Since
p,’s are projections, the L'(«)-convergence of (9.9) is evident, so that, by mar-
tingale convergence theorem, (9.9) converges also u-a.e. q.e.d.
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Lemma 9.2. Let {g,}7-1 be a system of independent random variables on
(X, ) with mean zero. If 3g, converges in Ln), then 33g. also converges in
k k

LX) for any 0 =&, (the set of all bijections of N).
Proofis easy. Note (8.5) in the proof of Lemma 8.1.

Here we introduce a notation. Let g be a real-valued function and C>0.
Put
C if g(x)>C
(6.10) gx) =g if |gx)|<C
—C if gx)<—C.

g€ is called the truncation of g at C.
4

Theorem 9.2. Let p be a product measure as (9.1). Put qok:%. If
k

lim||f || 2, >0 for some C>0, then D.C (%) holds.
e

Corollary. For a stationary product measure u# as (9.2), DuC (%) holds.

Proof of Theorem 9.2. Let a=(a")7.,=Du. Applying Lemma 9.1 where
X,=R" and X=R", we see > a*¢,(x*) converges in L'(#) and p-a.e. Therefore,
k

by Kolmogorov’s three series theorem,

©.11) 2] Valld* o, (IF) < o,

9.12) % Eu(d*9,(xH]F) converges

where V), is the variance and E, is the mean w.r.t. z#. Since %a"‘"’qa,(k,(x""‘))

converges in L'(x) for any 0 €&, by Lemma 9.2, it also converges #-a.e. Then,
again by the three series theorem, 33 En([a”® @gy(x*®)]€) converges. This im-
k

plies that (9.12) is absolutely convergent. Therefore,

9.13) SHE(d 9, (M} < o0
holds. (9.11) and (9.13) imply
(©.14) 33 Eu({lat ey ()} ) < oo .

Noting that [@8]°>a!AC for a, #>0, we see from (9.14) that
S {@THE o (NI < oo

Therefore, from the assumption of Theorem, we have >}{[a*['}*< co, which is
k
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equivalent to a (/). q.e.d.

Corollary to Proposition 9.1, Theorem 9.1 and Corollary to Theorem 9.2
characterize the (/%)-differentiability of stationary product measures:

Theorem 9.3. For a stationary product measure 1 as (9.2),
Lerxu) « D= ®
S
holds.
§10. Higher Order Differentiability

Proposition 10.1. Let x be a product measure as (9.1) satisfying f3 & L\(m")

for k=12, --- and m=1, ---, n. Ifsup f;
k

<L oo for m=1, -, n, then u
1(!"];)

is n-times differentiable w.r.t. (I*).

Proof. Note that n-times differentiability w.r.t. RF is assured by the
assumption that f™ & L'(m") for k=1, 2, --- and m=1, ---, n. Using Theorem
4.1, we easily see the assertion. g.e.d.

Theorem 10.1. Let u be a product measure as (9 1) satisfying £y e Lm")

Jor k=1,2, -« and m=1, -, n (n=>2). Ifsup f; " )<c>o for m=1, «--,
(1) E Fop,
n—1 and sup S . < oo, then u is n-times differentiable w.r.1. (I%).
k L7(#y,

k

Proof. 1In view of Theorem 4.1, it is sufficient to show that, for a, *--, a,,
e(®, m<a,

. . dB,, +0,,
(10.1) ST giiee. a,,’,me’l—e’mﬂ (x) converges in LY{(x) .
ils"'.im dﬂ

We shall consider only the case m=n because the case m<n can be discussed
in the same way. The summation (10.1) is divided in i‘.a{az - ajd (0% 1)/
=1

du(x) and the sum >}’ of the other terms (containing at least two different j,’s).
The inequality

= d(a ) o P
al---q — alleee a’fz JJ
i2=1 ' du i) fg‘ll il lal A
< llall+la i sup LE
fk L(l"k)

assures the L'(u)-convergence of the first sum.
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To prove the L'(x)-convergence of 3V, it is sufficient to show its L*(x)-
convergence:
dd,, -+

Z’a{l-..ain 1 ejn
D du

L2

(10.2)

LX)
do

. . do,. -0, u e 8, u
=SV SV gf1.-- gingtr... a’;ng 22 Cin (x) Chy Chy (x)du(x) .
D @ R™ du du

However the integral is equal to zero if j, does not appear in ky,--+,k,, because
R0
SR 730 et

The same holds for j,,---,j,. The integral in (10.2) is, if it is not equal to zero,
of the form of

)=0 for m=1,--,n—1.

i@ [P ,
I}SR Fa@)  fa(0) dum(t) (1<m, m;<n—1)

where the number of factors of the product is at most n, so that its absolute
value is less than

(oo {177

Thus, it is sufficient to prove

2n
m=1,--,n—1, k=1,2, }) .

2wy

> |af1| -+ |aj| |afs] - |age] <oo,

> being the sum over those terms such that every j, appears in ky,--,k, and
every k, appears in j;,-+,j,. In general we see that, for by,---,b,&(/%),

§°lb{11 -+ | Bir| S C |1yl |18, ]
for some C,>0, where >)° means the sum over those terms such that every

J» appears in jj, ---,j, at least twice. q.e.d.

§11. An Example—Gaussian Measures on B~

In this section we consider Gaussian measures on R=. Let m=(m*);_,

and c=(c*j;., be real and positive sequences respectively. Put fi(t)=

1
V/ 2zt
(t—my? g
2c*

exp{ — and u,=fm". g,,,,czf[, 2, 1is called a Gaussian measure on ™
k=1

with mean m and variance c. 'When m=(0, 0, ---) and ¢=(1, 1, --*), we denote

simply by g and call it the standard Gaussian measure.

From Theorem 9.3 and Theorem 10.1, we have the following
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Proposition 11.1. The standard Gaussian measure on R is infinitely dif-
ferentiable exactly w.r.t. (I%).

We define 4, and 7,,, operators on B=, by 4,: (x*)—(1/c*x*) and 7,,: (x*)
— (xF+mF). We see g,, ,=7,4,0g. Then, from Proposition 5.1, Proposition 5.2
and Proposition 11.1, we have the following

co k\2
Proposition 11.2. Pur H={x=R~; >} Q-Ckl< oo}, A Gaussian measure
k=1

8m,c 18 infinitely differentiable exactly w.r.t. H,.

Appendix

In this appendix we prove that a measure on an infinite dimensional space
cannot be continuous (therefore cannot be differentiable) along every direction.

Theorem A. Let (X, B) be a real measurable vector space where B is the
o-field defined by E, a linear subspace of X°, separating X. Consider a pro-
bability measure p on (X, B). If u(Z)=0 for any measurable linear proper
subspace Z of X, then we have dimX <Coo.

Proof. We give E the characteristic topology of # (which is identical with
the restriction of the topology of measure convergence on E) and denote it by
E,.. First we show X=FE¥F. Let &, 520 in Eu. Then, taking a subsequence,
we have E,,].I,-:QO p-a.e., namely #(Z)=1 where Z={x€ X; {x, E,,J.)J,:;O}. This
implies by the assumption that Z=X, namely <x,¢&, ,->,:: 0 for YxeX. Since
{&,} is an arbitrary sequence which tends to zero in E,, we see xE Ej for "x&
X. Thus X=E¥, so that X is a countable union of the polars of neighborhoods
of zero in E,.

Now we take V, a neighborhood of zero in E,, satisfying #*(V%)>0 (¢* is

the outer measure and V° is the polar of V). Put ||€ ||?,=S N <x, €5 1%du(x) for
14
€ E. We show that ||-|l, determines the characteristic topology of #. Let

[I€elly 52,0. Then, taking a subsequence, we have £, 5> 0 #-a.e. on V°. Putting
Z={x€X;<x, &> 52,0}, we see #(Z)>0 because 2*(V%>0. This implies by
the assumption that Z=X, therefore Ekjj;: 0in E,. Since {£,} is arbitrary, we

see that the topology defined by ||+ ||y is stronger than the characteristic topology.
The converse is evident since ¥V is a neighborhood of zero in Ej.
Let >0 be such that ||§]|y,<d=>&<V. Take an orthonormal system
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{6t ¥=1 wort. ||+]ly then,

g P E(x &6, \2
:;;Eﬂllfk”%steu%E [<x, €)% = Sup \ (2 % E>l2)‘/2/
X,

<sup sup [<x, E>|2<sup su/p 17l<x, E>12<L1/82.
/8

V0 igl=1
Thus E, is finite dimensional, therefore so is X. q.e.d.

Corollary. If X is infinite dimensional, 1 is not continuous along every direc-
tion.

Proof. Take a measurable linear proper subspace Z of X such that u4(Z)
>0 and a vector a such that ad=Z. If x is continuous along a, #(Z+ta)>0
for sufficiently small #. On the other hand {Z-}ta}, g is mutually disjoint.
This is a contradiction. g.e.d.

Remark. The continuity of x implies that of #* and #~. So the above
Corollary is valid even if # is a real measure.

From Theorem A some measurable linear proper subspace Z satisfies #(Z)
>0 in an infinite dimensional X. But we cannot claim x#(Z)=1.

Example. We define a probability measure # on RY =:Lle(R" x(0)) as
follows. Let z, be a probability measure on R" which is equivalent to the
Lebesgue measure. Consider , as a measure on B" X (0) and put u—-:g% Y7
If a measurable linear subspace Z satisfies #(Z)=1, Z must be equal to BR7. For,

WZ) =1 "neN, u(Z) =1
"neN, {xeR"; (x,0)0€Z} =R"
o Z=R7.
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