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The number of points the image of [0, /] under a planar Brownian motion has in common
with its circumscribing circle does not have a zero-one law: it can be either two or three,
both with a strictly positive probability. (This contradicts an assertion made by Paul Levy.)

Let B be a standard J-dimensional Brownian motion, t a generic element

of ]0, oo [, St = S(B[Q, t}) the sphere circumscribing1 B[®, t] = B([®, t]). Set

Kf = t]) = Card Et ,

TV", = Card{sGE[0, t]/Bs^St} .

It is not hard to see that if d—\ then, almost surely, for all /, Kt=2 and

^3, and {t; Nt=3} is countable and has no isolated point.

Set

Ik = {t; Kt = k} ,

Clearly, for all t, pk =P(Kt =k). Also,
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1 For a nonempty bounded AdRd, letting 3)(A) = {D\D is a closed ball of Rd, and D^A},
one easily sees that 3l(A) = {r\ r is the radius of some D^<D(A)~} is closed. Let

R(A) - inf Si(A).

Since the intersection of two distinct closed balls of radius / is included in a ball of radius
<f, it follows that there exists exactly one D in 3)(A) with radius R(A). We denote it by
D(A). The circumscribing sphere of A (or: the sphere circumscribing A} ^s th< boundary
of D(A). We de note it by 5(̂ 1). We set: K(A) = CardU n S(A)}.

It is easy to check that, for D^.£)(A), the centre of D belongs to the convex hull of A
ndD if, and only if, D=D(A), (A, dA and A denote, respectively, the closure, tfo boundary
and the convex hull of A.)
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Pt>o ̂  /W)>o) - i
~ P(*(Ik) = oo) = 1 .

(^rf=the Lebesgue measure on 12^ ^ = ^j.) It Is about as obvious that the
law of (tll9 •<">, tlk, °°°) is Independent of t.2

Paul Levy's studied3 some of the stochastic properties of Et, Among
other things, he claimed that Pd+1 = l. This Is the conjunction of two state-
ments :

(L)

(L') P(Kl<d+l)=Q,

Levy's proof of (L) Is correct, although realizing it requires quite cooperative
a reader. As to (Lr), Levy's argumentation in its favour fails to be a proof4,

and, indeed, (I/) is not valid. What is true is:

pk>0 if, and only If, k<= {2, — , d+l} .

This last assertion is a combination of (L) with the two following statements.

(*) For all k<= {2, — , d+l},pk>0 .

(**) Pi = 0 .

Now, (**) Is immediate, since, for any t, {Kt=l} = {Card(j0[0, *])=!} =
{B is constant on [0, t]}9 an event whose probability Is obviously zero.

Thanks to (L), in order to show that pd+1>09 it suffices to establish that

JP(^1^^/+1)>0. Let us do It right away for d=2. Assuming B is a planar
Brownian motion, we want to show that P(K(B[Q9 1])>2)>0. Let T be an
equilateral triangle centred at the origin. Assume h>l. Now, with a strict-
ly positive probability, the convex hull of B[Q9 1] Includes T and Is Included
in hT. And if h is close enough to 1, then any compact subset A of the plane
for which TdAdhT has at least three points in common with its circumscrib-
ing circle: Clearly, for a compact planar set X, if K(X)^29 then diam S(X)

—diam X. Noticing that, for planar X and Y~DX9 S(X)=S(X) and diam
S(Y), we see that If A is as above and K(A)<^2, then diam S(T)

2 So each lk is stochastically self-similar, and almost surely, if Ik is nonempty, then inf lk
=0, supl&^oo.
3 See [1], Section 5. (Our notation differs from Levy's.)
4 Levy seems to assume implicitly that (I/) follows from the last paragraph on page 19
of [1]. Nothing is wrong with the mentioned paragraph, but (I/) just does not follow.

In view of our present considerations, Levy's remark in the last paragraph of 5, 7° (page
22 of [1]) is also to be modulated. The rest of Levy's paper is not affected.
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S(A)=dmm S(A)=dia.m A^diam hT=h diam F. Combined with
2the fact that diam S(T)= /— diam T9 the above implies:

T<h diam T.

But h may take a fancy to being strictly smaller than 2/\/ 3 • • • . (The adaption
of all this for d>2 Is straightforward.)

In I and II we show that if rf=2, then p2>®. One who fully understands
I and II can hardly fail to realize that p2> 0 independently of d. Establishing
(#) (for d>2) is somewhat more cumbersome, but necessitates no novel idea.

Once we get insight into matters, a number of other facts can be noticed,
Some are summarized below. (Proofs are not even outlined.)

Observations

Almost surely,
(a) fora

(b) ]0, oo[=/2U - U/ r f+2 (so, for all t9 Kt£d+2)9

(c) ^(/,+2)=0,
(d) for all 7c<E {2, — , d+2}, inf Ik=0 and sup 7* = 00,
(e) no Ik has an isolated point,
(f) di2s-^did+1=did+2=id+2={o} u in Bt^st}

(so ^ao,oo[\(/2u-U7rf+1))=0),
(g) for all k, any maximal proper interval5 of Ik is left closed, right open,

and its right endpoint belongs to Ik+l,
(h) if t<u<oo and Ku=£Kt<k^d+l, then ]t, u[ includes a maximal proper

interval of Ik9

( i ) E is constant on any maximal interval of any Ik,
(j) for all t which is the right endpoint of a maximal proper interval of Id+l9

there is exactly one point At in Et\ {JSt} such that

(k) for all t not as above,

(1) If rf> 1, then, for all f, #,=£,.
The list of observation Is continued in III.

5 A proper interval is one with a nonempty interior.
6 d is the Euclidean distance in Rd.
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Here, and in II below, we assume d=2; i.e., B is a planar Brownian mo-
tion, the balls Dt are discs, the spheres St are circles. Under this assumption,
we set to prove the following

Theorem 1. P(K3=2)> 0.

Letting p be a version of P(*/o(B [0, 1]U[2, 3)]), it is obvious that for

(P-)almost all G>,

ju(B]l9 2[ does not encounter S(B([09 1] U [2, 3)])) (ca)>0 .

So, in order to prove Theorem 1, it is sufficient to show that with a strictly
positive probability, B([Q, 1]U[2, 3]) encounters its circumscribing circle at
exactly two points.

Letting v be a version of P(*/a(B[Q9 1], (B- —B2) [2, 3])), it is obvious that,
for almost all o>, v(a)) endows B2 with a density which is continuous and strict-
ly positive over the whole plane (and which is, therefore, equivalent to the
planar Lebesgue measure <J2). One concludes immediately that Theorem 1
is entailed by the fact that with a strictly positive probability, the set

V = {v^M2; K(B[0, 1] U (v+B[2, 3])) = 2}

has a strictly positive planar Lebesgue measure7.

This last claim, we shall see, has nothing to do with the stochastic prop-
erties specific to Brownian motion. It is an obvious by-product of

26 Let X and Y be nonempty compacs subsets of the plane.
Then

2; K(X U (v+ F)) = 2} >0 .

Here X plays the role of B[Q, 1], Y that of B[2, 3] (or that of B[29 3]—BJ.
In case X and Y are singletons, Theorem 2 becomes a triviality. From now
on, we assume that X and Y are arbitrary fixed compact subsets of the plane,
that at least one of them is not a singleton, and that both include the origin.

Let W denote the set of elements w of the plane such that each of X—w,
7 As long as measurability considerations (which, by the way, are not difficult) have not
been carried out, the statement should perhaps read: The inner probability of {F has a
strictly positive inner planar Lebesgue measure} is strictly positive.

In fact, questions about measurability could (and should?) have been raised earlier.
In order not to annoy the reader (and the writer) with such matters, that arise every here and
there, we go on, pretending there is no problem. Things will be settled in II.
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F+w has exactly one point in common with the circumscribing circle of (X
— w) U (Y+w). Theorem 2 is (obviously) entailed by

Let r be a generic element of ]0, °o[3 0 a generic element of [0, 2?r[0 Set

T/rF= {0;rei@GW}8 .

Since

dr ,

Theorem 2' will be established once we show that, on a subset of ]0S oo[ of a
strictly positive measure,, ^(VO is larger than some strictly positive constant
This will turn to be a corollary of the conjunction of Theorem 3 Theorem
4 5 to follow in a moment.

Let C be a circle in the plane. Its centre is denoted by C. We denote
by Cx the set of points x such that, for some v in the plane, X+v is included
in the closed disc having C for boundary, and (X+v) fl C= {x} .

According to Theorem 33 if C is large compared to X, then., in term of
Iength9 Cx constitutes a large part of C. The length of the circle C is its peri=
meter, 2n times its radius. If C' is a subset of C9 then Arg(C" — C) = {Arg
(z— C); zeC'} is a subset of [0, 2n[, and we define the length L(C) of C to
be ^(Arg(C'-— C)) times the radius of C (iff Arg(C'— C) is Lebesgue measurable),,

Note that the perimeter9 per X of the convex hull X of X is finite10,,

Theorem 30 L(C\CX) ^ — • per X.

(The proof is given in II.)

Let Cx denote the set of elements of C diametrically opposite to elements
of Cx (so Cx =2C - Cz). We have :

L(CX n CY) = L(CX\(C\CY))^L(CX)\L(C\CY) .

8 We Identify the Cartesian plane R2 with the complex plane C, in the standard way,
9 per X is the infimum of the set of perimeters of simply connected open sets including
X. (So the perimeter of a straight segment is twice its length.)
10 The best bounds for per X are given by: 4^(Z)^per X^n diam X. (R(X) is the
radius of the circumscribing circle of X,)

per X equals 4R(X) iff J? is a straight segment. It equals n diam X iff the length of the
orthogonal projection of X on a straight line in the plane does not depend on the line. (Discs
are not the only figures satisfying this last condition.)
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Clearly, L(CY)=L(CY), By Theorem 3, L(CX)^L(C)— — per 1 and L(C\Cr)

^— per £ We deduce

Theorem 3'. L(CX n CF)^I<(C)- — (per 1+per F).

For an element v of the plane., set

Av = sup *((jr-v)x(r+v))u (=sup,eZ_,ijeF+fa(*, J)) ,
v; for some y^Y+v, d(x, y) = JJ

F, = {y<= Y+v; for some x<=Xv, d(x, y) = Av} ,

a(v) - inf Arg(F,-Z,) (=inf s
(*.)-

and let (x(v), j(v)) be the unique (A:, y)^XvX Yy such that Arg(j— x)=a(v)12.
Setting ar(6)=a(reiQ), let a^ denote the right lower derivative of ari

a'r(0) = lim inf hMj- (ar(0+h)-ar(6)) .

Observe that there exists a unique t in [0, 2n[ such that9 for all ^e[03 t[
and u^[t, 2n[, ar(u)<ar(s), and such that ar is strictly increasing on [0, t[
and on [t, 2n[. This assures that, (U-)almost everywhere on [0, 2^[, ar admits
a derivative (which equals a'r and is ^0).

The measure X°ar admits a decomposition

foar = ma+ms ,

where mfl and ms are positive measures on [0, 2n[, and where ma (resp. ms) is
absolutely continuous (resp. singular) with respect to 2.

Now3 ma admits a Radon-Nikodym derivative with respect to ^ which
almost everywhere on [0, 2n[, equals a'r,

Sos setting
a(r) = inf 0 a'r(ff) ,

we see that,, for all Lebesgue measurable ©c[0, 2n[9

(1) *(

11 Note that if the modulus of v is large enough (larger than sup^jrurlML say) then Av=

12 Since X and F are compact, so are Xv and Fj,? and a(v)=mmAig(Ys—Xv). The fact
that at least one of X, Fis not a singleton guarantees that JD>03 so a(v) is not defined as Arg 0,
and is hence well determined.

It is not hard to see that if v=re*9 and r is fixed, then for all but countably many values
of d both X0 and Yv are singletons.
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Assuming that r Is the radius of the circle C, let $7 be the subset of

[0, 24 defined by

Given r, </)y is clearly independent of Co Also3 0 Is increasing

0rC$s). In particular , denoting by re the radius of the circle circumscribing

(X—reie) U (Y+rei@\ we have:

rQ=R((X-reiQ) U (Y+re?°))^R({-re*°, re1®}) - r ,

so

(2) *'CV

Observe that

(3) ar(0)e=0r ^0e=Vv,0

and that Theorem 3' can be rewritten as:

(4) *($,) ^ 2?r -— (per 1+per f) .
2r

From the above four numbered relations we deduce that, if a(r )> 09

by (3)

by (2)

4\« by(l)
a(r)

^ 2n — 1- (& -(2^ - f (per 1+per F))) , by (4)
a(r) 2r

so

(5) ^r)^&--^— (per 1+per F) .
2r a(r)

(The proof is postponed to (II)).

This Implies that, as r-»oo, l/(ra(r))— >03 so3 according to (5),

So? for some g>03 for all r>q, ^(^r)>58 For such a #, we have:

r dr =
cl^

(which is even better than Theorem 2').
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Before proving Theorem 3 and Theorem 4, let us settle the measurability
problem raised In footnote 7. At the present stage. It is clear that all will be
In order once we show that W is measurable13. Now, It is standard (and easy)
to prove that

W,= {vtEM2; diam(Z-v) fl S((X-v) U (Y+v))<e
and

diam(F+v) n S((X-v)

is open (so Borel measurable). But W is nothing but the intersection of Ws

over the countably many strictly positive rationals e.

Proof of Theorem 3.

{X a nonempty compact planar set, C a planar circle.)

Case 0. Assume XIs a singleton. Then CX=C and L(C\Cx)=Q=pQi X.

Definition and observation. An arc of a circle is termed "small" If it is
included In a half-circle. Observe that the length of a small arc does not ex-
ceed 7c/2 times its diameter.

Case 1. Assume X is a non-degenerate straight segment (i.e., Xis not a sin-
A

gleton, but is In included in a straight line) and diamO diamSpO (=L(XJ),
Then C\CZ is the union of two small arcs of C, each having L(X) for dia-
meter. So

L(C\Cx)^2*-^-L(X) = — per X.
Za z*

Case 2. Assume that Xis not a singleton and that diam C^diam S(X).

The centre S of S=S(X) Is Included In the convex hull of X f t S . So,

in Xf}S, there are three (not necessarily distinct) points Z0, Z19 Z2, such that
S belongs to the (eventually degenerate) triangle whose vertices are exactly

the Ze-
9s. Now, the Zf-'s determine three disjoint small arcs cS05 <S19 <52 of S9

13 On the other hand, had W been non-measurable, using the inequality

r)r dr

(Z2 denoting ths inner planar Lebesgue measure) would be suspicious (in case the right hand-
side were strictly positive). There are classical constructions (relying on the Axiom of Choice)
of planar sets whose inner planar Lebesgue measure is zero, but whose trace on any circle
centred at the origin has only a countable complement (with respect to the circle).
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A

whose union Is Su and? correspondingly,, disjoint arcs <S{ of dX.
For all f(e {03 1, 2}\ Si being a small arc9

TT ^r TC ^3
1 = 2 2 t= 2

Summing of i yields:
T A

_ -per X.
' 2

Since diam C^diam S, we get:

L(C\ Cj) ̂  L(C) ̂  L(5) ^ — per 1.

A

Case 3. Here we assume that X is not a straight segment and that diam C
>dlam *S(Ar). Nov/3 L(C\CX) Is Invariant under translations of C (or of X).
So3 with no loss of generality, we assume: X is Included in the open disc-
having C for boundary.

For each $(^[03 2n\), let VQ denote the unique v=reie (r^O) such that X+v
encounters C and Is Included In C (=the closed disc having C for boundary).

Set

Let C@ denote the shortest arc of C including Q. Observe that C& Is a
small arc. Also, notice that CQ are mutually disjoint (closed) arcs (whose
union is exactly C). The length of C being finite, this Implies that the set

O= {0; L(Q>0} (={0; Ce Is not a singleton})

is only countable.
Observe that C\CX Is exactly U0e0C015.
Let 2}e denote the orthogonal projection of CQ on X. (This Is an arc of

A

dX).
Let <JIQ denote the Interior of J$Q—v& with respect to the trace of the usual

plane topology on dX. (If 6^9, <JIB Is an open arc of dX; If not, It Is empty.)
Note that the arcs <_^are mutually disjoint and that, for each 0, ^?05 £Be and

14 A precise definition does not seem indispensable. (One such would consist of letting
*S.-=/t'- i'+l]\/W for a continuous map/of [0, 3] onto S such that/(3)=/(0)=Z0>/(l)=Z1,
/(2)-=Z2 and such that, if Q^s<t<3 and/(j)=/(/), then/is constant on [s, fl.) Note th?t
at most two of the Z/'s coincide, so at most one of the S/'s is of zero length.
15 The fact that C\C^ Is a union of countably many arcs of C (or, equivalently, that Arg
((C\Cf) — C) is a union of countably many subintervals of [0,2?r[) guarantees that L(C\Cz) is
well defined.
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CQ have the same diameter16.

Finally,

L(C\Cx)=l(U^eCe)

(Here, in fact, equality holds,)

S see diam e^a

This completes the proof,

Proof of Theorem 4.
(X, Y compact planar sets including the origin.)
Fix some r>q=10 diam Jf+80 diam F+90 and some 0e[09 2^[0 We

shall see that if r>6 is close enough to 0, then ar(r)— ar(d)^>(r— 0)/4. (Ob-
viously, this implies Theorem 4.)

Let r>6 be close enough to 6 so that T<2n, r«9+l/17 (say), and ar

is (strictly) increasing on [0, r].

Let

16 The empty set has diameter zero.
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0 = the orlgln3

E = x(rei&)+rei@

F = y(reie)+reie (e Y+2re*°) ,

= y(reirr)+reir (

For three distinct points u, r, iv in the plane? let

^TI/VH' = (Arg(n'— v)— Arg(w— v)) mod

Observe that

and that, if /=!=/, then 2£IKJ=h, so, anyhow,
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and hence

• /I vr/n>?\.^ 8(1, J)/2 ^e sin(/7/2) ^sin(A/2) . hsin(—yiJ-OJ)^— ;—^^— ^ v ' y<.—^—-—-<-
159 318°

Now, for all £^]0, /?[, (Arcsln *)/* is rather close to unity and is, certainly,
strictly smaller than 318/100. So

<2 Arcsin(/7/318)^2°(318/100) (A/318) = A/50 ,

and, since <FOJ=h, we have:

$C FOI = £ FOJ- $; JO/ ̂  A - A/50> /7/2 .

'Note that

and that our job will be done once we show that this last angle is ^/?/4.

Since ||7'|H|/||, we clearly have:

&F/7 = — &F0/>A/4.

Let D be a disc having F and / on its boundary, including X5 but not 1'
(after having checked that such a disc exists).

Let Z be the unique point distinct from F which dD has in common with
the straight segment joining F to 1'.

We have

so, forallveD\{F, I},

Observing that E<=D\{F, /}, we get

and Theorem 4 is established.

Before concluding, we introduce some additional notation and list some
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more observations (without proofs).
For all /, let

Clearly, t ̂ t^t^i^t.

Observations (continued).

Almost surely,
(m) for (Lebesgue-)almost all t, i=t<t<l=l9

(n) for all t, if |<i, then t=l, and if l>7, then r =i,
(o) the sets {l; i<t=t} and {t; i=t<i} are countable and have no isolated

points,
(p) for all t, t=i if, and only if, t^St.

Exhausting all observation of this kind does not seem of the utmost inter-
est, but one who enjoys it can find the perspective promising.

A number of variations on our subject can be conceived.

Example. Let A be a convex compact subset of Rd with a nonempty interior.
Its boundary d = 8A is said to be a circumscribing form if, for all nonempty
bounded XdRd, there is exactly one transformation of Rd of the form x-*T(x)

=ax+b (a^O, b^Rd) such that T(A) includes X and, subject to this, a is mini-
mal17; in this case, T(6>) is the circumscribing d-form of X. It is quite clear
that, if d is a smooth circumscribing form, then all we did above can be ad-
justed into a coherent text if one wishes to replace circumscribing spheres by
circumscribing d-forms.

Example. For an unbounded XdRd, define S(X) to be the empty set. Let
3> be the set of nonempty subsets of [0, oo[. Observe that, since B is continu-

ous, for any A<=$, SA = S(B(A))=S(B(A))=S(B(A)) is a well defined random
variable.

Letting ^=Card(5'^ 0 B(A)\ study the random families

and ({A^S*; KA = k})k a cardinal number-

17 A sufficient condition in order thai 9 be a circumscribing form is: A is strictly convex
(i.e., d is the set of extremal points of A). A necessary and sufficient condition is: no two
distinct maximal convex subsets of d which are not reduced to points are parallel.
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Example. Replace B by some diffusion, or fractionary Brownian motion, on
Rd or on some other appropriate manifold-"
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