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Let X be a complex manifold of dimension n and E%'? the Hodge spectral
sequence on X. The following is fundamental in the study of algebraic va-
rieties.

Theorem (W.V.D. Hodge [8]) if X is a compact Kéhler manifold, then
Ebt =B
(H) { Eb o B Jor any p and g .

In 1972, P. Deligne [3] succeeded in generalizing it for an arbitrary quasi-
projective variety by analyzing a different spectral sequence. His so called
mixed Hodge theory explains how the singular cohomology is composed of
the analytic cohomology attached to the variety.

On the other hand, Grauert-Riemenschneider [7] and Fujiki [5] tried to
understand the Hodge spectral sequence itself on pseudoconvex manifolds.
Inspired by these works, the author [11] could show that (H) is valid for the
range p+q=>n-+r on any “very strongly r-convex” Kéhler manifold of dimen-
sion n. The crucial point was to establish an isomorphism between the or-
dinary cohomology and the L? cohomology with respect to a certain com-
plete Kahler metric on pseudoconvex domains.

Since it has long been known that for any projective variety over C the
complement of the singular locus admits a complete Kdhler metric (Grauert
[6]), it is natural to ask for a reasonable extension of [11] in such a case.

The purpose of the present paper is to show the following in this spirit.

Theorem 1 Ler X be a compact Kdihler space of pure dimension n whose
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singular points are isolated, and let X* be the complement of the singular points.
Then (H) holds on X* for the range p+q<<n—1.

Note that the range is optimal since dim H**"{(X*)=co if X*==X, where
H"""1 denotes the Dolbeault cohomology of type (n—1, 0).

We shall also give a partial answer to a question of Cheeger-Goreski-
MacPherson [2] by showing the following:

Theorem 2 Under the situation of Theorem 1,
{H’(X*) = Hi(X*) if r<n—1
H»(X*) = HG{(X*) if ptq<n—1
and
Hy(X*) = Hi(X*)  if r>n+1
HE((X*) = HE{(X*) if p+g>n+1.

Here, H, H, and H denote respectively the ordinary cohomology, the cohom-
ology with compact support, and the L* cohomology.

Note that the duality between H{z, and H{3;™" is not obvious since the metric
on X* is not complete as long as X*=+X.

Since the intersection cohomology IH'(X) is isomorphic to H'(X*) if
r<n and isomorphic to Hy(X*) if r>n, Theorem 2 implies the following.

Corollary TH'(X) == H{(X*) if r%n,ntl.

Cheeger-Goreski-MacPherson conjectured that the above isomorphism is
valid for any degree, and in some special cases it has been verified (cf. [2], [10]
and [12]).

The manuscript was written during the author’s stay in the University
of Géttingen during the summer of ’86. He thanks to the institute of mathe-
matics for the hospitality.

81. Preliminaries
Let (M, ds?) be a complete Hermitian manifold of dimension n. We put

Ly (= Lp(M)) : = {square integrable complex
differential forms on M} .

Ly (= Lin(M)) : = {fELy; deg f=r} .
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Lzt (= LE§(M)) : = {fE€ L; fis of type (p, 9)} -

The norms and the inner products in L, shall be denoted by || || (=]] |l
and (, ) (=(, )y), respectively. The exterior differentiations d, & and @ are
regarded as densely defined closed linear operators on L, whose domains of
definition are given by

Dom d: = {fE€Ly; dfELy}, etc.
Here the differentiation is in distribution sense.

Definition
H(z) (= H(z)(M)) : = Ker d/Im d.
H{z) (—': H(rz)(M)) : = Ker dn L{z)/lm dn L(z) .
(2) ( H(z) (M)) .= Ker g n Lé’z’;l/Im é m L’é’z’;l .

We denote by d* and 8* the adjoints of d and 3, respectively. Note that
Hy=Ker dN Ker d* (resp. H%{=Ker 8 NKer 0* N L) if and only if Im d
is closed (resp. Im 8 N L% is closed). H, are called I? cohomologies of M. For
any family of supports @, 1.2 cohomologies with supports in @ are also defined
similarly as above.

The following is first due to H. Donnelly and C. Fefferman, but the proof
below is different from theirs.

Theorem 1.1 (cf. [4]) Suppose that there exists a C* real valued function
F on M such that the fundamental form of ds® is i08F and that |0F|. (:=sup
|@F|)<<oo. Then, for any usKer dN Liyy with r==n, there exists a v&Dom d
N Ly such that dv=u and ||v||<2|0F|.||u||. Similarly, if p+q=n, then for
any ucsKer 0 N Ll there exists a veDom 0 N\ L{z ™" such that dv=u and
IVIL(A++/2)|0F|.||ull. In particular,

) {H&):O if r=n,

Hizl =0 if ptq*n.
Proof. The assertions are equivalent to that
l|u||<2|8F|||d*ul],  for any u&Ker dNDom d* N L,
and
lul| KA ++/2)|0F|.||0%u|| , for any ue&Ker d N\ Dom 8* N L%7,

respectively (cf. [9]). They are proved as follows:
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For any differential form 6, let e(6) be the multiplication by 6 from the
left. Then we have the following formula.

18, e(BF)*¥]+[0*, e(9F)] = [e(i09F), e(i05F)*] .

Here [ , ] denotes the commutator with weight (i.e., [S, T] :=So T—(—1)%e&SdesT
ToS) and * denotes the adjoint.

In fact, with respect to the operator 4:=e(i00 F)* we have [8, A]=i0* and
[e(@F), Al=ie(dF)* (cf. [12]). Therefore

[0, e(BF)*] = 0e(0F)*+e(0F)*d
= —id[e(OF), A]—i[e(0F), A]d
= [e(i08F), A]+ie(dF) [0, A]+i[0, A] e(dF)
= [e(i00F), A]—[e(dF), 6%].
Hence, for any compactly supported C*= r-form u,

([e(i00F), A u, u)
< |OF | | ull(l10ull+]10* ul|+||8ul|+0*ul]) .

Since the metric is Kdhlerian, we have
[10u] P+[|0%ul[? = [|0ul[*+[|8*ul[*
= (ldalP+lla*l)(eF. (14D

On the other hand, [e(i80F), A] u=(r—n)u. Thus we obtain
llul| <2|0F | o(||dul P+ [|d*ul P/
and
| <A4-+/2) |8F | (|[0ul[+]|*4]]) ,

if rn.
Since the metric ds* is complete, the required estimate follows from the
above (cf. [13]).

§2. A Poincaré-Dolbeault Lemma

Let X be a complex analytic space of pure dimension #n. In what follows
the nonsingular part of X will be denoted by X*. Suppose that o is an iso-
lated singular point of X. Then we have a holomorphic embedding of the
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germ (X, 0)<»(CV, 0). We fix in the followings a holomorphic coordinate
z(=(z,, =+, zy)) of C¥ and the euclidean norm |z| of z. We put B¥:={z;
0<|z| <c} and X¥ (=X¥.):=XN B¥ (c sufficiently small). As a candidate
of the potential F in Theorem 1.1, we put

@ F2) (= F, (2)): = —loglog (¢/|z]) .

Proposition 2.1 The length of 0(F,| X¥) with respect to the metric 200
(F,| X¥) is bounded.

Proof. On B¥ we have

_ —Olog|z|
log(c/|z])
and
3) aéanlog]zlélog[zl .
log’(c/z])

Hence |d(F,|X¥)|<1.

In what follows we fix ¢ and regard X¥ for b<c as a Kihler manifold
with metric 2090(F,| X¥). Moreover ¢ is fixed so that 8XF is compact for
all b<c. 1t is clear [rom (3) that X7 are then complete Kihler manifolds.

Combining (1) in Theorem 1.1 and Proposition 2.1 we obtain the follow-
ing:

Proposition 2.2 For any b<c,
{H(Z)(le‘)zo if r=*n,
Hy(X¥) =0 if ptq=*n.

The following observation was already made in [10], but we shall repeat
the proof because of the completeness.

Lemma 2.3 Let r>n and usLi(X¥). Then, u|X¥ < Li(X¥), for any
b<c.

Proof. Since

5F — 88 log| z| L0 log|z| 8 log|z|
log(b/|z]) log(/|z1)
for any b, the eigenvalues 2, <--- <1, of 89F, measured by 93F, are given by

5

2, = Joele/lzl) g i <icn—1
" log(®/|z]) T
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and

NS CIEDY
Logi3/|))

Let 4, <---<p, be the eigenvalues of 83(F,|X¥) measured by 99(F,| X¥).

Then, by Courant’s minimax principle,

_ZIOg(C/IZI) fe 1< i<n—1
Yoz T

and

log(e/lz]) ., logie/lz])
log(b/1z]) —" " logi¥/ |z|)

Now it is easy to see that |[u] X5||x*<||ul|x¥, for any ue Lyy(X¥) with r>n.

On the opposite side r<n we have the following, which will be used to
prove Theorem 2.

Lemma 2.4 Let b<<c and uE€Lly(X¥) with r<n. Let 4 be a form in
Li(X¥) defined by u:=u on X§ and u:=0 on X¥\XF. Then ucLj(X¥).
Moreover if r<n—1, then ucDom d (resp. u=Dom 8) if uDom d (resp.
ueDom d).

Proof. The first part is proved similarly as in the proof of Lemma 2.3.
The latter part follows from the first part and (3). In fact, let x: R—~R be
a C= function such that y=1 on (—oc, —2) and ¥=0 on (—1, o). Then,
if ueDom d (resp. Dom 3), the sequence {x(k(|z|—b)) u}5-1 is convergent
on X¥F with respect to the graph norm of d (resp. the graph norm of 3), if r
<n—1.

Let @ be a family of closed subsets of X¥ defined by @:={KcCX¥*;
KN X%, is compact}.

Then the following is an immediate consequence of Proposition 2.2 and
Lemma 2.4.

Theorem 2.5 The images of the following natural homomorphisms are

zero.
HyX$) > HyX¥),  for r<n,
HY(X) > HE((XE),  for ptq<n.

Here H, denotes the cohomology with supports in @.
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Theorem 2.5 is not used to prove Theorem I and Theorem 2, but it may
have some application in the theory of isolated singularities.

§3. Proof of Theorem 1

Let X be a complex space of dimension »n. For any isolated singular
point o X we shall freely use the notations X,, F,, etc. in §2. X is called a
Kéhler space if there exist an open covering U={Uj} ;e; of X and a system
of C= strictly plurisubharmonic functions ¢;, each ¢; being defined on U;&U,
such that ¢;—¢, is pluriharmonic on U; N U,. Given such a system of func-
tions, {90p;} jc; defines a Kahier metric on X*. Clearly, this metric is locally
quasi-isometric to those induced from the euclidean one by embedding X
locally into C¥.

Proposition 3.1 Let X be a compact Kihler space with isolated singularities.
Then X* admits a complete Kihler meiric which is guasi-isometric to aéfw jon
X¥ o for each singular point o.

Froof. Let o, (v=1, ---, m) be the singular points of X. We choose ¢ so
that X ’;W are mutually disjoint regarded as subsets of X. Let o, be C* func-
tions on X* such that p,=1 on X%, .» and 0,=0 on X*\X% .. Then, for
A0,

65 (0y Foy,c)+4 d0p;

=

gives a complete Kéhler metric with the required property.

Proof of Theorem 1 Once for all we regard X* as a complete Kihler
manifold with a metric such as in Proposition 3.1. Since Hp(X*)= P
HE(X*) and H{(X*)=H H 2 (X*), it suffices to show that T

q=r

Hip(X*) == H'(X*) it r<n—1,
@ L

Hi(X*) = H»Y(X*) if p+g<an—1.

Since dim H'(X*) and dim H?-9(X*) are finite on the above ranges (cf. [1]),
by Serre’s duality (4) is equivalent to that
) { Hin(X#*) == Hy(X*) if r>n+tl

HEu{H(X*) == HPY(X*) if ptg>n+tl.
But (5) is immediate from Proposition 2.2 and Lemma 2.3. In fact, to show
that the natural homomorphism from H§(X*) to H{y(X*), say a, is surjec-
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tive, one has only to know that square integrable forms on X* are in L{(X7¥)
around each singular point, is already assured for r>#n by Lemma 2.3.
To show that @ is injective, let u be in L{»(X*) and compactly supported,
such that there exists a v& Ly;'(X*) with dv=u. Since dv=0 near the sin-
gularity, by the same reason as above one can replace v by a compactly sup-
ported form in L{;'(X*). The other isomorphism is proved similarly.

Remark 1t is also easy to prove (4) directly from Proposition 2.2 by
using Lemma 2.4 instead of Lemma 2.3.

84. Proof of Theorem 2

Let X be a compact Kédhler space of pure dimension n. Now we need
to distinguish two metrics on X¥, i.e. the original Ké&hler metric and a com-
plete Kéhler metric given in Proposition 3.1. Let us denote the original metric
by ds? and make the distinction by H{)(X*),e2, etc.

While Theorem 1 was a consequence of Proposition 2.2, the proof of
Theorem 2 is clearly reduced to the following local cohomology vanishing.

Propositien 4.1  For each singular point 0 € X,

lim H(rz)(X;k)dsz =0 lf r=n

6 —_—

©) lim HA(X¥)e2 =0  if ptq>n
—_

and
lim Hiy(X¥)@k =0 if r<n

7 o

M lim HA(XH) Q=0 if pta<n.
lim

Here H (X)) denote the L* cohomologies with supports in @ and the limits
are taken by letting c—0.

Proof. We put F,(z):=—log((c®*—]|z|? log’(c/|z])) for any ¢>0. Then
90F,>0 on X*¥ and 89F, converges to —80 log(c®*—|z|?) on the compact sub-
sets of X,

We have

00F,
_ 089|z|* | 9|z|%9|z]?
—|z|* (P—|z|?
e( 09 log|z| , 0log|z|d loglz|>
log(c/|zI) logi(c/|z|)
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>0 log(c®—|z|%) 8 log (¢~ z|%)
+-¢7+ 8 loglog(c/|z|) 8 log logi(c/|z]) .

From the above inequality it is clear that 8g7,| X, is 2 complete Kéhler metric
on X¥ and |0F,|.<2 if 0<e<l. Here | |, deaotes the length with respect
to OO F,.

From: the above, the eigenvalues &, -+, &y of 99F, measured by the eucli-

dean metric 88 | z|? are given by
1 & . B}
£ = + , I<j<N—1,
o P P e o R
c? e

@121 zllegdlz])

€

Thus, similarly as in Lemma 2.3, one can find a consiani A4 such that
llulle<Allulla2 for any uELp(XHus,

if 0<e<!. Here || ||, denoies the L:-norm with respect to 997, |X¥. T
r>n and du=0, then by Theorem 1.1, there ¢xisi v, & L{n"(X¥) cuch that
dve=u and ||ve|l.<44|lull,2 if 0<e<<l. TLel {ve}>: be a subsequence of
{Ve} o<e<; Which converges weakly on each compact subset of X ¥, and let v
be the limit on X¥. Thea [|v||p<44||u||; and dv=w Cince 88F, is quasi-

isometric near o to ds? this proves that lim &)X ¥)=0C for : >n. The proofs
—_—
of the other vanishings are similar except that for ihe varishing with supporis

in © one should use Lemma 2.4. Thic is a slight change and we shall not
repeat the whole argument. The detail is left to the reader.
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