Hodge Spectral Sequence on Compact Kähler Spaces

By

Takeo OHSAWA*

Introduction

Let X be a complex manifold of dimension n and $E_r^{j,q}$ the Hodge spectral sequence on X. The following is fundamental in the study of algebraic varieties.

Theorem (W.V.D. Hodge [8]) If X is a compact Kähler manifold, then

(H) $\begin{cases} E_1^{p,q} = E_{\infty}^{p,q} \\ E_1^{p,q} \cong E_1^{p,q} \end{cases} \text{ for any } p \text{ and } q.$

In 1972, P. Deligne [3] succeeded in generalizing it for an arbitrary quasiprojective variety by analyzing a different spectral sequence. His so called mixed Hodge theory explains how the singular cohomology is composed of the analytic cohomology attached to the variety.

On the other hand, Grauert-Riemenschneider [7] and Fujiki [5] tried to understand the Hodge spectral sequence itself on pseudoconvex manifolds. Inspired by these works, the author [11] could show that (H) is valid for the range $p+q \ge n+r$ on any "very strongly *r*-convex" Kähler manifold of dimension *n*. The crucial point was to establish an isomorphism between the ordinary cohomology and the L^2 cohomology with respect to a certain complete Kähler metric on pseudoconvex domains.

Since it has long been known that for any projective variety over C the complement of the singular locus admits a complete Kähler metric (Grauert [6]), it is natural to ask for a reasonable extension of [11] in such a case.

The purpose of the present paper is to show the following in this spirit.

Theorem 1 Let X be a compact Kähler space of pure dimension n whose

Received July 15, 1986.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

singular points are isolated, and let X^* be the complement of the singular points. Then (H) holds on X^* for the range p+q < n-1.

Note that the range is optimal since dim $H^{0,n-1}(X^*) = \infty$ if $X^* \neq X$, where $H^{0,n-1}$ denotes the Dolbeault cohomology of type (n-1, 0).

We shall also give a partial answer to a question of Cheeger-Goreski-MacPherson [2] by showing the following:

Theorem 2 Under the situation of Theorem 1,

$$\begin{cases} H^{r}(X^{*}) \cong H^{r}_{(2)}(X^{*}) & \text{if } r < n-1 \\ H^{p,q}(X^{*}) \cong H^{p,q}_{(2)}(X^{*}) & \text{if } p+q < n-1 \end{cases}$$

and

$$H_0'(X^*) \simeq H_{(2)}'(X^*) \quad if \quad r > n+1$$

$$H_0^{p,q}(X^*) \simeq H_{(2)}^{p,q}(X^*) \quad if \quad p+q > n+1$$

Here. H, H_0 and $H_{(2)}$ denote respectively the ordinary cohomology, the cohomology with compact support, and the L^2 cohomology.

Note that the duality between $H_{(2)}^r$ and $H_{(2)}^{2n-r}$ is not obvious since the metric on X^* is not complete as long as $X^* \neq X$.

Since the intersection cohomology $IH^{r}(X)$ is isomorphic to $H^{r}(X^{*})$ if r < n and isomorphic to $H^{r}_{0}(X^{*})$ if r > n, Theorem 2 implies the following.

Corollary $IH'(X) \simeq H'_{(2)}(X^*)$ if $r \neq n, n \pm 1$.

Cheeger-Goreski-MacPherson conjectured that the above isomorphism is valid for any degree, and in some special cases it has been verified (cf. [2], [10] and [12]).

The manuscript was written during the author's stay in the University of Göttingen during the summer of '86. He thanks to the institute of mathematics for the hospitality.

§1. Preliminaries

Let (M, ds^2) be a complete Hermitian manifold of dimension n. We put

 $L_{(2)} (= L_{(2)}(M)) := \{ \text{square integrable complex} \\ \text{differential forms on } M \} .$

 $L_{(2)}^r (= L_{(2)}^r (M)) := \{f \in L_{(2)}; \deg f = r\}$.

$$L_{(2)}^{p,q}(=L_{(2)}^{p,q}(M)):=\{f\in L_{(2)}; f \text{ is of type } (p,q)\}$$
.

The norms and the inner products in $L_{(2)}$ shall be denoted by $|| || (=|| ||_M)$ and (,) (=(,)_M), respectively. The exterior differentiations d, $\bar{\partial}$ and ∂ are regarded as densely defined closed linear operators on $L_{(2)}$ whose domains of definition are given by

Dom
$$d$$
: = { $f \in L_{(2)}$; $df \in L_{(2)}$ }, etc.

Here the differentiation is in distribution sense.

Definition

$$\begin{aligned} H_{(2)} &(= H_{(2)}(M)) := \operatorname{Ker} d/\operatorname{Im} d \, . \\ H_{(2)}^{r} &(= H_{(2)}^{r}(M)) := \operatorname{Ker} d \cap L_{(2)}^{r}/\operatorname{Im} d \cap L_{(2)}^{r} \, . \\ H_{(2)}^{p,q} &(= H_{(2)}^{p,q}(M)) := \operatorname{Ker} \bar{\partial} \cap L_{(2)}^{p,q}/\operatorname{Im} \bar{\partial} \cap L_{(2)}^{p,q} \, . \end{aligned}$$

We denote by d^* and $\bar{\partial}^*$ the adjoints of d and $\bar{\partial}$, respectively. Note that $H_{(2)} \cong \operatorname{Ker} d \cap \operatorname{Ker} d^*$ (resp. $H_{(2)}^{b,q} \cong \operatorname{Ker} \bar{\partial} \cap \operatorname{Ker} \bar{\partial}^* \cap L_{(2)}^{b,q}$) if and only if Im d is closed (resp. Im $\bar{\partial} \cap L_{(2)}^{b,q}$ is closed). $H_{(2)}$ are called L^2 cohomologies of M. For any family of supports \mathcal{O} , L^2 cohomologies with supports in \mathcal{O} are also defined similarly as above.

The following is first due to H. Donnelly and C. Fefferman, but the proof below is different from theirs.

Theorem 1.1 (cf. [4]) Suppose that there exists a C^{∞} real valued function F on M such that the fundamental form of ds^2 is $i\partial\bar{\partial}F$ and that $|\partial F|_{\infty}$ (:=sup $|\partial F|) < \infty$. Then, for any $u \in \text{Ker } d \cap L^r_{(2)}$ with $r \neq n$, there exists a $v \in \text{Dom } d$ $\cap L^{r-1}_{(2)}$ such that dv=u and $||v|| \le 2|\partial F|_{\infty}||u||$. Similarly, if $p+q\neq n$, then for any $u \in \text{Ker } \bar{\partial} \cap L^{p,q}_{(2)}$ there exists a $v \in \text{Dom } \bar{\partial} \cap L^{p,q-1}_{(2)}$ such that $\bar{\partial}v=u$ and $||v|| \le (1+\sqrt{2})|\partial F|_{\infty}||u||$. In particular,

(1)
$$\begin{cases} H_{(2)}^{r} = 0 & \text{if } r \neq n , \\ H_{(2)}^{p,q} = 0 & \text{if } p + q \neq n . \end{cases}$$

Proof. The assertions are equivalent to that

 $||u|| \leq 2|\partial F|_{\infty}||d^*u||$, for any $u \in \text{Ker } d \cap \text{Dom } d^* \cap L^r_{(2)}$

and

 $||u|| \leq (1+\sqrt{2})|\partial F|_{\infty}||\bar{\partial}^*u||$, for any $u \in \operatorname{Ker} \bar{\partial} \cap \operatorname{Dom} \bar{\partial}^* \cap L^{p,q}_{(2)}$,

respectively (cf. [9]). They are proved as follows:

For any differential form θ , let $e(\theta)$ be the multiplication by θ from the left. Then we have the following formula.

$$[\bar{\partial}, e(\bar{\partial}F)^*] + [\partial^*, e(\partial F)] = [e(i\partial\bar{\partial}F), e(i\partial\bar{\partial}F)^*].$$

Here [,] denotes the commutator with weight (i.e., $[S, T] := S \circ T - (-1)^{\deg S \deg T}$ $T \circ S$) and * denotes the adjoint.

In fact, with respect to the operator $\Lambda := e(i\partial \bar{\partial} F)^*$ we have $[\bar{\partial}, \Lambda] = i\partial^*$ and $[e(\partial F), \Lambda] = ie(\bar{\partial} F)^*$ (cf. [12]). Therefore

$$\begin{split} &[\bar{\partial}, e(\bar{\partial}F)^*] = \bar{\partial}e(\bar{\partial}F)^* + e(\bar{\partial}F)^*\bar{\partial} \\ &= -i\bar{\partial}[e(\partial F), \Lambda] - i[e(\partial F), \Lambda] \bar{\partial} \\ &= [e(i\partial\bar{\partial}F), \Lambda] + ie(\partial F) [\bar{\partial}, \Lambda] + i[\bar{\partial}, \Lambda] e(\partial F) \\ &= [e(i\partial\bar{\partial}F), \Lambda] - [e(\partial F), \partial^*] \,. \end{split}$$

Hence, for any compactly supported C^{∞} r-form u,

$$([e(i\partial\bar{\partial}F), \Lambda] u, u) \leq |\partial F|_{\infty}||u||(||\bar{\partial}u||+||\bar{\partial}^* u||+||\partial u||+||\partial^* u||).$$

Since the metric is Kählerian, we have

$$||\bar{\partial}u||^{2} + ||\bar{\partial}^{*}u||^{2} = ||\partial u||^{2} + ||\partial^{*}u||^{2}$$
$$= \frac{1}{2} (||du||^{2} + ||d^{*}u||^{2}) \quad \text{(cf. [14])}$$

On the other hand, $[e(i\partial \overline{\partial} F), \Lambda] u = (r-n)u$. Thus we obtain

 $||u|| \leq 2 |\partial F|_{\infty} (||du||^2 + ||d^*u||^2)^{1/2}$

and

$$||u|| \leq (1 + \sqrt{2}) |\partial F|_{\infty}(||\bar{\partial}u|| + ||\bar{\partial}^*u||),$$

if $r \neq n$.

Since the metric ds^2 is complete, the required estimate follows from the above (cf. [13]).

§2. A Poincaré-Dolbeault Lemma

Let X be a complex analytic space of pure dimension n. In what follows the nonsingular part of X will be denoted by X^* . Suppose that o is an isolated singular point of X. Then we have a holomorphic embedding of the

268

germ $(X, \underline{o}) \hookrightarrow (\mathbb{C}^N, O)$. We fix in the followings a holomorphic coordinate $z (=(z_1, \dots, z_N))$ of \mathbb{C}^N and the euclidean norm |z| of z. We put $B_c^* := \{z; 0 < |z| < c\}$ and $X_c^* (=X_{o,c}^*) := X \cap B_c^*$ (c sufficiently small). As a candidate of the potential F in Theorem 1.1, we put

(2)
$$F_{c}(z) (= F_{c,o}(z)) := -\log \log (c/|z|).$$

Proposition 2.1 The length of $\partial(F_c|X_c^*)$ with respect to the metric $2\partial\bar{\partial}(F_c|X_c^*)$ is bounded.

Proof. On B_c^* we have

$$\partial F_{c} = \frac{-\partial \log |z|}{\log (c/|z|)}$$

and

(3)
$$\partial \bar{\partial} F_c \geq \frac{\partial \log |z| \bar{\partial} \log |z|}{\log^2 (c/|z|)}.$$

Hence $|\partial(F_c|X_c^*)| \leq 1$.

In what follows we fix c and regard X_b^* for $b \le c$ as a Kähler manifold with metric $2\partial \bar{\partial}(F_b | X_b^*)$. Moreover c is fixed so that $\partial \bar{X}_b^*$ is compact for all $b \le c$. It is clear from (3) that X_b^* are then complete Kähler manifolds.

Combining (1) in Theorem 1.1 and Proposition 2.1 we obtain the following:

Proposition 2.2 For any $b \leq c$,

$$\begin{cases} H_{(2)}^r(X_b^*) = 0 & \text{if } r \neq n , \\ H_{(2)}^{p,q}(X_b^*) = 0 & \text{if } p + q \neq n . \end{cases}$$

The following observation was already made in [10], but we shall repeat the proof because of the completeness.

Lemma 2.3 Let r > n and $u \in L_{(2)}^{r}(X_{c}^{*})$. Then, $u \mid X_{b}^{*} \in L_{(2)}^{r}(X_{b}^{*})$, for any $b \leq c$.

Proof. Since

$$\partial ar{\partial} \, F_b = rac{\partial ar{\partial} \, \log |z|}{\log (b/|z|)} + rac{\partial \, \log |z| \, ar{\partial} \, \log |z|}{\log^2 (b/|z|)} \, ,$$

for any b, the eigenvalues $\lambda_1 \leq \cdots \leq \lambda_N$ of $\partial \bar{\partial} F_b$ measured by $\partial \bar{\partial} F_c$ are given by

$$\lambda_j = \frac{\log(c/|z|)}{\log(b/|z|)}, \quad \text{for} \quad 1 \le j \le N - 1$$

and

$$\lambda_N = \frac{\log^2(c/|z|)}{\log^2(b/|z|)} \,.$$

Let $\mu_1 \leq \cdots \leq \mu_n$ be the eigenvalues of $\partial \bar{\partial}(F_b | X_b^*)$ measured by $\partial \bar{\partial}(F_c | X_c^*)$. Then, by Courant's minimax principle,

$$\mu_j = \frac{\log(c/|z|)}{\log(b/|z|)}, \quad \text{for} \quad 1 \le j \le n-1$$

and

$$\frac{\log(c/|z|)}{\log(b/|z|)} \leq \mu_n \leq \frac{\log^2(c/|z|)}{\log^2(b/|z|)}$$

Now it is easy to see that $||u|X_{\delta}^*||_{X^*} \leq ||u||_{X_{\delta}^*}$, for any $u \in L_{(2)}^r(X_{\delta}^*)$ with r > n.

On the opposite side r < n we have the following, which will be used to prove Theorem 2.

Lemma 2.4 Let b < c and $u \in L_{(2)}^r(X_b^*)$ with r < n. Let \tilde{u} be a form in $L_{(2)}^r(X_c^*)$ defined by $\tilde{u}:=u$ on X_b^* and $\tilde{u}:=0$ on $X_c^* \setminus X_b^*$. Then $\tilde{u} \in L_{(2)}^r(X_c^*)$. Moreover if r < n-1, then $\tilde{u} \in \text{Dom } d$ (resp. $\tilde{u} \in \text{Dom } \bar{\partial}$) if $u \in \text{Dom } d$ (resp. $u \in \text{Dom } \bar{\partial}$).

Proof. The first part is proved similarly as in the proof of Lemma 2.3. The latter part follows from the first part and (3). In fact, let $\chi: \mathbb{R} \to \mathbb{R}$ be a C^{∞} function such that $\chi \equiv 1$ on $(-\infty, -2)$ and $\chi \equiv 0$ on $(-1, \infty)$. Then, if $u \in \text{Dom } d$ (resp. Dom $\overline{\partial}$), the sequence $\{\chi(k(|z|-b)) u\}_{k=1}^{\infty}$ is convergent on X_c^* with respect to the graph norm of d (resp. the graph norm of $\overline{\partial}$), if r < n-1.

Let \mathcal{O} be a family of closed subsets of X_c^* defined by $\mathcal{O} := \{K \subset X_c^*; K \cap \overline{X_{c/2}^*} \text{ is compact}\}$.

Then the following is an immediate consequence of Proposition 2.2 and Lemma 2.4.

Theorem 2.5 The images of the following natural homomorphisms are zero.

$$\begin{split} &H^p_0(X^*_c) \to H^r_{\phi}(X^*_c)\,, \qquad for \quad r < n\,, \\ &H^{p,q}_0(X^*_c) \to H^{p,q}_{\phi}(X^*_c)\,, \qquad for \quad p + q < n\,. \end{split}$$

Here H_{φ} denotes the cohomology with supports in Φ .

270

Theorem 2.5 is not used to prove Theorem 1 and Theorem 2, but it may have some application in the theory of isolated singularities.

§3. Proof of Theorem 1

Let X be a complex space of dimension n. For any isolated singular point $\underline{o} \in X$ we shall freely use the notations X_c , F_c , etc. in §2. X is called a Kähler space if there exist an open covering $\mathcal{U} = \{U_j\}_{j \in J}$ of X and a system of C^{∞} strictly plurisubharmonic functions φ_j , each φ_j being defined on $U_j \in \mathcal{U}$, such that $\varphi_j - \varphi_k$ is pluriharmonic on $U_j \cap U_k$. Given such a system of functions, $\{\partial \bar{\partial} \varphi_j\}_{j \in J}$ defines a Kähler metric on X^* . Clearly, this metric is locally quasi-isometric to those induced from the euclidean one by embedding X locally into \mathbb{C}^N .

Proposition 3.1 Let X be a compact Kähler space with isolated singularities. Then X* admits a complete Kähler metric which is quasi-isometric to $\partial \bar{\partial} F_{\underline{o}, \epsilon}$ on $X^*_{\underline{o}, c/2}$ for each singular point \underline{o} .

Proof. Let $\underline{\rho}_{\nu}$ ($\nu = 1, \dots, m$) be the singular points of X. We choose c so that $X^*_{\underline{\rho}_{\nu},c}$ are mutually disjoint regarded as subsets of X. Let ρ_{ν} be C^{∞} functions on X* such that $\rho_{\nu}=1$ on $X^*_{\underline{\rho}_{\nu},c/2}$ and $\rho_{\nu}=0$ on $X^* \setminus X^*_{\underline{\rho}_{\nu},c}$. Then, for $A \gg 0$,

$$\sum_{\nu=1}^{m} \partial \bar{\partial} \left(\rho_{\nu} F_{\underline{\rho}_{\nu,c}} \right) + A \ \partial \bar{\partial} \varphi_{j}$$

gives a complete Kähler metric with the required property.

Proof of Theorem 1 Once for all we regard X^* as a complete Kähler manifold with a metric such as in Proposition 3.1. Since $H_{(2)}^r(X^*) = \bigoplus_{\substack{p+q=r\\p+q=r}} H_{(2)}^{p,q}(X^*)$ and $H_{(2)}^{p,q}(X^*) = \overline{H_{(2)}^{q,p}(X^*)}$, it suffices to show that

(4)
$$\begin{cases} H'_{(2)}(X^*) \simeq H'(X^*) & \text{if } r < n-1, \\ H^{p,q}_{(2)}(X^*) \simeq H^{p,q}(X^*) & \text{if } p+q < n-1 \end{cases}$$

Since dim $H^{r}(X^{*})$ and dim $H^{p,q}(X^{*})$ are finite on the above ranges (cf. [1]), by Serre's duality (4) is equivalent to that

(5)
$$\begin{cases} H_{(2)}^{r}(X^{*}) \simeq H_{0}^{r}(X^{*}) & \text{if } r > n+1 \\ H_{(2)}^{p,q}(X^{*}) \simeq H_{0}^{p,q}(X^{*}) & \text{if } p+q > n+1 \end{cases}$$

But (5) is immediate from Proposition 2.2 and Lemma 2.3. In fact, to show that the natural homomorphism from $H_0^r(X^*)$ to $H_{(2)}^r(X^*)$, say α , is surjec-

TAKEO OHSAWA

tive, one has only to know that square integrable forms on X^* are in $L_{(2)}^r(X_c^*)$ around each singular point, is already assured for r > n by Lemma 2.3. To show that α is injective, let u be in $L_{(2)}^r(X^*)$ and compactly supported, such that there exists a $v \in L_{(2)}^{r-1}(X^*)$ with dv=u. Since dv=0 near the singularity, by the same reason as above one can replace v by a compactly supported form in $L_{(2)}^{r-1}(X^*)$. The other isomorphism is proved similarly.

Remark It is also easy to prove (4) directly from Proposition 2.2 by using Lemma 2.4 instead of Lemma 2.3.

§4. Proof of Theorem 2

Let X be a compact Kähler space of pure dimension n. Now we need to distinguish two metrics on X^* , i.e. the original Kähler metric and a complete Kähler metric given in Proposition 3.1. Let us denote the original metric by ds^2 and make the distinction by $H'_{(2)}(X^*)_{ds^2}$, etc.

While Theorem 1 was a consequence of Proposition 2.2, the proof of Theorem 2 is clearly reduced to the following local cohomology vanishing.

Proposition 4.1 For each singular point $\underline{o} \in X$,

(6)
$$\begin{cases} \lim_{t \to 0} H_{(2)}^{r}(X_{c}^{*})_{ds^{2}} = 0 & \text{if } r > n \\ \lim_{t \to 0} H_{(2)}^{\rho}(X_{c}^{*})_{ds^{2}} = 0 & \text{if } p + q > n \end{cases}$$

and

(7)
$$\begin{cases} \lim_{\leftarrow} H_{(2)}^{r}(X_{c}^{*})_{ds}^{(0)2} = 0 & \text{if } r < n \\ \lim_{\leftarrow} H_{(2)}^{p,q}(X_{c}^{*})_{ds}^{(0)2} = 0 & \text{if } p + q < n \end{cases}$$

Here $H_{(2)}(X_c)_{ds^2}^{(\Phi)}$ denote the L^2 cohomologies with supports in Φ and the limits are taken by letting $c \rightarrow 0$.

Proof. We put $F_{\mathfrak{e}}(z) := -\log((c^2 - |z|^2) \log^{\mathfrak{e}}(c/|z|))$ for any $\varepsilon \ge 0$. Then $\partial \bar{\partial} F_{\mathfrak{e}} > 0$ on X_c^* and $\partial \bar{\partial} F_{\mathfrak{e}}$ converges to $-\partial \bar{\partial} \log(c^2 - |z|^2)$ on the compact subsets of X_c^* .

We have

$$\begin{split} \partial\bar{\partial}F_{\varepsilon} \\ &= \frac{\partial\bar{\partial}\,|z|^2}{c^2 - |z|^2} + \frac{\partial\,|z|^2\bar{\partial}\,|z|^2}{(c^2 - |z|^2)^2} \\ &+ \varepsilon \Big(\frac{\partial\bar{\partial}\,\log|z|}{\log(c/|z|)} + \frac{\partial\,\log|z|\bar{\partial}\,\log|z|}{\log^2(c/|z|)} \Big) \end{split}$$

$$\geq \partial \log(c^2 - |z|^2) \,\overline{\partial} \log(c^2 - |z|^2) \\ + \varepsilon^{-1} \,\partial \log \log^{\mathfrak{e}}(c/|z|) \,\overline{\partial} \log \log^{\mathfrak{e}}(c/|z|)$$

From the above inequality it is clear that $\partial \underline{\varrho} \overline{\varGamma}_{\varepsilon} | X_{\varepsilon}$ is a complete Kähler metric on X_{ε}^* and $|\partial F_{\varepsilon}|_{\varepsilon} \leq 2$ if $0 \leq \varepsilon < 1$. Here $| \cdot |_{\varepsilon}$ denotes the length with respect to $\partial \overline{\partial} F_{\varepsilon}$.

From the above, the eigenvalues ξ_1, \dots, ξ_N of $\partial \bar{\partial} F_e$ measured by the euclidean metric $\partial \bar{\partial} |z|^2$ are given by

$$\begin{split} \xi_{j} &= \frac{1}{c^{2} - |z|^{2}} + \frac{\varepsilon}{|z|^{2} \log(c/|z|)}, \quad 1 \leq j \leq N-1, \\ \xi_{N} &= \frac{c^{2}}{(c^{2} - |z|^{2})^{2}} + \frac{\varepsilon}{|z|^{2} \log^{2}(c/|z|)}. \end{split}$$

Thus, similarly as in Lemma 2.3, one can find a constant A such that

 $||u||_{\mathfrak{g}} \leq A ||u||_{ds^2}$ for any $u \in L^r_{(2)}(X^*_{\mathfrak{c}})_{ds^2}$,

if $0 \le \varepsilon < 1$. Here $|| ||_{\varepsilon}$ denotes the L^2 -norm with respect to $\partial \bar{\partial} F_{\varepsilon}|X_{\varepsilon}^*$. If r > n and du=0, then by Theorem 1.1, there exist $v_{\varepsilon} \in L_{(2)}^{-1}(X_{\varepsilon}^*)$ such that $dv_{\varepsilon}=u$ and $||v_{\varepsilon}||_{\varepsilon} \le 4A||u||_{ds^2}$ if $0 < \varepsilon < 1$. Let $\{v_{\varepsilon_v}\}_{v=1}^{\infty}$ be a subsequence of $\{v_{\varepsilon}\}_{0 < \varepsilon < 1}$ which converges weakly on each compact subset of X_{ε}^* , and let v be the limit on X_{ε}^* . Then $||v||_0 \le 4A||u||_{ds^2}$ and $dv=\varepsilon$. Since $\partial \bar{\partial} F_0$ is quasiisometric near ϱ to ds^2 , this proves that $\lim_{\varepsilon \to 0} H_{(2)}(X_{\varepsilon}^*)=0$ for z > n. The proofs of the other vanishings are similar except that for the vanishing with supports in φ one should use Lemma 2.4. This is a slight change and we shall not repeat the whole argument. The detail is left to the reader.

References

- Andreotti, A. and Grauert, H., Théorème de finitude pour la conomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259.
- [2] Cheeger, J., Goresky, M. and MacPherson, R., L²-cohomology and intersection homology of singular algebraic varieties, Seminar on Eifferential Geometry, Annals of Math. Studies 102, Princeton Univ. Press 1982.
- [3] Deligne, P., Théorie de Hodge III, Publ. I.H.E.S., 44 (1972), 5-77.
- [4] Donnelly, H. and Fefferman, C., L²-cohomology and index theorem for the Bergman metric, Annals of Math., 118 (1983), 593-618.
- [5] Fujiki, A., Hodge to de Rham spectral sequence on a strongly pseudoconvex manifold (unpublished).
- [6] Grauert, H., Charakterisierung der Holomorphiegebiete durch die vollständige Kähtersche Metrik, Math. Ann., 13i (1956), 38-75.
- [7] Grauert, H. and Riemenschneider, O., Kählersche Mannigfaltigkeiten mit hyperq-konvexem Rand, Problems in Analysis, Princeton Univ. Fress, 1970.

TAKEO OHSAWA

- [8] Hodge, W.V.D., *The theory and application of harmonic integrals*, Cambridge Univ. Press, London, 1952.
- [9] Hörmander, L., An Introduction to Complex Analysis in Several Variables, North-Holland, 1973.
- [10] Hsiang, W.C. and Pati, V., L²-cohomology of normal algebraic surfaces I, Invent. math., 81 (1985), 395-412.
- [11] Ohsawa, T., A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds, *Invent. Math.*, 63 (1981), 335–354.
- [12] Saper, L., L²-cohomology and intersection homology of certain algebraic varieties with isolated singularities, *Invent. math.*, 82 (1985), 207–255.
- [13] Vesentini, E., Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems, Tata Inst., Bombay, 1967.
- [14] Wells, R.O., *Differential analysis on complex manifolds*, Prentice Hall, Englewood Cliffs, N.J., 1973.