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Let X be a complex manifold of dimension n and Ep
r*

q the Hodge spectral
sequence on X. The following is fundamental in the study of algebraic va-
rieties.

Theorem (W.V.D. Hodge [8]) If X is a compact Kdhler manifold, then

f E{-q = Ep^q

(H) { for any p and q .v J \E{-q^E{-q

In 1972? P. Deligne [3] succeeded in generalizing it for an arbitrary quasi-
projective variety by analyzing a different spectral sequence. His so called
mixed Hodge theory explains how the singular cohomology is composed of
the analytic cohomology attached to the variety.

On the other hand, Grauert-Riemenschneider [7] and Fujiki [5] tried to
understand the Hodge spectral sequence itself on pseudoconvex manifolds.
Inspired by these works, the author [11] could show that (H) is valid for the
range p+q>n-\-r on any "very strongly r-convex" Kahler manifold of dimen-
sion n. The crucial point was to establish an isomorphism between the or-
dinary cohomology and the L2 cohomology with respect to a certain com-
plete Kahler metric on pseudoconvex domains.

Since it has long been known that for any projective variety over C the
complement of the singular locus admits a complete Kahler metric (Grauert
[6]), it is natural to ask for a reasonable extension of [11] in such a case.

The purpose of the present paper is to show the following In this spirit.

Theorem 1 Let X be a compact Kdhler space of pure dimension n whose
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singular points are isolated, and let X* be the complement of the singular points,
Then (H) holds on X* for the range p+q<n— L

Note that the range is optimal since dim H°**~1(X*) = oo if X*=£X, where

HQ>n~l denotes the Dolbeault cohomology of type (n— 1, 0),
We shall also give a partial answer to a question of Cheeger-Goreski-

MacPherson [2] by showing the following:

Theorem 2 Under the situation of Theorem 1,

J IT(X*) ^ H[2}(X*) if r<n-l

I H*-'(X*) « H$(X*) if p+q<n-l

and

if p+q>n+l.

Here, H, H0 and H^ denote respectively the ordinary cohomology, the cohom-

ology with compact support, and the L2 cohomology.

Note that the duality between H[2) and H2^r is not obvious since the metric
on X* is not complete as long as X*=£X.

Since the intersection cohomology IHr(X) is isomorphic to Hr(X*) if
r <n and isomorphic to HQ(X*) if r>«, Theorem 2 implies the following.

Corollary IHr(X) ^ H[2}(X*) if r^n, n±l .

Cheeger-Goreski-MacPherson conjectured that the above isomorphism is
valid for any degree, and in some special cases it has been verified (cf. [2], [10]
and [12]).

The manuscript was written during the author's stay in the University
of Gottingen during the summer of '86. He thanks to the institute of mathe-
matics for the hospitality.

§ 1. Preliminaries

Let (M, ds2) be a complete Hermitian manifold of dimension n. We put

L(2) (= L(2)(M)) : = {square integrable complex
differential forms on M} ,

Lh (= L[2}(M)) : = {/eEL(2);
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L$ (= Lfif(AO) : = {/eL(2);/is of type (p, q)} .

The norms and the inner products In L(2) shall be denoted by || || (=|| |]M)
and ( , ) ( = ( , )M)5 respectively. The exterior differentiations d, d and 8 are

regarded as densely defined closed linear operators on L(2) whose domains of
definition are given by

Dom d: = {/eL(2); <//eL(2)}5 etc .

Here the differentiation is in distribution sense.

: = Ker d/lm d .

: = Ker dn L(yim
: = Ker

We denote by d* and 9* the adjoints of d and S, respectively. Note that
#(2>esKer rfflKer J* (resp. fffjtfssKer SnKer g*HLf^) if and only if Im d

is closed (resp. Im d n Ufa* is closed). ff(2) are called L2 cohomologies of M. For
any family of supports 0, L2 cohomologies with supports in 0 are also defined
similarly as above.

The following Is first due to H. Donnelly and C. FefFerman, but the proof
below is different from theirs.

Theorem 1.1 (cf. [4]) Suppose that there exists a C°° real valued function
F on M such that the fundamental form of ds2 is iddF and thai \9F\oo (:=sup
\dF\)<oo. Then, for any we Ker dnL[2) with r^pn, there exists a veDom d

fll^")1 such that dv=u and \\v\\<2\dF \n\\u\\. Similarly, if p+q^n, then for

any weKerSn^? there exists a veDom d n/^'f"1 such that dv=u and
T)|o'F|00||i/||. In particular,

( # & ) = ( ) if

\H$=Q if

Proof. The assertions are equivalent to that

\\u\\<2\dF\00\\d^u\\, for any u e Ker d n Dom d* n L

and

INI^a + VDI^UII^iill, for any weKer d flDom

respectively (cf. [9]). They are proved as follows:
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For any differential form 6, let e(0) be the multiplication by 6 from the
left. Then we have the following formula.

[5, e(9F)*]+[d*, e(dF)] = [e(id@F\ e(iddF)*] .

Here [ , ] denotes the commutator with weight (i.e., [S, T] :=SoT—(—l)desSdesT

ToS) and * denotes the adjoint.
In fact, with respect to the operator A:=e(iddF)* we have [d, A]=id* and

[e(dF\ A]=ie(dF)* (cf. [12]). Therefore

[B, e(§F)*] = de(§F)*+e(dF)*S

= -id[e(dF), A]-i[e(dF), A] d

= [e(iddF\ A]+ie(dF) [d, A]+i[§, A] e(dF)

= [e(iddF)9A}-[e(dF)9d*].

Hence, for any compactly supported C°° r-form u,

(le(iddF),A]u,u)

Since the metric is Kahlerian, we have

ll2) (cf. [14]).

On the other hand, [e(iddF), A] u=(r—ri)ii. Thus we obtain

I

and

if

Since the metric ds2 is complete, the required estimate follows from the
above (cf. [13]).

Let X be a complex analytic space of pure dimension n. In what follows
the nonsingular part of X will be denoted by X*. Suppose that o is an iso-
lated singular point of X. Then we have a holomorphic embedding of the
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germ (X, o)<=->(CN
9 O). We fix in the followings a holomorphic coordinate

z(=(zl9 •"-, ZN)) of CN and the euclidean norm |z| of z. We put B*: = {z;

0<|z|<c} and X? (=X*c):=Xf}Bf (c sufficiently small). As a candidate

of the potential Fin Theorem 1.1, we put

(2) Fc(z) (= Fc>0(z)): = -loglog (c/|z|) .

Proposition 2.1 r/ie /eragr/z o/ d(Fc | JT*) vw/A respect to the metric 2dd
(FC\X*) is bounded.

Proof. On Bf we have

log(c/|z|)

and

Iog2(c/|z|)

Hence \d(Fe\X*)\^l.

In what follows we fix c and regard Xf for b<c as a Kahler manifold
with metric 2dd(Fb \ Xf). Moreover c is fixed so that dXf is compact for
all b<c. It is clear from (3) that Xf are then complete Kahler manifolds.

Combining (1) in Theorem 1.1 and Proposition 2.1 we obtain the follow-
ing:

Proposition 2.2 For any b<c,

= 0 if r*n,

The following observation was already made in [10], but we shall repeat
the proof because of the completeness.

Lemma 2.3 Let r>n and utEL[2)(X*). Then, u\Xf<=L[2}(Xf), for any

b<c.

Proof. Since

log(6/|z|)

for any b, the eigenvalues /^^""^/Ijv °f ®dFb measured by ddFc are given by

, log(c/1 z I) rX .= ekU—LL for
3 -I /-i i I I \
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and

Let ,«!<•••<,«* be the eigenvalues of dd(Fb\Xf) measured by dd(Fc\X*).

Then, by Courant's minimax principle,

log(c/|Z|) f i<j<n-i
1 '

<

~ n-

and

lQg(c/|z|)

log(Z>/|z|) ~ n-\og\b/\z\)'

Now it is easy to see that \\u\Xf \\x*<\\u\\x*, for any u<=Lfo(Xf) with

On the opposite side r<n we have the following, which will be used to
prove Theorem 2.

Lemma 2.4 Let b<c and u^L[2}(Xf) with r<n. Let u be a form in

Lr
(2)(Xf) defined by u:=u on Xf and u:=Q on X*\Xf. Then u£ELr

(2)(X*).

Moreover if r<n— 1, then w^Dom d (resp. u^Domd) if t/eDom d (resp.

Proof. The first part is proved similarly as in the proof of Lemma 2.3.
The latter part follows from the first part and (3). In fact., let 7: M-^M be
a C°° function such that x=l on (—00, —2) and j = 0 on (—1, oo). Then,
if M^Dom d (resp. Dom §), the sequence {x(k(\z\—b))u}™=i is convergent
on Xf with respect to the graph norm of d (resp. the graph norm of d), if r
<n-l.

Let 0 be a family of closed subsets of Xf defined by ®: = {Kc:Xf;

KCi Xf/2 is compact} ,
Then the following is an immediate consequence of Proposition 2.2 and

Lemma 2.4.

Theorem 28§ The images of the following natural homomorphisms are
zero.

for

) , for p+q<n.

Here H0 denotes the cohomology with supports in 0.
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Theorem 2.5 is not used to prove Theorem 1 and Theorem 2, but it may
have some application in the theory of isolated singularities.

§3e Proof of Theorem 1

Let X be a complex space of dimension n. For any isolated singular
point q^X we shall freely use the notations Xc, Fc, etc, in §2, X is called a
Kahler space if there exist an open covering CU = {UJ}- /e/ of X and a system
of C°° strictly plurisubharmonic functions 9,-, each <p-} being on Uj^V,

such that <pj—*pk is pluriharmonic on l^-fl £/*. Given such a system of func-
tions, {dd*pj} j<=f defines a Kahler metric on X*. Clearly., this metric is locally
quasi-i some trie to those induced from the euclidean one by embedding X

locally into CN.

n 3d Let X be a compact Kahler space with isolated singularities,
Then X* admits a complete Kahler metric which is quasi-isometric to d§F0>(, \on

X*,cj2for each singular point 0.

Proof. Let ov (v = l, •••> m) be the singular points of X. We choose c so
that X^VfC are mutually disjoint regarded as subsets of X. Let pv be C°° func-

tions on X* such that pv = l on X\^e/2 and pv=0 on X*\X^e. Then3 for

gives a complete Kahler metric with the required property,

Proof of Theorem I Once for all we regard X* as a complete Kahler
manifold with a metric such as in Proposition 3.1. Since Hfa(X*) =

HP$(X*) and H{$(X*)=H$(X^9 it suffices to show that

ST(X*) if
(4)

1 if

Since dim If (X*) and dim Hpt9(X*) are on the above (cf. [I]),
by Serre's duality (4) is equivalent to that

r /?&>(**)« ff5(**) if
I /rfe'(AT*) « /r{-«(jf*) if p+q>n+l ,

But (5) is immediate from Proposition 2.2 and Lemma 2.3. In fact, to show
that the natural homomorphism from Hr

0(X*) to Hfa(X*), say a, is surjec-
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live, one has only to know that square Integrable forms on X* are In L

around each singular point. Is already assured for r>n by Lemma 2.3,

To show that a is injective, let u be in L[^(X*) and compactly supported9

such that there exists a v^L[2]
1(X*) with dv=u. Since dv=0 near the sin-

gularity, by the same reason as above one can replace v by a compactly sup-

ported form in L[^l(X*). The other Isomorphism is proved similarly.

Remark It is also easy to prove (4) directly from Proposition 2.2 by

using Lemma 2.4 instead of Lemma 2.3.

Let X be a compact Kahler space of pure dimension n. Now we need

to distinguish two metrics on X*, i.e. the original Kahler metric and a com-

plete Kahler metric given in Proposition 3.1. Let us denote the original metric

by ds2 and make the distinction by Hfa(X*)ds*9
 etc-

While Theorem 1 was a consequence of Proposition 2.2, the proof of

Theorem 2 is clearly reduced to the following local cohomology vanishing.

Proposition 4.1 For each singular point o_(

lim Hl2)(Xf)ds2 — 0 if r>n

lim H$(X*)dsz = 0 if p+q>n

and

' lim Hfa(X*)<$2 = 0 if r<n

= 0 z/ p+q<n ,

Here H (2)(Xe)
(dl* denote the L2 cohomologies with supports in ® and the limits

are taken by letting c— >0.

Proof. We put Fe(z) : - -log ((c2 - 1 z \ 2) Iog8(c/ 1 z ] )) for any 6 > 0. Then

ddFs>0 on Xf and ddF^ converges to — dd log(c2— |z|2) on the compact sub-

sets of X*.

We have

dd\z\2

(c2-|z|2)2

log(c/|z|) ' Iog2(c/|z|)
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>dlog(c2-\z\2)§log(c2-\z\2)

+ 6-1 d log IogS(c/ I Z I ) § log \Og\C/ I 2 I ) .

From the above Inequality il Is clear that d@Fe\Xc Is a complete Kahier metric
on X* and |0FE|S<2 if 0<e<l. Here | |c denotes the length with respect
to d§F,.

From the above, the eigenvalues fl9 ° ° ° 3 %N of ddFg measured by tiie eucli-
dean metric dd \ z \ 2 are given by

fy = 2 , | 2-+, |21
 g. ,, ,, ,

c2-|z|2 |z|2log(c/|z|)

4-
. '(c2-N2)2 |z|2!og2(C/|z|)

Thus, similarly as in Lemma 2.3? one can find a constant A such that

\ds2 for any

if 0<e<l. Here || ||s denotes the L2-norm with respect to ^§^1^?. If
r>n and du=®, then by Theorem l.ls there exist v^Lfal(X%) such
dvs=u and ||vg||g<4^4||M||^2 If 0<e<l. LeL {vev}£Li ^e a subsequence of
{vg}0<g<1 which converges weakly on each compact subset of Xf9 and let v
be the limit on Xf. Then ih;||0<4^4||w||js2 and dv=u Cince 8§FQ is quasi-

Isometric near q to ds2, this proves that lim rI^(Xf)=Q for : >JL The proofs
of the other vanishings are similar except that for the vanishing with supports
In 0 one should use Lemma 2A. This is a slight change and v/e shall not
repeat the whole argument. The detail is left to tiie reader.
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