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Abstract

When the vertex is a regular point for reflected Brownian motion in a wedge, with a
constant direction of reflection on each side of the wedge, the law of the excursions from
the vertex is determined in the following sense. The nature of the local time at the vertex
and the Laplace transform of the entrance law at that point are explicitly given. In parti-
culai, it is shown that the inverse local time at the vertex is a stable subordinator of index
a/2 where Q<a=(d1 + 62)/£<2. Here <f is the angle of the wedge (0<<?<27z:) and 0l9 02

are the angles of reflection on the two sides of the wedge measured from the inward normals,
with positive angles being toward the vertex (—rc/2<0 l s 62<n/2). Excursions from the
vertex are shown to hit the boundary of the wedge immediately. As a bonus, the invariant
measure for the reflected Brownian motion is readily obtained from the Laplace transform
of the entrance law, thus verifying an earlier derivation of this result.
AMS 1980 subject classifications. Primary 60J65. Secondary 60J55, 60J60.
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§ 1. Introduction

Consider a strong Markov process with continuous sample paths that

loosely speaking has the following three properties.

(a) The state space is an infinite two-dimensional wedge, and the process

behaves in the interior of the wedge like ordinary Brownian motion.

(b) The process reflects instantaneously at the boundary of the wedge, the

direction of reflection being constant along each side.
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(c) The amount of the time that the process spends at the vertex of the wedge
has Lebesgue measure zero.

In [16], necessary and sufficient conditions for existence of such a pro-
cess were given and the process was characterized in law as the unique solu-
tion of a submartingale problem. In this paper, when the vertex is a regular
point, the nature of the set of times that the process is at the vertex and the
excursions of the process away from the vertex between these times is studied.
To facilitate the formal description of the process and of the main results ob-
tained here, the following notation is introduced.

The wedge state space is given in polar coordinates by

where <f e(0, 2n) is the angle of the wedge. The points (0, 6): 0<0<£ are
all identified as the origin {0} in R2. The two sides of the wedge are denoted
by

aSi = {(r, 6):6=Q, r>0} and dS2 = {(r, 0): 6 = £, r>0}.

The directions of reflection on the two sides of the wedge are specified by con-
stant vectors vx and v2, normalized such that for j=l9 2, v^n—l where HJ

is the unit normal to dSj\{0} that points into S. For each j, define the angle
of reflection 6j to be the angle between nj and Vj such that 0y is positive if and
only if Vj points towards the origin. Note that —7u/2<6j<7c/2. Define

Let Cs denote the space of continuous functions w: [0, oo)— >S, For
each J>0, let JHt = a{w(s): 0<s<r}, the cr-algebra of subsets of Cs generated
by the coordinate maps w-^w(s) for 0<s<r. Similarly, let <3tt=a{w(s):
0<s<oo}. For each non-negative integer n and FdR2, let Cn(F) denote the
set of real-valued functions that are «-times continuously differentiate in
some domain containing F. Let Cl(F) denote the set of functions in Cn(F)

that together with their partial derivatives up to and including those of order
n are bounded on F. Let Cn

c(F) denote those functions in Cn
b(F) whose sup-

port is a compact subset of R2, If n=Q, the superscript n will be omitted.
Define the differential operators

Dj = vrr for 7 = 1,2,

and let A be the two-dimensional Laplacian.
A solution of the submartingale problem is a family of probability measures
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{P*, xeS} on (Cs, JJO such that the following conditions (i)-(iii) hold for
each XG.S.
(i) P«(w(0)=*)=l.
(ii) For each feC*t(S),

(1.1) f(*(t))
2

is a P*-submartingale on (Cs, <3tt, {^Ht}) whenever /is constant in a neighbor-
hood of the origin and satisfies

(1.2) /V>OonaSy for 7 = 1,2.

(iii)

Convention. Here P* is used to denote both probability and expectation
with respect to P* . This convention will be used for all measures and in-
tegrals with respect to those measures appearing in this paper.

The following results were proved in [16]. If a<2, there is a unique solu-
tion {Px, x&S} of the submartingale problem. If a>29 there is no solution
of the submartingale problem. However, if condition (iii) is removed, then
there is a unique solution and the associated probability measures {Px, x^S}
are concentrated on those paths that reach the vertex and then remain there.
In either case (a<2 or a>2), the family {P*, x^S} has the strong Markov
property. Furthermore, for x=£Q, w(°) reaches the vertex of the wedge with
P*-probability zero if a<0 and with P*=probability one if a>0.

For each t >0 and we Cs, define

Z(t, w) = w(t) .

Let J3S denote the Borel a-algebra on S. Let £? denote the usual completion
of <3M, and (3i the usual completion of J^t in <3tt, with respect to {Pp =

f fi(dx) Px(*): V is a finite measure on (S, $s)} . Then [17],
Js

(1-3) (Cs, ff, ff,, Z(f), *,, P*)

is a Hunt process with state space (S, *BS), where Ot is the usual shift operator.
For brevity, this Hunt process will often be simply denoted by Z. Since dS
is of zero potential for Z [17] and Z behaves like Brownian motion in S\dS9

it follows that Lebesgue measure is a reference measure for Z, For more
details on Hunt processes and reference measures, see Blumenthal and Getoor [3],
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When a<0, the set of times

(1.4) 4={f>0:Z(0 = 0}

for which Z is at the vertex of the wedge is either P*-a.s. empty (x=NO) or Px-
a.s. consists of the time /=0 (^=0). When a>2, since Z is absorbed at the
vertex in this case, the set A is P*-a.s. a semi-infinite interval [TQ, oo) where

(1.5) r0 = inf {f>0:Z(0 = 0> .

However, for 0<a<2, it is shown in Section 2 that the (recurrent) vertex is
a regular point for itself relative to Z. This case will be the focus of atten-
tion for the remainder of this paper and so it is assumed henceforth that 0<
a<2. Since the vertex {0} is regular for itself, there is a unique (up to a
scalar multiple) non-decreasing perfect continuous additive functional whose
support is {0} [3; Theorem V.3.13, p. 216]. The symbol L will be used to
denote this functional normalized to satisfy

(1.6)

and L will be referred to as the local time of Z at {0} . Two representations
for this local time are given in Section 2. First, for 0 : S-*R defined by

(1.7) 0(r, 6) =r"cos(a0— 0J, r>0, 0<0<e,

it is shown that <p(Z) is a local P*-submartingale for each x^S. Then L is
a constant (c>0) multiple of the continuous, adapted, non-decreasing process
in the Doob-Meyer decomposition of 0(Z). Secondly, it is shown that for each

(1.8) L(t) = c lim *>-<-*> f 1[0>8
e-*o Jo

where the limit is in probability (with respect to P*)9 and

(1.9) ^(r, *) = ~ (cos (afl-^))^-2, 0<0<£, r>0 .

The right continuous inverse r of L, defined by

(1.10) r(/) =inf {.y>0: L(J)>/}, />0,

is a strictly increasing subordinator under P°. Using a Brownian-like scaling
property of Z, and the first characterization of £, it is proved that r is a stable
subordinator of index a/2 and rate 1 under P°, so that
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(1.11) P0[£TXT<'>] - e~tK(x

where tc(X)=X*/2. It follows [2] that P°-a.s., the set of times A that Z Is at
the vertex has Hausdorff dimension a/2 and its Hausdorff measure function

is known [15].
The complement of the closed set A in U+=[0, oo) is a countable union

of disjoint open intervals and the pieces of the path of Z over these intervals
constitute the excursions of Z away from the vertex. The law of these ex-
cursions is determined by the entrance law at the vertex together with the tran-
sition probabilities for Z killed at the time r0. In Section 3, the Laplace trans-
form {??\ ̂ >0} of this entrance law is shown to be given by

(1.12) Tftf) - - for all

where

(1.13) *&/(*) = <T" P*(/(Z(0); t<T0) dt
Jo

is the resolvent for Z killed at the time T0, and

(1.14) ^(*)=J>*fcrr«) = l-J«Jl,

(1.15) x(h) = ~^~~ \l\"(h P) (r, 6) rdrdO,
"l I "2 J° ^°

for

(1.16) P(r, ff) = r~* cos (ad-6^ r>0,

The expressions x(f—AR$f) and #(̂ 1) in (1.12) are well defined because [16,
Lemma 3.2], R$f(x) and ^(x) are O(e'^xl) as |;c|->oo for some ^>0. From
(1.12) it is readily deduced that p(x)dx is an invariant measure for Z [6]. Final-
ly, In Section 3, it is shown that the excursions of Z from the vertex hit the
boundary of the wedge immediately. Thus they do not share the local prop-
erties of Brownian motion starting from the vertex and conditioned to stay
initially in the interior of the wedge.

In recent work, Le Gall [10] has independently obtained the Hausdorif
dimension of the set A for reflected Brownian motions in a wedge satisfying

61=62
:=£—~~- and —<f <n. To deduce this, Le Gall shows that such a

^ JL/

reflected Brownian motion can be represented as the process {W(t) — V(t)9

where W is a two-dimensional Brownian motion and V(t) is the vertex
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of the smallest wedge with angle f and fixed orientation that contains the path
of W up to time /.

§ 2. Local Time at the Vertex

Recall that in the sequel it is assumed that 0<a<2. The following

Brownian-like scaling property of Z will be used several times in this paper.

Lemma 2.1. Let x e S and X> 0. Then for each

(2.1) px(A) =

In particular, for TQ defined by (1.5)

(2.2)
Proof. The proof of this lemma is similar to that of Lemma 2.2 in [18],

but is included here for completeness. For each A e£F, let Q*(A) denote the right

member of (2.1). By the characterization of P*9 to prove (2.1), it suffices to

verify that Qx satisfies properties (i)-(iii) of the submartingale problem, with

Q* in place of P*.

Properties (i) and (iii) follow immediately from those for PXx. For prop-

erty (ii), suppose /e Cl(S) is constant in a neighborhood of the origin and

satisfies (1.2). Then /O*"1 •) also satisfies (1.2) and so by applying the sub-
martingale property of PXx to this function, and performing a change of vari-

able in the time integration (from s to A~2s), we conclude that

— ~ (W) (r
2 Jo

is a P^-submartingale. By the definition of Q*9 this implies (1.1) is a Qx-

submartingale.

The result for T0 follows immediately from (2.1). Q

As an easy consequence of Lemma 2.1, we now conclude that the vertex

is a regular point for Z.

Lemma 2.2.

(2.3) P°(ro - 0) = 1 .

Proof. By setting *=0 in (2.2) and letting /l-»oo and then / 1 0, (2.3)

follows from the fact that P°(ro(w) < oo) == 1 . Q

In the sequel, a generalization of the submartingale property of Px will
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be needed. A version of this was given as Theorem 3.5 in [16]. The follow-
ing local submartingale version of that theorem can easily be obtained by
standard approximation and stopping arguments.

Lemma 2.3. Suppose h e Cb(S\ {0} ) andfG C(S) n C2(S\ {0} ) such that

— Af=h in S\{Q}

on dSj\{0} for j =

|/(z)-/(0)| =o(<f>(z)) as |z

Then for each

(2.4)
o

is a local submartingale on (Cs, £?, {£?"/} , Px).

Lemma 2.4. For each x^S, <t>(Z) is a local submartingale on (CS9 3?, {£?"/} ,

Proof. Let fl=(0i+0^)/£ where Ol and S2 are angles in f — — , — 1 such that
{> Ol and 62> 62. Then p> a and

(2.5) 0p(r, ̂ ) = rp cos^-^X r>

is harmonic in 5\ {0} ,

Dj 4f = pr*-1 sin (0,—0y)/cos ̂ ->0 on 6> .̂\{0} for 7 = 1, 2 ,

and ^(z)=o(0(z)) as |z|-»0. It then follows from Lemma 2.3 that 0^Z(-))
is a local P*-submartingale for each x^S. Thus, for ^e-S, J?>0 and OR =
M {t^Q: 0(Z(0)>^}, *P(Z(- A **)) is a bounded P*-submartingale, where
the bound is uniform for all ^e(a, ^/f). As /? | a, 0P(Z(- A ̂ )) converges
pointwise to 0(Z(- A ^^)) and so it follows from bounded convergence for
conditional expectations that 0(Z(* A OR)) is also a P*-submartingale. Hence,
since R>Q was arbitrary, 0(Z) is a local P*-submartingale. n

In the following, adapted means adapted to
For each x^S, since $(Z) is a local submartingale on (Cs, 3, {3?t}, Px),

it can be uniquely decomposed:

(2.6) 0(Z(0)-0(Z(0)) = M(t)+A(t)9 r>0

where M is a continuous local martingale, ^4 is a continuous, adapted, non-
decreasing process and M(0)=^4(0)=0 P*-a.s. A priori, the processes M and
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A may depend upon x. However, Cinlar, Jacod, Plotter and Sharpe [4,
Theorem 3.12] have shown that one may choose continuous, adapted processes
M and A (not depending on x) such that the above holds for all x.
Moreover, since 0(Z(-))— 0(Z(0)) is an additive process, M and A may also
be chosen to be additive [4, Theorem 3.18]. It will be assumed in the sequel
that M and A are chosen in this way. In the next lemma it is shown that the
support of A is {0}, or in other words, "A increases only when Z is at the
origin".

Lemma 2.5, Let x^S. Then

)) «M(j) = 0 P*-a.s.

Proof. It suffices to prove that for each £>0, jP*~a.s. :

A9(t)=['lh^(<P(Z(syj)dA(s) = 0 for all
Jo

or equivalently,

(2.7) rg=inf {t^O: A\t)>0}

is P*-a.s. infinite. On {rs<oo}, 0(Z(rg))>e and

(2.8) A(t)-A(T9)>0 for rs<t<T*Q

where

= 0}>rg .

On the other hand, since <t> is harmonic in S\{0} and Dj<j>=0 on d5y\{0}, j=
1,2, it follows from a local version of the submartingale property of Px that

{(<f>(Z(t A r0))-0(Z(/ A r.))) 1{TS<00}, t^O}

defines a local f^-martingale. But this contradicts (2.8), unless P*(rg<oo)

-o. n
Theorem 206. Let L denote the local time of Z at {0} , as defined in Sec-

tion 1. Then there is a constant ce(0, oo) &uch that for each

(2.9) L(t) =cA(t),

Moreover, for each /l>0, under P°,

(2.10) r<"'2>LO*0



LOCAL TIME AND EXCURSIONS OF AN RBM 305

d
where = denotes equality in distribution.

Proof. Since A is a continuous additive functional of Z, and by Lemma 2.5

the support of A is {0} , it follows from the definition [3? p. 216] of L that (2.9)

holds P*-a.s. for each x^S.

For the scaling property of L, recall from Lemma 2.1 that under P°,

r1/2z(;i •) =z(«) .
Hence, P°-a.s. :

It follows from the uniqueness of the decomposition of $(Z(*)) that P°-a.s.5

This, together with (2.9), yields (2.10). Q

Corollary 2,1* Let T be the right continuous inverse of L, defined by (1.10).

Then under P°, T is a strictly increasing stable subordinator of index a/2 and

rate 1, i.e., (1.11) holds.

Proof. It is well known that r is a strictly increasing subordinator [3,
pp. 217-219]. Now, for f >0, under P°9

r1 T(X**i) - inf

= inf

= inf

where (2.10) has been used in the last line above. Hence r is a stable sub-

ordinator of index a/2 [3, 14]. The fact that r has rate 1 comes from the nor-
malization (1.6) of L:

In the next lemma, an alternative representation is given for A, hence for

L.

Lemma 288,, Ler jc e S. 7%^/i /or ^ac/? f > 0,

(2.1 1) ^(0 = lim 51- W> l[o>g) (0(ZO
e-^o Jo
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where the limit is in probability (with respect to Px) and ty is defined by (1.9).

Remark. Since 0(Z) is only known to be a local submartingale, a stronger

form of convergence in (2.11), such as convergence in L\CS, £F, P*) as e-»0,

was not obtained here. As pointed out by J.F. Le Gall (private communica-

tion), similar results to (2.11) can be obtained by applying knowledge of the

recurrence and invariant measure of Z [17], together with ergodic theorems

for additive functionals. One advantage of the computational proof given

here is that a precise representation (without undetermined constants) is ob-

tained for A(t).

Proof. First, observe that since Z spends zero time at the vertex, in the sense

of Lebesgue measure, we may replace 1[M) by l(0>g) in (2.11). Ihe proof of

(2.11) is similar in spirit to that for the representation of the local time of a

one-dimensional reflected Brownian motion. In particular, we need to apply

the submartingale property of Px to a function whose Laplacian is of the

order of l(M)(0(z)). Since 0 satisfies the boundary condition Dj<f>=0 on

dSj\{fy for 7=1, 2, so will a function of the form/g(z)=gg(0(z)), where gg is a

differentiate function of a real variable. Moreover, the function gg can be
chosen so that the Laplacian of /8 has the aforementioned property (see (2.14)

below). The following functions gg were found in this way.

For each e>0, let gf : [0, o°)->[0, oo) be defined by

— y2" for

(2/*)-i for

(2.12)

Then gg is once continuously differentiate on [0, oo) (differentiability being

from the right at 0) and twice continuously differentiate on (0, °o)\{e}0

Indeed, since 2/a> 1, we have

w-i for

and

" < 2 / « > - 2 for

> 0 for e<y<oo

Then/e(z) = gg(0(z)) satisfies [16, Theorem 2.3]:
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(2.13) Djft(z) = (v,.F0(z)) &'(*(*)) = 0, z€=dS,\n,

and on {zeS: 0(z)4=0 or s},

(2.14) J/.(z) = &"

since on 5\ {0} , <t> is harmonic and satisfies

(2. 1 5)
2— C

2Note also that since — > 1,
a

(2.16) Mz)=o(#(zJ) as |z|->0.

Thus, /e and — /s satisfy all of the hypotheses of Lemma 2.3, except that /g

is not twice continuously differentiable across {z^S: 4>(z)=e} . However,
since Z spends zero time on this set (in the sense of Lebesgue measure), we
can apply Lemma 2.3 to suitable approximations to /e and then pass to the
limit to conclude that this lemma also applies to/e and — fe (cf. [17, p. 776]).
Hence,

(2.17) *.fo(Z(0))- l(0i.) (#(Z(*))) +(Z(s» ds

is a local martingale on (Cs, 3, {£? t} , P*)-
On the other hand, since 0(Z) is a local submartingale under Px and

gg is a convex function, we can apply the generalized Ito formula [8, pp. 186-
188] to conclude that P*-a.s. for all

(2.18)

±- f
2 Jo

where [M] denotes the quadratic variation of the local martingale part M of
0(Z). Since gg(0)=0 and A increases only when 0(Z) is zero, it follows that
the first integral in (2.18) is really the local martingale

(2.19)

Then, comparing (2.17) with (2.18) and invoking uniqueness of the Doob-
Meyer decomposition of the continuous local submartingale gg(0(Z)), we
obtain jP*-a.s. :
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(2.20) -

' ds,
o

Thus, (2.18) is equivalent to

(2.21)

The next step is to multiply (2.21) by el~^^ and let e-»0. For this, we
need to localize M9 A and [M]. So let {rj- be a sequence of stopping times
(relative to {£?,}) tending P*-a.s. to infinity such that for each n^(f>(x), Mn(*)

=M(- AO, A*(-)=A(- AO and [M*] (*) = [Af] (• AO are all P*-a.s. bounded
by n. Now, for n

(2.22) *'-«

= r
Jo

(8pf)
o \ £ /

By the L2-isometry for stochastic integrals and since (0/e)^^"^! on
0<0(z)<e}5 we have

-M( JL \(2/a})-l

e

where the right member above tends to zero as e->0 by dominated convergence.
Thus, for each t >0, the middle integral in (2.22) tends to zero in L2(CS, £F, P*)
as e->0. Similarly, the last integral in (2.22) is Cauchy and hence converges
in L\CS, 3, Px) as e->0. The limit is the stochastic integral

) dM*(s) = rrn Ice,.) (0(Z(j))) dM(s) .
Jo

Now, as e-»0, e1"^*) ge(#(z)) converges pointwise to 0(z). Moreover,
e1~(2/*)gs(0^Z(« AO)) i§ P*-a.s. bounded, uniformly in e, for each n^^(x).
Thus, multiplying (2.21) by e1-'2^ and taking the ZMmit as e-»0 with t/\rn

in place of t there, we obtain P*-a.s. for each ^>0 and
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(2.23) *(Z(f Ar,))-#Z(0)) = " 1(0 ., (#(Z(s))) dM(s)

where the limit as e-»0 is in L2(C5, 3", P*).
But by the uniqueness of the Doob-Meyer decomposition of <f>(Z(° A *
0(Z(0)), we have P*-a.s. for each r>0 and

(2.24) M(t AO = l(0fao)
o

(2.25) ^(rAO = lim e1-
s-*o

where the limit is in L2(CS, £F, P*). Since L2 convergence implies convergence
in probability and rw-»oo p*-a.s. as T?->OO? it follows from (2.25) that (2.11)
holds with the limit as e->0 in probability relative to P*. D

§ 30 Excursions from the Vertex

First, the notions of excursion space and Poisson point process in the
context of this paper are reviewed. For further details, the reader is referred
to Ito [7] and Salisbury [12], where excursions of a strong Markov process
from a regular point are considered. Further properties and the general
theory of excursions from more than a single point are discussed in Getoor
[6] and Maisonneuve [11], for example.

Let (77, 3?) denote the measurable space of (Cs, c5K)-valued point func-
tions. That is, adjoin a point d to Cs and let 77 be the set of functions p:
(0, oo)— >cs U {0} such that p(t)=d except for countably many t. The a-algebra
$ is generated by the functions p-*N(A, p} where N(A9 p) is the number of

times t such that (tfp(t))^A where A^Sx^5H and <B is the a-algsbra of Borel
subsets of (0, oo). For A<=tBx<3H, define the restriction ofp^H to A by

Ia , .
k a otherwise.

Special cases of this are the killing operators :

The shift operators on 77 are defined by

0f(/0=X-
A Poisson point process on (Cs, £F, P°) with values in (CS3 JK) is a measurable
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function Y: (CS9 3)-*(H, &) such that
(a) kt(Y) is independent of Ot(Y) for all t > 0,
(b) Ot(Y) has the same probability law as Ffor every
(c) for each />0, there exists a sequence {Un=Un(i)} of sets in <3tt such that

Un f Cs and for each n,

., 7)<oo p°-a.s.

Under conditions (a)-(c), there is a unique a-finite measure rj on JM, such that

P°[N((0, /) x 5)] = / • ̂ (J?) for each 5 e c5K and t > 0 .

This measure, called the characteristic measure of 7, determines the law of
the Poisson point process Y.

The excursion process Y of Z with respect to PQ is defined as follows.
(For aesthetic reasons, the same symbol Y is used here as above, for it will
turn out that F is a Poisson point process.) Recall that r is the right con-
tinuous inverse of the local time L of Z at {0}. Define r(0— )=0 and for
each?>0, ^>0, let

if

0 if

8 if r(0-r(f-)=0.

In [7], Ito proved that F is a Poisson point process on (Cs, £F, P°) and the char-
acteristic measure rj of Y is concentrated on

(3.1) {weCs:0<r0<oo,w(/)=0 for

where r0=^r0(w) is the lifetime of the excursion w in S\{0}, defined by

(3.2) T0 - inf {f>0: w(0 - 0} .

Although 7 is a a-finite measure, in the sequel, the expression ^-a.s. will be
used instead of ??-a.e., because of its intuitive value.

Let {P?, £>0} denote the semigroup of the process Z killed at the time
r0, i.e., for each A^^s, x&S and

(3.3) P?(*, A) = Px(Z(t)(EA, t<TQ) .

For each />0, define a measure r]t on (S, <BS) by

(3.4) 7^) - y(w<=Cs: w(t)(=A, t<TQ\

Each iqt is & finite measure on S and {^, />0} is an entrance law for the killed
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semigroup {P?, r>0} [6, p. 247], that is,

(3.5) 7]t+s = 7]tPl for all t>0 and s>0.

Conversely, this entrance law together with the killed semigroup determines
the finite-dimensional distributions of y (and hence determines rj) as follows.
For

(3.6) ^(tjedx!, — , w(tn)tEdxn, ttt<T0)
= rj^dx^ P?2_ f l (x1? dx2)>**P*tn_tn^ (*„_!, dxtt) .

Thus, viewing the killed semigroup as given, to determine the excursion law
57, it suffices to find its entrance law or equivalently the Laplace transform
in t of this entrance law :

(3.7) TftA) = x/ 7]t(A) dt,
Jo

The latter is explicitly given in the following theorem.

Theorem 30L For each /e Ce(S), 7j\f)={ f(x)rj\dx) is given by (1.12).
Js

Proof. The Laplace transform ?j>x is related to the resolvent R* of Z by
[6; (7.8), (7.20)]:

(3.8) rftf) = K(X) R*f(0)9 /e CC(S) ,

where

/c(A) = ***

is the characteristic exponent (see (1.11)) for the stable subordinator r, and

From the proof of Theorem 3.10 in [16] we have

(3.9) R*f(Q) = x(f-***f> 3 /e ce(S)J V '

where * is defined by (1.15). In fact, in [16], (3.9) was proved
that vanish in a neighborhood of the origin, but the extension to /
is easily obtained. From the scaling property (see Lemma 2.1) of Px, it fol-
lows that

(x) = Px[e~XT°] = Pv ̂  [e-To] =
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where ^ is defined by (L14). By combining this with the scaling property

of p (the density appearing in the definition (1.15) of ^), we obtain

Substituting this in (3.9) and that in turn in (3.8) yields the desired formula

(1.12) for 7*0). D

Corollary 3»2e The measure with density p relative to Lebesgue measure

on S is an invariant measure for Z.

Remark. This is consistent with results obtained in [17] where it was

shown that, up to a scalar multiple, p(x)dx is the unique invariant for Z when

Proof. By the definition (1.15) of x and Theorem 8.1 of Getoor [6], it

suffices to prove for each/eCc(S)3/>0J that

Mm
A J O

That is, by (1.12), we must prove that

(3.11) lim *(«$/)= 0 .
A J O

Fix /eCc(5). Let \\f\\=moxxes\f(x)\ and let R>0 such that the support of
/in S is contained in {x<=S: 0^<l>(x)^R} where 0 is defined by (1.7). Then,

for each

(3.12) | U$f(x) | < H/ l l 1 Px [£° e-" la,,*) (0(Z(/))) dt]

= \ \ f \ \ P

where the scaling properties of P* and 0 have been used to obtain the last

line above. By letting K~>oo in Corollary 2.2 of [16], we obtain for each

x<=S andr>0,

(3.13)

where a is a constant not depending on r or %. For each r>0, let

(3.14) rr= inf

Then it follows from the proof of Lemma 3.2 in [16] that there are constants

/?>0 and K>0 such that for all sufficiently small r,
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(3.15) Px[e-Tr]^Ke-Wi, x<=S.

By (3.12) and the scaling of p, we have

(3.16) |f ll$f(x)p(x)dx\
Js

<H/ll
Js LJo

Set R(X)=RX**. By the strong Markov property and (3.13) and (3.15), for
all /l>0 sufficiently small we have

pr0 _t i

o

Substituting this in (3.16) yields:

Since the right member above tends to zero as X j 0, (3.11) follows. Q

In principle, the nature of the excursions of Z from {0} is determined
by {??X

3 ^>0} and the killed semigroup {Pf, t>®}. However, it is not easy
to deduce the path properties of the excursions from this representation. In
particular, the answer to the following question is not obvious: "Does an
excursion of Z from {0} stay in the interior of the wedge for a positive amount
of time before reaching the boundary of the wedge or does it hit the boundary
of the wedge immediately?" In the following theorem it is shown that the
latter holds. An alternative phrasing of this result is that the excursions of
Z from {0} do not share the local properties of the excursions from {0} of
Brownian motion conditioned to initially stay in the interior of the wedge.

Theorem 33, Let

(3.17) T8S = inf

Then

(3.18)

As a preliminary to the proof of this theorem, it is shown below that on
certain sub-a-algebras of c^f, TJ can be weakly approximated by the measures
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Px(')/$(x) as \x\ I 0. Here Cs is endowed with the Skorohod topology which
is equivalent to the topology of uniform convergence on compact subsets of
[0, oo).

For each e>Q and x^S\{0}9 let PI be the sub-probability measure
defined on (CS9 JJ0 by

where trg is given by

(3.19) af - inf

Lemma 3 A For eac/z e>0, the family of measures

(3.20)

0/1 (Cs, c_30 is bounded and tight.

Proof. Fix 6>0. For each ;ceS\{0} such that 0(*)<£, by Corollary
2.1 of [16] we have

(3.21) P*(o

and so each measure P£( •)/$(*)
continuity for weCs by

^wW = SUP {1^(0—^)1 : Q<s<t<ooy t—s<d}

for each d> 0. Then to prove the tightness, since the set of possible starting
points for the family (3.20) is contained in a compact subset of S, it suffices
to prove that for all fi>0 sufficiently small,

(3.22) lim lim sup
8*0 |*|->o

(cf. Billingsley [1, Theorem 8.2], Ethier-Kurtz [5, §3.7]). Now </>(x)^a\x\*

( B \l^x

where a=min cos (ad— ^)>0 and so max{|x|: <t>(x)=(3} =( — ) . Hence,

To obtain the last inequality above, (3.21) has been used with ft in place of e.
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Thus, to prove (3.22), it suffices to show the last expression above goes to zero
as d I 0 for each fixed /?>0. For this, by the strong Markov property of
{Px, x^S} , it is enough to prove that

where Tx(ft) is the first exit time of w(-) from a ball of radius ft centered at
x [5, §3.8]. Fix /?>0 and choose r>0 so small that r</?/4 and the ball of
radius r centered at any x^ {ze*S: \z ^3/3/4} intersects at most one side of
S. Then [16, Theorem 2.4],

sup Px(Tx(r)<d) = o(l) as 3->Q
-v>i3^/4

and the tightness of (3.20) follows. H

The next lemma characterizes any limit of (3.20) as | x -*0 on the sub-
^-algebra 3tt* of <3Vl generated by the sets of the form

(3.24) {n-eCs: wfo)^, ..-, wfo)e=4i} ,

where A19 • • • , ^C {x^S: 0(x)>e}5 0<f1<B-<^<oo and /: ranges over the
set of positive integers N.

Lemma 3.5, Let e>0 and JHS be as described above. Suppose Qs is a
weak limit point of the family (3.20) as \ x \ ->0. Then for each

(3.25) 0,1/9 -

w defined by (1.14)-(1.15).

Remark. Because 77 is a a -finite measure and the characterization we
have of ?? is in terms of the Laplace transforms {??x

? /l>0} , a more direct weak
approximation to ?? (e.g., jP*(vr(- A 7i)e •)/$(*) converges weakly to ??(-)) has
not been obtained. However, Lemma 3.5 is sufficient for the purposes of
this paper, since the sets BsS defined in (3.29) below are in

Proof. By the definition of <3tt\ it suffices to prove

(3.26)

for /19 • • • , fk in C~(S) having support in {x^S: 0(^)>e} and ^>0, 0<f2<
•••</A<oo, k&W. The reason for singling out the time ^ is that the proof
uses the Markov property at the time ^ and then the shifted times t2, • • • , 4
appear (see (3.28) below).
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Suppose {xn} is a sequence in S\{Q} such that as /z->oo5 |*J-»0 and
{Pi*(*)l$(xn)} converges weakly to Qt. Then for fl9 - a ° , f k and tl9 • • - , tk as
described above,

(3.27) lim

Since PJ*(')/0(*n) has total mass e'1 for all w, we have bounded convergence
in (3.27). Moreover, using the fact that /i has support in {x^S: <f>(x)>e}
and the strong Markov property of PX

5 we see that the limit in (3.27) may be
rewritten as

where /eCc(5) is defined by

(3.28) /(*) = /i(*)

and has support in {xeS: 0(;c)>e}- Thus, taking the Laplace transform of
(3.27) in tl9 we obtain for each

I = r .-», n
Jo -»

But by (3.82) of [16], the limit on the left above is equal to x(f—M$f) =
x(^7j\f) (see equation (1.12)). Thus, by the continuity in ^ of the in-
tegrands and uniqueness of the Laplace transform, it follows that z(i^i) ^x(/)
is equal to the right member of (3.27) for all t^O. But, by the Markov
property of 77 (3.6) and P*, this is equivalent to (3.26). D

Proof of Theorem 3.3.
For each ee(0, 1) and 0 <£<<<•, let a, be defined by (3.19) and Ts be de-

fined by (3.14) with r=d and define

Tl = inf {t^as: #(w(OK*} =a9+T,o6V9 .

Now, 7?-a.s., (78 is a left continuous, increasing function of ee(0, °^) and so
the set of points of discontinuity of £—>0s is at most countable. Hence by
Fubini's theorem, for almost every e>0,

27 (lim 004= crg or lim <7s4=<7e) = 0 .
^
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Thus, we can choose a sequence of e's converging monotonically to zero such
that oe is ??-a.s. a continuous functional on Cs (cf. Kurtz [9, pp. 13-14]). Fix
an e>0 in such a sequence and let t>Q. Since ??-a.s., F§ is right continuous
and decreasing as a function of £, by similar reasoning to that above, there
is a sequence of d's (possibly depending on e) tending monotonically to zero
for which Tf is ??-a.s. a continuous functional on Cs. Then, by the continuity
properties of crs, o^+t and Tl on Cs, and of

hj(r, u, w) =

on [0, oo)x[0, oo)xC5 when/=0Al or /is a continuous function on S equal
to arg(-) (the polar angle) on {x^S: 0(x)><5}9 it follows that BtS, defined
below, is an open subset of Cs.

(3,29) BS8 = {(j.<oo, (J9S A
min

o- <s<(r +t
E c

min(arg(w(j)): af

The set i?g§ is in c3/s and so by Lemma 3.5, for any weak limit point (?s of
as |x|->0, we have

where c1=^(^1). Then letting lim denote the limit along the sequence of d's
S ^ o

chosen above, we obtain

(3.30) l(T9s>ot+t) = Mm rj(B^ = lim cTl Qs(BsS) .
8 ^ 0 s ^ o

Since BsS is open in Cs [5, Theorem 3.1, p. 108],

(3.31) e

where the limit as x tends to zero is along any sequence of ^:;s such that
P$(m)l$(x) converges weakly to 08. By the definitions of Pf and ^gS, and the
strong Markov property of Px, the right member of (3.31) is equal to

(3.32) lim inf r^<^JP^^s A Ts> t))
*->o 0(x)

<Hm inf p*(a*<ToL SUp Py(T^s>t) .
*-*> <f)(x) *W = 8

In [13], Shimura obtained asymptotic properties of the transition probabilities
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for Brownian motion in a wedge with absorption at the boundary. In par-

ticular, formula (4.2) of his paper yields the following estimate. There is a

constant c2>0, depending on /, but not on s>0, such that

(3.33) supP*(r8s>0<c2£
v/*

</>CO = e

where v=— and so — = — - — . The fact that 4>(y)~\y\* has been used
f a 0i+&2

here. Substituting (3.33) and (3.21) in (3.32) yields

y(T<>s>°s+t)<c3 e<*-«i-«2>'<«i+«2)

where c3=c]~l c2 and 6l
jr02<n. Letting e j 0 yields

Since f>0 was arbitrary, the desired result (3.18) follows. D
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