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Type I Orbits in the Pure States of
a C*-dynamical System

By

Akitaka KisHimMoTO

0. Introductiom

Let 4 be a C*-algebra and let @ be an action of a locally compact abelian
group G on 4 such that @ is continuous, i.e., #—a,(x) is continuous on G for
each x&4. Let P(4) denote the set of pure states of 4 and a* the action
of G on P(A) defined by a¥ f=foa,, t= G, which is continuous in the sense that
(t, [y—a¥F fis jointly continuous if P(A4) is equipped with the weak™ topology.
Thus, with the C*-dynamical system (4, G, @} one associates the dynamical
system (P(4), G, (a*). (If 4 is abelian, P(4) is a locally compact space and
A is identified with the continuous functions on P(A4) vanishing at infinity.)

Let f€P(A4). We call the orbit {af f, t=G} through f of type I if the
representation

5]
o= § T soa, di
¢

of 4 on LXG, I )=LHG)RI, is of type I, where z, is the GNS representa-
tion of A associated with f, and dr is a Haar measure on G. If 4 is abelian,
or more generally of type I, or if a* is strongly continuous, then every orbit in
P(4) is of type I. In general it is not even true that a system has a type I
orbit.

In this paper we shall show that there exist type I orbits for C*-dynamical
systems satisfying a certain spectrum condition. This is defined in terms of a
spectrum similar to the Connes spectrum.

Before we state our main results more concreiely, we look at the repre-
sentations o, closely. Given f& P(4), we denote by u the unitary representa-

Communicated by H. Araki, October 1, 1986.
* Department of Mathematics, Coliege of General Education, Tohoku University, Sendai
980, Japan



322 A. KisHIMOTO

tion of G on LXG, ;) defined by
w(s) &) (1) =&(t+s), aa,t

for £€IX(G, H ;). Since pjoa,—Ad u(s)op;, @ extends to an action @ on
oAA)" by a;=Adu(s). Let Z=p/(4)'No(4) and let N=Sp(a@|Z). Then
since Z is a von Neumann subalgebra of L*(G)®1, @ is ergodic on Z. Hence
the von Neumann algebra o (4)” is homogeneous, e.g., purely of type I, II, or
I1I, and N is a closed subgroup of G. It easily follows that

Z={p:peN}"®]1.

Let H={s&€G: = oa,~= ;] where ~ denotes (quasi-) equivalence. Then H
is a subgroup of G and it follows that HC N~ in general.

0.1. Propoesition. Let A be a separable C*-algebra and let @ be a con-
tinuous action of a separable (i.e., second-countable) locally compact abelian
group G on A4, and adopt the notation above. Then the following conditions
are equivalent:

1. p/(4)" is of type 1.

2. H=N".

Now one of our results runs as follows: In the same situation as above
suppose that 4 is simple and unital, @ is faithful, and that there is an auto-
morphism o of 4 such that coa,=a,00, t&G and [¢"(x), y]>0 as n—>oco for
x, VE A (which is a situation where the spectrum condition referred to before
is satisfied). Then for each closed discrete subgroup H of G there exists a
pure state f as described in 0.1 (see 2.3 and 3.3). When the group G is com-
pact we can remove, by using [1], the condition ‘discreteness’ on H in the above
result (see 3.5), and furthermore we could say much more about the pure states
in connection with the action a* due to the Glimm’s type theorem [3].

We conclude this section by giving the proof of 0.1.

Suppose (1) and let s& N-. Then &, leaves each element of the center
Z invariant, and hence it is inner, i.e., there is a unitary ¥ in o,(4)"” such that
a,=Ad V. Let {V,: t&G} be a measurable family of unitaries such that

2]
V=S v, dr.
G

Then there is a & G such that
w0ty (X)=V,moa(x) VF, xEA

and hence zioa,~z, or s&H. Conversely if s€H, a, is implemented by
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by a unitary of the form 1®u and hence it is trivial on Z, or s& N*. Thus
(2) follows.

Suppose (2). For each s in the closed subgroup H of G, «, extends to
an automorphism g, of z (A)Y’'=B(I;): Bon,=n;oa, Since 4 is separable,
it follows that s—8(Q) is weakly* measurable for Q& B(4L;), i.e., sro>pof; is
weakly measurable for ¢ € B(H ;). Hence, as B(H ;)4 is separable, s>(8,)x
is strongly measurable, and so strcngly continuous. For the representation

(5]
Ty =\ woa.ds
b4

of 4 on L*(H, 4i;), one has that =z is quasi-equivalent to z,: For any Q&
zy(A)” there is a unique Q,Ex (4)” such that

0" pe@yas

and, for any Q,& B(H,), the above direct integral defines an element of
my(A)”. Since o is unitarily equivalent to

521
S n-Hoaf(s) dS B
G/H

where f: G/H—G is a measurable function such that f(s)+ H=s, s& G/H, it fol-
lows by (2) that the above integral is a central decomposition of o,. Hence
0(A) =L=(G/H)Q= [(A)”, which is of type I.

§1. Spectral Subspaces

Let A be a C*-algebra and let @ be a continuous action of a locelly com-
pact abelian group G on A. For a subset U of G, A%(U) denotes the set of
x&A4 with Sp,(x;CU. Let {x.} be a bounded net in 4 and let p=G. If
for any neighbourhood U of 0 G there exists a 4, such that x,€A4%(p+U)
for all u>pu,, then {x.} is said to be a bounded net of spectrum p.

Let = be a representation of 4 and let H=n(4)’. For each peG let
M(p> denote the set of elements of .5 which are obtained as weak limit points
of {m(xu)} for all bounded nets {x,} in 4 of spectrum p. (Note that SH(p)
also depends on = and 4.) Then it is obvious that J(p) is a subspace of
M and that H(p)*=H(—p) and FH(p) H(q)C HM(p+q) for p, g=G. If
there is a continuous action @ of G on M such that a,cx==noa,, t=G, it fol-
lows that H(p)=M*(p) where

M (p) = {QEM: a(Q) =<1, p> O, rEG} .
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1.1. Propositien. Let 4 be a C*-algebra and let @ be a continuous ac-
tion of a locally compact abelian group G on 4. Let = be a representation
of A and define a representation o of 4 by

®
0 =S moa, dt
G

on I¥G, H,)=L G)QH, where dt is a Haar measure. Let W =n(4)’ and
Jl=p(A4)"’, and let @ be the action of G on J] induced by @. Then for any
pEG 1t follows that J1%(p)=p®.H(p) and that for each Q= .H(p) there is a
bounded net {x.} in 4 of spectrum p such that ||x.|]|<||Q|| and lim
n(xu)=Q0. In particular H(p) is a closed subspace of ¥, and H(0) is a
von Neumann subalgebra of ..

Proof. Let Q= M(p), and let {x,} be a bounded net of spectrum p such
that =(x.) converges weakly to Q. Since ||, (x.)—<¢, p> xu/|—=0 uniformly
on each compact subset of r& G ([8], 8.1.7) one has that

{moay(xu) €, 1> — <1, pp 0%, 1>

uniformly on each compact subset of G for any &, 79, Thus it follows
that lim p(x.)=p®Q which belongs to J1%(p).

Let Q'€ J1%(p). Since Q'€ L~(>QB(H,), and Q' satisfies that @,(Q")=
{t, p> Q’, there is a bounded operator Q on 4, such that Q'=pRQ. We
have to show that Q& . H(p).

By Kaplansky’s density theorem there is a net {x,} in 4 such that ||x,|| <
10'll=]1Ql| and lim o(x.)=Q'. Let g be a positive continuous integrable
function on G such that supp g is compact and g(0)=1. For such a g and
o let

g = | o) < P 8(1) .

Then ||xu | <|lxull [Igll,<1]Q’|| and o(xy ) converges to Q' as u—>oco for each
g. Define an order on the pairs («, g) by:

(41, 8)= (119, 82) if 2,115, sUPD &, CsUPD &, -

Then {xu  is a net and Q' is a weak limit point of {o(xuc)}. This shows that
there is a bounded net {y.} in 4 of spectrum p such that ||y.||<||Q’|| and
lim o (y.J=Q'. Since {y.} is bounded, there is a subnet {yi} of {y,} such that
z(yu) converges weakly, say to Q;. Since ||e,(yi)—<t, pD> yil||—=0 for tEG, it
follows that lim o(y{)=pQ®Q,. Hence Q=0, and thus Q& . H(p).
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Consider the same situation as in 1.1. Let N be a closed subgroup of
G and let peG. A bovnded net {xu} in 4 is said to be of spectrum p+N
if for any neighbourhood U of 0&G there exists a x, such that x,&A%(p-+
N+4-U) for all #>p,, or equivalently if it is a bounded net of spectrum p+N
(€G/N) with respect to the action defined by restricting @ to H=N". Let
M(p+N) be the set of elements of 5% which are obtained as weak limit points
of {z(xu)} for all bounded nets {x.} in 4 of spectrum p-+N. Then one im-
mediately obtains

1.2. Corellary. In the same situation as in 1.1, let N be a closed sub-
group of G. Then H(p+N)*=H(—p+N), H(p+N) Hg+N)C M(p-+q
+N), and M(p+N) is a closed subspace cf H. Moreover for any Q&
M(p+N) there exists a bounded net {x,} in 4 of spectrum p-+N such that
[lxul[<[|QI| and lim z(xu)=Q.

1.3. Propesiticn. Let 4 be a prime C*-algebra and let @ be a continuous
action of a locally compact abelian group G on 4. Let = be a faithful repre-
sentation of A and define the representation o of 4 as in 1.1. Let H=n(4)"
and let J1=p(4)’. If M is a factor, the following conditions are equivalent:

1. MO)=H, and « is faithful.

2. M(p)=M for all p&G.

3. H(p)=1forall peG.

4. DL G)R!.

Proof. Suppose (1). Then H(p) is a closed ideal of H, i.e., JH(p)=(0)
or M, since M is a factor. The set of peG with FH(p)= M is a closed sub-
group of G; it is a group since H(p)* =M(—p) and H(p) H(g)C HM(p+q),
and it is closed since {p=G: HM(p)>1} is closed.

Let @ be the action of G on J7 induced by @. Since @ is faithful, we only
have to show that FH(p)=(0), or J1%(p)==(0) by 1.1, for each p=Sp(a). For
any compact neighbourhood U of peSp(a), T1*(U) is not zero. Let Q& T1*(U)
with [|Q]|=1 and let t—Q(¢} be a norm continuous map of G into . which
represents Q (see [9], IV.7.17 and note that the continuity requirement is satis-
fied since Spz(Q) is compact). By replacing Q by a,(Q) with s& G if necessary,
we suppose that [|Q(0)||>1/2. Since 1QQ(0)=J1%(0), we further suppose
that Q(0)>0 by replacing @ by Q-1Q0Q(0Y*/||Q(0)]]. In a similar way we
may eventually suppose that Q(0)=1/2 by using 1Q. M J1*©0). For each
compact neighbourhood U of p we choose Qy & J1%(U) such that ||Qy||<1 and
Qy(0)=1/2. Then since the family #+—Qy(¢) is equi-continuous as U shrinks
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to {p}, any weak limit point of {Q,} is not zero and belongs to J1%(p).
By 1.1 the implications (2)=>(3)=>(4) are immediate.
Suppose (4) and let x4 and €>0. Let U be an open neighbourhood
of 0 such that ||e,(x)—x||<e¢, t€U. Let K be a compact subset of G and
take a finite covering {U-+¢;: i=1, ---, n} of K. Let

0 =31 (2,®1) pla-(x))

where Lf,-z(U—i—f,-)ﬂK\@b,-, U=(U+)NK. Then Q&J] and ||Q—xx®

=(x)|| <e which implies that y,®=(x)&Jl and so it follows that 1Q=(x)e Jl.
Thus JIDL (G)QH ie., HO)=H. Since Sp(e)=G follows trivially this
concludes the proof.

§2. Spectrum

Let @ be a continuous action of a locally compact abelian group G on
a C*-algebra A. The Connes spectrum I'(e) of « is defined as follows (cf. [8]):
pETI(e) if for any non-zero x&A and any compact neighbourhood U of p
there are t& G and a € A”(U) such that xaa,(x*)=4 0. We define a subset
I'y(a) of G as follows: pETI'(a)if for any non-zerc x< A4, any compact neigh-
bourhood U of p, and any >0, there is an a€A%(U) such that ||e||=1 and
[|xax*||>(1—e¢)||x||2. Clearly I'j(a) is a closed subset of I'(a) and satisfies
that I'y(¢)=0 and —I'y(e)=Iy(a).

2.1. Proposition. I',(@) is a closed subgroup of G.

Proof. It suffices to show that I')(a) is closed under multiplication. Let
p, geT'(a), x4, and ¢>0. For any compact neighbourhood U of 06
there is an a€A4”(p+U) such that ||a||=1 and ||xax*||>(1—¢)||x|/% Let
y=ax*. And then ||y||<||x|] and ||xy||=(1—¢)||x]| ||yl|. By the following
lemma we have a b€ A%(g+U) such that ||b||=1 and ||xby||>¢,(1—e)||xyl|,
where ¢,(t) 11 as 1 1. Since bacA*(p+q+U+U) and ||xbax*||=>(1—¢)
@.(1—¢) ||x|[?, one gets the conclusion.

2.2. Lemma. There exists an increasing function ¢ on [0, 1] such that
lim ¢(¢)=¢(1)=1 and for any p&TI'\(«), any neighbourhood U of p and any
41
non-zero x, yE 4, t<[0, 1] with |[xy||=¢||x|| [|»]], it follows that

sup {||xayl|: a€A*(U).} Zo(®)l|x]| [1¥]]
where A”(U), denotes the unit ball of A*(U).
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Proof. Let x, yeA, t€][0, 1] be as in the above lemma, and let x;=
[1x]I72x*x, and y,=||yl|%yp*. Then ||x)||=]|yl|=1, x>0, »;>0 and ||x; y,|| > °.
Since ||xay||=|lxap|| lIx|] i[y]] and 241 as £11 we now assume that x>0,
y=>0 and that ||x|]|=1=||y||. For any >0, there is an a&A"(U) such that
|la||=1 and ||xyayx||>(1—¢) t% There exists a pure state f of 4 such that

fxyayx®ya*yx)>(1—e@ t*.
Since xyayx? ya*yx<t® xy®x, one has that f(xy*x)>(1—¢)? %, and so

S(Gey—2x) ey —x)*) = f(xy"x) —2f (xyx)-+f(x?)
< SO —fGyix) <l —(1—e)? ¢2.

One calculates:

S(xay? a*x)> f(xayx® ya*x)
= f(xyayx® ya*yx)+f((x—xp) ayx* ya*yx)+f(xayx* ya*(x —yx))
>(1—e)? t*—21%(1—(1—e)? V2,
Hence
sup {||xay|: a€ A"(U),} 2 (P —2(1 -1

and thus the lemma is proved.

2.3. Proposition. Let 4 be a simple unital C*-algebra and let @ be a
continuous action of a locally compact abelian group G on A. Suppose that
there is an automorphism ¢ of A4 such that ooa,=ea,00, t€G and [x, o"(y)]
goes to zero as n—>oo for any x, yE 4. Then I'j(e)=I"(a)=Sp(a).

Proof. This follows easily since ||x ¢"(p)||—||x|| [|¥]| as n—>oo [7].

2.4. Proposition. Let 4 be a simple unital C*-algebra and let @ be a
continuous action of a compact abelian group G on A such that 4%(0)=C1.
Then I'(e)={0} and I'(¢)=Sp(a).

Proof. 1t is trivial that I'(e)=Sp(e), and we may assume that Sp(e)=G.
For each pe G, A%(p) is one-dimensional and contains a unitary, say u,. There
is an injective homomorphism ¢ of G into G such that @y =Ad u,, peG (and
the range is dense in G). If p==0, there is a =G such that {p(p), g>=1, and
so there is a non-zero positive x in the C*-algebra generated by u, such that
X @yp(x)=0, i.e., xu,x=0, which shows that peE I'j(@).

For the C*-dynamical system in 2.4, every orbit in the pure states is of
type 1I,, or, for any pure state f, the representation
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.o, dt
¢ 7t

is quasi-equivalent to the GNS representation associated with the unique

invariant (tracial) state.

§3. Type I Orbits

The foliowing result generalizes part of [2], Theorem 2.1, where Condi-
tion 5 below is derived for some asymptotically abelian systems.

3.1. Theorem. Let 4 be a separable prime C*-algebra and a a faithful
continuous action of a separable locally compact abelian group G on 4. Then
the following conditions are equivalent:

1. There exists a d<(0, 1] such that for any x, y&A4 and any compact
neighbourhood U of 0@ it follows that

sup {||xayl|: a€A*(U)} 2 8llx]| [Iyll -

2. Condition 1 holds with §=1.
3. There exists a 0&(0, 1] such that for any x4 and any non-empty
open subset U of G it follows that

sup {||xax*||: a€ 4%(U),} >0]|x|]* .
4. Condition 3 holds with 6=1, or I'j(e)=G.

5. There exists a pure state /' of 4 such that z is faithful and for the
representation o of 4 defined by

®
0= S T goa, dt
G
on IXG, I )=L(G)QIL;, o(A)” is of type I with center L*(G)@1.

3.2. Remarks. A condition similar to (1) above was considered in [1]
in the case G is compact. From the resvlt there we may conjeciure that (1)
is equivalent to

1’. For any non-zero x, yEA and any neighbourhood U of 0€G it
follows that xA%(U) y=(0).

A similar remark applies to Condition 3 or 4. Condition 5 was first con-
sidered in [6] and from the result there it follows that (5) is equivalent to

5. There exists a pure state f of 4 X ,G such that z, is faithful and is
covariant under the dual action & of G.
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Proof of 3.1. If (5) is satisfied, then for == (A4)"” one has that JH(p)=
M=B(I,) by 1.3, from which one immediately obtains the other conditions
by using 1.1; e.g., to obtain (4) note that for any p G there is a bounded net
{xu} in A of spectrum p such that ||xu||<1 and =z(x,—>1, and hence one
obtains that for any x& 4, ||xxu.x*|| converges to ||x||%

It is trivial that (2) implies (1) and (4) implies (3) We shall show that
(1) implies (3). Let p, g=Sp(e). Then for any compact neighbourhood U
of 0§, Condition 1 implies that

A%(p+U) A%(U) A%(q+U)=*(0),

which then implies that p+g&Sp(e). Since a is faithful, it follows that Sp(a)=
G. Then it is straightforward to prove that (1) with & implies (3) with o6°
in place of ¢.

Now we have to show that (3) implies (5). Let {u,} be a dense sequence
in the unitaries of 4 (or A-+C1 if A1), and let {U,} be a countable basis
for the open subsets of G, where we suppose that each isolated point set ap-
pears infinitely often in {U,}. We enumerate {(u, U,): k, m=1, 2, -} and
let {(u,, U,)} be the resulting sequence. Let {I,} be a sequence of non-zero
ideals of 4 such that for any non-zero ideal J of A there is an n with JDI,.
(This is possible because A4 is separable and prime.) Define 7T be the set of
xEA such that x>0, [|x||=1, and B(x)={a=A4: xa=ax=a} is non-zero.
Note that B(x) is a hereditary C*-subalgebre of 4 and the open projection p(x)
corresponding to B(x) is majorized by the (closed) spectral projection of x
corresponding to the eigenvalue 1 (in 4%%).

Fix & TN and let p,=p(e;). Let

2y = sup {||p, uf(6+b*) uy pil|, bEA™ (U} .
Then it follows from (3) that 2,>¢ since for ac= TN B(e,)
sup {|lau¥ bual|, b€ A"(U)} =06
and ap,=a. And then we find ¢, T and b,& A"(U,), such that a,e;=q, and
sup Spec(y,)>24,—9/2

where Spec(y;) is the spectrum of y, and y,=a; u¥(b,+b¥)u; a,. Define a
continuous function f; on R by

0 <0

A0 = { 1 124,92
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and by linearity elsewhere, and note that fi(y,)&7. Then as A is prime,
B(fiy))NL is a non-zero hereditary C*-subalgebra of 4. We choose e,&

TNB(/) N L.
We repeat this procedure. Namely, if e, is defined, let p,=p(e,) and let

Ay = sup {||p, uF(b-+b%) u, p,||: bEAX(U,)} .
We find a,& TN B(e,) and b, A*(U,), such that
sup Spec(y,)>21,—08/2n
where y,=a, uf(b,+b})u, a,. Define a continuous function f, on B by

0 <0

5 = { 1 t>4,—8/2n

and by linearity elsewhere, and choose e,,, & TN B(f,(¥,) N L,.

Since f,(v,) e,=f.(v,) and e, f(y.)=€,+1, {e,} forms a decreasing
sequence in 7. Let f be a pure state of 4 such that f(e,)=1 for all n; we

assert that f satisfies the desired properties.
The representation =z is faithful because || /| Z,|| =1 for all ».
We want to show that f(a2y—1. Let z,=uf(b,+b¥) u, and compute:

ln_a/zngf(an Zy an) :f(anpn Zy Pu an)
<llpwza Pl f@) <2, f (@) -
Since 4,>06>>0 and f(a2)< 1, this implies that f(aZ)—1.
Let peG and let u be a unitary of 4 (or A+C1) and choose a subsequence
{n;} such that |[u,,—u||[—0 and {U,,} forms a basis for the neighbourhoods of
p. Since

Re f‘(an u:tk bn u, an)> (l”—6/2n)/2 ’
2,=0, and ||z (a,) 2,—2/||—0, any weak limit point Q of {z«(b,)} on I,
satisfies that
Re {Qmu) 2, = ;(u) 2,>=>0/2 .

Note that ||Q[|<1, and Q is the weak limit of a bounded net in z/(4) of spec-
trum p, ie., Q€ M(p) where H=n(A)Y'=B(Il;). Thus, we have shown
that for any pe G and any unit vector & of % s there is a Q&€ JH(p) such that
10ll<1 and

Re <QE, E>>5/2.
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From section 1 it follows that H(p) is a weakly closed subspace of i
such that ‘H(0) H(p) HMO)T HM(p), HM(p)M(p)* < H(0), andth at TH(0)isa
von Neumann subalgebra of 9. Since the initial and final supports of -H(p)
are 1, the weak linear span of H(p) M(p)* and JHU(p)* TM(p} respectively
is <M(0). Thus it follows that H(p) has an element u(p) such that at least
one of u(p) u(p)* and u(p)* u(p)is 1. If u(p) u(py*=1, then HM(p)=u(p) <H(0)
and if u(p)* u(p)=1, then HM(p)=M(0) u(p). Since the central support of
e=u(p) u(p)* is 1 in H(0), the reduction FH(0)'— H(0)'e is an isomorphism.
We define a map 8, of H(0)" by

B(Q) e=u(p) Qu(p)*, Q= M)’ .

To show that this is well-defined we have to prove that u(p) Qu(p)* = H(0) e.
But this follows since Ad u(p) is an isomorphism of u(p)* u(p) H(0) u(p)* u(p)
onto e JH(0)e. It easily follows that g, is an automorphism of (0)" and that it
does not depend on the choice of u(p): if vee H(p), then B,(Q) v=vQ. Since
HM(p) M) HM(p+q) and moreover the weak linear span of H(p) H(q) is
equal to H(p-+q), it follows that 8 is an action of G on H(0)’ (without any
continuity asserted).

If £ is trivial, then H(p)C H(O)’=M(0), i.e., H(p) is a weakly closed
ideal of H(0). Since the support of JHU(p) is 1, it follows that JH(p)=H(0).
Hence H(p)=1 for all pe G, which implies Condition 5 by 1.3.

Suppose that there exist a p&G and a non-zero projection EE M)’
such that ||E B,(E)||<0/2. Then [|[E(1—pB,(E))E||>1—0%4, which implies
||E (uu* —uEu*) E||>1—06%4 for u=u(p). Hence

[|Eu(1 —E)||>(1—08%/4)2 .

From this it follows that there exist unit vectors &, 7& 4, such that (1—E)¢
=&, En=y, and
ul,npy = [<ué, np|=2>(1-06%/4)~.
Furthermore, there exists a Q € (—p) such that ||Q||<1 and
@, mp=[KQn, | =0>9/2,
When one writes u £=2 7+, one obtains that {7, {>=0 and ||¢||<8/2. Then
Que M(0) and
Re <Qu ¢, 1) = Re K@ 2, 1>+Re L, 0%
22 u—|IC| [|@* n—w7l|

2\ 1/2
S R
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which is a contradiction since EQu(1—E)=0. Hence for any peG and any
non-zero projection E of H(0)’ one has that ||E 8,(E)||>0/2. Hence it follows
(cf. [4]) that B, is inner and

Sp(8,)C {e”; 16] <2 6} *)

where 6,=cos™! 6/2& (0, z/2).

If G is compact, then H(p) is the weak closure of z(4%(p)) and so the
family H(p) with pe G generates H=B(H,). Thus f is an ergodic action
of the discrete group G on H(0)’ and H(0)’ is a factor since B, is inner for
each peG. If v(p) is a unitary of F(0)" which implements B,, one has that
||EV(p)E|]|>06/2 for any non-zero projection £ of (0)’, and hence one may
assume that

Spec(v(p)) = {e: 0] <0} **)

by multiplying a complex number of modulus 1 if necessary (cf. [5]). Since
B,(v(p)) also implements g, for any gEG, one has that B,tv(p) v(p*ell,
and concludes that there exists a &G such that 8,(v(p))=<t, ¢> v(p), q<G.
For this to be compatible with (**), one must have t=0 or v(p)eC1 which
implies that g, is the identity map. Thus g is trivial and so one gets the
conclusion.

Suppose that G equals KxZ'x R™ where K is a compact group and /, m
are non-negative integers. First we apply the previous argument to the sys-
tem (4, K, @| K) to obtain that the z, restricted to A*/%(0} is irreducible. Then
we consider the system (4”'5(0), Z' X R", a|Z'x R™) knowing that the prop-
erties of z . described for (4, G, @) are still satisfied for this new system. Hence
we now suppose that G=Z'xR". Let N=ker 8, which is a subgroup of
G=T'xR". Since N={peG: HM(p)>1}, N is closed. If N+G, then the
quotient group G/N has an element of infinite order. Let p&G be such that
np& N for any n=:0. It follows that any 2&Sp(8,) is of finite order in 7" and
Sp(B,) is discrete since otherwise Sp(g;) must meet {e®: z>|6|>26,} for
some n, which contradicts (*). Thus Sp(8,) is a finite set whose elements are
all of finite order, which implies that Sp(43) is {1} for some #n, a contradiction.
Hence N=G or £ is trivial.

In general let G be the set of compactly generated open subgroups of G,
i.e., HEQ if there is an open neighbourhood U of 0 G such that U is com-
pact, U=—U, and H is generated by U as a group. & is a directed set under
inclusion. For HE G, H* is a compact subgroup of G since H~ is the dual of
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the discrete group G/H. For any open neighbourhood ¥ of 0€G there exists
an He G such that H-C ¥ (by the definition of the topology of G).

Let pG. Since H is of the form KxZ'xR" for HEG, it follows that
M(p+H*)>1 for any HEG. Since {p-+H-+V: HEG, V is an open neigh-
bourhood of 0G} forms a basis for the neighbourhoods of p, it easily fol-
lows that HM(p)>1, and thus B is trivial. This concludes the proof.

3.3. Theorem. Let 4 be a separable prime C*-algebra and @ a con-
tinuous action of a separable locally compact abelian group G on A4 such that
I'(a)=G. Let H be a closed discrete subgroup of G and let N=H~*. Then
there exists a pure state ¢ of 4 such that =, is faithful and for the representa-
tion p, of 4 defined by

®
0y = g ryoa, dt
G

on LAG, H,)=LA(G)QH,, 0,(A) is of type I with center {p: pEN}"Q]1.

Proof. By 3.1 there is a pure state f of 4 such that z, is faithful and
A" NpHA) =L"(G)®1. We define a representation @ on (H, 4 ) of
the crossed product A4 X gH with §=a | H by

(@@ &) (1) = =s(efa) (1), a€4,
@A) @) =E@+s), s€H,

for £ %(H, 9i;) where 2 is the canonical unitary representation of H in the
multiplier algebra M(4 x gH) and @ is the unique extension of @ to M(4 X gH).
Then @ is a faithful irreducible representation of A XgH since z, is faithful
and zoa is disjoint from z, for s& H\{0}. (In particular, 4 X gH is prime.)
For p&N there is a bounded net {x.} in 4 of spectrum p such that ||x.||<1
and limz ;(x,)=1. Since ||a,(xu)—xu/|—>0 for s& H, one obtains that lim @(x,.)
=1. Thus it follows that for any neighbourhood U of p& N and any
xEAXgH,

sup {||x(a+a*) x*||: a€A™(U)} = 2|x|*.

Consider the dual action 4 of the compact abelian group P/} on the prime
C*-algebra A XgH. By 3.4 below one can apply [1] to this system to conclude
that there is a faithful irreducible representation z of A XzH such that the
restriction of = to A4 is also irreducible. Let M ==(4XgH)”. In the nota-
tion in Section 1 one has that H(s)= M for s& H. Hence it follows that for
any x€A4 XgH and s€E H,
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sup {||x(a+a*) x*||: acA(s)} =2[|x|. **)

(In particular I",(8)=H for the dual action £ of Hon A XgH.)
We now apply a procedure similar to the one in the proof of 3.1 by using
(*) and (**) simultaneously (instead of the condition:

sup {||x(a+a*) x*||: a€A™(U);} = |x]|?

for any non-empty open set U of G and any x& A). Since the procedure is
quite similar, we omit the details. The result is that one obtains a pure state
S of AXgH such that z is faithful and for any unit vector { €4, any pEN,
and any s H, there are a bounded net {a,} in 4 of spectrum p and a bounded
net {by} in A4 such that ||a.||<]1, ||bu]| <1, and

lim <z (ax) €, &> =1, lim <z (bu A(s)) &, £> = 1.

From the second estimates one concludes that z,(4)”==;(4 XgH)” in ex-
actly the same way as in 3.1. Thus the restriction = of z, to 4 is irredvcible.
On setting M =n(A4)” for the system (4, G, @), the first estimates imply that
M(p)>1 for peN. (Since we now know that the value corresponding t6
2, in the proof of 3.1 is 2, we can conclude that ||E 8,(E)||=1 for any non-zero
projection E of JH(0)’, which implies that g, is the identity.) Since e, is weakly
inner in = for s€ H, if H(p)>1 then {s, p>=1 for s€H, i.e., pc H-. Thus
it follows that H(p)=>1 if, and only if p&N. For the representation o of 4
defined by

®
0 ———S moa, dt ,
c

it follows by 1.1 that o(4)’ Ne(4)’ = {p: pEN}”"®]1. Thus p(4)” is of type
I and this completes the proof with o =f| 4.

34. Lemma. Let 4 be a prime C*-algebra and 4 an action of a discrete
group H on A such that g, is properly outer for each t€ H\{0}. Let AXgH
be the reduced crossed product of 4 by #. Then for any non-zero x, y&
A X gH it follows that xAy==(0).

Proof. There is a faithful conditional expectation @ of A XgH onto
A such that @(@)=a for a4, and @(a A(s))=0 for a4, s H\{0}. Let
x=21 x(5) A(s), y=21 y(s) A(s) be positive elements of A X gH such that the sum-
mations are finite. We shall show that

sup {|[xay||: a4} Z[|0()]| [|2(V)I] - ™
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Since those elements x, y are dense in the positive part of 4 X gH, this is enough
to conclude that (*) holds for any positive x, y& A4 XgH. From this we get the
conclusion.

To prove (*) we proceed as in [5]. First for any ¢>0 one finds positive
e, f€ A such that ||e|]|=1=]|| f||, and

llexe—ex(0) ef| <e , |lex(0) e]|>(1—e)l|x(O)]] ,
A=) flI<e, (/3O fII>A—)lyO) -
Then one finds a b= 4 such that ||b]]=1, and

|lex(0) ebfy(0) 111> (1 —¢)llex(0) ef| |L/¥©O) f1] -

Thus one obtains that for a=ebfE 4,

|Ixay|| > |lexebfyf 11> (1 —e)||xO)]] [ y(O)|| —2e .

Since @(x)=x(0) etc., this concludes the proof.

3.5. Theorem. Let A be a separable prime C*-algebra and « a faithful
continuous action of a (separable) compact abelian group G on 4. Let H
be an arbitrary closed subgroup of G. Then the following conditions are
equivalent:

1. A€ is prime and there exists a G-invariant pure state f of 4 such that
7, is faithful.

2. A¥ is prime and there exists an H-invariant pure state ¢ of 4 such
that =, is faithful and o,(4)’ N ee(4) ={p: pEH*}"®1, where A7=A"%(0)
etc. and p, is defined as in 3.3.

Proof. Suppose (1). By using the state f in (1) one can define a repre-
sentation of 4 X,G by exfending 7, on the same space ;. Hence it follows
from 3.1 that I')(¢)=G for the dual action & on 4 X,G. In the same way for
the dual action § on A xzH with f=a| H it follows that I',(§)=H, or rather
more: For any x&A4 XgH and any non-empty open subset U of H,

sup {|x(a-+a*) x*||: ac (A x FHA(U)} =2| ]2 .

On the other hand one can conclude as in the proof of 3.3 that for any x&
A X gH and any neighbourhood U of pe H™,

sup {l|x(a+a*) x*||: a€ 4%(U)} =2]|x][* .

Using these two conditicns we proceed in exactly the same way as in 3.3
to obtain a pure state f of 4 XgH such that z is faithful, z (A4)" == (A X gH)”,
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and with U == (4)" for the system (4, G, @), H(p)=>1 if, and only if p H*.
Since z,|A4 is B-covariant there is a unit vector in 4, which defines a G-
invariant state ¢ of 4. Since z | 4==,, ¢ has the desired properties.

Suppose (2). It follows from [1] that e, is properly outer for each s H\
{0}. If s&H, then e, induces an automorphism of o,(4)’ (with ¢ in (2))
which is non-trivial on the center, and so it is properly outer. Thus «, is prop-
erly outer for any s&G\{0}. Now we shall show that 4% is prime, con-
cluding the proof by [1].

We restrict =, to B=A#, which we denote by = and consider the action
B of G/H on B induced by a. Let SH==(B)"” for (B, G/H, £). Then (2) im-
plies that H(p)>1 for pe(G/HYN=H".

Let u be the unitary representation of H on 4, defined by u, z,(x) 2,=
myoa(x) £,, XEA, and let E, be the spectral projection of u corresponding to
the character p&H. Then since z,(B)'={E,: p€H}', n,==z|E, %, is an
irreducible representation of B for any pH. Since the condition that .H(p,
51 for pe A™ is inherited by =, pefl, it follows from 1.3 that z,(B)"=
z,(BPY’. Thus the family {r,: pef/}} of irreducible representaticns of B satisfies
that x,(B®)’ ==,(B)"” and @, is faithful. From this it follows that xBPy==(0)

PEH
for any non-zero x, yEB since B is prime. Thus in particular B?=A€ is

prime.
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