Type I Orbits in the Pure States of a *C**-dynamical System

By

Akitaka Клянімото

0. Introduction

Let A be a C*-algebra and let α be an action of a locally compact abelian group G on A such that α is continuous, i.e., $t \mapsto \alpha_t(x)$ is continuous on G for each $x \in A$. Let P(A) denote the set of pure states of A and α^* the action of G on P(A) defined by $\alpha_t^* f = f \circ \alpha_t$, $t \in G$, which is continuous in the sense that $(t, f) \mapsto \alpha_t^* f$ is jointly continuous if P(A) is equipped with the weak* topology. Thus, with the C*-dynamical system (A, G, α) one associates the dynamical system $(P(A), G, (\alpha^*)$. (If A is abelian, P(A) is a locally compact space and A is identified with the continuous functions on P(A) vanishing at infinity.)

Let $f \in P(A)$. We call the orbit $\{\alpha_i^* f, t \in G\}$ through f of type I if the representation

$$\rho_f = \int_G^{\oplus} \pi_f \circ \alpha_t \ dt$$

of A on $L^2(G, \mathcal{H}_f) = L^2(G) \otimes \mathcal{H}_f$ is of type I, where π_f is the GNS representation of A associated with f, and dt is a Haar measure on G. If A is abelian, or more generally of type I, or if α^* is strongly continuous, then every orbit in P(A) is of type I. In general it is not even true that a system has a type I orbit.

In this paper we shall show that there exist type I orbits for C^* -dynamical systems satisfying a certain spectrum condition. This is defined in terms of a spectrum similar to the Connes spectrum.

Before we state our main results more concretely, we look at the representations ρ_f closely. Given $f \in P(A)$, we denote by u the unitary representa-

Communicated by H. Araki, October 1, 1986.

^{*} Department of Mathematics, College of General Education, Tohoku University, Sendai 980, Japan

tion of G on $L^2(G, \mathcal{H}_f)$ defined by

$$(u(s) \xi)(t) = \xi(t+s)$$
, a,a, t

for $\xi \in L^2(G, \mathcal{H}_f)$. Since $\rho_f \circ \alpha_s = \operatorname{Ad} u(s) \circ \rho_f$, α extends to an action $\bar{\alpha}$ on $\rho_f(A)''$ by $\bar{\alpha}_s = \operatorname{Ad} u(s)$. Let $Z = \rho_f(A)'' \cap \rho_f(A)'$ and let $N = \operatorname{Sp}(\bar{\alpha} | Z)$. Then since Z is a von Neumann subalgebra of $L^{\infty}(G) \otimes 1$, $\bar{\alpha}$ is ergodic on Z. Hence the von Neumann algebra $\rho_f(A)''$ is homogeneous, e.g., purely of type I, II, or III, and N is a closed subgroup of \hat{G} . It easily follows that

$$Z = \{p \colon p \in N\}'' \otimes 1.$$

Let $H = \{s \in G: \pi_f \circ \alpha_s \sim \pi_f\}$ where \sim denotes (quasi-) equivalence. Then H is a subgroup of G and it follows that $H \subset N^{\perp}$ in general.

0.1. Proposition. Let A be a separable C^* -algebra and let α be a continuous action of a separable (i.e., second-countable) locally compact abelian group G on A, and adopt the notation above. Then the following conditions are equivalent:

- 1. $\rho_f(A)''$ is of type I.
- 2. $H = N^{\perp}$.

Now one of our results runs as follows: In the same situation as above suppose that A is simple and unital, α is faithful, and that there is an automorphism σ of A such that $\sigma \circ \alpha_i = \alpha_i \circ \sigma$, $t \in G$ and $[\sigma^n(x), y] \rightarrow 0$ as $n \rightarrow \infty$ for x, $y \in A$ (which is a situation where the spectrum condition referred to before is satisfied). Then for each closed discrete subgroup H of G there exists a pure state f as described in 0.1 (see 2.3 and 3.3). When the group G is compact we can remove, by using [1], the condition 'discreteness' on H in the above result (see 3.5), and furthermore we could say much more about the pure states in connection with the action α^* due to the Glimm's type theorem [3].

We conclude this section by giving the proof of 0.1.

Suppose (1) and let $s \in N^{\perp}$. Then $\overline{\alpha}_s$ leaves each element of the center Z invariant, and hence it is inner, i.e., there is a unitary V in $\rho_f(A)''$ such that $\alpha_s = \operatorname{Ad} V$. Let $\{V_t: t \in G\}$ be a measurable family of unitaries such that

$$V = \int_{G}^{\oplus} V_{t} dt \, .$$

Then there is a $t \in G$ such that

$$\pi_f \circ \alpha_{s+t}(x) = V_t \, \pi_f \circ \alpha_t(x) \, V_t^* \, , \quad x \in A$$

and hence $\pi_f \circ \alpha_s \sim \pi_f$ or $s \in H$. Conversely if $s \in H$, $\bar{\alpha}_s$ is implemented by

322

by a unitary of the form $1 \otimes u$ and hence it is trivial on Z, or $s \in N^{\perp}$. Thus (2) follows.

Suppose (2). For each s in the closed subgroup H of G, α_s extends to an automorphism β_s of $\pi_f(A)'' = B(\mathcal{H}_f)$: $\beta_s \circ \pi_f = \pi_f \circ \alpha_s$. Since A is separable, it follows that $s \mapsto \beta_s(Q)$ is weakly* measurable for $Q \in B(\mathcal{H}_f)$, i.e., $s \mapsto \varphi \circ \beta_s$ is weakly measurable for $\varphi \in B(\mathcal{H}_f)_*$. Hence, as $B(\mathcal{H}_f)_*$ is separable, $s \mapsto (\beta_s)_*$ is strongly measurable, and so strongly continuous. For the representation

$$\pi_H = \int_H^{\oplus} \pi_f \circ \alpha_s \, ds$$

of A on $L^2(H, \mathcal{H}_f)$, one has that π_H is quasi-equivalent to π_f : For any $Q \in \pi_H(A)''$ there is a unique $Q_1 \in \pi_f(A)''$ such that

$$Q=\int_{H}^{\oplus}\beta_{s}(Q_{1})\,ds$$

and, for any $Q_1 \in B(\mathcal{H}_f)$, the above direct integral defines an element of $\pi_H(A)''$. Since ρ_f is unitarily equivalent to

$$\int_{G/H}^{\oplus} \pi_H \circ \alpha_{f(s)} \, ds \, ,$$

where $f: G/H \to G$ is a measurable function such that f(s)+H=s, $s \in G/H$, it follows by (2) that the above integral is a central decomposition of ρ_f . Hence $\rho_f(A)''=L^{\infty}(G/H)\otimes \pi_f(A)''$, which is of type I.

§1. Spectral Subspaces

Let A be a C*-algebra and let α be a continuous action of a locelly compact abelian group G on A. For a subset U of \hat{G} , $A^{\alpha}(U)$ denotes the set of $x \in A$ with $\operatorname{Sp}_{\alpha}(x) \subset U$. Let $\{x_{\mu}\}$ be a bounded net in A and let $p \in G$. If for any neighbourhood U of $0 \in \hat{G}$ there exists a μ_0 such that $x_{\mu} \in A^{\alpha}(p+U)$ for all $\mu \geq \mu_0$, then $\{x_{\mu}\}$ is said to be a bounded net of spectrum p.

Let π be a representation of A and let $\mathcal{M}=\pi(A)''$. For each $p\in \hat{G}$ let $\mathcal{M}(p)$ denote the set of elements of \mathcal{M} which are obtained as weak limit points of $\{\pi(x_{\mu})\}$ for all bounded nets $\{x_{\mu}\}$ in A of spectrum p. (Note that $\mathcal{M}(p)$ also depends on π and A.) Then it is obvious that $\mathcal{M}(p)$ is a subspace of \mathcal{M} and that $\mathcal{M}(p)^*=\mathcal{M}(-p)$ and $\mathcal{M}(p)\mathcal{M}(q)\subset \mathcal{M}(p+q)$ for $p, q\in \hat{G}$. If there is a continuous action $\bar{\alpha}$ of G on \mathcal{M} such that $\bar{\alpha}_t \circ \pi = \pi \circ \alpha_t$, $t \in G$, it follows that $\mathcal{M}(p)=\mathcal{M}^{\bar{\alpha}}(p)$ where

$$\mathcal{M}^{\alpha}(p) = \{ Q \in \mathcal{M} \colon \bar{\alpha}_t(Q) = \langle t, p \rangle Q, t \in G \} .$$

А. Кізнімото

1.1. Proposition. Let A be a C*-algebra and let α be a continuous action of a locally compact abelian group G on A. Let π be a representation of A and define a representation ρ of A by

$$\rho = \int_{G}^{\oplus} \pi \circ \alpha_{i} dt$$

on $L^2(G, \mathcal{H}_{\pi}) = L^2(G) \otimes \mathcal{H}_{\pi}$ where dt is a Haar measure. Let $\mathcal{M} = \pi(A)''$ and $\mathcal{N} = \rho(A)''$, and let α be the action of G on \mathcal{N} induced by α . Then for any $p \in \hat{G}$ it follows that $\mathcal{N}^{\bar{\alpha}}(p) = p \otimes \mathcal{M}(p)$ and that for each $Q \in \mathcal{M}(p)$ there is a bounded net $\{x_{\mu}\}$ in A of spectrum p such that $||x_{\mu}|| \leq ||Q||$ and $\lim_{\pi(x_{\mu})} = Q$. In particular $\mathcal{M}(p)$ is a closed subspace of \mathcal{M} , and $\mathcal{M}(0)$ is a von Neumann subalgebra of \mathcal{M} .

Proof. Let $Q \in \mathcal{M}(p)$, and let $\{x_{\mu}\}$ be a bounded net of spectrum p such that $\pi(x_{\mu})$ converges weakly to Q. Since $||\alpha_{t}(x_{\mu}) - \langle t, p \rangle |x_{\mu}|| \rightarrow 0$ uniformly on each compact subset of $t \in G$ ([8], 8.1.7) one has that

$$\langle \pi \circ \alpha_t(x_\mu) \xi, \eta \rangle \rightarrow \langle t, p \rangle \langle Q \xi, \eta \rangle$$

uniformly on each compact subset of G for any ξ , $\eta \in \mathcal{H}_{\pi}$. Thus it follows that $\lim \rho(x_{\mu}) = p \otimes Q$ which belongs to $\mathcal{N}^{\overline{\alpha}}(p)$.

Let $Q' \in \mathcal{N}^{\overline{a}}(p)$. Since $Q' \in L^{\infty}(G) \otimes B(\mathcal{H}_{\pi})$, and Q' satisfies that $\overline{a}_t(Q') = \langle t, p \rangle Q'$, there is a bounded operator Q on \mathcal{H}_{π} such that $Q' = p \otimes Q$. We have to show that $Q \in \mathcal{M}(p)$.

By Kaplansky's density theorem there is a net $\{x_{\mu}\}$ in A such that $||x_{\mu}|| \le ||Q'|| = ||Q||$ and $\lim \rho(x_{\mu}) = Q'$. Let g be a positive continuous integrable function on G such that supp \hat{g} is compact and $\hat{g}(0) = 1$. For such a g and μ let

$$x_{\mu,g} = \int \alpha_t(x_\mu) \langle \overline{\langle t, p \rangle} g(t) dt$$

Then $||x_{\mu,g}|| \le ||x_{\mu}|| ||g||_1 \le ||Q'||$ and $\rho(x_{\mu,g})$ converges to Q' as $\mu \to \infty$ for each g. Define an order on the pairs (μ, g) by:

$$(\mu_1, g_1) \ge (\mu_2, g_2)$$
 if $\mu_1 \ge \mu_2$, supp $\hat{g}_1 \subset \text{supp } \hat{g}_2$.

Then $\{x_{\mu,g}\}$ is a net and Q' is a weak limit point of $\{\rho(x_{\mu,g})\}$. This shows that there is a bounded net $\{y_{\mu}\}$ in A of spectrum p such that $||y_{\mu}|| \leq ||Q'||$ and $\lim \rho(y_{\mu}) = Q'$. Since $\{y_{\mu}\}$ is bounded, there is a subnet $\{y'_{\mu}\}$ of $\{y_{\mu}\}$ such that $\pi(y'_{\mu})$ converges weakly, say to Q_1 . Since $||\alpha_t(y'_{\mu}) - \langle t, p \rangle y'_{\mu}|| \to 0$ for $t \in G$, it follows that $\lim \rho(y'_{\mu}) = p \otimes Q_1$. Hence $Q = Q_1$ and thus $Q \in \mathcal{M}(p)$. Consider the same situation as in 1.1. Let N be a closed subgroup of \hat{G} and let $p \in \hat{G}$. A bounded net $\{x_{\mu}\}$ in A is said to be of spectrum p+N if for any neighbourhood U of $0 \in \hat{G}$ there exists a μ_0 such that $x_{\mu} \in A^{\alpha}(p+N+U)$ for all $\mu \ge \mu_0$, or equivalently if it is a bounded net of spectrum p+N $(\in \hat{G}/N)$ with respect to the action defined by restricting α to $H=N^{\perp}$. Let $\mathcal{M}(p+N)$ be the set of elements of \mathcal{M} which are obtained as weak limit points of $\{\pi(x_{\mu})\}$ for all bounded nets $\{x_{\mu}\}$ in A of spectrum p+N. Then one immediately obtains

1.2. Corollary. In the same situation as in 1.1, let N be a closed subgroup of \hat{G} . Then $\mathcal{M}(p+N)^* = \mathcal{M}(-p+N)$, $\mathcal{M}(p+N) \subset \mathcal{M}(p+q+N) \subset \mathcal{M}(p+q+N)$, and $\mathcal{M}(p+N)$ is a closed subspace of \mathcal{M} . Moreover for any $Q \in \mathcal{M}(p+N)$ there exists a bounded net $\{x_{\mu}\}$ in A of spectrum p+N such that $||x_{\mu}|| \leq ||Q||$ and $\lim \pi(x_{\mu}) = Q$.

1.3. Proposition. Let A be a prime C*-algebra and let α be a continuous action of a locally compact abelian group G on A. Let π be a faithful representation of A and define the representation ρ of A as in 1.1. Let $\mathcal{M}=\pi(A)''$ and let $\mathcal{N}=\rho(A)''$. If \mathcal{M} is a factor, the following conditions are equivalent:

- 1. $\mathcal{M}(0) = \mathcal{M}$, and α is faithful.
- 2. $\mathcal{M}(p) = \mathcal{M}$ for all $p \in \hat{G}$.
- 3. $\mathcal{M}(p) \ni 1$ for all $p \in \hat{G}$.
- 4. $\mathcal{N} \supset L^{\infty}(G) \otimes 1$.

Proof. Suppose (1). Then $\mathcal{M}(p)$ is a closed ideal of \mathcal{M} , i.e., $\mathcal{M}(p)=(0)$ or \mathcal{M} , since \mathcal{M} is a factor. The set of $p \in \hat{G}$ with $\mathcal{M}(p) = \mathcal{M}$ is a closed subgroup of \hat{G} ; it is a group since $\mathcal{M}(p)^* = \mathcal{M}(-p)$ and $\mathcal{M}(p) \mathcal{M}(q) \subset \mathcal{M}(p+q)$, and it is closed since $\{p \in \hat{G} : \mathcal{M}(p) \ge 1\}$ is closed.

Let \bar{a} be the action of G on \mathcal{N} induced by a. Since \bar{a} is faithful, we only have to show that $\mathcal{M}(p) \neq (0)$, or $\mathcal{N}^{\bar{a}}(p) \neq (0)$ by 1.1, for each $p \in \operatorname{Sp}(\bar{a})$. For any compact neighbourhood U of $p \in \operatorname{Sp}(\bar{a})$, $\mathcal{N}^{\bar{a}}(U)$ is not zero. Let $Q \in \mathcal{N}^{\bar{a}}(U)$ with ||Q||=1 and let $t \mapsto Q(t)$ be a norm continuous map of G into \mathcal{M} which represents Q (see [9], IV.7.17 and note that the continuity requirement is satisfied since $\operatorname{Sp}_{\bar{a}}(Q)$ is compact). By replacing Q by $\bar{a}_s(Q)$ with $s \in G$ if necessary, we suppose that ||Q(0)|| > 1/2. Since $1 \otimes Q(0) \in \mathcal{N}^{\bar{a}}(0)$, we further suppose that $Q(0) \ge 0$ by replacing Q by $Q \cdot 1 \otimes Q(0)^* / ||Q(0)||$. In a similar way we may eventually suppose that Q(0)=1/2 by using $1 \otimes \mathcal{M} \subset \mathcal{N}^{\bar{a}}(0)$. For each compact neighbourhood U of p we choose $Q_U \in \mathcal{N}^{\bar{a}}(U)$ such that $||Q_U|| \le 1$ and $Q_U(0)=1/2$. Then since the family $t \mapsto Q_U(t)$ is equi-continuous as U shrinks А. КІЗНІМОТО

to $\{p\}$, any weak limit point of $\{Q_U\}$ is not zero and belongs to $\mathcal{N}^{\overline{a}}(p)$. By 1.1 the implications (2) \Rightarrow (3) \Rightarrow (4) are immediate.

Suppose (4) and let $x \in A$ and $\varepsilon > 0$. Let U be an open neighbourhood of 0 such that $||\alpha_i(x) - x|| < \varepsilon$, $t \in U$. Let K be a compact subset of G and take a finite covering $\{U+t_i: i=1, \dots, n\}$ of K. Let

$$Q = \sum_{i=1}^{n} (\chi_{U_i} \otimes 1) \rho(\alpha_{-t_i}(x))$$

where $U_i = (U+t_i) \cap K \setminus_{i=1}^{i-1} U_i$, $U_1 = (U+t_1) \cap K$. Then $Q \in \mathcal{N}$ and $||Q - \chi_K \otimes \pi(x)|| < \varepsilon$ which implies that $\chi_K \otimes \pi(x) \in \mathcal{N}$ and so it follows that $1 \otimes \pi(x) \in \mathcal{N}$. Thus $\mathcal{N} \supset L^{\infty}(G) \otimes \mathcal{M}$ i.e., $\mathcal{M}(0) = \mathcal{M}$. Since $\operatorname{Sp}(\alpha) = \hat{G}$ follows trivially this concludes the proof.

§2. Spectrum

Let α be a continuous action of a locally compact abelian group G on a C^* -algebra A. The Connes spectrum $\Gamma(\alpha)$ of α is defined as follows (cf. [8]): $p \in \Gamma(\alpha)$ if for any non-zero $x \in A$ and any compact neighbourhood U of pthere are $t \in G$ and $a \in A^{\alpha}(U)$ such that $xa\alpha_t(x^*) \neq 0$. We define a subset $\Gamma_1(\alpha)$ of \hat{G} as follows: $p \in \Gamma_1(\alpha)$ if for any non-zero $x \in A$, any compact neighbourhood U of p, and any $\varepsilon > 0$, there is an $a \in A^{\alpha}(U)$ such that ||a|| = 1 and $||xax^*|| \ge (1-\varepsilon)||x||^2$. Clearly $\Gamma_1(\alpha)$ is a closed subset of $\Gamma(\alpha)$ and satisfies that $\Gamma_1(\alpha) \ge 0$ and $-\Gamma_1(\alpha) = \Gamma_1(\alpha)$.

2.1. Proposition. $\Gamma_1(\alpha)$ is a closed subgroup of \hat{G} .

Proof. It suffices to show that $\Gamma_1(\alpha)$ is closed under multiplication. Let $p, q \in \Gamma_1(\alpha), x \in A$, and $\varepsilon > 0$. For any compact neighbourhood U of $0 \in \hat{G}$ there is an $a \in A^{\alpha}(p+U)$ such that ||a||=1 and $||xax^*|| \ge (1-\varepsilon)||x||^2$. Let $y=ax^*$. And then $||y|| \le ||x||$ and $||xy|| \ge (1-\varepsilon)||x|| ||y||$. By the following lemma we have a $b \in A^{\alpha}(q+U)$ such that ||b||=1 and $||xby|| \ge \varphi_1(1-\varepsilon)||xy||$, where $\varphi_1(t) \uparrow 1$ as $t \uparrow 1$. Since $ba \in A^{\alpha}(p+q+U+U)$ and $||xbax^*|| \ge (1-\varepsilon)$ $\varphi_1(1-\varepsilon)||x||^2$, one gets the conclusion.

2.2. Lemma. There exists an increasing function φ on [0, 1] such that $\lim_{t \neq 1} \varphi(t) = \varphi(1) = 1$ and for any $p \in \Gamma_1(\alpha)$, any neighbourhood U of p and any non-zero x, $y \in A$, $t \in [0, 1]$ with ||xy|| = t ||x|| ||y||, it follows that

$$\sup \{ ||xay||: a \in A^{\alpha}(U)_1 \} \ge \varphi(t) ||x|| ||y||$$

where $A^{\alpha}(U)_1$ denotes the unit ball of $A^{\alpha}(U)$.

326

Proof. Let $x, y \in A, t \in [0, 1]$ be as in the above lemma, and let $x_1 = ||x||^{-2}x^*x$, and $y_1 = ||y||^{-2}yy^*$. Then $||x_1|| = ||y_1|| = 1, x_1 \ge 0, y_1 \ge 0$ and $||x_1y_1|| \ge t^3$. Since $||xay|| \ge ||x_1ay_1|| ||x|| ||y||$ and $t^3 \uparrow 1$ as $t \uparrow 1$ we now assume that $x \ge 0$, $y \ge 0$ and that ||x|| = 1 = ||y||. For any $\varepsilon > 0$, there is an $a \in A^{\varepsilon}(U)$ such that ||a|| = 1 and $||xyayx|| > (1 - \varepsilon) t^2$. There exists a pure state f of A such that

$$f(xyayx^2ya^*yx) > (1-\varepsilon)^2 t^4$$

Since $xyayx^2 ya^*yx \le t^2 xy^2x$, one has that $f(xy^2x) > (1-\varepsilon)^2 t^2$, and so

$$f((xy-x)(xy-x)^*) = f(xy^2x) - 2f(xyx) + f(x^2)$$

 $\leq f(x^2) - f(xy^2x) < 1 - (1-\varepsilon)^2 t^2.$

One calculates:

$$\begin{aligned} f(xay^2 a^*x) &\geq f(xayx^2 ya^*x) \\ &= f(xyayx^2 ya^*yx) + f((x-xy) ayx^2 ya^*yx) + f(xayx^2 ya^*(x-yx)) \\ &> (1-\varepsilon)^2 t^4 - 2t^2(1-(1-\varepsilon)^2 t^2)^{1/2} . \end{aligned}$$

Hence

$$\sup \{ ||xay||: a \in A^{a}(U)_{1} \} \ge t(t^{2} - 2(1 - t^{2})^{1/2})^{1/2}$$

and thus the lemma is proved.

2.3. Proposition. Let A be a simple unital C*-algebra and let α be a continuous action of a locally compact abelian group G on A. Suppose that there is an automorphism σ of A such that $\sigma \circ \alpha_t = \alpha_t \circ \sigma$, $t \in G$ and $[x, \sigma^n(y)]$ goes to zero as $n \to \infty$ for any $x, y \in A$. Then $\Gamma_1(\alpha) = \Gamma(\alpha) = \operatorname{Sp}(\alpha)$.

Proof. This follows easily since $||x \sigma^n(y)|| \rightarrow ||x|| ||y||$ as $n \rightarrow \infty$ [7].

2.4. Proposition. Let A be a simple unital C^* -algebra and let α be a continuous action of a compact abelian group G on A such that $A^{\alpha}(0) = C1$. Then $\Gamma_1(\alpha) = \{0\}$ and $\Gamma(\alpha) = \operatorname{Sp}(\alpha)$.

Proof. It is trivial that $\Gamma(\alpha) = \operatorname{Sp}(\alpha)$, and we may assume that $\operatorname{Sp}(\alpha) = \hat{G}$. For each $p \in \hat{G}$, $A^{\alpha}(p)$ is one-dimensional and contains a unitary, say u_p . There is an injective homomorphism φ of \hat{G} into G such that $\alpha_{\varphi(p)} = \operatorname{Ad} u_p$, $p \in \hat{G}$ (and the range is dense in G). If $p \neq 0$, there is a $q \in \hat{G}$ such that $\langle \varphi(p), q \rangle \neq 1$, and so there is a non-zero positive x in the C^* -algebra generated by u_q such that $x \alpha_{\varphi(p)}(x) = 0$, i.e., $xu_p x = 0$, which shows that $p \notin \Gamma_1(\alpha)$.

For the C*-dynamical system in 2.4, every orbit in the pure states is of type II₁, or, for any pure state f, the representation

$$\int_{G}^{\oplus} \pi_{f} \circ \alpha_{t} dt$$

is quasi-equivalent to the GNS representation associated with the unique invariant (tracial) state.

§3. Type I Orbits

The following result generalizes part of [2], Theorem 2.1, where Condition 5 below is derived for some asymptotically abelian systems.

3.1. Theorem. Let A be a separable prime C^* -algebra and α a faithful continuous action of a separable locally compact abelian group G on A. Then the following conditions are equivalent:

1. There exists a $\delta \in (0, 1]$ such that for any $x, y \in A$ and any compact neighbourhood U of $0 \in \hat{G}$ it follows that

$$\sup \{ ||xay|| : a \in A^{a}(U)_{1} \} \ge \delta ||x|| ||y||.$$

2. Condition 1 holds with $\delta = 1$.

3. There exists a $\delta \in (0, 1]$ such that for any $x \in A$ and any non-empty open subset U of \hat{G} it follows that

$$\sup \{ ||xax^*|| : a \in A^{\infty}(U)_1 \} \ge \delta ||x||^2.$$

4. Condition 3 holds with $\delta = 1$, or $\Gamma_1(\alpha) = \hat{G}$.

5. There exists a pure state f of A such that π_f is faithful and for the representation ρ of A defined by

$$\rho = \int_{G}^{\oplus} \pi_{f} \circ \alpha_{t} \, dt$$

on $L^2(G, \mathcal{H}_f) = L^2(G) \otimes \mathcal{H}_f$, $\rho(A)''$ is of type I with center $L^{\infty}(G) \otimes 1$.

3.2. Remarks. A condition similar to (1) above was considered in [1] in the case G is compact. From the result there we may conjecture that (1) is equivalent to

1'. For any non-zero x, $y \in A$ and any neighbourhood U of $0 \in \hat{G}$ it follows that $xA^{\alpha}(U) \neq (0)$.

A similar remark applies to Condition 3 or 4. Condition 5 was first considered in [6] and from the result there it follows that (5) is equivalent to

5'. There exists a pure state f of $A \times_{\alpha} G$ such that π_f is faithful and is covariant under the dual action $\hat{\alpha}$ of \hat{G} .

Proof of 3.1. If (5) is satisfied, then for $\mathcal{M}=\pi_f(A)''$ one has that $\mathcal{M}(p)=$ $\mathcal{M}=B(\mathcal{H}_f)$ by 1.3, from which one immediately obtains the other conditions by using 1.1; e.g., to obtain (4) note that for any $p \in \hat{G}$ there is a bounded net $\{x_{\mu}\}$ in A of spectrum p such that $||x_{\mu}|| \leq 1$ and $\pi(x_{\mu}) \to 1$, and hence one obtains that for any $x \in A$, $||xx_{\mu}x^*||$ converges to $||x||^2$.

It is trivial that (2) implies (1) and (4) implies (3) We shall show that (1) implies (3). Let $p, q \in \text{Sp}(\alpha)$. Then for any compact neighbourhood U of $0 \in \hat{G}$, Condition 1 implies that

$$A^{lpha}(p+U) A^{lpha}(U) A^{lpha}(q+U) \neq (0)$$

which then implies that $p+q \in \text{Sp}(\alpha)$. Since α is faithful, it follows that $\text{Sp}(\alpha) = \hat{G}$. Then it is straightforward to prove that (1) with δ implies (3) with δ^2 in place of δ .

Now we have to show that (3) implies (5). Let $\{u_n\}$ be a dense sequence in the unitaries of A (or A+C1 if $A \oplus 1$), and let $\{U_n\}$ be a countable basis for the open subsets of \hat{G} , where we suppose that each isolated point set appears infinitely often in $\{U_n\}$. We enumerate $\{(u_k, U_m): k, m=1, 2, \cdots\}$ and let $\{(u_n, U_n)\}$ be the resulting sequence. Let $\{I_n\}$ be a sequence of non-zero ideals of A such that for any non-zero ideal J of A there is an n with $J \supset I_n$. (This is possible because A is separable and prime.) Define T be the set of $x \in A$ such that $x \ge 0$, ||x|| = 1, and $B(x) \equiv \{a \in A: xa = ax = a\}$ is non-zero. Note that B(x) is a hereditary C^* -subalgebra of A and the open projection p(x)corresponding to B(x) is majorized by the (closed) spectral projection of xcorresponding to the eigenvalue 1 (in A^{**}).

Fix $e_1 \in T \cap I_1$ and let $p_1 = p(e_1)$. Let

$$\lambda_1 = \sup \{ || p_1 u_1^*(b + b^*) u_1 p_1 ||, b \in A^{\alpha}(U_1)_1 \} .$$

Then it follows from (3) that $\lambda_1 \ge \delta$ since for $a \in T \cap B(e_1)$

$$\sup \{ ||au_1^* bu_1 a||, b \in A^{\alpha}(U_1)_1 \} \ge \delta$$

and $a p_1 = a$. And then we find $a_1 \in T$ and $b_1 \in A^{\alpha}(U_1)_1$ such that $a_1 e_1 = a_1$ and

$$\sup \operatorname{Spec}(y_1) > \lambda_1 - \delta/2$$

where Spec (y_1) is the spectrum of y_1 and $y_1 = a_1 u_1^* (b_1 + b_1^*) u_1 a_1$. Define a continuous function f_1 on \mathbb{R} by

$$f_1(t) = \begin{cases} 0 & t \le 0 \\ 1 & t \ge \lambda_1 - \delta/2 \end{cases}$$

and by linearity elsewhere, and note that $f_1(y_1) \in T$. Then as A is prime, $B(f_1(y_1)) \cap I_2$ is a non-zero hereditary C^* -subalgebra of A. We choose $e_2 \in T \cap B(f_1(y_1)) \cap I_2$.

We repeat this procedure. Namely, if e_n is defined, let $p_n = p(e_n)$ and let

$$\lambda_n = \sup \{ || p_n \, u_n^*(b + b^*) \, u_n \, p_n || \colon b \in A^{\alpha}(U_n)_1 \} \, .$$

We find $a_n \in T \cap B(e_n)$ and $b_n \in A^{\alpha}(U_n)_1$ such that

$$\sup \operatorname{Spec}(v_n) > \lambda_n - \delta/2n$$

where $y_n = a_n u_n^* (b_n + b_n^*) u_n a_n$. Define a continuous function f_n on **R** by

$$f_n(t) = \begin{cases} 0 & t \le 0 \\ 1 & t \ge \lambda_n - \delta/2n \end{cases}$$

and by linearity elsewhere, and choose $e_{n+1} \in T \cap B(f_n(y_n)) \cap I_n$.

Since $f_n(y_n) e_n = f_n(y_n)$ and $e_{n+1}f_n(y_n) = e_{n+1}$, $\{e_n\}$ forms a decreasing sequence in T. Let f be a pure state of A such that $f(e_n) = 1$ for all n; we assert that f satisfies the desired properties.

The representation π_f is faithful because $||f|I_n||=1$ for all *n*.

We want to show that $f(a_n^2) \rightarrow 1$. Let $z_n = u_n^*(b_n + b_n^*) u_n$ and compute:

$$\lambda_n - \delta/2n \le f(a_n \, z_n \, a_n) = f(a_n \, p_n \, z_n \, p_n \, a_n)$$

$$\le ||p_n \, z_n \, p_n|| \, f(a_n^2) \le \lambda_n \, f(a_n^2) \, .$$

Since $\lambda_n \ge \delta > 0$ and $f(a_n^2) \le 1$, this implies that $f(a_n^2) \rightarrow 1$.

Let $p \in \hat{G}$ and let *u* be a unitary of *A* (or A + C1) and choose a subsequence $\{n_k\}$ such that $||u_{n_k} - u|| \rightarrow 0$ and $\{U_{n_k}\}$ forms a basis for the neighbourhoods of *p*. Since

Re
$$f(a_n u_n^* b_n u_n a_n) > (\lambda_n - \delta/2n)/2$$
,

 $\lambda_n \geq \delta$, and $||\pi_f(a_n) \mathcal{Q}_f - \mathcal{Q}_f|| \rightarrow 0$, any weak limit point Q of $\{\pi_f(b_{n_k})\}$ on \mathcal{H}_f satisfies that

$$\operatorname{Re} \langle Q \pi_f(u) \, \mathcal{Q}_f, \, \pi_f(u) \, \mathcal{Q}_f \rangle \geq \delta/2 \, .$$

Note that $||Q|| \leq 1$, and Q is the weak limit of a bounded net in $\pi_f(A)$ of spectrum p, i.e., $Q \in \mathcal{M}(p)$ where $\mathcal{M}=\pi_f(A)''=B(\mathcal{H}_f)$. Thus, we have shown that for any $p \in \hat{G}$ and any unit vector ξ of \mathcal{H}_f there is a $Q \in \mathcal{M}(p)$ such that $||Q|| \leq 1$ and

$$\operatorname{Re}\langle Q\xi,\xi\rangle\geq\delta/2$$
.

330

From section 1 it follows that $\mathcal{M}(p)$ is a weakly closed subspace of \mathcal{M} such that $\mathcal{M}(0) \ \mathcal{M}(p) \ \mathcal{M}(0) \subset \mathcal{M}(p), \ \mathcal{M}(p) \mathcal{M}(p)^* \subset \mathcal{M}(0)$, and that $\mathcal{M}(0)$ is a von Neumann subalgebra of \mathcal{M} . Since the initial and final supports of $\mathcal{M}(p)$ are 1, the weak linear span of $\mathcal{M}(p) \ \mathcal{M}(p)^*$ and $\mathcal{M}(p)^* \ \mathcal{M}(p)$ respectively is $\mathcal{M}(0)$. Thus it follows that $\mathcal{M}(p)$ has an element u(p) such that at least one of $u(p) \ u(p)^*$ and $u(p)^* \ u(p)$ is 1. If $u(p) \ u(p)^*=1$, then $\mathcal{M}(p)=u(p) \ \mathcal{M}(0)$ and if $u(p)^* \ u(p)=1$, then $\mathcal{M}(p)=\mathcal{M}(0) \ u(p)$. Since the central support of $e=u(p) \ u(p)^*$ is 1 in $\mathcal{M}(0)$, the reduction $\mathcal{M}(0)' \to \mathcal{M}(0)'e$ is an isomorphism. We define a map β_p of $\mathcal{M}(0)'$ by

$$\beta_p(Q) e = u(p) Qu(p)^*, Q \in \mathcal{M}(0)'$$

To show that this is well-defined we have to prove that $u(p) Qu(p)^* \in \mathcal{M}(0)'e$. But this follows since Ad u(p) is an isomorphism of $u(p)^* u(p) \mathcal{M}(0) u(p)^* u(p)$ onto $e \mathcal{M}(0)e$. It easily follows that β_p is an automorphism of $\mathcal{M}(0)'$ and that it does not depend on the choice of u(p): if $v \in e \mathcal{M}(p)$, then $\beta_p(Q) v = vQ$. Since $\mathcal{M}(p) \mathcal{M}(q) \subset \mathcal{M}(p+q)$ and moreover the weak linear span of $\mathcal{M}(p)\mathcal{M}(q)$ is equal to $\mathcal{M}(p+q)$, it follows that β is an action of G on $\mathcal{M}(0)'$ (without any continuity asserted).

If β is trivial, then $\mathcal{M}(p) \subset \mathcal{M}(0)'' = \mathcal{M}(0)$, i.e., $\mathcal{M}(p)$ is a weakly closed ideal of $\mathcal{M}(0)$. Since the support of $\mathcal{M}(p)$ is 1, it follows that $\mathcal{M}(p) = \mathcal{M}(0)$. Hence $\mathcal{M}(p) \supseteq 1$ for all $p \in \hat{G}$, which implies Condition 5 by 1.3.

Suppose that there exist a $p \in \hat{G}$ and a non-zero projection $E \in \mathcal{M}(0)'$ such that $||E \beta_p(E)|| < \delta/2$. Then $||E(1-\beta_p(E))|E|| > 1-\delta^2/4$, which implies $||E(uu^*-uEu^*)|E|| > 1-\delta^2/4$ for u=u(p). Hence

$$||Eu(1-E)|| > (1-\delta^2/4)^{1/2}$$
.

From this it follows that there exist unit vectors ξ , $\eta \in \mathcal{H}_f$ such that $(1-E)\xi = \xi$, $E\eta = \eta$, and

$$\langle u \xi, \eta \rangle = |\langle u \xi, \eta \rangle| \equiv \lambda > (1 - \delta^2/4)^{1/2}$$
.

Furthermore, there exists a $Q \in \mathcal{M}(-p)$ such that $||Q|| \le 1$ and

$$\langle Q \eta, \eta \rangle = |\langle Q \eta, \eta \rangle| \equiv \mu \geq \delta/2$$
,

When one writes $u \xi = \lambda \eta + \zeta$, one obtains that $\langle \eta, \zeta \rangle = 0$ and $||\zeta|| < \delta/2$. Then $Qu \in \mathcal{M}(0)$ and

$$\operatorname{Re} \langle Qu\,\xi,\,\eta\rangle = \operatorname{Re} \lambda\langle Q\,\eta,\,\eta\rangle + \operatorname{Re} \langle\zeta,\,Q^*\eta\rangle$$
$$\geq \lambda\,\mu - ||\zeta||\,||Q^*\eta - \mu\,\eta||$$
$$\geq \frac{\delta}{2} \left(1 - \frac{\delta^2}{4}\right)^{1/2} - \frac{\delta}{2}\,(1 - \mu^2)^{1/2} \geq 0$$

А. КІЗНІМОТО

which is a contradiction since EQu(1-E)=0. Hence for any $p \in \hat{G}$ and any non-zero projection E of $\mathcal{M}(0)'$ one has that $||E \beta_p(E)|| \ge \delta/2$. Hence it follows (cf. [4]) that β_p is inner and

$$\operatorname{Sp}(\beta_p) \subset \{e^{i\theta}; \ |\theta| \le 2 \ \theta_0\}$$
(*)

where $\theta_0 = \cos^{-1} \delta/2 \in (0, \pi/2)$.

If G is compact, then $\mathcal{M}(p)$ is the weak closure of $\pi_f(A^{\alpha}(p))$ and so the family $\mathcal{M}(p)$ with $p \in \hat{G}$ generates $\mathcal{M}=B(\mathcal{H}_f)$. Thus β is an ergodic action of the discrete group \hat{G} on $\mathcal{M}(0)'$ and $\mathcal{M}(0)'$ is a factor since β_p is inner for each $p \in \hat{G}$. If v(p) is a unitary of $\mathcal{M}(0)'$ which implements β_p , one has that $||Ev(p)E|| \geq \delta/2$ for any non-zero projection E of $\mathcal{M}(0)'$, and hence one may assume that

$$\operatorname{Spec}(v(p)) \subset \{e^{i\theta} \colon |\theta| \le \theta_0\}$$
(**)

by multiplying a complex number of modulus 1 if necessary (cf. [5]). Since $\beta_q(v(p))$ also implements β_p for any $q \in \hat{G}$, one has that $\beta_q(v(p)) v(p)^* \in \mathbb{C}1$, and concludes that there exists a $t \in G$ such that $\beta_q(v(p)) = \langle t, q \rangle v(p), q \in \hat{G}$. For this to be compatible with (**), one must have t=0 or $v(p) \in \mathbb{C}1$ which implies that β_p is the identity map. Thus β is trivial and so one gets the conclusion.

Suppose that G equals $K \times Z^{l} \times R^{m}$ where K is a compact group and l, m are non-negative integers. First we apply the previous argument to the system $(A, K, \alpha | K)$ to obtain that the π_{f} restricted to $A^{\alpha_{l}K}(0)$ is irreducible. Then we consider the system $(A^{\alpha_{l}K}(0), Z^{l} \times R^{m}, \alpha | Z^{l} \times R^{m})$ knowing that the properties of π_{f} described for (A, G, α) are still satisfied for this new system. Hence we now suppose that $G=Z^{l}\times R^{m}$. Let $N=\ker\beta$, which is a subgroup of $\hat{G}=T^{l}\times R^{m}$. Since $N=\{p\in\hat{G}: \mathcal{M}(p) \ni 1\}$, N is closed. If $N\neq\hat{G}$, then the quotient group \hat{G}/N has an element of infinite order. Let $p\in\hat{G}$ be such that $np\notin N$ for any $n\neq 0$. It follows that any $\lambda \in \operatorname{Sp}(\beta_{p})$ is of finite order in T and $\operatorname{Sp}(\beta_{p})$ is discrete since otherwise $\operatorname{Sp}(\beta_{p}^{n})$ must meet $\{e^{i\theta}: \pi \ge |\theta| > 2\theta_{0}\}$ for some n, which contradicts (*). Thus $\operatorname{Sp}(\beta_{p})$ is a finite set whose elements are all of finite order, which implies that $\operatorname{Sp}(\beta_{p}^{n})$ is $\{1\}$ for some n, a contradiction. Hence $N=\hat{G}$ or β is trivial.

In general let \mathcal{G} be the set of compactly generated open subgroups of G, i.e., $H \in \mathcal{G}$ if there is an open neighbourhood U of $0 \in G$ such that \overline{U} is compact, U = -U, and H is generated by U as a group. \mathcal{G} is a directed set under inclusion. For $H \in \mathcal{G}$, H^{\perp} is a compact subgroup of \hat{G} since H^{\perp} is the dual of the discrete group G/H. For any open neighbourhood V of $0 \in \hat{G}$ there exists an $H \in \mathcal{G}$ such that $H^{\perp} \subset V$ (by the definition of the topology of \hat{G}).

Let $p \in \hat{G}$. Since *H* is of the form $K \times Z^{l} \times R^{m}$ for $H \in \mathcal{G}$, it follows that $\mathcal{M}(p+H^{\perp}) \ni 1$ for any $H \in \mathcal{G}$. Since $\{p+H^{\perp}+V: H \in \mathcal{G}, V \text{ is an open neighbourhood of } 0 \in \hat{G}\}$ forms a basis for the neighbourhoods of *p*, it easily follows that $\mathcal{M}(p) \ni 1$, and thus β is trivial. This concludes the proof.

3.3. Theorem. Let A be a separable prime C*-algebra and α a continuous action of a separable locally compact abelian group G on A such that $\Gamma_1(\alpha) = \hat{G}$. Let H be a closed discrete subgroup of G and let $N = H^{\perp}$. Then there exists a pure state φ of A such that π_{φ} is faithful and for the representation ρ_{φ} of A defined by

$$\rho_{\varphi} = \int_{G}^{\oplus} \pi_{\varphi} \circ \alpha_{t} dt$$

on $L^2(G, \mathcal{H}_{\varphi}) = L^2(G) \otimes \mathcal{H}_{\varphi}, \rho_{\varphi}(A)''$ is of type I with center $\{p: p \in N\}'' \otimes 1$.

Proof. By 3.1 there is a pure state f of A such that π_f is faithful and $\rho_f(A)'' \cap \rho_f(A)' = L^{\infty}(G) \otimes 1$. We define a representation Φ on $l^2(H, \mathcal{H}_f)$ of the crossed product $A \times_{\beta} H$ with $\beta = \alpha \mid H$ by

$$\begin{aligned} \left(\boldsymbol{\varPhi} \left(a \right) \boldsymbol{\xi} \right) \left(t \right) &= \pi_f \left(\alpha_t (a) \right) \boldsymbol{\xi} (t), \quad a \in A \; , \\ \left(\boldsymbol{\bar{\varPhi}} \left(\lambda (s) \right) \boldsymbol{\xi} \right) \left(t \right) &= \boldsymbol{\xi} \left(t + s \right), \quad s \in H \; , \end{aligned}$$

for $\xi \in l^2(H, \mathcal{A}_f)$ where λ is the canonical unitary representation of H in the multiplier algebra $M(A \times_{\beta} H)$ and $\overline{\mathcal{O}}$ is the unique extension of \mathcal{O} to $M(A \times_{\beta} H)$. Then \mathcal{O} is a faithful irreducible representation of $A \times_{\beta} H$ since π_f is faithful and $\pi_f \circ \alpha_s$ is disjoint from π_f for $s \in H \setminus \{0\}$. (In particular, $A \times_{\beta} H$ is prime.) For $p \in N$ there is a bounded net $\{x_{\mu}\}$ in A of spectrum p such that $||x_{\mu}|| \leq 1$ and $\lim \pi_f(x_{\mu}) = 1$. Since $||\alpha_s(x_{\mu}) - x_{\mu}|| \to 0$ for $s \in H$, one obtains that $\lim \mathcal{O}(x_{\mu}) = 1$. Thus it follows that for any neighbourhood U of $p \in N$ and any $x \in A \times_{\beta} H$,

$$\sup \{ ||x(a+a^*) x^*||: a \in A^{\alpha}(U)_1 \} = 2 ||x||^2.$$

Consider the dual action $\hat{\beta}$ of the compact abelian group \hat{H} on the prime C^* -algebra $A \times_{\beta} H$. By 3.4 below one can apply [1] to this system to conclude that there is a faithful irreducible representation π of $A \times_{\beta} H$ such that the restriction of π to A is also irreducible. Let $\mathcal{M}=\pi(A \times_{\beta} H)''$. In the notation in Section 1 one has that $\mathcal{M}(s)=\mathcal{M}$ for $s \in H$. Hence it follows that for any $x \in A \times_{\beta} H$ and $s \in H$,

A. KISHIMOTO

$$\sup \{ ||x(a+a^*) x^*||: a \in A\lambda(s) \} = 2||x||^2.$$
 (**)

(In particular $\Gamma_{1}(\hat{\beta}) = H$ for the dual action $\hat{\beta}$ of \hat{H} on $A \times_{\beta} H$.)

We now apply a procedure similar to the one in the proof of 3.1 by using (*) and (**) simultaneously (instead of the condition:

$$\sup \{ ||x(a+a^*) x^*||: a \in A^{\infty}(U)_1 \} \ge \delta ||x||^2$$

for any non-empty open set U of \hat{G} and any $x \in A$). Since the procedure is quite similar, we omit the details. The result is that one obtains a pure state f of $A \times_{\beta} H$ such that π_f is faithful and for any unit vector $\xi \in \mathcal{H}_f$, any $p \in N$, and any $s \in H$, there are a bounded net $\{a_{\mu}\}$ in A of spectrum p and a bounded net $\{b_{\mu}\}$ in A such that $||a_{\mu}|| \leq 1$, $||b_{\mu}|| \leq 1$, and

$$\lim \langle \pi_f(a_\mu) \, \xi, \, \xi \rangle = 1, \quad \lim \langle \pi_f(b_\mu \, \lambda(s)) \, \xi, \, \xi \rangle = 1 \, .$$

From the second estimates one concludes that $\pi_f(A)'' = \pi_f(A \times_{\beta} H)''$ in exactly the same way as in 3.1. Thus the restriction π of π_f to A is irreducible. On setting $\mathcal{M} = \pi(A)''$ for the system (A, G, α) , the first estimates imply that $\mathcal{M}(p) \ni 1$ for $p \in N$. (Since we now know that the value corresponding to λ_n in the proof of 3.1 is 2, we can conclude that $||E \beta_p(E)|| = 1$ for any non-zero projection E of $\mathcal{M}(0)'$, which implies that β_p is the identity.) Since α_s is weakly inner in π for $s \in H$, if $\mathcal{M}(p) \ni 1$ then $\langle s, p \rangle = 1$ for $s \in H$, i.e., $p \in H^{\perp}$. Thus it follows that $\mathcal{M}(p) \ni 1$ if, and only if $p \in N$. For the representation ρ of A defined by

$$\rho = \int_G^{\oplus} \pi \circ \alpha_t \, dt \, ,$$

it follows by 1.1 that $\rho(A)'' \cap \rho(A)' = \{p: p \in N\}'' \otimes 1$. Thus $\rho(A)''$ is of type I and this completes the proof with $\varphi = f | A$.

3.4. Lemma. Let A be a prime C*-algebra and β an action of a discrete group H on A such that β_t is properly outer for each $t \in H \setminus \{0\}$. Let $A \times_{\beta} H$ be the reduced crossed product of A by β . Then for any non-zero x, $y \in A \times_{\beta} H$ it follows that $xAy \neq (0)$.

Proof. There is a faithful conditional expectation \mathcal{O} of $A \times_{\beta} H$ onto A such that $\mathcal{O}(a) = a$ for $a \in A$, and $\mathcal{O}(a \lambda(s)) = 0$ for $a \in A$, $s \in H \setminus \{0\}$. Let $x = \sum x(s) \lambda(s), y = \sum y(s) \lambda(s)$ be positive elements of $A \times_{\beta} H$ such that the summations are finite. We shall show that

$$\sup \{ ||xay|| : a \in A_1 \} \ge || \Phi(x) || || \Phi(y) ||.$$
 (*)

Since those elements x, y are dense in the positive part of $A \times_{\beta} H$, this is enough to conclude that (*) holds for any positive x, $y \in A \times_{\beta} H$. From this we get the conclusion.

To prove (*) we proceed as in [5]. First for any $\epsilon > 0$ one finds positive $e, f \in A$ such that ||e||=1=||f||, and

$$\begin{aligned} ||exe - ex(0) e|| < \varepsilon , \quad ||ex(0) e|| > (1 - \varepsilon)||x(0)|| , \\ ||fyf - fy(0) f|| < \varepsilon , \quad ||fy(0) f|| > (1 - \varepsilon)||y(0)|| . \end{aligned}$$

Then one finds a $b \in A$ such that ||b|| = 1, and

$$||ex(0) ebfy(0) f|| > (1-\varepsilon)||ex(0) e|| ||fy(0) f||$$

Thus one obtains that for $a = ebf \in A$,

$$||xay|| \ge ||exebfyf|| > (1-\varepsilon)^3 ||x(0)|| ||y(0)|| - 2\varepsilon$$
.

Since $\Phi(x) = x(0)$ etc., this concludes the proof.

3.5. Theorem. Let A be a separable prime C^* -algebra and α a faithful continuous action of a (separable) compact abelian group G on A. Let H be an arbitrary closed subgroup of G. Then the following conditions are equivalent:

1. A^G is prime and there exists a G-invariant pure state f of A such that π_f is faithful.

2. A^{H} is prime and there exists an *H*-invariant pure state φ of *A* such that π_{φ} is faithful and $\rho_{\varphi}(A)' \cap \rho_{\varphi}(A)' = \{p: p \in H^{\perp}\}'' \otimes 1$, where $A^{H} = A^{\varphi|H}(0)$ etc. and ρ_{φ} is defined as in 3.3.

Proof. Suppose (1). By using the state f in (1) one can define a representation of $A \times_{\alpha} G$ by extending π_f on the same space \mathcal{H}_f . Hence it follows from 3.1 that $\Gamma_1(\hat{\alpha}) = G$ for the dual action $\hat{\alpha}$ on $A \times_{\alpha} G$. In the same way for the dual action $\hat{\beta}$ on $A \times_{\beta} H$ with $\beta = \alpha | H$ it follows that $\Gamma_1(\hat{\beta}) = H$, or rather more: For any $x \in A \times_{\beta} H$ and any non-empty open subset U of H,

$$\sup \{ ||x(a+a^*) x^*|| : a \in (A \times_{\beta} H)^{\beta}(U)_1 \} = 2 ||x||^2 .$$

On the other hand one can conclude as in the proof of 3.3 that for any $x \in A \times_{\beta} H$ and any neighbourhood U of $p \in H^{\perp}$,

$$\sup \{ ||x(a+a^*) x^*|| : a \in A^{\alpha}(U)_1 \} = 2 ||x||^2.$$

Using these two conditions we proceed in exactly the same way as in 3.3 to obtain a pure state f of $A \times_{\beta} H$ such that π_f is faithful, $\pi_f(A)'' = \pi_f(A \times_{\beta} H)''$,

and with $\mathcal{M}=\pi_f(A)''$ for the system $(A, G, \alpha), \mathcal{M}(p) \ge 1$ if, and only if $p \in H^{\perp}$. Since $\pi_f | A$ is β -covariant there is a unit vector in \mathcal{H}_f which defines a β -invariant state φ of A. Since $\pi_f | A = \pi_{\varphi}, \varphi$ has the desired properties.

Suppose (2). It follows from [1] that α_s is properly outer for each $s \in H \setminus \{0\}$. If $s \notin H$, then α_s induces an automorphism of $\rho_{\varphi}(A)''$ (with φ in (2)) which is non-trivial on the center, and so it is properly outer. Thus α_s is properly outer for any $s \in G \setminus \{0\}$. Now we shall show that A^{φ} is prime, concluding the proof by [1].

We restrict π_{φ} to $B = A^{H}$, which we denote by π and consider the action β of G/H on B induced by α . Let $\mathcal{M} = \pi(B)''$ for $(B, G/H, \beta)$. Then (2) implies that $\mathcal{M}(p) \supseteq 1$ for $p \in (G/H)^{\wedge} = H^{\perp}$.

Let *u* be the unitary representation of *H* on \mathcal{H}_{φ} defined by $u_s \pi_{\varphi}(x) \mathcal{Q}_{\varphi} = \pi_{\varphi} \circ \alpha_s(x) \mathcal{Q}_{\varphi}$, $x \in A$, and let E_p be the spectral projection of *u* corresponding to the character $p \in \hat{H}$. Then since $\pi_{\varphi}(B)'' = \{E_p: p \in H\}'$, $\pi_p = \pi | E_p \mathcal{H}_{\varphi}$ is an irreducible representation of *B* for any $p \in \hat{H}$. Since the condition that $\mathcal{M}(p)$, $\exists 1$ for $p \in H^{\perp}$ is inherited by π_p , $p \in \hat{H}$, it follows from 1.3 that $\pi_p(B)'' = \pi_p(B^\beta)''$. Thus the family $\{\pi_p: p \in \hat{H}\}$ of irreducible representations of *B* satisfies that $\pi_p(B^\beta)'' = \pi_p(B)''$ and $\bigoplus_{p \in \hat{H}} \pi_p$ is faithful. From this it follows that $xB^\beta y \neq (0)$ for any non-zero *x*, $y \in B$ since *B* is prime. Thus in particular $B^\beta = A^G$ is prime.

References

- [1] Bratteli, O., Evans, D., Elliott, G.A. and Kishimoto, A., Quasi-product actions of a compact abelian group on a C*-algebra preprint.
- Bratteli, O. and Kishimoto, A., Derivations and free group actions on C*-algebras, J. Operator Theory 15 (1986), 377-410.
- [3] Bratteli, O., Kishimoto A. and Robinson, D.W., Embedding product type actions into C*-dynamical systems, J. Functional Analysis, to appear.
- [4] Connes A., Outer conjugacy classes of automorphisms of factors, Ann. Ec. Norm. Sup. 8 (1975), 384–420.
- [5] Kishimoto, A., Outer automorphisms and reduced crossed products of simple C*algebras, Commun. Math. Phys. 81 (1981), 429–435.
- [6] One-parameter automorphism groups of C*-algebras, Geometric methods in operector algebras, H. Araki and E.G. Effros, ed., Pitman Researcch Nites in Mathematics Series 123 (1986).
- [7] Kishimoto, A. and Robinson, D.W., Dissipations, derivations, dynamical systems, and asymptotic abelianness, J. Operator Theory 14 (1985), 237–253.
- [8] Pedersen, G.K., C*-algebras and their automorphism groups, Academic Press, London-New York-San Francisco (1979).
- [9] Takesaki, M., *Theory of operator algebras I*, Springer, New York-Heidelberg-Berlin (1979).