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Subellipticity at Higher Degree of a

Boundary Condition Associated with

Construction of the Versal Family of
Strongly Pseudo-Convex Domains

By

Kimio MIYAIIMA*

Introduction

Let N be a complex manifold of dimg N=n>4, £ a relatively compact
domain of N with a strongly pseudoconvex boundary 82=M and °T” a CR
structure on M induced from the complex structure on N.

In the construction of the versal family of complex structures on 2, it
was useful to restrict ourselves to the argument on 7'N-valued forms which
are °T’-valued on M (cf. [2]). In order to accomplish this argument, a new
boundary condition for 7”N-valued d-complex on 2 was introduced (cf. [2]).

A priori estimate for this new boundary condition has not been estab-
lished at degree g except for g=2, though its cohomology groups are isomor-
phic to usual ones at 2<g<n—1 (cf. |2], |3]). The pourpose of this paper is to
show that a priori estimate also holds at higher degree:

Main Theorem. If 2<q<n—2, then there exist positive constants ¢ and
¢’ such that

cllgll} <8l * < c (I8l +[194|P-+14]1%)
for any ¢&I'(2, T'N Q A*(T” N)*) satisfying

tg&I'(M, E)) and <o(¥, dr)¢, y>=0 on M forall y€E,_,
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By Akahori’s criterion, to prove Main Theorem is reduced to establish
the following a priori estimates for a subbundle E, of T'N;;,,Q A‘CT”)* and
its orthogonal complement E; with respect to the Levi metric (cf. [3]).

Theorem 1. If 2<q<n—2, then there exists a positive constant c such that
llgll”* < c (1188l *+11(3s8)e, |+ 1611

Jor any ¢EI'(M, E,), where (849)z,_, denotes the orthogonal projection onto
E,

,—1 With respect to the Levi metric.

Theorem 2. If 1<q<n—3, then there exists a positive constant c¢ such that
lloll* <l (@s)es, P45+ 1611%)
for any s I'(M, Ey).

The proofs of these theorems are higher degree versions of the ones at
degree ¢=2 in [2] and g=1 in [3] respectively. The righthand side of the
estimate in Theorem 1 (resp. in Theorem 2) is the difference of the usual energy
form |18,8|[*+|88IP+118]* and ||(#s8)z- I (resp. [|(3,9)s,, |I). We give
the expression of (19,,¢)E;-_1 for ¢I'(M, E,) in §1 and prove Theorem 1 in §2.
We, in §2, also prove Theorem 2 by the same commutator calculus as in the
proof of Theorem 1, using the expression of (51,¢)E“1 for g=I'(M, E7) given

by the duality.

§1. Subcomplexes

Let M be a compact smooth manifold of dimp M=2n—1 (>7). Let °T”
be a CR structure on M, that is:
1) °T'N°T”={0} where °T"=°"T",
2) CTM/(CT’'+°T")=CF for some real line bundle F.

We fix a splitting CTM="T"-+°"T”+CF and denote T'="T'-+CF. In
our case that M=82, °T”=CTM N T" Ny, and T'=T'N,y.

We assume that the CR structure is strongly pseudoconvex, that is:
(3) the Levi form °T”+°T'5(X, Y)—=(1/\/—=1)[X, Y]crECF is positive de-
finite.

We define vector subbundles E, and E; of T'Q A*(°T”)* as in [1] and [2].
For ¢>0, we define E, by

I'(M,E) = {ucI'(M, TQA(CT"))|ucI’(M, " T'QA'CT")*) and
el (M, T'QA\™ (T")*)} ,
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and E; as the orthogonal complement of E, with respect to the Levi metric
induced from the above Levi form. Then (I'(M, E,), 8,) and (I'(M, E;), %)
form differential complexes.

Let {(Us, )} req be an atlas of M and {o,} ., be a partition of unity sub-
ordinate to the covering {U} 1

If U {U}} ;4 We let (e, -+, €,_;) be a moving frame of °T/} such that

(1.1) [e,-, éi]CF = \/—_1 6:’]‘ €,
where e, denotes a real moving frame of F|y, and ((e*)!, «-<, (e*)*™") the dual
frame of CT")f%.

On U, ¢=I"(M, T'Q A(CT”)*) can be written in the usual formalism:

(1.2) ¢ =3, 37 B,,1 2,R(e*)

where I=(, -+, i,) with i;<<--<i,, (e*)'=(e*)'1 A --- A(e*)'e and =’ is a sum-
mation for suffix not including #.

Lemma 1. For gI'(M, T'Q ACT")*), ¢ is in I'(M, E,) if and only if
(1) ¢,,,=0 for any I with |I|=q and
(2) Siexe;*1 ;=0 for any K with |K|=q+1 and KHn, where ¢, is the
signe of the permutation changing (j, N=(j, iy, *+-, i,) into K=(ky, ==+, kg11) if
s iy, oo, iy =A1ky, +o+, kgia} as sets and is zero otherwise.

Proof. (1) is clear because °T" is generated by €, *°*, &,_, only.

2 (éb¢)01~‘(9kla et =€kq+1) Sy [ek,, ¢(ek15 ekqﬂ)]cp
+Ei<j( 1 ¢(leys ex;), enyy === ¥ " o qH)CF

lI+1 \t i >
nv( 1 a JRyy v ---,kq+1!.ek,'3 ea]CF

= \/ —ICIH—1Y Bapy d o, ) € QED.
The following formula is well known (cf. [4]):
For¢eI'(M, T'Q A'CT")*),
(1.3 (08)u,x = =} €51 €; b,,1--0(8)
(1.4) (BeB)uy = —2j ¢ n € bu1+0(8),
where o(¢) denotes a term of order zero.

Lemma 2. For ¢&I'(M, E)),
(1) ((ﬂbqb)E )w,H _2] E] H e ¢w I+(1/Q) Em]H E) e ] 1+0(¢) s
@) (B8)sx Daw = —(1/q) €75 25 8; 85,7 +0(8) (1<a<n—13,

g-—1
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((291:¢)E;—_1)n.}1 = o(9) .
Proof. Let US{Up} g, and 2, uET (U, °T'Q A" 1(CT")*) defined by
Ay = —3i 61580, +(1g) e n 380, (1<a<n—1)
and Loy =—1/q)Zie/pe; ¢, ; (1<a<n—1).
For each fixed J, =}e,/y2,n
= _2;,1' &' n 5;"1{ e; ¢¢,1+(1/9) Zhen e n 25 € b;.7
= —3; éj(zé &ln EjIH ¢u,1"¢j.]) .
Now, ifj&J then 3e,/y¢;’y b,,,—;7=0, and
lf_]qf.]then 2; 5‘,];[ 5,"1] ¢u,1_¢j,]
= —Efzex,a;ﬁj &"1 5;'KI B, 1 —bj,7
= —eij(Ec,vEK,m;éj e ¢a,I+EjKI é;.1)
=0, because ¢&I'(M, E)).
Hence €I (U, E,_,) by Lemma I.
For yerI'(U, E,.),
<¢'a ”> = _(l/q) 2; 2;1 E; ew]H<¢"m,Ha éi ¢J',]>
= _(l/q) E; 2{7<E¢; Ea]H wm,Ha éj ¢j,]> =0.
Hence ueI'(U, EjL).
Therefore, by (1.4), we have our lemma.

§2. A Priori Estimates
With the expression (1.2) we introduce the norm || ||" as follows:

1” = Sken 2o =F S lle; 04 b4, 1|P+118; 08 60,1117 +1811 -

The main pourpose of this section is to prove Theorems 1 and 2 which
are proven at ¢g=2 in [1] and at g=1 in [2] respectively.

Proof of Theorem 1.
Let U< {U;} 14, and we may assume that Supp ¢ C U.

18,8117 +-11(848)z,_ |17 = 110,812+ 18] —(Fs8)r - |I” -
By Lemma 2 (2),

7-1

1(s8)e 1P = (1/q°) Zg Z(e )"l 2 & b, al PHol 011" 118]])
= (1/‘]) Ef 2§,j<éi ¢i,1a éj ¢j,[>+0(”¢”’“¢“) .

By a standard calculation (cf. [4]), we have
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) 18,611+ 12 s,
= 34 2f Zleslle; ba,1lP 20 21 Zleille; b,
—(1/q) 27 =%, K& 8; 1, &; ¢;,>+o(l8]|'l18]]) -
Since %} 2%.K&; i1, & b;,1)
=21 3K b1, € 85,>+0(|o]|'l[81)
<3] Zhxlle; oi 0 P-o(l2l 181D »
we have 3,61+ 1(3,)s, I
= 31 {Z0e(le, ¢¢,I”2+25’$1J¢w[|ej ¢w,1||2+2§e1”5i ¢w,1”2
—(Uges ba,ilF—(1/q) Zler,izallej ba, il
—(1/q) Zieille: ba,l%)
+ 3 i|s Su, i P+ Sher, ival 8 bl PH-Zeslle; da,il?
—(1/g)|18, b, P —(1/q) Zicr ixalle; ba1ll*
—(1/q) Zieille; ba,APD+o(l81Il18]]) ,

where, if g=n—2, the terms Zjes jralle; 8a,/l1° and —(1/q) Zies, izalle; b, 1ll*
do not appear.

We devide the proof into two parts.

The following fact plays an essential role in the proof.

Lemma 3. |l¢; 6, ;|[*+[[¢; 6,7
= ||&; B, :lI>+le; b, l1>4-o(ll8]]'l|8]]) -

Proof. By (1.1),

lle; 8,11 = [1&; ba, 1|+~ —1<es 4,1, S0, +0(l18]'l181D 5
l18; 8,111 = llej ba,iI? =/ —1Le, 84,1, Ba,>+o(l1IlISI]) -

Q.E.D.

(I) The case 2<g<n—3 (n>5).
By Lemma 3, if a+(n—q—2) b=qc, we have

[leq ¢u,1||2+2§'¢1,i¢¢||ej ba,1|IP+ 2l et [E; b, 1l
—(1/g)lles ¢m,1“2"'(1/q) Zier,izalle] ¢¢,1”2
—(1/q) Zieille; 6.1
= (1—a)lle, bu, /|P+(1—b—(1/9)) Zjer, jrullE; bl
+(1—0) Zie/lle; ¢’w,1”2
+a—D)els ba, P +bZjer, j2alle; Pa,ill®
+(e—(1/9)) Zicille: b4, :|12+o(181]'l11]) -

Hence, if we can choose g, b and ¢ satisfying:
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(2.2) 1l/g<a<l,0<b<<1—(1/g), 1/g<c<l and a+(m—q—2)b = gc,
we have

llew Bu, 1l +=5ner, ialle; Pa, il +ZietllE: Sl
—(1l|en bu,ilP—1/q) Zlecs,j2alle; B, il
—(1/q) ZicillE; ba, 1l
= Cyllgl|*+o(llsll'lI#lD) »

where C, denotes a positive constant.

Lemma 4. If n>5 and 2<q<n—3 then it is possible to choose a, b and
¢ such that (2.2) is saiisfied.

Proof. If (1/g)<a<1 and O0<b<1—(1/q) then 1l/g<a+(m—q—2)b<
(—q*+ng—n+2)/q. Since n>4 and 1<q<n—2, (—q*+ng—n+2)/g>>(1/q)
holds. Q.E.D.

Similarly we have

[18s $u, 1l P+ Zler, ival & ba,ilP+Zieille; do,ill?
—(/glley buill? —(1/q) Zier,izalle; ba,ill?
—(1/q) Zjeslle; a,l?

A (ERIEIDE

if we can choose a, b and ¢ satisfying:

2.3) 0<a<l—(/g), (l/g}<b<1, 0<c<1—(1/g)
and a+(@—1b=@m—q—1c,

where C, denotes a positive constant.

Lemma 5. If q<n—3, then it is possible to choose a, b and c such that
(2.3) is satisfied.

Proof. If 0<a<1—(1/q) and (1/g)<b<1 then (g—1)/g<<a-+(g—1)b<
(i?—1)/q. Since g<n—2, (g—1)/q(n—q—1)<<(q—1)/q holds. Q.E.D.

Therefore we have

11859124 11(B59)z, . 12> Call ol +o(]14]1']18]])
> Cyllol|” —ellgl|I”*—(K/e)llol[?,

where C; and K denote positive constants.
This follows
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10,8 1P+11(2s8)e, | P+ 61 F= Cll ) .
(II) The case g=n—2 (n>4).
By Lemma 3,

lle ba,|P+ZicillE: ba 11
—(1g)18y ba, 1P —(/q) Zicilie; ba, 1l
= 1=/ {lley b, P+ZiciliE; b,/ +o(llol] ll]) ,
and 120 bu, | P+ Zlcr izalli GuilP+Zfeslle; byl
—(lley ba,111P—(1/q) Zics,izalle; Buill?
—(1/q) 2?‘&1[131' ¢m,1”2
>(1—1/g)ile., ¢a,1”2+zfez,i:ﬁw||é_i ¢w,l||2+2§$§1||éj ba, 1%
+o(lloll"l18]]) -

Hence we have

24) (108 [1P+11(2498)s, P> (A —(1/q)} 25 37 Zilel; 6,,411°
+o(llolI'lIg]]) -

Substituting (2.4) into (2.1), we have

1058|7119z, I[P
>3 31 Selle; g P20 21 ieille; ég,
—(1/q) 27 2% 110 P+11(88)z,_ [D) ool ]18]]) -
Hence
10.8]*4-11(248)z,_ II*
>CyZy 21 E;GEI“e) ¢m,1”2+2; 7 2erlle; ¢w,1“2)+0(“¢“,“¢li)7

where C, is a positive constant.
Thus, by the same calculus as above, we have

18,81 P+11(248)e, _ P> Csllg I +o([[#] l8]]) -
This completes the proof of Theorem 1.

Proof of Theorem 2.

We may assume Supp ¢ C U for some Ue {Uj},c, as in the proof of
Theorem 1.

We first prove some lemmas about (8,9) Bgi1
Lemma 6. Let o=I'(U, E7) and AT (U, T'Q AN T’ *) defined by

Ao = (1/(g+1) Zjex 5;'KH Cy Pju (1<en—1j,
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Aog =0.

Then (51@)12,,+1 :(/I)Eqﬂ‘i‘o(qs)-

Proof. For +&I'(U, Eyy),
<(5b¢)Eq+1a Y =<0s8, ¥ =<8, > =<9, (7-9530’)E;IL>
= —(1/(g+1)) 25 2 Sk €5 KPa,1, € Vi x>+0(8, #) (by Lemma 2 (2))
= 3 2.5, Vi x>+ 08, V). Q.E.D.
Lemma 7. If o=I'(U, E7) then we have

1(@s9)z, ., |P<(1/(g+1)) =3 =) Zleslle, 8,,/1P+o(l8l]l#]]) -
Proof. By Lemma 6, [|(9,8),, |P<I|¢|I’
= (1/(g+1)) =3 =k Zfex,jex EjKl<ew Bi,75 € ¢j,1>

+o(ll8]1'lI411)
<((g+1)) Zg 27 Zieslle, 6,710 +o(llell ll¢]) - Q.E.D.
By Lemma 7,

||(5b¢)E;ILH||2‘|‘”19b¢H2
= 10,8 -+[#0|*—11(8s8), , I
= 10,81+ 1124¢l1°
—(1/(qg+1)) 24 27 Zieslles ¢ /1240l l1¢]1)
= 3, 27 Sleslle; bo,111P+20 27 Sie/ll; 84,017
—(1/(g+1D) 24 =] Zheslle, 6: s1P+o(l8]'ll6]]) . (by (1.4)) .
By the same argument in the proof of Theorem 1, if 1<g<n—2, we have

[T
> (34 4 Sille; b, P4+ 30 2 S8 0 D+0(l] 11811

where ¢ denotes a positive constant.

[11]

[2]

[3]
[4]

Therefore Theorem 2 follows.
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