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Subellipticlty at of a
Boundary Condition with
Construction of the Versal of

Strongly Pseudo-Convex

By

Kimio MIYAJIMA*

Introduction

Let N be a complex manifold of dimc N=n>4, Q a relatively compact
domain of N with a strongly pseudoconvex boundary d@=M and T" a CR
structure on M induced from the complex structure on N.

In the construction of the versal family of complex structures on 5, it
was useful to restrict ourselves to the argument on r'JV-valued forms which
are °T'-valued on M (cf. [2]). In order to accomplish this argument, a new
boundary condition for rW-valued d-complex on *5 was Introduced (cf. [2]).

A priori estimate for this new boundary condition has not been estab-
lished at degree q except for q=2, though its cohomology groups are isomor-
phic to usual ones at2<q<n — l (cf. [2], [3]). The pourpose of this paper is to
show that a priori estimate also holds at higher degree:

Main Theorem,, If 2<q<n— 2, then there exist positive constants c and

c' such that

for any <t>^T(Q, T'N® Aq(T"N)*) satisfying

, Eq) and <a($, dr) <f>9 j>=0 on M for all
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By Akahori's criterion, to prove Main Theorem is reduced to establish
the following a priori estimates for a subbundle Eq of T'N\M® Ag(T")* and
its orthogonal complement E^~ with respect to the Levi metric (cf. [3]).

Theorem 1. If2<q<n—2, then there exists a positive constant c such that

for any 0eT(M, Eq), where (^^)Eg_1 denotes the orthogonal projection onto
Eq_^ with respect to the Levi metric.

Theorem 2. Ifl<q<n—3, then there exists a positive constant c such that

The proofs of these theorems are higher degree versions of the ones at
degree q=2 in [2] and q=l in [3] respectively. The righthand side of the
estimate in Theorem 1 (resp. in Theorem 2) is the difference of the usual energy

form \\dM2+\M\2+\W and ||(^)£-_J|2 (resp. IK^Ji2). We give
the expression of (^^0)£-

L_1 for 0eJT(M, Eq) in §1 and prove Theorem 1 in §2.
We, in §2, also prove Theorem 2 by the same commutator calculus as in the
proof of Theorem 1, using the expression of (db<t>)E for 0eF(M, E^) given
by the duality.

§ 1. Subcomplexes

Let M be a compact smooth manifold of dim^ M=2n— I (>7). Let °T"
be a CR structure on M, that is :
(1) °r n °T"= {0} where T' =°f ",
(2) CTM/(°T'-r°T")—CF for some real line bundle F.

We fix a splitting CTM=*T'+°T"+CF and denote T=Tf+CF. In
our case that M=d£, °T"=CTMf} T"N\M and T'—T'NlM.

We assume that the CR structure is strongly pseudoconvex, that is:
(3) the Levi form T"+T'3(Jr, Y)-+(l/\/^i)[X9 Y]CF^CF is positive de-
finite.

We define vector subbundles Eq and Ef of T® A\°T")* as in [1] and [2].
For #>0, we define Eq by

r(M, Eq} = {wer(M, r®A9{T")*)\ue=r(M9 °r® A '(TO*) and
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and Ef as the orthogonal complement of Eq with respect to the LevI metric
induced from the above Levi form. Then (T(M, Eq), §b) and (P(M, E£), &b)
form differential complexes.

Let {(Uh9 hk)}k(=A be an atlas of M and {p^k^A be a partition of unity sub-
ordinate to the covering {Uk}keA.

If C/e {Uk}keA, we let (el9 • • • , en_^) be a moving frame of °T'u such that

(1-1) fo, ej\CF = V^l *„ en

where en denotes a real moving frame of F\U9 and ((e*)1, •••, (e*)n~l) the dual

frame of (TOft.
On U9 0er(M5 7"® A*(T")*) can be written in the usual formalism:

0-2) 0=2^2? 0^^®^*)'

where /=(/i, ••• , /g) with /1<"-</ff, (e*)/=(e*)l'iA"° A(e*)f'« and 2' is a sum-
mation for suffix not including n.

Lemma 1. For 0<ET(M, r® A*(T")*), * w i/i r(M,

(1) $n,i—Qfor any I with \I\ =CI and
(2) I,jeKejKi$j,i=Q f°r any K with \K\ =q+l and K^n, where &J

K
I u the

signe of the permutation changing (j\ D=(j, il9 •-, iq) into K=(k^ — , kq+1) if
{j, il9 ••• , iq} ={kl9 •••, ̂ +1} ^5- sets and is zero otherwise,

Proof. (1) is clear because Or' is generated by el9 •••, en^ only.

(2) (^0)CF(^19 -,^f+1) = 2Jlk

= v/=I(2j:}(-l)1 **!.*!.... i ~§*f +l) ^ Q.E.D.

The following formula is well known (cf. [4]):
For0er(M, r

(1-3) (§»#).., = 2} e // ey **.,

(1 -4) (^)->ff = -2} «/,

where 0(0) denotes a term of order zero.

Lemma 2. For <i> e r (M , £•,),

(1)

(2)
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)̂..* = 0(4) .

Proof. Let */<= {Uk}KeA and -I, n^r(U, T' <g) A4'1^")*) defined by

*..* = -2} efa e, fy.r+Wq) ea
j
a 2} «y 0,-,/

and tt.=

For each fixed /, 2£ sa
T

H Xa<H

= -2i.y *Ja '/„ et

= -2} S/2i «A «

Now, ify'e/ then 2£ e,,7^ «/a- ^s,/— 0y./=0, and
if 7$ / then 2£ ea

7
ff s/^ ^,,-^jj

= 0, because 0 e r (M, £,) .
Hence -le/1(C7, -E^) by Lemma 1.
For ir^r(U,Et^),

<+, »> = -(I/?) Si 2^ 2} VX^-jr, ?y *y./>
= -(l/q) 2} 2'/<2i *A V..ff, *y *y./> = 0 .

Hence uer(U, Ef_,).
Therefore, by (1 .4), we have our lemma.

§2. A Priori Estimates

With the expression (1.2) we introduce the norm [| ||' as follows:

The main pourpose of this section is to prove Theorems 1 and 2 which
are proven at q=1 in [1] and at q=l in [2] respectively.

Proof of Theorem 1.

Let C/e {#*}-*e^ an(i we may assume that Supp <f>dU.

By Lemma 2 (2),

si SK'
= (l/q) Sf S{.y<^ **./. ^ *y./

By a standard calculation (cf. [4]), we have
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(2.1)

Since Sf SkK«< 0;,/> e, *y./

we have

where, if q=n-2, the terms 2^/,^J|ey 0«,/||2 and -(l/?)2'-4/,y^J|ey 0«,/
do not appear.

We devide the proof into two parts.

The following fact plays an essential role in the proof.

LemmaS. \\e, ^,I\\
t+\\ei 0S>7||

2

Proof. By (1.1),

Ik- 0»J2 = \\e, 0a,,

Q.E.D.

(I) Thecase2<^<«-3(n>5).

By Lemma 3, if a+(n— q— 2) b—qc, we have

I2
112

-b-(\lq» ^fr,

Hence, if we can choose a, b and c satisfying:
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(2.2) l/q<a<l,Q<b<l-(l[q)9 l/q<c<l and a+(n-q-2)b = qc ,

we have

where C2 denotes a positive constant.

Lemma 4. If n>5 and 2<q<n—3 then it is possible to choose a, b and

c such that (2.2) h satisfied.

Proof. If (l/q)<a<l and 0<6<1— (l/^) then l/q<a+(n—q—2) b<
(-q2+nq-n+2)lq. Since n>4 and l<g</i-2, (-^2+^-/2+2)/^2>(l/^)
holds. Q.E.D.

Similarly we have

ll«. tf.JI'+Sie/.̂ JIg, *../H2+Sj«

^./ll2 -(I/?) S{6,.,

if we can choose a, b and c satisfying:

(2.3) 0<a<l -(!/?), (1/9)<6<1, 0<c<l -
and <z+(?— 1) b = (n— ?— 1) c ,

where C2 denotes a positive constant.

Lemma 5. If q<,n— 3, ?/je« // w possible to choose a, b and c such that
(2.3) is satisfied.

Proof. If 0<a<l— (1/0) and (l/q)<b<l then (0— l
(q2-l)/q. Since ?<»-2,(0-l)/?(n-g-l)<(g-l)/? holds. Q.E.D.

Therefore we have

where C3 and K denote positive constants.
This follows
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(II) The case q =n —2 (n > 4).
By Lemma 3,

and \\ea 4>a,I\\
2+^'^I,i^\\

-0/?)!|e. *../H2

-(!/«) Sk/IM,..,! I

Hence we have

(2.4) liMI2+||(*»0)*f Jl^d -(!/?)) 2^ 2? Sf!g|f

Substituting (2.4) into (2.1), we have

Hence

>C4(2i 2? 2k,|k, 0a,,H
2+2: 2; Simile, 0..

where C4 is a positive constant.
Thus,, by the same calculus as above, we have

This completes the proof of Theorem 1.

Proof of Theorem 2.
We may assume Supp fidU for some U<={Uk}k^A as in the proof of

Theorem 1.

We first prove some lemmas about (db<t>)E^ l -

60 Let$^r( U, Ef) and X e F ( U, T ® A q+\° T") *)
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Then (§»*)*, +1 =(*)*. +1

Proof. For ->/r<=r(U, Eq+1),

<fa*)*,+1, ^> = <&*, ^> = <*, «w> = <0, ow-v>
= -(!/(?+ 1)) Si S} 2k e/X0«,,, «, W.jr>+0(0, ?) (by Lemma 2 (2))

)• Q-E.D.

Lemma 7. If<t>G.r(U, E£) then we have

ll(S»^f+1l|2^(l/

Proo/. By Lemma 6,

i S'/ Sj^/lle. 0,-,/||2+o(l|0li'H0||) . Q.E.D.

By Lemma 7,

Si S //S{

= Si S'/ Sf*/|k, #,,./|

-(!/(?+ 1)) Si S'/S^/lle.^/IP+odl^ll ' lHI), (by (1.4)).
By the same argument in the proof of Theorem 1, if \<q<n— 2, we have

where c denotes a positive constant.
Therefore Theorem 2 follows.
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