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§ 0. Introduction

A homomorphism from a product group of simple Lie groups to a simple
Lie group cannot be a "crossed" homomorphism, unless the dimension of the
source group is less than the one of the target group. This fact is closely
related to the fact that the multiplication of a simple Lie group is not abelian
and the classifying space is not an //-space. In this paper we show that the
same statement replacing a Lie group and a homomorphism with a classifying
space and a continuous mapping is valid in the case where the target space
is a classifying space of a Lie group of rank one. To show this, we give
another representation of a theorem of Miller [5].

Main Theorem. Let Gl and Gz be compact connected Lie groups with finite
fundamental groups and H a simple Lie group of rank 1 i.e. H=SO(3) or Sp(V).
Then the canonical projections pt of BGiXBGz to the t-lh factors induce the weak
equivalences

1, BH}\JBHMap(BGz, BH),

, BH] ,

where Map (A, B) and Map* (A, B) are the spaces of all mappings from A to B
which are base point free and base point preserving respectively, BG denotes the
classifying space of any group G, ^w denotes a weak equivalence and \JY means
the pushout over Y.

Corollary* Let GI be compact connected Lie groups with finite fundamental
groups, i=l, ••• , r, and let H be a simple Lie group of rank om. Then the
canonical projections pt to the t-th factors induce the bijection
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=iGi, BH), ^^Vr
t=^Q(Map^(BGt} BH], *).

The corollary shows that BSp(l] and BSO(3) do not allow //-structures, and
moreover, have no binary operations except for the trivial one. And we may
give an example to the homotopy set of all self homotopy equivalences, which
is suggested by the referee.

Example 4.3. SHE(HnHPco} = In the n-th symmetric group, where SHE(Z)
is the homotopy set of all self homotopy equivalences of a space X,

This example is simple and is a contrast to the fact that
GLn(Z) which is an infinite group if n^2. The proof of Main Theorem depends
deeply on Lemma 1.1 and Theorem 1.5 which are stated as follows.

Lemma 1.1. Let G be a maximal compact subgroup of a reductive complex, Lie
group and Y a finite dimensional CW-complex. Theu any element of 7rgMap*(J3G, Y)
is represented by a phantom mapping for all <?^0.

Theorem 1.5. Let Y be simply connected and each Xt, for t=l and 2, a
connected CW-complex such that Mav*(Xt, QY} is weakly contractible. If any
mapping h of X i X X z to Y is homotopic to the mapping which annihilates one of
the subspaces J^xf*} and {*}XX2, then the natural projections pt of X i X X 2 to
Xt induce the weak equivalences

: Map(X1xX.2) Y)^wMap(X1} Y)\JYMap(X2, Y) ,

2, Y}.

Note that Lemma 1.1 is already known and stated for the case #=0 [3]
which is used in [9], and is another representation of theorems of Miller [4, 5].

The author wishes to express deeply his gratitude to late Professor Shichiro
Oka for his heartful encouragement and the usefull discussions with him. He
thanks Professors M. Mimura and A. Zabrodsky for their valuable comments,
and also the referee for his usefull suggestions and comments.

This paper is organized as follows. We prove Main Theorem dividing into
the two cases H=Sp(l) and H=SO(3). At first, we prepare the Lemma 1.1 and
prove Main Theorem in the case when H=Sp(l) using theorem 1.5 and Proposi-
tion 1.3 in Section 1 and prove Theorem 1.5 in Section 2. Next, we prove
Main Theorem in the case H=SO(3} in Section 3. Finally, we shall give in
Section 4 some applications of Main Theorem and show in Appendix that there
are some counter-examples if we omit any hypothesis of Main Theorem.
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§ 1. Preliminaries

Throughout this paper, we denote by Sq the functor taking <?-fold reduced
suspension and by Q the loop space functor. We at first generalize slightly the
theorem of Miller [5], using the theory of phantom mappings due to Zabrodsky
[8].

Lemma 1.1. Let G be a maximal compact subgroup of a reductive complex, Lie
group and Y a finite dimensional CW-complex. Then any element of ?rQMap*(5G, F)
is represented by a phantom mapping for all g^O.

Proof. By the theorem of E. M. Friedlander and G. Mislin [3], for each
prime p, we can take a locally finite group n and a mapping 0 : Bn:-*BG which
Induces a Z/£Z-cohomology isomorphism. For any mapping / of Map*(Sq(i3G), Y),
f(Sq(<f>)) belongs to Map* (Sq(Bn), Y) which is weakly contractible by H. Miller
[5], Therefore, /(S5(0)) is null-homotopic. We can take the Sullivan comple-
tion of Y provided that Y is simply connected. We at first assume that Y is
simply connected and take the Sullivan ^-completion e~p : F-^F^. Then we have

in Map*(S5(57r), F;). On the other hand, since H*(Sq($)', Z/pZ) is an iso-
morphism, epf is null-homotopic. Hence the composition of / with the Sullivan
completion mapping e~ : Y— >Y~ is null-homotopic. This implies that / is a
phantom mapping. When Y is not simply connected, we take the universal
covering space Y of Y. Then Y is a simply connected, finite dimensional com-
plex and this lemma holds for Y. f induces the trivial homomorphism between
fundamental groups. If it were not so, then there should exist an element g
of G such that the composition of / with the mapping B <g)-*BG induced from
the inclusion is non-trivial. This contradicts to the theorem of H. Miller [5],
Hence, all mappings from Sq(BG) to Y induce trivial homomorphisms between
their fundamental groups, <?^0, and the covering projection induces a following
continuous bijection :

Map* (Sq(BG), F) = Map*(S5(£G), F),

which maps a phantom mapping to a phantom mapping, and moreover, is a
homeomorphism, since a covering projection is an open mapping. This com-
pletes the proof of the lemma.

Using this, we get

Proposition 1.2. Let G be a compact connected Lie group and Y a finite
dimensional CW-complex with finite homotopy groups in all dimensions except for
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2 and 3. Then the space Map*(BG, F) is weakly contractible.

Proof. Recall that the Chevalley's complexification of the compact con-
nected Lie group G is a complex reductive Lie group whose maximal compact
subgroup is conjugate with G ([!]). By Lemma 1.1, it is sufficient to prove
that the space of all phantom mappings from EG to Y is weakly contractible.
According to A. Zabrodsky [8], the <?-th homotopy group of the space of all
phantom mappings from a CW-complex ^of finite type with a finite fundamental
group to a simply connected CTT-complex Z of finite type is a quotient group
of Hn>QEx.t(Hn(X;Q), ^7l+1(Z)/torsion). For the dimensional reasons, this must
be 0, and the proof of this proposition is completed.

We prepare a cohomological information as follows.

Proposition 1.3. Let Gl and Gz be connected compact Lie groups with finite
fundamental groups, Sp(l) the symplectic group of rank 1 and jt : BGt-*BGiXBGz
be the canonical inclusion into the t-th factor t=l, 2. Then for any mapping
h:BGlxBGt-+BSp(V), we have H*(hj1;Z)=0 or H*(hjz',Z)=Q.

Proof. Since H*(BSp(l) ; Z)=*Z|>4], it is sufficient to show that H*(hjt ; Z)(w^
=0, for t=l or 2. Let qt:Gt-*Gt be a universal covering of Gt. H*(BGt;Z)
is a free abelian group of finite rank rt, t=l or 2, over Z and H\Bqt]Z} is
injective by the dimensional reasons in the Serre spectral sequence for BGt~*
BGt-*K(ni(Gt), 2). Since Gt is simply connected and semi-simple, there is an
inclusion homomorphism ;

such that H*(Bit
m,Z) is an isomorphism. If we assume H*(hJ! ; Z)(w^=^iLla,,Ui

^0 and H*(hjz',Z)(wJ=^r£ibjVj^Q, then we may assume a^O, b^Q and
H*(hB(qtitint)\Z)(w^Q, where int : Sp(l)-*(Sp(l))r* is the canonical inclusion
into the first coordinate. Let k be the following mapping

1in1) X B(qzizin2)) : BSp(l) X BSp(l) — > BSp(l) ,

then we get H*(k;Z)(wJ=awtXl+lXbwt,
Take an odd prime p to be mutually prime with ab, and then ab^Q in

Z/pZ and it contradicts to the commutativity of H*(k ; Z/pZ] with the Steenrod
;)-th power operation P1.

Actually, H*(k;Z/pZ}(Plw,}=2H*(k •}Z/pZ)(wlp+1^/z)=2(aw,Xl+lXbwiY
p^/2

^ --• , while

It is a contradiction. This completes the proof of this proposition.

Remark 1.4. Combining this with Zabrodsky's Theorem ([9], Theorem 2),
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the conclusion of the above lemma can be translated to rhe following form :

/z l{*}X£G 2^* or

We state here the following theorem which will be proved in Section 2.

Theorem 1.5. Let Y be simply connected and X1 and X* such connected CW-
complexes that Map*(Xt, Y) is weakly contractible for t=l, 2. // any mapping h
of X i X X 2 to Y is homotopic to the mapping which annihila:cs one of the subspaces
XX{*} and {*}XX2. Then there exist weak equivalences

Map(XlxX2} Y)^wMzp(X1} F)UrMap(A"25 F),

*(A2, F).

This together with Proposition 1.2, Proposition 1.3 and Remark 1.4 implies
Main theorem in the case when H—Sp(l).

§2. Proof of Theorem 1.5

Since Y is simply connected, we have isomorphisms

2t F), *)^7To(Map(Z1xAo, F), *),

£, Y), *) = *o(Map(Xt, F), *),

2, F))

where C~a(X, Z] is the connected component of a in Map(Z, Z) and a runs
over all connected components. We similarly denote the connected component
of a in Map* (A, Z) by Ca(X, Z). Note that C0(Xt, Y) is weakly contractible
by the assumption. And by Zabrodsky's Lemma ([9], Lemma 1.5), the evalua-
tion mapping evt : Cl(Xt, F)-»F is a weak equivalence. Hence we can see that
the composition mapping (ev 2) # : Map(A1? Co(A2, F))^Map(A1; F) is also a weak
equivalence. Assume a^O and take the representative mapping / of a. For
any mapping h of Map(A1; Ca(X2, F)), the diagram (2.1) is homotopy com-
mutative by the assumption. On the other hand, a mapping which makes the
diagram (2.1) homotopy commutative belongs to Map(A'1? C2(X2, F)) ;

(2.1)
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where evf
t: C~a(Xt, 7)->7 is an evaluation mapping. By double adjoining this

mapping h, the above homotopy commutative diagram is equivalent to the
following one.

(2.2)

Let us recall that both ev^ and the mapping of composing with evi are weak
equivalences. Hence the last term of

l9 7))

=(ev'3*\C:(Xi, 7))

is weakly homotopic to C^(XZ, 7). Finally, we obtain that

2, 7),

where we regard the mapping space Map(^£, 7") as (]La^C^(Xt, Y}}]\_C^(Xt, Y)
with C»(Xt, Y} = WY.

By the commutativity of the following diagram, the mapping in the upper
sequence is also a weak equivalence:

, 7)

where the mappings in the upper and middle sequences are induced by the
canonical projections pt : XiXXz-*Xt (t=l, 2), and we regard the mapping space

Zt, 7) as (lla^Ca(Xt, 7))ILC0(^, 7) with C0(Xt, Y)=*w*.

§3. Proof of Main Theorem for H=SO(3)

In this section, to extend Main Theorem for the case when H=SO(3), we
use the propositions of Section 2 together with the following propositions.

Proposition 3.1. Let G be a connected compact Lie groups with finite funda-
mental group, p : G-+G the universal covering, and f an arbitrary mapping from
BG to BSO(3), Then /££-* implies /-*.
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Proof. Consider the following fibration ;

Since ^i(G) is a finite group, G is a compact connected Lie group and
7rsCo(£G, BSO(3))=Q by Proposition 1.2 with Y=QBSO(3)=SO(3}. Again by
Zabrodsky's Lemma ([9], Lemma 1.5), there exists a mapping / : Kfa^G), 2)— >

such that /-/I On the other hand, T^Map^^G), 2), 5SO(3))=
*(K(iCi(G\ 2) ; Q), ;rn+TO+1(5S0(3))/torsion)=0 by Zabrodsky's Theorems

([8], Theorem 2.1, 2.1.4, Theorem 4.1(00 with the fact that ^(G) is finite.
So, /^*. This implies the proposition.

Now, we can prove for H~SO(3) the following proposition instead of Pro-
position 1.3 and Remark 1.4.

Proposition 3.28 Let G± and G2 be compact connected Lie groups with finite
fundamental groups and jt\ BGt-*BGiXBGz the canonical inclusion into the t-th
factor, t=l, 2. Then for any mapping h : BGlXBGz-^BSO(3),hjl^* or hj^*.

Proof. Let pt : Gt-*Gt and p : S£(1)-»SO(3) be the universal coverings.
Then we can take a lift h of h such that the following diagram commutes :

BSp(l)

> BSO& .

By Proposition 1.3 and Remark 1.4, we have IilBdXi*}-* or h\ {*} XJ3G2^*o
Therefore we have hiBG^X^}^* or h\{*}xBG2—* by Proposition 3.1. This
implies the proposition.

Main Theorem for the case when H=SO(3) is also obtained by Theorem 1.5
together with Proposition 1.2 and 3.2.

§ 4= Applications

In this section, we determine the homotopy sets and of some mapping
spaces between product spaces of HP°°'s. We will here abbreviate 7r0(Map*(Z, Y\ *)
by \_X, F], and we denote by SHE(Z) the homotopy set of all self homotopy
equivalences.

At first, by Corollary, we have the following example.
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Example 4.1. (1) Map (IP//P00, HP00) is weakly equivalent to Map(//P°°, HP00}
\JHP°° ••• \JHP°° Map (HP00, HP00) (push-out of n copies).

(2) Map*(IP//P°°, HP00) is weakly equivalent to Map*(//P°°, //P°°)V ••• V
Map*(//jP°°, //P00)*15 (wedge-sum of n copies).

This example shows that HP°°=BSp(l) does not allow //-structure, and
moreover, does not have binary operations except for the trivial one. In contrast,
5/7(1) and 50(1) are //-spaces.

Proposition 4.2. The homotopy S2t [IP//P00, IP//P00] ts classified by the
degrees of mappings and is isomorphic with M(k, h] A], where M(k, h'} A) denotes
the set of all (k, li)-matrices whose entries in each arrow are all zero without one
entry and are all belonging to A={Q, /2; j is an odd number}.

Proof. Let us recall that the degree of a self mapping of HP00 is in A ([2]).
Define the degree deg(/) of a mapping / : n71///300-*///*00 by the vector (a1, • • - , a71)
of integers, whose j'-th entry a;=deg(/J) is the degree of the restriction fj of
/ to the j-th factor of IP//P00. Then the entries of deg(/) are all zero with-
out one entry and are belonging to A, since [IP/TP00, HP00'] must be the pointed
sum of the h copies of [//P°°, HP"0'} by Corollary. Let us define the mapping
D of [IP//P00, HkHP~']=IlklIltlHP00, HP00'] to M(k, h;A) by

/deg(A)\

\deg(/J'

where f = f 1 - - - f k and fi:H
hHPc°-*HP00. On the other hand, D. Sullivan con-

structed self mapping of HP00 of any given odd square degree ([7]), and recently,
G. Mislin shows that a self mapping of HP00 is classified by its degree (see [6],
Classification Theorem). Therefore D is a bijection. This implies the proposi-
tion.

This proposition implies that the monoid [HnHP°°, ]T//P°°] can be regarded
as the matrix monoid M(n, n ; A). Hence we obtain

Example 4.3. SHE(II71 HP°°}^Zn the symmetric group.

Appendix

The Main Theorem has counter examples if we omit the assumption for
H or Gt's.

Counter Examples. 1) Let H=Sp(Z), G1=G2=Sp(l) and / the inclusion of

*1} Recently, W. G. Dwyer shows that every non-trivial component of Map* (HP00, HP°°) is
weakly equivalent to the completion of SO (3).
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into Sp(2) which maps (u, v] to the diagonal matrix u@v. Then / is a
homomorphism with f \ G l X { e ] and f\{e}xG2 being non-trivial homomorphism,
and both of the restrictions to B G l X { e ] and {e\xBG2 of Bf are non-trivial.

2) Let Gl and G2 be S0(3), and let ff be £7(1). Put /: BG.XBG^BUil)
be a representing mapping of W j X l + l X W g in Hz(BGiXBGz; Z) where ut is a
generator of H2(BGt; Z}^Z/2Z. Then / has nontrivial restrictions to the
factors, because they are just the representing mappings of non-zero elements
MI, 1/2.

3) Let GI and G2 be non-trivial tori £7(1)* and U(Y)m. (for & = n or m,
T^1((U(l)k)=Zk is an infinite group!) Let H be S0(3) or Sp(l), *:£/(!)-># the
injection of the maximal torus, and m:BGiX.BGz-+BU(V) the multiplication of
the #-space 517(1). Put / : BGlXBG2-^BH be (Bi)m(Bq^Bq^9 where qt: G£->
£7(1) are non-trivial projections to some coordinates. Then / has restrictions to
the factors which can be regarded as the non-trivial mappings (Bi}(Bqt} for
£=1,2. (This example is pointed out by the referee.)
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