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In a deformation of elliptic surfaces one will often observe several singular
fibers Fl9 F25 • •• , Fr of nearby surfaces flowing together Into one singular fiber
F at some special member of the deformation. Such a phenomenon Is called
a confluence of singular fibers In this article. We associate the monodromy
matrices Ml9 M29

 oao, Mr, M with F19 F29 •••, Fr9 F In the usual way. If the paths
to define Mi9 M are suitably chosen, then one has the Identity M=Mtr($ Mv(2)

°»* Mo-(r) f°r some permutation o of indices. In particular we have

trCM^M^) - MM) = ti(M)

which we call the trace equation of the confluence. Since, for elliptic surfaces,
the trace is a strong Invariant in determining conjugacy classes of local mono-
dromies, this equation naturally controls the confluence to a great extent.
In case where r—3 and Fl9 F2, F3 are of Types !„ lb, Ie, it leads to a Diophantine
equation of the form

bcx2+acy2jrabz2—abcxyz = d (d: = 2—tr(Af))

which we call the generalized Markov-Mordell equation. Here x, v, z are
the SL(2, ^)-Invariants associated with Ml9 M29 M3; they are unique up to
the even sign changes of x, y, z. (See Section 3 for the definition.) These
invariants of course depend on the choice of paths taken for the Introduction
of M19 M2, M3. Since the ambiguity consisting in this kind of choice Is de-
scribed by the braid group of three strings, this group operates on the solution

/\
space of the Diophantine equation. We let B denote the transformation
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group generated by this and the even sign changes. If one succeeds in giving
a system of representatives to the ^-orbits in the space of (geometric) solutions
of the trace equation, then we can say that one has given the canonical forms
to the monodromy matrices Ml9 M29 M3 in this type of confluences. We
can in fact recover the matrices from the invariants x, y, z almost uniquely
up to the SL(29 ^-conjugation, provided that (jc, y9 z) satisfies some additional
conditions to be geometric. In this article we attempt to classify (Ml9 M29 M3)
up to the ambiguity arising from the choice of paths and the SL(29 Z}-
conjugation, through the arithmetic study of the Diophantine equation above.
The result is immediately generalized to the case where one of Mt is of Type
I* and the others remain to be of Types 1^, IY for some <z, ft9 r> We remark
that, as a byproduct, we proved the finiteness theorem for the ^-orbits of regular
solutions of the trace equation. We also note that the theory exceptionally
well behaves in the case where r=3 and that the generalization to the case
where r>3 does not seem easy at all (see Section 8).

The author expresses his deep gratitude to Professor Egbert Brieskorn
for having explained that the elementary operations in the classical theory of
Mordell [4] are nothing other than the action of the braid group. He also
thanks his colleague Kyoji Saito for helpful discussions which in particular
lead to some improvements.

§ 1. Preliminaries

By Kodaira [2] the local monodromies around singular fibers of elliptic
surfaces are classified as some non-trivial conjugacy classes in SL(29 Z). For
them the absolute value of the trace is not greater than 2, but the converse is
not true. The reason is that we always choose paths on the base curve counter-
clockwise to determine the monodromies. To state in an invariant way what
classes they are, we need the following two lemmas.

Lemma 1.1. Let

be an element of SL(29 Z) such that \a+d\ <:2. Then we have /?r^0; /3r=Q
implies \a-\-d\ =2.

Proof. Note that we have
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(l.t) (a-d)2+4/3T = (a + d)2-4(ad-/3T)

In particular we have /?r^ — («— £)2/4<;0. The last statement Is obvious.

Lemma 1.2. Suppose thai' we are given an identity of the form between

elements of SL(2, Z):

la A (a b\ fa ft\ / d -b\

\r */ (c d) \r 8 j \ - c a)

If\a+d\ (=\a+d\)<i29 then we have

(1.2) "

7/2 f/ze ra^ where \a-\-fl\ ^1, u'g /7«v^ the strict inequalities in (1.2). J'i

the four equalities in (1.2) if and only if fi=r=®? a=8=±l.

Proof. By a direct computation we obtain

(1.3) W - {2#7+(a-a) b}2-{(d-a)2+4/3r} b2

But, by (1.1), the right hand side is non-negative. The other inequalities in

Table 1

Type

I*

It

II

II*

III

III*

IV

IV*

A is similar to

( ] 0

r :?)
I! ')
( i ~!)
(-1 ')
( . "')
(-1 _!)
("! ")

Sign condition

0 > 0 or r < 0

fi ̂  0, r ^ 0

A > o (r < 0)

^ < o (r > 0)

/? > o (r < 0)

/9 < o (r > 0)

£ > o (r < 0)

]3 < o (r > 0)
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(1.2) follow similarly. The last assertion of Lemma 1.1 proves the second

statement. The last assertion is also obvious.

From these lemmas we obtain several useful sign conditions for non hy-

perbolic conjugacy classes of SL(2, Z). For example, that either ft>Q or

r<0 holds for A such that |a+fl| ^2 is an invariant property under the con-

jugation. We now pick up here only the arithmetic part of the table in [2]

with some necessary conditions for local monodromies which we need later.

We let the matrix A above stand for the monodromy in Table 1.

If we have a-^d=2 and ft>Q or r<0, then A is of Type lb for some 6 = 1, 23 • • - .

If we have a+d=— 2 and /?^gO and r^O, there A is of Type If for some

b=Q, 1, 2, ° ° ° . For the other types, the trace a + 6 and the sign of ft (or r) com-

pletely determine the conjugacy class to which A belongs.

§2o Comiiieiice of Fibers in Deformations

of Elliptic Surfaces

Let S be a non-singular elliptic surface with the base curve A and the pro-

jection TC: S-^d. Let 2 be the set of points over which the singular fibers

lie and J* denote the complement A~2 . We choose a point p0 on J* as the

reference point for the fundamental group nl(A*)=Kl(A* 9 p0). We then obtain

the monodromy representation 7u1(^)-^Aut(H1(7u~1(p0), Z\ < , » where < , >

is the intersection form on the cohomology group. To get a homomorphism
of Xi(d*) into SL(29 ^} we still have to choose a symplectic isomorphism of

HI(TC-\P^, Z) to the lattice on which SL(2, Z} acts. We set

q

L*: = MCU)(Z) = {(p, q);p,

The matrix multiplication L* x L-^Z makes L, L* the dual spaces to each

other. We set further

•-(:)u*:=(—q,p) for

to introduce the symplectic form

<X v> = u* • v

We have thus SL(29 Z)=Aut(L5 < , ». Now let us choose a symplectic iso-

morphism
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to Induce the isomorphism af: Aut^V^Cpo). Z\ < 5 »— >,SX(2? Z). By
composing the above with this we obtain the monodromy representation in
the usual sense:

Now let />eS. If one chooses a closed path r on A* issuing from p05 without
self-intersection and encircling p once counterclockwise, then p([r]) is called
the local monodromy (with respect to r) associated with the singular fiber
n~\p) ([r] : the class of r in ^i(4*)). We use the following notation

The ambiguity in the choice of isomorphism a0 exactly corresponds to the
conjugation in SL(2, Z) in the expression of My. Different choices of the
path r are also absorbed in a similar way in the conjugation. Thus the con-
jugacy class of Mv is Intrinsically associated with the singular fiber n~l(p\
which is the precise definition of the local monodromy assumed in the previous
section.

Now suppose that we are given a commutalive diagram of the form

D 7]

d

' r
where E9 D, T are complex analytic manifolds of dimension /7+2, /?+!, /? and
7T5 £5 37 are proper surjections. We set

Defiiiitlora 2ol0 The data (E, D, T; n, d, rj) above is called an n-parameter
deformation of elliptic surfaces if the following conditions are satisfied:

(i) d and 77 are locally trivial Calibrations.
(ii) The restriction n: St-^At is an elliptic surface.

We assume (i) and (ii) and denote by 2t the set of points on At over which
the singular fibers of St lie. We set

S\ = U 2t 4*: =At—2i
t<=T

D*: =D—2 ,
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2 is obviously a closed analytic subset of D and the restriction n: 2->T is
a finite proper map. Since we are interested in local deformations, we assume
that T is contractible. This assures us that there is a C°°-section of d into D*

Po: T-+D* dopQ = fdT

and that we can identify, once for all, the stalks of K~7c%Z along p0(T) with
the standard lattice (L, <( , )>) in a flat manner. Thus we obtain the parametrized
monodromy representation :

(2.1) Pt : ^(J*, pQ(t)) -> SL(2, Z)

Now take two points t09 t on the parameter space T and choose points

Definition 2026 We say that the singular fibers n~\qd i=l, 23 • • « , r of Sf

flow together to the singular fiber 7c~l(q^) if there are closed paths r0 on AtQ

and ri, r25 ° ° ° , rr on At for which the following three conditions are satisfied:
(i) Ti does not have self-inter sections and it encircles only q{ once counter-

clockwise for z=0, 1, 2, • • • , r.
(ii) There is a permutation a of {1, 2, ° ° ° , r} such that the composition

r0.(r)'"7'<r(2)Fo-(i) can be deformed to a closed path in At without self-intersection
and surrounding all qly q2, -°, qr in its inside.

(iii) This composed path and r0 belong to the same class in the group

We say then that an r-branched confluence occurs at qQ or at 7c~1(qQ). Its

type is defined to be (C13 C2, • • - , Cr; C0) where C0, Cf- (/=!, 23 • • - , r) denote
the conjugacy classes of the monodromy matrices M0=pto([TQ]), Mi=pt ([Ti])
(/=!, 2, ° ° o , r). M{ (i=Q, 1, 2, • • • , r) are called the monodromy matrices of
the confluence.
Since the direct image sheaf R1 it%Z is locally constant over D*=D— 2)3 we
have the monodromy representation ^(D*, pQ(T))-*SL(2., Z). The repre-
sentation pt in (2.1) is induced from this by the inclusion (Af, pQ(tJ)c-^(D* ,
p0(T)). Therefore the condition (iii) in Definition 2.2 implies the following
important identity :

(2.2) M0 = MMM^-MM.

§30 Generalized Markov-Mordell Equation as Trace Equation

In this section we restrict ourselves to confluences for types of the form
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(I*> I*j Id C}- We will obtain a Diophantine equation which holds between
some SL(2, ^-invariants associated with the confluence which is very
useful to control the monodromy matrices. We will further describe the
action of the braid group arising from the ambiguity of the choice of the paths
TI, T2-> 7Y We begin with the following observation. Recall that L is the
lattice of integral column 2-vectors with the symplectic form <X v>=w*°v.

Through the natural identification Endz(L)=L®L*, the matrix product u°v*
=H®V* means the endomorphism L^wi—»<V3 w^u^L. (One should not

confuse w°v* and v*««=<v,, w>.) The composition rule for such endomor-
phlsms Is very simple :

(3.1)

In particular we have (u®u*)2=Q. Thus the matrix

bp2 \

l+bpq)

Is In SL(25 Z) and it is of Type Ib provided that u Is primitive i.e. not divisible
by any 2^m^.Z. As Is easily proved, any matrix in the conjugacy class lb

is written In this form. (Geometrically M(u, b) is nothing other than the
Picard-Lefschetz monodromy associated with the vanishing cycle ±bu*.)
We note that

(3.2) Af («, b) = M(-ii, b).

By tr(w®v)=v*w=<v, u)> and (3.1), the following formula Is Immediately de-
rived :

(3.3) tr(M(w, a) M(v, I?) M(w, c))

= 2-Z

Now suppose that we are given a confluence of singular fibers of type
(Ia, I6, Ic; C) with the monodromy matrices (Ml9 M2, M3; M), Let a be the
permutation of {1, 2, 3} such that M"0.(1)M(r(2)Af0.(3)—Af. We write Mi In the
following form:

Ml = M(u, a) M2 = M(v, b) M3 = M(w, c)

and we then introduce &L(23 ^)-invariants:

x: = sgn((j)<vs w>
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y: =

z: =

By (3.3) we now obtain the fundamental equation:

(3.4) bcx2+acyz+abz2—abcxyz = d

where we have put

d: = 2-ti(M) ,

Note that the sign changes of u, v, w do not affect the matrices Ml9 M2, M3 by

(3.2) but the SL(2, ̂ -invariants x9 y, z; they induce the even sign changes of

x, y, z, which further induce transformations among the solutions of the Dio-

phantine equation (3.4). This ambiguity is easy to manage. But recall that,

in Definition 2.2, the matrices Mi (i=l, 2, - ° o , r) depend strongly on the choice

of the paths n (f = l9 2, ••• , r). Thus x, y, z should also depend on the choice

of paths rl9 r2-> T3 satisfying the condition (ii) in Definition 2.2, assuming that

the confluence we are discussing arises from the situation of the definition

with r=3. Since the braid group of three strings, denoted here by B=B3,

controls this kind of path-choices, B naturally operates on the set of solutions

of (3.4). We will now show that this operation is nothing other than the clas-

sical elementary operations of the Markov chain [3], [4], Since M^M^M^

and M1M2M3 are conjugate in SL(2, Z) if a is even, It suffices to discuss only

the cases where a is trivial or the transposition of (1, 2). Assume first that

a is trivial and consider the following braid action:

(n, r25 r3) ̂  (rr1 r2 rl9 r1? r3).

This transforms (M19 M2, M3; M) to (Ml9 M2, M3; &):=(Ml9

M3; M). (See Figure 1.)

Figure 1

Thus, as the transform of (u, v, w), we can take
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u = u, v = v-\-a<(u, v)>M3 w = w ,

Since M2MjM3=M, the transform (x, y, z) of (x, j9 z) Is given by

x = — <v, w>— fl<w, v><z/, w> = <gyz— .x

?=-}>, z = -z (V<K, w> = 0).

By composing this with the even change j->— J9 z-»— z9 we obtain the
classical elementary transformation:

(x, y, z) H» (oyz-A% j;5 z) .

The other elementary transformations are

(x, y, z) h- > (#, bxz— y, z)

(%3 J9 Z) h-> (X,

and they are also obtained by the action of the other generators of B composed
with suitable sign changes. We have thus proved:

ion 3olo The group generated by the even sign changes and the

elementary transformations above exactly corresponds to the ambiguity coming
from the sign changes of u, v, w and the action of the braid group B=B3 on the

path-triplets (rl9 r2» rs).

/\
We denote the group in the proposition by J3; we regard it as a trans-

formation group on the set of (integral) solutions of (3.4). The main prob-
x\

lem is now to ask whether there are only finitely many 5-orbits in the solution
space. But, in our geometric situation, we do not have to observe all solu-
tions of (3.4). Suppose that (x, y5 z) is induced from primitive vectors:

Pl\ fP2\ /P3
U = V = W =

This means that (x, y, z) are, up to sign? the (252)-minors of the matrix

' P\ P2 jV

Since /?,- and q? are coprime for /=!, 2, 3, we see that the following condition
is fulfilled:

(3.5) x^Zy+Zz,
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We call a solution of (3.4) for which (3.5) is fulfilled regular. The regularity
/\

is an invariant notion under B. As we will see later, there are only a finite
/\

number of J5-orbits of regular solutions. The condition (3.5) is not sufficient

to guarantee the existence of primitive vectors (u, v, w) above (x, y, z). In

this connection we mention the following:

Proposition 3028 The SL(2, Z)-equivalence classes of triplets (u, v, w) of

primitive vectors above (x, y, z) are in one to one correspondence with the set

zr = 0}/Z7.

where s=gcd(x, y, z), x=x/s, y=y/s, z=z/s and Us is the unit group of the finite

ring Z\sZ.

In particular, if s=2, x=y=z=l mod.25 then the set in the proposition

is empty. We call (x, y, z) liftable if the set above is non-empty.

Proof. We let V denote the ^-module of 3 dimensional integral row

vectors: K=S?-i^,- , ^=(1, 0, 0), ez=(Q, 1, 0), e3=(Q, 0, 1). Then we have
also K*=Sf-i^* where (ef, ef, e$) is the dual base to (el9 e2, e3). Naturally

2

we obtain the identification AF^F* by C->C_J^iA^2Ae3 (CeF*); we have
ef=ej/\ek for any even permutation (/, /, k) of (1, 2, 3). Note that under this

convention

(x, y , z )

where we have assumed that (x, y, z) is induced from (u, v, w), and put p=

(Pi> Pi-> PS)? ff=(^u foi ^3)- This implies that £:=(x, y, z) is a generator of the
2

J^-module /\W of rank 1 if we put

2 2

Now we obtain two subspaces A W, W^~ of F* = A F(IFJ~: the annihilator of

W) and we have the inclusion A W^ W^. We have further [W^: f\W]=s
/s.

and see that f : =(x, y, z) generates W^~ over Z, with .s1, x, y, z being defined
s\

above. Now, if we put W :=(!¥-*-)•*-, then we obtain

^W \W\W]=s(=[W:sW}).

One can easily check that W/sW is a free submodule of rank 1 of the (Z/sZ)-

module W/s W. Note also that W/s W= {(«, ^ r) e (Z/sZj* ; xa + j/9 +zr -=0} .

Recall that the regularity condition (3.5) implies that the restriction ef: W-*Z

is surjective for each f=l , 2, 3. This further implies that ef, ef, ef induce
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/\
surjectlve mappings of W/sW onto Z/sZ. By this we see in particular that

/^
any generator of W\sW lies in (I7S)

3. Since the generators for this (Z/sZ)-
module are unique up to the multiplication of I7S, we have thus associated
an element of the set in the proposition with the primitive vectors M, v, w ori-
ginally given. Conversely suppose that a regular triplet (x9 y, z) is given and
take an element rj of the coset space in the proposition. Then there obviously

XN. X\

exists a unique free (^/s^-submodule H of rank 1 of W/s W which contains
77, where W is defined to be the anihilator (jc, y, zY~ = {(A, B9 C)<=Z3; xA+yB

+zC=Q}. We should then define W to be the inverse image of H under
W-^W/sW. Since [W: W]=s, we have (x, y9 z)=s(x, y, z} = ±p/\q for any
JS'-base (p9 q) of W. The Abases (p9 q) such that (x, y, z)=p/\q are unique
up to the action of SL(2, Z). We also easily see that (3.5) implies that pi9 qi

are coprime for £=!, 2, 3 with p=(p^ p29 p3], q=(ql9 q2, g3). It suffices that

we simply set u=*(pl9 g^, v='(/?2, #2), w=*(Jp3, a3). Q.E.D.

We moreover have to mention an important geometric condition which
rules all confluence phenomena in the situation of Definition 2.2: For a
confluence of type (C19 C2, - • • , Cr; C0), the sum of Euler numbers of the fibers
of Types Cl5 C2, • • • , Cr should equal the Euler number of the fiber of Type C0.
We will call this the Conservation Law for Euler numbers. The proof is left
to the reader.

Remark. We want to call a Diophantine equation of the form (3.4) the
generalized Markov-Mordell equation. Markov [3] treats the case where
a=b=c=3, d=0; Mordell [4] discusses the case where a=b=c and d is di-
visible by a2 generally. For informations about similar kinds of equations we
refer to the related references given in [4].

Remark. The invariant (x9 y, z) is an equivalent datum to the intersec-
tion matrix between the vanishing cycles (au, bv9 cw). Brieskorn [1] beautifully
describes how this kind of intersection matrix behaves under the action of the
braid group B^ for the versa! deformations of some good classes of isolated
singularities (&: the Milnor number). The above action of B=B3 on the
solution space naturally resembles to his description in the case of A2.

§4. Arithmetic Sfady of the Trace Equation

In this section we will give a reasonable fundamental set to the action
x\

of the extended braid group B over the sel of integral regular solutions of (3.4)
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i.e. a set in which one can find representatives for all orbits. As is remarked
in the previous section., the regularity assumption is natural from the geo-
metric point of view., and it makes the theory simpler in many places. We
note also that, except for only a few cases, all solutions are regular.

Now recall that the equation (3.4) depends on the integral parameters
0<a, b, c; 0^grf<^4. We introduce the following notations:

Solfe bs c; d): = {(x5 y, z)e^3; (3.4)

bcx2+acy2+abz2—abcxyz = d}

Sol*(a, b, c; d): = {(x, y, z)eSol(a? b, c; d);

(x,y,z): regular} .

If d=09 then (3.4) has the obvious solution x=y=z=Q which we call the com-
mutative solution. In fact this means geometrically that the monodromy

/^
matrices M19 M2;> M3 (and M) commute. This solution itself forms an orbit of B.

4.1. A solution (x9 y9 z) of (3.4) for which we have xyz=0 is
called reducible.

Geometrically the reducibility implies that some two of Ml9 M29 M3 com-
mute. We set

R: = {reducible solutions of (3.4)}

R*: =

4020 A solution (x9 y, z) of (3.4) is called positive if x, y, z are
positive; we write then 0<(x? y5 z) or (x, y, z)>0. A positive solution (x, y, z)
is called exceptional if one of the following inequalities is satisfied:

(i) x^ayz (ii) y^bxz (iii) z^cxy .

We note that the exceptional ones are exactly those solutions which can
be brought to a non-positive solutions by one elementary transformation.
We set

E: = {exceptional solutions of (3.4)} .

E*: =

Now note that, if xyz> 0 for a solution (x, y9 z)9 then we can transform it to
a positive solution by applying a suitable even sign change of x, y, z. On
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the other hand we call a solution (x, y, z) essentially negative If xyz<Q. The
following proposition is Immediate:

4oL If the equation (3=4) has an essentially negative solution

(x, y, z)3 then we have

The B-orbit of this solution consists of sixteen elements, among which there are
exceptional solutions (2, 1, 1), (1, 25 1), (1, 1, 2).

Now we list in the following table all reducible and exceptional solutions
(x, y, z) for which x^Q,

Parameter system

(a, b, c\ d)

(1,1, 1; 2)

(1,1,1:4)

(1,1, 2; 3)

(1,1, 2; 4)

(1,1, 3; 4)

(1,2, 2; 4)

(1,1,7:1)

(1,1,7; 4)

(2, 2, /; 4)

(1,7, /n ;7) 1^7^4, I^/H

Reducible solutions

(*, >', z) ̂  0

( l ,0,0) + a,(0, !,!)*+«

(2,0, Q)+a

(0, 1, l)*+a

(0,0, 2), (1,1,0)*

(0, 1, !)*+«, (0,0,2)

(0, 1, 1)*, CO, 0, l)+a

(0, 0, 1)

(0, 05 2)

(0, 0, 1)

(0, 05 l)+a

Exceptional solutions

(x, y,z)^Q

(1, 1, 1)*

(2, 1, l)*+a

(ls l, D*

(1, 1,2)*

(1, 1, 1)*

(1,1,1)*

empty

empty

empty

empty

Here we have excluded the commutative one. The solutions with suffix *
are regular; the adjunction of +a to a solution means that one should add
the solutions obtained from It by the symmetry of (a, b5 c) in case It exists.
We also note that, in Table 2, we have classified the cases and the solutions

only up to the simultaneous permutations of (x, y, z) and (a, b, c),

To give the fundamental set promised at the beginning of this section
we now introduce the following two sets of positive solutions:

F: = {(x,;y,z)eSol(fl,&,c;fl[);



422 ISAO NARUKI

F*: = FnSol*(a, b,c;d).

We further set

R+: = {(x, y,

R*: = R+ftR

E+: = {(x, y,

Propositioe 4.2. With the notations above, the natural mappings

R+\JE+(JF-+ Sol (a, b, c; d)/B

$ U F* -> Sol*(a, 6, c;
.

are 0Azto. /» particular, we see that Sol (a, 6, c; rf)/J? rasp. Sol*(a, &, c; d)/B is

a finite set if F resp. F* is a finite set,

Proof. By the ,3-Invariance of the regularity it suffices to prove the sur-
jectivity of the first mapping. Following [4], we first define for a positive

/N.

solution (x, y, z) its height to be the sum x+y-\-z. Now let O be a ^-orbit
in the space Sol(a5 6, c; d). We want to show that O fl (1?+ U E+ U F) is non-
empty. If 0 does not contain any positive solution, then it must only con-
sist of reducible solutions by Proposition 4.1 and we are done in this case.
We may thus assume that O contains at least one positive solution. Let now
(x, y, z) be a positive solution in O with the minimal height. If it is an ex-
ceptional solution., then we are done. If it is not, then any elementary trans-
formation brings it to a positive solution in O with a greater or equal height,
which exactly means that (x, y, z) belongs to F. Q.E.D.

Our next aim is to show that F* is always a finite set, by estimating x, y, z
for (x, y, z)eF. The following argument generalizes the method of Mordell
[4] to the case of the equation (3.4) which has more parameters:

Proposition 43* For (x, y, z)eF we have

a b c

where the right hand side denotes the minimum of x, y, z.

Proof. By the symmetry we can assume that x^y^z. By replacing
X9 y by larger z in the first two terms in (3.4) we have the estimate z{(bc-{-ac
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+ab)z— abcxy} ^d]>0. By dividing by z>0 we have z^A where we put
A: = abcxy/(bc+ac+ab). By (x, y, z)eF we have B^z where B: = cxy/2,
and we thus obtain B^>z^A which implies that

Since x^ j and since (3.4) can be written in the form c(bx2+ay2)+ab{(z— B)2

-B2}=d^Q, we deduce further 0^c(a+b)y2-abA(2B-A) from which it
follows

( l - T abc T 2 |> Q a

I L&C+0C+0&J J~~^r-i
Since y2> 03 we have obtained the desired inequality.

The estimate (4.1) already implies something remarkable:

Corollary 4.1, If we have the inequality

(4.2) _1+1_+J_<1
a b c

then, in any confluence of type (Ifl, Ib9 lc; C), the monodromy matrices commute

and C=ls+b+e.

Proof. The inequalities (4.1), (4.2) imply that F is empty. We further
note that none of the cases in Table 2 occurs if (4.2) is satisfied. This implies
that there is not any exceptional solution or reducible solution except the com-
mutative one3 which proves the corollary.

To prove the finiteness for F* we will also need the following:

Proposition 44 For (x, y, z)eF we have the inequalities

(4.3)

Ifbcx2>49 then we have the further estimation:

cx2(bcx2-d)
a(bcx2-4)

>z2

a(bcx*-4)

Proof. From the definition of the set F we have 0 <x ^ oyz/2, 0 <y ̂  bxz/2,
0 <z ̂  cxy/2 ; in particular
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cx

from which we obtain bcx2^4. The other inequalities in (4.3) are similarly
proved. From the estimate above, we can also deduce

2cx

Since box2— d+ac(y— bxz/2)2+ab(l — bcx2/4) z2=Q, we obtain the estimate
Q^bcx2-d+acz2(bcx2-4)2/(4c2x2)+ab(l-bcx2/4}z2=bcx2

from which the first inequality in (4.4) follows. The other one in (4.4) is proved
similarly. Q.E.D.

To prove the finiteness theorem for ^-orbits of solutions, we still have to
list one more exceptional class of parameter systems (a, b, c\ d) which will
appear in the study of confluences to Types If :

Table 3

Parameter system

(a, b, c; d)

(in, 1, 1;4)

(m, 2, 2; 4)

(iff, 1,4; 4)

Special solutions (x, y, z) in F

(2,7,7) 7^1

(1,7,7) 7^1

(l,y,2y) y*l

The meaning of "special" in Table 3 is explained in the following pro-
position:

Proposition 4.5* Assume that (x, y, z)^F, that x=min(x, y, z), and that

bcx2=4. Then (a, b, c; d) is one of the parameter systems in Table 3 and (x,
y, z) is one of the special solutions there.

Proof. From the proof of Proposition 4.3 it is clear that we have d=4

and y=bxz/2=2z/cx under the assumption above. From this one easily
obtains the conclusion of the proposition.

We will of course extend the speciality of solutions in Table 3 to an in-
variant notion under the simultaneous permutations of (a, b, c) and (x, y, z).
Now the main result in this section is the following:

Theorem 4.L The orbit space
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Sol*(a, b, c; d)/B

is a finite set.

Proof. By Propositions 4.3-4.5 we have the estimates ®<x^l/a+l/b

+ l/c and (4.4) for non-special solutions (x, y, z) in F, by permuting x, y, z

and a, b, c simultaneously. This implies that there are only finitely many non-

special solutions in F. But we also see that there are only one or two regular

special solutions for each case in Table 3. Thus the set F* is always a finite

set. Now Proposition 4.2 proves the theorem.

§5. Confluence to Singular Fibers of Type If

We begin this section by giving a supplement to Proposition 4.4. We

assume here that

(5.1) d = 4

which exactly means that we are dealing with the case where C=lf for some

P in the confluence of type (IB, Ib, Ic; C). We can then rewrite the equation

(3.4) in the form:

(5.2) ab(z-cxy/2)2- {c(bx2+ay2)/4-2}2

+ {c(bx2-ay2)/4}2 = ®.

Lemma 5.1. Suppose that we have bx2=ay2 for (x9 y9 z)eSol(a, b, c; 4).

Then \/~ab ™ ®n integer and, we have either (i) \/~ab z=2 or (ii) \/^bz=c°

V^b xy—2. If (x, y, z) belongs to the fundamental set F9 then (i) and (ii) are

equivalent.

Proof. The first assertion of the lemma follows from (5.2) immediately

if one notes that bx2=ay2=\/~ab xy under the assumption. From the defini-

tion of F, we have Q<z^cxy/2 for (x, y, z)eF. Thus, if (ii) is satisfied, then

we have

4^c\/ab xy = bcx2 = acy2.

On the other hand, we have by Proposition 4.4 bcx2^49 acy2^4. We thus

obtain c\/~ab xy=4 which shows the equivalence of (i) and (ii). Q.E.D.

Proposition 58L Under the assumption (5.1) the set F consists only of

special solutions i.e. we have one of the cases in Table 3 for (a, b, c) and (x9 y, z)

€E F up to the simultaneous permutations.
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Proof. Suppose that, in bcx2^4, acy2^4, abz2^4, we have two equalities,
say bcx2=4=acy2. Then the assumption of Lemma 5.1 is satisfied and we
obtain \/~ab z=2, \/<z& being an integer. Thus, we have either ab=l, z=2
or ab=4, z=l. Since we also have the identity bx2=ay2, we are led to one of
the cases of Table 3. Now suppose that, in hex2 ̂ 4, acy2^4, abz2^45 we
have two strict inequalities, say bcx2>4, acy2>4. Then, by Proposition 4.4
we obtain four inequalities cx2^az2, bx2^>ay2; ay2^bx2, cy2^bz2. Thus we
are led again to the assumption bx*=ay2 of Lemma 5.1.

Remark. In the first case of Table 3 we have exactly two regular solu-
tions (2, 1, 1), (2, 2, 2). But (2, 2, 2) is not liftable in the sense of Section 3
(see Proposition 3.2). Thus we should exclude this solution in the study of
actual confluences. We have exactly one geometric special solution for each
case of Table 3.

§6. Confluences to Types Ip, II9 III9 IV

Suppose that we are given a confluence of Type (la, lb, lc; C) with the
monodromy matrices (Ml9 M2, M3) such that the class C is one of the types
in the title. We also assume that M=M1M2M3, so that, according to the
convention of Section 3, we have

x = <v, w> y = <w, w> z = <w, v>

where we put

(6.0) Ml = M(u, a) M2=M(v, b) M3 = M(w, c) .

To include the case of confluences with less than three branches, we allow
some of the vectors w, v, w to be zero; we have of course assumed that every
vector is primitive unless it is zero. Now we begin with the following re-
formulation of the sign condition in Table 1.

Proposition 6.1. Let the notation and the assumption be as above. If
u is not zero, then

(6.1)

where we have the strict inequality except for the case where C=Ip for some ft.

Proof. Since u is primitive, we can assume that u, v, w are given as fol-
lows:
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(p\ / p
= ( ) w=[

\z) \-y

We have then x=—(py+pz) and, by calculating directly, we see that the (2,1)-
entry of M=M1M2M3 is equal to — (cy2+bz2— bcyz). Thus the sign con-
dition in Table 1 implies the desired inequality of the proposition.

Proposition 6.2, If C=lp for some ft>Q, then the monodromy matrices

MI commute. If C=II, then the last case in Table 2 occurs with 1=1. If C=
III, then either we have abc=xyz=l or the last case in Table 2 occurs with 1=2.

lfC=IV, then either we have abc=2, xyz=l or the first case of Table 2 occurs

or the last case occurs with 1=3.

Proof. We write the trace equation in the form

(6.2) bcx*+a(cy2+bz2-bcxyz) = d

where d=Q, 1, 2, 3 according to C=Ift, II, III, IV. Thus, in case where C=

10, we have by Proposition 6.1 ^=0 provided that w4=0. Note that i/=0
implies y=z=Q and also x=Q since d=Q in this case. By the symmetry we
have proved x=y=z=Q for C=Ip. Now suppose that d=l and that none
of u, v, w is equal to 0. Then, by the strict form of (6.1), we obtain x=y=z

=0, which is obviously a contradiction. But, if d=l and one of u9 v, w, say
w is equal to 0, then we have x=y=Q, abz2=l9 which leads to the last case
of Table 2 with 1=1. The remaining two statements of the proposition are
proved similarly.

§7. Confluences to Singular Fibers of Types H*, IH*9 IV*

As in the previous section we assume that we are given a confluence of
Type (Ifl, Ib9 Ic; C) where C is one of the types above. We let also the associ-

ated monodromy matrices Ml9 M29 M3 be given by (6.0) and let x=<v, w>5

y=<(w, w>, z=(u9 v>. We of course assume that M1M2M3 is in conjugacy class
C. But we note that, for the present exceptional cases, the sign condition
does not give such a strong restriction as (6.1); so we will instead rely on the
conservation law for Euler numbers. We shall namely impose the following
condition which gives only a finite number of possibilities for (a, b, c) :

(7.1) a+b+c = 10, 9, 8 according to C - IP, IIP, IV* .

Recall also that, in the equation (3.4), we have d=\9 2, 3 according to C=H*f
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IIP, IV*. Our strategy of classification is now simple: We can assume
that (x9 y, z) is in the set F in Section 4. But then Proposition 4.3 gives us
the inequality to be satisfied for a, b, c; x, v, z: l/a+l/b+l/c^mm(x, y, z)
= 1, 2. Without loss of generality we can assume that x=mm(x, y, z) = l
or 2. This, together with (7.1) and the congruence bcx2=d mod. a, reduces
greatly the number of possibilities of (a, b, c) to consider. We can further
use the estimates (4.4) of Proposition 4.4 to look for the non-special solutions
in F, while in the present cases, any special solution does not appear. Now
we simply list the result of this procedure in the following table:

Table 4

C

II*

III*

(«, k c)

(1,1,8)
(1,2,7)
(1,4,5)
(2, 3, 5)

(1, 1, 7)
(1,2,6)

(1, 3, 5)
(2, 3, 4)

(*,y,z)
(1, 1, 3)
(1,1,2)
(1,1,2)

(1, 1, 1)

(1, 1, 3)
(1,1,2)
(1,1,2)

(1,1,1)

C

IV*

(fl, b, c)

(1,1,6)

(1, 2, 5)
(2, 3, 3)

(x, y, z)

(1, 1, 3)
(1, 1, 2)
(1,1,1)

i

§8. Concluding Remarks

So far we have discussed only confluences of Types (Ifl, Ib9 Ic; C) where
C is an arbitrary class in Table 1. But the same method can be applied with-
out any essential change to the study of confluences of Types (I*, Ib, Ie; C)
since the conjugacy classes in Table 1 are transposed among themselves by
the involution M+-+—M in SL(2, Z) and I* = —Ifl. For example we obtain
the monodromy matrices M19 M29 M3 for confluences of Types (If, Il5 1^
IIP), (I?, I1? Ij; IV*), (I2, If, Ix; IV*) etc. from those for confluences of Types
(I1? I1? Ix; III), (I2, I1? Ix; IV) etc. But we should remark here that the inverse
procedure is not allowed by the conservation law for Euler numbers. To
sum up results, we found that there is a principle which controls the conflu-
ence-phenomena observed so far. We formulate this principle in the follow-
ing way: We assign Ik+l91?_4, IV*, III*, II* to the Dynkin diagrams Ak (k^l),
Dk (k ̂ 4), E6, El9 EB by comparing the singular fibers of these types and the
exceptional sets in minimal resolutions of simple singularities. We call these
types of singular fibers or the corresponding conjugacy classes in SL(2, Z)
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the Lie types. We will also call Ix the extra-Lie type. We associate the
empty set with this as the Dynkin-diagram. Then our principle asserts that,
in any confluence of Type (C15 C2, C3; C) where C is a Lie-type and Q, C2, C3

are Lie or extra-Lie types, the disjoint union of the Dynkin-diagrarns of C19 C2,

C3 is obtained from the Dynkin-diagram of C by removing some vertices and the
bonds issuing from them. This behavior of confluences is exactly like the
unfolding procedure of simple singularities except at the extra-point that one
should supplement fibers of Type Ix to fill out the defect of Euler numbers.
This seems to suggest the existence of some universal objects of deformation
for (local) elliptic surfaces.

It was too restrictive that we assumed the properness and local triviality
for the mappings d, 77 in Definition 2.1. In fact [2] classifies the local mono-
dromies of local one-parameter family of elliptic curves. We think that the
appropriate local version of confluence of singular fibers might be clear for
the reader. Our results on monodromies receive anyway no change at all.

If we want to observe confluences with more than three branches, then
we are faced to the difficulty that there are non-trivial algebraic relations
among the intersection numbers of vanishing cycles. For example, suppose
that we are given four matrices of the form Mi=M(ui, a^) (l^z^4). Then
the trace of M1M2M3M/L can in fact be expressed again by a^ (l^i^4) and
the six quantity xij:=<(iih w;-> (xij+xji=0). But we also receive the Pliicker
relation x12x3^-\-x13x42

Jrxux23=Q besides the trace equation. We will moreover
have another difficulty i.e. the braid group B4 does not preserve the form of
the trace equation in general. This might also make the theory more cum-
bersome. There still remain many things to overcome for the arithmetic
study of confluences with more than three branches.

To close this article, we explain how to construct the monodromy mat-
rices Mj=M(M, a), M2=M(v, b\ M3=M(n\ c) from the data (a, b, c; x, y, z)
which we have classified above. As is done in Section 6, we can assume

C) »
(x,y,z>0).

By applying the conjugacy of the stabilizer subgroup of u if necessary, we can
further assume that
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Table 5

Type

di,

(Ii,

di,

(fc.

di,

di,

di,

da,

tti,

di,

Of

d.,

da,

0.,

ii, is; n*)

I2, 17; n*)

14, 15; ii*)

I3, is; ii*)

Ii, IT! HI*)

I2, is; m*)

I3) I5; HI*)

I3, 14; m*)

ii, i6; iv*)

i2, is; iv*)

i3, 13; iv*)

ii, ii> i* -4)
a ^ 4

a S2

Ii, I*; I*)
a S 1

di, ii; ID

Ot, Ii, HI)

ft, ii, it; in)
1
d3,

d2,

ii; iv)

ii,ii;iv)

M! M2 M3

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

/ 1

D
I)
1)
D
1)
!)
I)
*)
I)
1)
D
:)
;)
D
;)
DD
D
D

/-5 4N

\ -9 7/
/-3 2V

V -8 5/

UI 9)
(-3 l)
/-5 4V

V -9 7/
/-3 2X

\ -8 5/

(-12 D

(-3 l)
/-5 4X
\ -9 7/

c: D
(.; .)
(-! ,)
U ,)
c: 3
(-! i)
(_! ,)
(.; ,)
(-! O
(-'. .)

c:
G
c:
c:
aa
a
c:
c:
c:
Gc;
G
G

(-,

(-,

*)
I)
I)
D
D
5)
D
:)
')
3
:)
D
D
*)

i)

i)
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Since v, w should be primitive, we have the conditions gcd(/?, z)=gcd(^, y)=l,

Now we can check that, in all our cases of classification, one finds a unique p
in the above region with gcd(p, z)=4 such that x+py is divisible by z9 and
that the condition gcd(p, y)=l is satisfied with p=— (x+py)/z. Thus the

vectors u, v, w are determined and we obtain the desired matrices Ml9 M2, M3.
We sum up the result in Table 5.
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