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On the Dirlchlet Problem for Quaslllnear Elliptic
Equations with Degenerate Coefficients

By

Kazuya HAYASIDA*

§ 1. Introduction and Results

In this paper we consider the weak solution u of the Dirichlet boundary
value problem for a certain quasilinear elliptic equation, whose coefficients
degenerate on the boundary. Our aim is to study the regularity behavior of u
near the boundary.

Let Q be a bounded domain in Rn with boundary dQ. We suppose that
for a function

and
O for

where d<j) is the differential of (p.
It is assumed that the usual function spaces C k ( Q ) , CJ(fl), Lq(Q) are known.

For real numbers p and q with l<q<oo we define

and we write

If q>l, the space Lj(fl) is a separable and reflexive Banach space. It is
seen that the dual space of Lj(fl) is Lq^llK(l-^(Q), where q*=q/(q—l). Denoting
by Vw the gradient of u, we define

and we write
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Then W]jq(Q) is also a separable and reflexive Banach space, which was studied
by P. Grisvard [6]. We denote by Wl^(Q} and W]^q(Q) the completion of C"(Q)
and C°°(£), respectively with respect to the norm ]| \\w];q>

Throughout this paper let us suppose that p>2 and 0<a<p— 2. And we
consider the following boundary value problem

\u au=f in Q,
(1.1)

u=Q on dQ.

If / is in the dual space of W\'P(Q], we can find a unique weak solution u of
(1.1) belonging to W\*P(Q) (see Lemma 2.3 and part (b) of Lemma 2.2).

Let 6 be a vector field of class C1 tangent to dQ, namely,

(1.2) fleEC1^)]71 and 0>n=Q on dQ ,

where n is the outer normal of dQ with respect to Q. We write 6=(01} ••• , 0J
and 0-^=^1=10 id Xit which is a tangential differential operator of first order.

Our aim is to prove the following theorems.

Theorem 1. Let f<=W±fi*p-u(Q). If u^W{'p(Q) is a weak solution of (1.1).
Then it holds that

and

||^2(^V)|V^ll^Cn^

where C is independent of /.

Theorem 2- Let 0</3<1. Under the assumptions in Theorem 1 it holds that

and

where C(/3) z's a constant depending on ft and not on f.

Theorem 3. Let r>l/(p—l). Under the assumptions in Theorem 1 it holds
that

<f>T/pVu^Lp(Q)
and

(W'*vu\\pY^cmf\^
where C(j] is a constant depending on f and not on /.

The interior regularity for the equation

(1.3) -V-(|7



QUASILINEAR ELLIPTIC EQUATIONS 457

was studied by several authors. For example, L. C. Evans [3] proved that
weak solutions of (1.3) are of class C1^5 (0<3<1) if / is smooth. For more
general equations C1+5-regularity was shown by P. Tolksdorf [11], where
detailed references are given.

Secondly we consider the Dirichlet boundary value problem for (1.3) under
Dirichlet data 0. More explicitely,

7.(|7wp-27w)=/ in Q,

u=Q on dQ.

Let Q and $ be the domain and the function, respectively, in the beginning of
this Section. It is well-known that the existence of a weak solution u for
(1.4) is shown by the "monotone" method (cf., e.g., [8]). The global regularity
of u gives rise to a question. By the result of I. M. Vishik [12] it is known
that

if / and 7/e LZ(Q\ His method is the use of Galerkin procedure. G. N. Jakolev
extended the above result to more general equations in a series of his papers
(cf., [7]), where the method of difference quotients is used. J. Simon [10] also
proved the global regularity of u by estimating the fractional derivatives of u
in Besov spaces. If we proceed along the line of [10], it is unnecessary to
prepare a coordinates transformation for the estimation of normal derivatives
of u. However we require an adequate coordinates transformation in this paper
(see Section 3).

Now we shift our attention to the degenerate linear elliptic equation

(1.5) -V-(07u)=/,

which was studied by M.S. Baouendi and C. Goulaouic [1]. They showed the
global regularity for the weak solution u<E.W\'z(Q) of (1.5). In particular
VweL2(£?) results from [1]. Recently C. Goulaouic and N. Shimakura [5] have
proved that (1.5) gives an isomorphism from CZ+5(Q) onto C8(Q), for any d
with 0<5<1. In connection with (1.5), J. P. Dias [2] treated the variational
inequality for the equation

(1.6) -V-(^ ^u\p-2Vu)=f,

where it is assumed that Q^fi<mm(p— 1, p/n\ He proved the global bounded-
ness for weak solutions under some assumptions.

From the viewpoint of mathematical physics, the simplest unsteady two-
dimensional equation related to (1.6) appears in J. R. Philip's work [9, p. 2],
where transfer processes were treated. Thus it seems to us that the Dirichlet
problem (1.1) is meaningful to study. Finally we give an example showing that
the conclusion of Theorem 3 is sharp for /> > 1 -i- V~2~.
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Example. Let n=l and Q be the open interval (0, 1). Thus 0<=CS(R1) is
a function such that 0(0>0 for 0<f<l, 0(0)=0(1)=0 and 0'(0), 0'(1)=£0.

There is a positive constant c such that c~lt^<j)^ct, if O^z^l/2. Since

t-l<f>(t)=.^<j>'(ts)ds, we have

We take a function ^eC^jR1) in such a way that

C(0=ji o

Let us set M(0=C(0*C1}"'2)/C1}~:1). It is easily seen that u^Wl'p((Q, 1)). From the
condition with tt(0)=w(l)=0 we conclude that we^J'p((0, 1)), in virtue of [6,
p. 262] (see Lemma 2.2 in this paper).

From (1.7), — ( $ \ u f ^u'Y^C1 in a neighborhood of f=0. Let t0 (0<a0<l)
be a zero point of M'=() with its order AT". Then near t=tQ

Since p*(p—3)>— 1 for £>l+v 2, it follows that — ( $ \ u f p~2u/Y^W1>p* in a
neighborhood of f=f0 . Hence -(<j)\u'\p-zufy^Wl-2?*(p-u(($,iy), moreover we
can easily verify that —($\u' p"2M /) /^^-i?(D-i)((0, 1)). If f>l/(p—1), <fir/pu'^
Lp((Q, 1)). And we see that p'*u'GLp((Q, 1)) if ^<l/(/>-l).

§ 2. Preliminaries

We use the notations in Section 1. Throughout this paper the notation
"--" means the weak convergence.

Lemma 2.1 (J. L. Lions [8, p. 12]). Let u^.Lq(Q) (l<q<oo) and suppose
that {\Uj\q\ is uniformly bounded and u3-*u pointwise a.e. in Q. Then u3-^u
in Lq(Q\

If u is a function in Q and the trace of u on dQ exists, it is written by
ru. We denote by < >2 the norm in Lq(3Q}.

Lemma 2.2 (P. Grisvard [6]). Let Q^/ji<q—l. Then the following assertions
hold :

(a) // u^W^(Q], then Tu^LKdQ) and

(b) The space Wl^(Q) consists of all u^W^Q) with ?u=Q.
(c) // u^W^Q], then u^L%.q(Q) and



QUASILINEAR ELLIPTIC EQUATIONS 459

The above constant C are all independent of u.

From now on we assume that Q^a<p— 2 and Q<LfjL<p—L The norm and
inner product in L2(£?) are simply denoted by || |] and ( , ), respectively. We set
V=fr};*(Q). Thus || \\v is the norm in W]i*(Q).

For u^V we define A(u) as follows:

Then by Holder's inequality

K ^ u X ^ I ^ C I I t t l l ^ ^ l l v l

Since l+a<p— 1, we have from part (c) of Lemma 2.2

Hence A is a mapping from V into its dual space V, And denoting by || \v,
the norm in V, we have

(2.1) \\A(U}\\V^C[_(\\U\\VY^ + (\\U\\VY + ̂ , U^V,

where C is a constant independent of u.
For any given /eV we consider the equation

(2.2) A(u)=f, ut=V.

By using part (b) of Lemma 2, we see that (2=2) is equivalent to

\u\au=f in fl,
(2.2)'

4=0 on

Now we have

Lemma 2=3. The equation (2.2) has a unique solution u^V and it holds that

where C is independent of u.

Proof. In order to prove the existence of solutions of (2.2), it is enough
to show the following properties for A (cf., e.g., [8]):

(0 A is bounded; (ii) A is hemicontinuous; (iii) A is monotone; (iv) A is
coercive.,

First property (i) Is (2»1) itself. We prove property (ii). For u, v,
and
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And for % with |/M^0 there is a constant C independent of X such that

\u+tv\1+a\w\<C(\u\1+a+\v\1+a}\w\.

In the same way as deriving (2.1), we see that each term on the right-hand
side of these inequalities is integrable in Q. Thus (A(u+Av), w) is continuous
with the variable /! by Lebesgue's theorem, which implies property (ii).

Next we easily see that there is a positive constant cl such that for u,

<A(u)-A(v), u-vy^Cl(\\<j)Vi

Thus from part (c) of Lemma 2.2 it holds that

(2.4) <A(u)-A(v), u-vy^c2(\\

for another positive constant c2. Hence property (iii) is correct. Setting v=Q
particularly in (2.4), we have

cMu\\r)*-l£<AW, u>/\\u\\r

from which (A(u), w>/| |w| |F— »oo as ||^||7-*oo and (iv) is established.
The uniqueness of solutions of (2.2) also follows from (2.4). The inequality

(2.3) is clear from (2.4). Q.E.D.

For £>0 we consider the Dirichlet boundary value problem

u\au=g in Q,
(2.5)

u=Q on

This is an elliptic regularization of (1.1). From our assumptions dQ is of class
Cz+8 for any d with 0<3<1. The following lemma is due to D. Gilberg and
N.S. Trudinger [4, Chap. 14].

Lemma 2.4. ([4]). // g(=C8(Q) for d with 0<5<1, then there is a solution
of (2.5).

Let f^W±ip/*p-u(Q) and let us take an approximating sequence
such that fj-*f in Wbfi[p-^(Q) as j'^oo. Further let {e;} be a sequence of
positive numbers tending to zero. By Lemma 2.4 there is a solution
for each / satisfying

|M,ruJ=/J in 0,
(2.6)

=Q on
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where d is any number with 0<5<1. Integrating by parts, we have from (2.6)

^-2) /2 |Vu ;l
2^^(/,, uj.

By Holder's inequality and part (c) of Lemma 2.2 it follows that

We denote by the same C all constants independent of j. Combining the above
inequalities we have

(2.7) M

Therefore it follows that

and

(2.8)

§3. Coordinates Transformation

As stated in the first section we are obliged to take an adequate coordinates
transformation, in order to estimate the normal derivative of weak solutions of
(1.1). Thus we prepare such a coordinates transformation.

Lemma 3.1. Let 3) be a domain in Rn. Let v be a real-valued vector
function belonging to [CmC0)]n. Then there is a set of functions {Uj}J~? such
that Uj^Cm(3)}, ^Juj ^0, Vuj-v=Q and 7^-7^=0 in 3) if

Proof. If v=(Q, ••• , 0, Vn) particularly, it is enough to take Uj—x3.
For the general case it is easily seen that there is an orthogonal matrix

(dij) of order n such that a^eCmC0) and

(3.1) Sfl j*Vj=0 in S), k = l,—,n — l,
j

^

where v=(vlf ••• , vn\ We define el=(Q, ••• , 0, 1, 0, ••• , 0) and

(3.2) e(=^a3lej} i=l, - , n .
j

Then

e»=S a%X.
j

Denoting by d[ the differentiation in the direction e(, we have
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Hence it holds that

from which 7/-7g is invariant for any two functions/, g under the coordinates
transformation (3.2). On the other hand we can write v=^iViaine

f
n. Therefore

the assertion is reduced to the first simple case. This completes the proof.
Q. E. D.

Let (j) and Q be the function and the domain in the first Section, respec-
tively. Let P be any fixed point in dQ and let U be a sufficiently small
neighborhood of P, which will be determined later. From our assumption
70 =£0 in U. We take the set {uj}?~} in Lemma 3.1, by setting 3)=U, v=V<f>
and m=2.

We define the following mapping from U into Rn

(3.3) 0:

Then 0 is a one-to-one mapping. Further 0 and 0"1 are of class C2. The
coordinates system (yi(x), • • • , ynW) defines that of orthogonal curvilinear
coordinates. We set gij='Sk9yixk-dyjxk for the original coordinate system
(xi(y), •••, xn(y}\ Then it is easily seen that gtj=Q (*'=£./) and gu>c for some
positive constant c. And we have

7,/-7,A = S(^)-13y,/-9,,/i

for any functions / and h. In addition, the Jacobian of 0~l is written as

We set

(3.4) 0™=(dVixl9 - , dvixn), i=l, - , n-1.

Then ^^^[C1^)]71. O^^O and flc".7^=0 in [7. Hence {fl^K^1 is a vector
field tangent to dQ and it is an orthogonal system.

Let v be in C\(U} and v=Q on 9-0. Integrating by parts, we have from (2.6)

(3.5)

Rewriting this with (3;!, ••• , 3; J- variables, we see that
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J /(eJ+3O(e,+ ISMS,,^)')"-*3'1^ aJyku,-dy

+ \ d\Ui\auiVdy = \ d f , v d y ,
Jyn^° Jyn^°

where d=Vg11---gnn and ak=(gkkY
l* We note that d, ak^Cl($(U)} and d,

Gfe>0 in $(£/)• From now on we denote by ( , \ the inner product of L2({yn^>Q}}
with respect to (ylf ••• , 3; J-variables. The above equality Is again rewritten as
follows :

(3.6) ((e.+^nXs.+S ak(dykuj)*y*-»'*, S b k d y k U j - d y k v } yk k

+(d\u3
 au3,v)y^(df3,v}y.

Here bk—dak and v is an arbitrary function in CJ((P(C/)) such that i>=0 on
3>»=0.

§ 4. Propositions

Let U be the neighborhood in the previous Section and {0™}?=} be the
orthogonal system in (3.4). Then we have

Proposition 4.1. Let r}^C\(U), and let u3 be the solution of (2.6). Then it
holds that

where i^n and C is a constant independent of j,

Proof. As we have remarked in the previous Section, (2.6) is reduced to
(3.6) in Ur\Q. We take a neighborhood V of $(P) such that ®(Ur\Q}=
Vr^\{yn>0}. And we define the following function space with (ylf ••• , yn)-
variables

and w=0 on yn=®}.

From now on we denote by || \\y the norm in Lz({yn^Q}^ Let
with C^O and v^.C\Vr\{yn^})' The test function v in (3.6) can be replaced
with —^dytiu, where i^n and w^Cz(Vr\{yn^}}. We write dyiw simply by
d'w. Then (3.6) becomes

(4.1) _((£j+3;n)(£j+s fl.O^M,)')^-"'8, 2 fr^.^-S^CCS^My

Now we calculate each term on the both sides of (4.1). First we see
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(4.2) -((s,+yB)(e,+2
k k

wj)2)cp-2)/2C, 2

'w, 2
k k

By integration by parts

(4.3) -((sj+yJCej+S aiO^M,)1)"-"'^, E 6*3,4

:, 2 S'b

In addition

(4.4) -(d|M, *ujt tf'w)y

and

(4.5) -(<//„ &'w)y=(dd'

Here we remember that w;eC2(Fn{^n^O}). However, at most first derivatives
only appear for w in each term on the right-hand sides of (4.2)-(4.5). Hence it
is enough to assume that w^C\Vr\{yn'^$}'), if we take an approximating
sequence of w. This implies that we can put w=d/uj. By an easy computation

Noting that bk—dak, we obtain the following equality from the above
mentioned

(4.6) -((Sj + JfnX^ + S fl*@yftK,)8)(I'-')/83/8Mj, 2
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We set the left-hand side of (4.6)=SU/;. And we put t=rf, where j?(;y)e C\(V),
namely, ij(x)eCJ(t7). Let us estimate each It.

It is easily seen that

IAI, l/il, l/.l, 1/4!

where V=(93/j, ••• , dyn). Denoting by || \\q,v the norm in Lq({yn>Q}), we have

I, , /, ^Cl^^1" M j ^ H p u . J I ^

Further there is a positive constant c0 such that

Next estimating each term on the right-hand side of (4.6), we have

'fj, ^'U]}y\ + \(df}, d'H-d'uJrl + Wd-f,, CS'Kj),!

Combining the above inequalities with (4.6), we obtain

(4.7)

Coming back to the original (xi, ••• , xw)-space, we use (2.7) and (2.8). Then it
follows that

And obviously

Further we have
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From our assumptions on p and a we see that (l+a)p*<p and
(l//0-l<-(l//>(l+a)). Thus by (2.7) and part (c) of Lemma 2,2 we have

Combining the above inequalities with (4.7), we conclude that

(4.8) Wej+ynY^j+^Ujl^-^d^u^l

^C[ejV»+(||/J,r^^

Since d/=dyi=d^-^ ( i=£n), the proof is completed with the aid of (2.8) and
(4.8). Q.E.D.

We repeat the proof of Proposition 4.1 without reducing (2.6) to (3.6),
However we replace ^eCJ(£/) with ^eCJ(fl). And as a test function we take
—rfdxiw, where w=dXiUj with l<i^n. Then the following proposition is
easily obtained:

Proposition 4.2. Let ^eCJ(fl), and let uj be the solution of (2.6). Then it
holds that

fj\\w±f*p^ !<:&, / ^n ,

where C is a constant depending on f] and not on j.

§ 5. Proof of Theorem 1

Let {0W}?3 be the vector fields in (3.4). We supplement 0Cl° =
(dynxi, ••• , dynxn) to them. Then {0ci)}?=i are linearly independent in U. Hence
there are functions %i(x)^C\Qr\U) (l^i<n) such that

n

From the assumption on $ we see that 6-^<f>=0 on 9fl. On the other hand
0«>.7j&=0 for 2^n and 6^-V<t>=l in £7. Thus 6B(*)=0 on 3fln£7.

Let &=H?=i£i(x)Ow and f]^C\(U). Then we have the following inequality
by Proposition 4.1 :

(5.1) ||^(

^C[sr+(||/^L,^

In the proof Proposition 4.1 we replace by —yz£z
ndynw the test function v in

(3.6), where w^Cz(Vr\{yn^§}}> By taking an approximating sequence, we can
take w from Cl(VC^{yn^$}\ We put next w=dynUj particularly. Since dUn=
0C7°-V, it is easy to see that
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(5.2) IWsj+^'/ 'Csj+IVw, *)<*-"'«£B(0«'.7)7Mj*

From (5.1) and (5.2) it follows that

Hence by Proposition 4.2 and by a partition of unity in Q we obtain

(5.3) |K

From now on we denote by the same {w/} any subsequence of {MJ}. And
we write simply by 3 any differential dxi (l<^i<n}. We omit sometimes the
notation of sums with respect to i. Obviously

Let £?' be a subdomain of Q with Q'dQ such that 3£?' is appropriately smooth.
Since p*(p—2}/(2—p*)=p, we get by Holder's inequality

Gfl,(e,+ |

We write the space W^i'^fl') simply by VT1-1'*^7), where W\** is in the sense
of W]!p* with ^/=0. Thus the norm || \\wl'p*<.Q') equals || ^w1^*^'^ Combining
the above inequality, (2.8) and Proposition 4.2, we obtain

(5.4) IKe^+IVw.l^-^V^Iki.p^^CCfi7),

where C(fl') is a constant depending on Q' and not on /.
By (5.4) and Sobolev's compact imbedding theorem there are {gi}

such that for any subdomain Q' of £ with Q'dQ

(5.5) (£/ + ]^ /l
2p-25^ iw /— ^ in L^(fl7),

which implies

(sy+ Vwy
 2p-2)/23^w, -- >^ a.e. in Q.

Accordingly there are {/ii}?=i satisfying

(5.6) 3a; lWj' — > hi a.e. in £?
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and

Since Sig!=(2i«)p"S we have A4eL£c(0).
On the other hand each Uj is in W\'P(Q) by part (b) of Lemma 2.2. And

{HwJ^i .p} are uniformly bounded by (2.7). Hence there is a function u^W\'p(Q]
satisfying

u3 -- >u in W{'P(Q).

And by Sobolev's compact imbedding theorem

(5.7) Uj -- > u in L*(Q')

for any £?' with Q'dQ. By virtue of Lemma 2.1 we see that hi=dxiu. Thus
gi=|VM|'-«SX 4M.

From (5.5) we have

($(ej, + \ Vuj, | *yp-w*VUj, , 7i>) — > (0 1 VH | p-2Vw, 7v) , ue C\(Q) .

Since (a+l)^*<^, it follows from part (c) of Lemma 2.2 that

(5.8) IN^r^ll

so that {\\\Uj\aUj\\p*} are uniformly bounded. Since u^Lp(Q), u
Thus it holds from Lemma 2.1 that

And naturally

From the above and (2.6) it follows that for any

(5.9) (0|7M|*-27M, 7v)+( |M| t t M, v)=(/, v).

We show that (5.9) is valid for any ve:W\'p(Q). We take an approximating
sequence {vj}C.CZ(Q) such that v3-+v in W\-P(Q). From (5.9)

(5.10)

Since

the first term on the left-hand side of (5.10) tends to ((f>\Vu\p-2Vu, 7v). Simi-
larly as in (5.8) we have

, , .

Hence the second term on the left-hand side of (5.10) tends to (\u\au, v). And
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the Inequality

yields that (/, z^)— >(/, v). From the above mentioned we conclude that
u^W\'p(Q} is a weak solution of (2.2) with p=L

Now by using the coordinates transformation (3.3), we have the following
inequality from the assumption on 0

(5.11) | (0-7)0 1 ^C0 in Q.

We consider again the solution u3 of (2.6). From (5.11)

Thus the family {||(0-7)[(eJ-f 0)1/8(eJ+ ^l2)*"4]!]} is uniformly bounded by
(5.3) and (2.8). Accordingly there is a function w^Lz(Q] such that

(5.12) ((0-7)[(

On the other hand

(5.13)

and the family {||(eJ+0)1/z(e^+17MJ |
2)p/4 | |} is uniformly bounded from (2.8).

Further wePF}'p(£?) and dXiUj-*dXiu a. e. in ,0 from (5.6). Therefore by
Lemma 2.1 we see that the first term (the second term) on the right-hand side
of (5.13)-*-(01/8|7M|p/2, (0-7)iO (-(01/2 7M| p / 2 , (7-0)v)), which implies that

from (5.12) and (5.13). Thus we obtain

Combining (5.3), (5.11), (2.8) and this inequality, we have completed the proof
of Theorem 1. Q.E.D.

§ 6. Proof of Theorems 2 and 3

First we prepare the following lemma :

Lemma 6.1. Let 0</3<1. Then for
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,

where C(/3) is a constant depending on ft and not on v,

Proof. For P^dQ we take the neighborhood U of P such that (3.3) is
defined. It is enough to show that for ^eCJ(^)

For this sake it is sufficient to prove that

(6.1)

where w&C\[Q, oo)) and w(t)=Q for large t. By an integration by parts

p — 1 Jo

Using Schwarz inequality, we have

Soo /Too \ l /2 / f°°

t-tw(i?dt<C(\ t-Pw(t)*dt) ( t*-Pwo \Jo / \Jo

from which (6.1) follows. Q. E. D.

Proof of Theorem 2. First we see that

Hence

Combining this inequality, (2.8) and (5.3), we obtain

(6.2) IK

Therefore it follows from (2.8) and Lemma 6.1 that

(6.3) (ll

for S with
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By (6.2) and Sobolev's compact imbedding theorem there is a function
(fl) such that

(ef + | (0-7)1^ 1 2)p/4 — > w in L\Qf]

for any subdomain Qf with Q'CLQ. On the other hand from (5.6)

(ey + | (0 -7)My 1 2)p'4 — > | (0 -7)u ] P/E a. e. in fl .

Hence we have

(s,< + ] (0 -7)wy | 2)p/1 — > | (0 -7)u | p/£ in L2(fi') .

Combining this with (6.3), we obtain

f
Jfi'

where C is independent of £?' and /. Since Q' is an arbitrary subdomain of Q
with Q'dQ, we complete the proof of Theorem 2. Q. E. D.

Before proving Theorem 3 we prepare the following proposition :

Proposition 6.1. Let Uj be the solution of (206)0 // r>l/(p—l), it holds
that

> 0 asy->oo,

where dS is the surface element of dQ.

Proof, Taking the new coordinates (ylf ••• , yn) defined in (3.3), we consider
in (ylt ••• , 3;n)-space. Let U be the neighborhood of P^dQ such that (3.3) is
defined. We take ^eCJ(LO and denote y'=(ylr ••• yn-J. Then it is sufficient
to prove that

(6.4) e}+rf )92(eJ-+|7^-|2)p/2d3;/ — >0 as ;->oo.

From (3.6) we can write

(6.5) dy^s.+y

Setting
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(6.6) ?>=

we have

By integrating both sides of (6.5) with yn, we obtain therefore

(6.7) S]i)(y', Q)F,(y', 0)<*-»»|@yi,u,)(;y', 0)|

S°° x 7-ir
^(sj+ynjFj0

In general it holds that for s, A^

(6.8) £^£ + ^2)P/2^C[£p*

where C is a constant independent of £ and A. In fact

And by Young's inequality we get

l ) /C2(p- l ) ) o £ (p -2 ) / (p - l )^ £ _ |_

2 , <5>0,

Thus (6.8) is correct. From (6.7) and (6.8) it follows that

(6.9) £f( ^(ej+\dynu^)^dy
f

Jyn
=Q

£ C\ e ?*"«»•
L

+ \ ^"(^+yn
Jyn^Q

+ \ TJ\U,
JVn^o

Using Holder's inequality, we have for

\ ^'(^+yn)pfF^-"
JVn^Q

* 1 9
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where we have used the equality p*(p—2}/(2—p*}=p. And similarly as in (5.8)

( ylUjl^^dy^Cdlu^Pr*^.
J y n ^ o 1

Combining the above, (6.9), (2.8) and Proposition 4.1, we obtain

By using Theorem 2 we can prove more easily that for

Therefore we conclude that

which implies (6.4), because l+7>^*. Thus we have finished the proof.
Q. E. D.

Proof of Theorem 3. We consider in (3^, ••• , 3;J-space defined in (3.3). Let
U be the neighborhood of P^dQ where (3.3) is defined. Let ^eCJ(£7) and F
be the function in (6.6).

By an integration by parts

>

Since

we see that
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+2 \
^njyn^

2
k

and

-\
J y n ^ °

-T\
J Vn^

Combining the above inequalities we obtain

(6.10) f ^ej+ynYF
Jyn^

Q

On the right-hand side of (6.10) the integral of the fourth term is rewritten as
follows :

= \ ^(ej+ynyF^2dy-sj\ ^(e^y^Fj
J y n ^ Q jy-n^v
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- £
k^n

We insert this in the fourth term on the right-hand side of (6.10). Then using
the inequality ^/(1+^)>1, we find

(6.11) \ *l(e,+yn7F*
Jyn>

Q

f f]F^'zd
Jyn=Q

\ ^j+yn
Jyn^

Q

S
k^n

\ (
Jynzo

«, say.
1 = 1

First we have by Proposition 6.1

/! — > 0 as /— »oo.
Next

From (3.6)

0^o r, | dyn((S]+yn)F^-^SVnu3} |

Since fp>l, it follows from (2.8) that

j S d
k^n

+d\uj\
auj-dfj

Hence
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Therefore using the equality p*(p—2)/(2—p*}=p, we obtain by Holder's inequality

\Jy-n.^

(2-p*)/2

•((
VjT/TiS

Further we use (2.7), (2.8), Proposition 4.1 and the similar inequality as in (5.8).
Then we conclude that

By Young's inequality it is obvious that

If

\
J y n

Hence it follows from (6.3) that

w±ft^^

We have immediately from (2.8)

Lastly we estimate /6. If

\ f](^Tyn}l+rF
J y n ^ Q
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Thus we get from (2.8) and Proposition 4.1

/6^C[er+(ll/J*L.^^

Combining the above inequalities with (6.11), we conclude that

3/71*0

where fjtj— >0 as /— »oo. Therefore it follows by partition of unity for Q that

(6.12) J^nV^I'd^CC^+GI^

Without loss of generality we may assume that j<p — 1. From pare OD) of
Lemma 2.2 we see that u3^W\-p(Q}. Moreover, the family {\\UJ\\W]>P\ is
uniformly bounded by virtue of (6.12) and part (c) of Lemma 2.2. Hence there
is a function v^W}'p(Q) such that uy-^v in W\-P(Q). From this and (5.7) we
have v—u, where u is the solution of (1.1). Therefore we obtain

' J' ->00 I

Combining this inequality with (6.12), we complete the proof of Theorem 3.
Q.E.D.
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