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On the Dirichlet Problem for Quasilinear Elliptic
Equations with Degenerate Coefficients

By

Kazuya HAYASIDA*

§1. Intreduction and Results

In this paper we consider the weak solution u of the Dirichlet boundary
value problem for a certain quasilinear elliptic equation, whose coefficients
degenerate on the boundary. Our aim is to study the regularity behavior of u
near the boundary.

Let 2 be a bounded domain in R™ with boundary 02. We suppose that
for a function ¢= C*(R")

Q={xeR"; ¢(x)>0}, 02={x=R"; ¢(x)=0}
and
dé(x)#0 for x=df2,

where d¢ is the differential of @.
It is assumed that the usual function spaces C*(2), CXQ), LY2) are known.
For real numbers g and ¢ with 1=¢<co we define

Ly(Q)={u; ¢*uec LYD)}

and we write

fto=(f i)™ ulig=1g7male.

If ¢>1, the space L‘;l(.Q) is a separable and reflexive Banach space. It is
seen that the dual space of L4(£) is L%,,-1,(£), where ¢*=g¢/(g—1). Denoting
by Vu the gradient of u, we define

WLU)={uc LL(Q); [|9*Vu| < oo}
and we write

lullwye=lull g +1Vul 3.
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Then W4«&) is also a separable and reflexive Banach space, which was studied
by P. Grisvard [6]. We denote by W},'q(.Q) and W};q(Q) the completion of Cy(2)
and C=(2), respectively with respect to the norm | ;.

Throughout this paper let us suppose that »>2 and 0Za<p—2. And we
consider the following boundary value problem

(1.1)

{ —V-(@|Vu|?"Nu)+ |u|*u=f in £,
u=0 on 082.

If f is in the dual space of W), we can find a unique weak solution u of
(1.1) belonging to Wi r(0) (see Lemma 2.3 and part (b) of Lemma 2.2).
Let 6 be a vector field of class C! tangent to 9£2, namely,

(1.2) fs[CY2)]* and 6-rn=0 on 08,

where r is the outer normal of 02 with respect to 2. We write §=(4,, ---, 6,)
and 6-V=X7,0,0,,, which is a tangential differential operator of first order.
Our aim is to prove the following theorems.

Theorem 1. Lot fe WhEi, »(Q). If ueWi?(Q) is a weak solution of (1.1).
Then it holds that

¢2(0-V)|Vu|?i2e L¥(9)
and
9120 - [Vu| 2RI CLI f lwrzt, TS )t/ P=2] 2%,

where C is independent of f.

Theorem 2. Let 0<B<1. Under the assumptions in Theorem 1 it holds that

¢~ P1P(0-Vyues LP(R)
and
(Ig=#7(0 - Null )P < CBLIf lwiopr, _y F (I fll )21 eP=0] 2%,

where C(B) is a constant depending on B and not on f.

Theorem 3. Let y>1/(p—1). Under the assuinptions in Theorem 1 it holds
that
¢7'Nues L?(2)
and
(g™ " Vull p)? < COLIfllwr gty U fllpe) Hr e @272,

where C(y) is a constant depending on y and not on f.

The interior regularity for the equation

(1.3) —N-(IVu|?*Nu)=f
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was studied by several authors. For example, L.C. Evans [3] proved that
weak solutions of (1.3) are of class C'*® (0<d<1) if f is smooth. For more
general equations C'*-regularity was shown by P. Tolksdorf [11], where
detailed references are given.

Secondly we consider the Dirichlet boundary value problem for (1.3) under
Dirichlet data 0. More explicitely,

—V-(|Vu|?"Nu)=f in 2,
(1.4) {

u=0 on 08.

Let £ and ¢ be the domain and the function, respectively, in the beginning of
this Section. It is well-known that the existence of a weak solution u for
(1.4) is shown by the “ monotone ” method (cf., e.g., [8]). The global regularity
of u gives rise to a question. By the result of I.M. Vishik [12] it is known
that

$02,(|Vu| P29, w)e LXQ), i, j=1, -, n,

if f and Vfe L¥£2). His method is the use of Galerkin procedure. G.N. Jakolev
extended the above result to more general equations in a series of his papers
(cf., [7]), where the method of difference quotients is used. J. Simon [10] also
proved the global regularity of u by estimating the fractional derivatives of u
in Besov spaces. If we proceed along the line of [10], it is unnecessary to
prepare a coordinates transformation for the estimation of normal derivatives
of u. However we require an adequate coordinates transformation in this paper
(see Section 3).
Now we shift our attention to the degenerate linear elliptic equation

(1.5) =V (¢Vu)=/,

which was studied by M.S. Baouendi and C. Goulaouic [1]. They showed the
global regularity for the weak solution ueWi* Q) of (1.5). In particular
Vue L¥Q) results from [1]. Recently C. Goulaouic and N. Shimakura [5] have
proved that (1.5) gives an isomorphism from C2**(Q) onto C¥), for any &
with 0<d<1l. In connection with (1.5), J.P. Dias [2] treated the variational
inequality for the equation

(1.6) —V-(¢*|Nu|?*Vu)=f,

where it is assumed that 0= p<min(p—1, p/n). He proved the global bounded-
ness for weak solutions under some assumptions.

From the viewpoint of mathematical physics, the simplest unsteady two-
dimensional equation related to (1.6) appears in J.R. Philip’s work [9, p. 2],
where transfer processes were treated. Thus it seems to us that the Dirichlet
problem (1.1) is meaningful to study. Finally we give an example showing that
the conclusion of Theorem 3 is sharp for p>1++/2.
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Example. Let n=1 and £ be the open interval (0, 1). Thus ¢= C¥R?) is
a function such that ¢(#)>0 for 0<t<1, ¢(0)=¢(1)=0 and ¢’(0), ¢'(1)=0.
There is a positive constant ¢ such that ¢ t<¢=ct, if 0=5t<1/2. Since

t‘1¢(t)=S:¢’(t3)ds, we have

(1.7) (t'¢) = CH(RY).
We take a function {e C=(R*) in such a way that
1 (—oo<it<1/2),
)=
0 @>1).
Let us set u{t)=L@)®-»/»-b_ It is easily seen that ueWi?((0, 1)). From the

condition with %(0)=u(1)=0 we conclude that uEW}"’((O, 1)), in virtue of [6,

p. 2627 (see Lemma 2.2 in this paper).
From (1.7), —(¢|u’|??u’)’=C" in a neighborhood of t=0. Let #, (0<¢,<1)
be a zero point of u’=0 with its order N. Then near t=t,

H@lu'|P2u)" | SClt—t, | VP2 Cli—1,] 772,

Since p¥(p—3)>—1 for p>1++/2, it follows that —(¢|u’|?>u’Y€W™?* in a
neighborhood of t=t¢, Hence —(@|u’|?2u')eWLlEi,_1»((0, 1)), moreover we
can easily verify that —(¢lu’|Z"Zu’)’EW‘_’J,’“{p_D((O, D). If y>1/(p—1), ¢"?u’'e
L>(0, 1)). And we see that ¢"/Pu’e& L?((0, 1)) if y<1/(p—1).

§2. Preliminaries

We use the notations in Section 1. Throughout this paper the notation
“—” means the weak convergence.

Lemma 2.1 (J.L. Lions [8, p.12]). Let ueL¥f) (1<g<oo) and suppose
that {|u;l,} ¢s uniformiy bounded and u,—u pointwise a.e. in 2. Then u,—u
in LYQ).

If u is a function in £ and the trace of u on 0Q exists, it is written by
yu. We denote by < >, the norm in L%09).

Lemma 2.2 (P. Grisvard [6]). Let 0=p<g—1. Then the following csszrtions
hold :

(@) If ueWyuQ), then yues LU32) and
quve=Cllulwye.

(b) The space Wﬁ;q(.Q) consists of all ueWLU2) with yu=0.
© If ueW4LyRQ), then ue Ly (Q) and
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Hulngl_q = CHV“HL‘L .
The above constant C are all independent of u.
From now on we assume that 0=<a<p—2 and 0=<p<p—1. The norm and
inner product in L) are simply denoted by | | and (,), respectively. We set

V=Wy2(Q). Thus || |, is the norm in W%?(Q).
For ueV we define A(u) as follows:

CA(W), vy=(#|Vu|?*Vu, Vo)+(jui%u, v), veV.
Then by Holder’s inequality
[<AQ@), vy =uln)? vl Hul*plivl,.
Since 1+a<p—1, we have from part (c) of Lemma 2.2
Il pllvll = Clully)* o]y

Hence A is a mapping from V into its dual space V’. And denoting by || ||,
the norm in V’, we have

2.1) 1Ay = CL{lul)™ +(luly)**], ueV,

where C is a constant independent of u.
For any given feV’ we consider the equation

(2.2) Alw)y=f, ueV.
By using part (b) of Lemma 2, we see that (2.2) is equivalent to
—V-(¢#|Vu|?-Nu)+|u|*u=/ in 2,
2.2)
=0 on 0%2.

Now we have

Lemma 2.3. The equation (2.2) has a unique solution usV and it holds that
(2.3 luly=CAUf Iy ) P2,

where C 1s independent of u.

Proof. In order to prove the existence of solutions of (2.2), it is enough
to show the following properties for A (cf., e.g., [8]):

(i) A is bounded; (ii) A is hemicontinuous; (iii) A is monotone; (iv) A is
coercive,

First property (i) is (2.1) itself. We prove property (ii). For u, v, weV
and 1R
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CA(u+2v), wH=(@*|V(u+v)| P~V (u+ ), Yw)
+(utv|“(u+av), w).
And for 4 with |2] <24, there is a constant C independent of 4 such that
¥ [V(u+40) | 77 [Vw | S Co#(|Vu | ?71+ Vo | 271 | Vuw ],
[utdv| e lw| S C(lul o+ v] )] w] .

In the same way as deriving (2.1), we see that each term on the right-hand
side of these inequalities is integrable in 2. Thus (A(u+4v), w) is continuous
with the variable 2 by Lebesgue’s theorem, which implies property (ii).

Next we easily see that there is a positive constant ¢, such that for u, veV

CA(w)—AW), u—vd>=c,(|9#/*V(u—v)|,)?.
Thus from part (c) of Lemma 2.2 it holds that
(2.4) CA()—AW), u—vd>=cllu—vlly)?

for another positive constant ¢,. Hence property (iii) is correct. Setting v=0
particularly in (2.4), we have

c(lullv)? S KA, ud/llully

from which (A(u), u)>/|ully—oco as ||uly—co and (iv) is established.
The uniqueness of solutions of (2.2) also follows from (2.4). The inequality
(2.3) is clear from (2.4). Q.E.D.

For ¢>0 we consider the Dirichlet boundary value problem

~V-((e+@)e+ | Vul[) P 2Vu)+ [u|*u=g in 2,
(2.5) {

#=0 on 08.

This is an elliptic regularization of (1.1). From our assumptions 082 is of class
C?*% for any & with 0<d<1. The following lemma is due to D. Gilberg and
N.S. Trudinger [4, Chap. 14].

Lemma 2.4. ([4]). If g C%Q) for § with 0<8<1, then there is a solution
ue C*(Q) of (2.5).

Let feW2;, ,»(2) and let us take an approximating sequence {f,}C C=(2)
such that f,—f in W87 ,-,(2) as j—oo. Further let {¢,} be a sequence of
positive numbers tending to zero. By Lemma 2.4 there is a solution u; C**(2)
for each ; satisfying

(2.6) { —V-((e,FP)e,+ | T, P2 Vu )+ [u, | “u,=f, in 2,

u,=0 on 02,
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where 0 is any number with 0<d<1. Integrating by parts, we have from (2.6)
[oerto)e 19w, @2 Tu, 12dx <, w,).

By Hélder’s inequality and part (c) of Lemma 2.2 it follows that
!(f]: u})! éc”f]“p*”uJHW}P

We denote by the same C all constants independent of ;. Combining the above
inequalities we have

@.7) lsllwt 2 S CCL o) 20

Therefore it follows that

[olert9)e,+ 19w, @2 T, 12d xS O 07
and

(2.8) SQ(6]+¢)(E]+ |V, 9?2 dx < CLed "+ (I 51l p=)""]-

§3. Coordinates Transformation

As stated in the first section we are obliged to take an adequate coordinates
transformation, in order to estimate the normal derivative of weak solutions of
(1.1). Thus we prepare such a coordinates transformation.

Lemma 3.1. Let 9 be a domain in R™ Let v be a real-valued vector
function belonging to [C™D)]™. Then there is a set of functions {u,}7=} such
that u;e C™9Q), |Nu;|#0, Vu,-v=0 and Vu,-Vu,=0 in D if i+#j.

Proof. If v=(0, ---, 0, v,) particularly, it is enough to take u,=x,.
For the general case it is easily seen that there is an orthogonal matrix
(a;;) of order n such that a,,€ C™(9) and

3.1) > a,;w,=0 in 9, k=1,--,n-1,
J

where v=(v;, -+, v,). We define e,=(0, -+, 0, 1, 0, -, 0) and
3.2) e,=2 a,e,, i=1,--,n.

J
Then

e, =2 a,e;.
J

Denoting by @, the differentiation in the direction e], we have
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@i w)=lim (- hel— ()]
Z; aji(azjf)(x) .

Hence it holds that
g a.z,;f'ei:; aife; ’

from which Vf-Vg is invariant for any two functions f, g under the coordinates

transformation (3.2). On the other hand we can write v=3};v;a:,e,. Therefore

the assertion is reduced to the first simple case. This completes the proof.
Q.E.D.

Let ¢ and £ be the function and the domain in the first Section, respec-
tively. Let P be any fixed point in 02 and let U be a sufficiently small
neighborhood of P, which will be determined later. From our assumption
V¢+#0 in U. We take the set {u,}75! in Lemma 3.1, by setting 9=U, v=V¢
and m=2.

We define the following mapping from U into R”

y1i=uy(x),
(33) 0: yn-1=un—1(x),
1 Ya=0(x).

Then @ is a one-to-one mapping. Further @ and @-! are of class C2. The
coordinates system (y,(x), ---, ya(x)) defines that of orthogonal curvilinear
coordinates. We set g;;=31;0y,x:"0y;x, for the original coordinate system
(x2(y), =+, xa(»)). Then it is easily seen that g;;=0 (f#;) and g;;>¢ for some
positive constant ¢. And we have

vzfvxhzg (gjj)—layjf'ayjh

for any functions f and A. In addition, the Jacobian of @-! is written as

{0y, oy Xn) | ——
ol A I
We set
(3.4) O0P=(0y;x1, -+, 0y;x5), =1, -+, n—1.

Then §P<[CHU)I" 0+#0 and §°-V,¢=0 in U. Hence {§°}7-} is a vector
field tangent to 0£2 and it is an orthogonal system.
Let v be in C{U) and v=0 on 0%2. Integrating by parts, we have from (2.6)

(3.5) ((e;+@)(e;4 | Vuy | ) P2/ uy, Vo)+(1us] “uz, v)=(f4 v).

Rewriting this with (y,, -+, y,)-variables, we see that
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| detyaet B as@,unen( 2 aidyu,0,,0)d

+Synzo diuil*uv dy:Synzodfjv dy,

where d=+/g11*gns and a,=(gz;)". We note that d, a,=CYPU)) and d,
a;>0 in @U). From now on we denote by (,), the inner product of L%({y,=0})
with respect to (y,, -+, yn)-variables. The above equality is again rewritten as
follows :

(3.6) ((s,—{—yn)(sj—[-% @y(0y ,uy)?) P20, zk) bydy 1,0y, 0)y

+(d | Uyl aujy v)y:(df,;) v)y .

Here b,=da, and v is an arbitrary function in CY®@U)) such that v=0 on
9,=0.

§4. Propositions

Let U be the neighborhood in the previous Section and {§}2} be the
orthogonal system in (3.4). Then we have

Proposition 4.1. Let ne CyU), and let u, be the solution of (2.6). Then it
holds that
(e, + @) 2(e;+ | Vu, | D) P-DIHG - V)Vu,|?

= CLe? 2+ fsllwrgs, )7+ f5ll g P v e a2,

where i#n and C is a constant independent of j.

Proof. As we have remarked in the previous Section, (2.6) is reduced to
(3.6) in UNR. We take a neighborhood V of @(P) such that @UNL)=
VN{y,>0}. And we define the following function space with (y;, =+, ya)-
variables

C™(VN{y,=0)={u; uc C™(VN{y,=0}) and =0 on y,=0}.

From now on we denote by | ||, the norm in L*({y,=0}). Let {eCF(V)
with =0 and veC(VN{y,=0}). The test function v in (3.6) can be replaced
with —8,,w, where i#=n and weCXVN{y,=0}). We write d,,w simply by
0’w. Then (3.6) becomes

4.1) —((67-}-}1”)(6]—}-; ak(ayku])z)(p—z)/z’ % bkaykuJ.ayk(:a/w))y
—(d|u,|%uy, L0'w),=—(df;, L0'w),

Now we calculate each term on the both sides of (4.1). First we see
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(4.2) —((esFya)e,+ 2 an(@y,u )", > b0y, u;-0y,(L0"W))y
= (e, ya)(es 2 an(@y,u)) P21, 2 b0y, 1, 0’0, ,w),
—((estya)e; 2 @u(0y,us)) P20 w, 3048y 1;0y,0)y -
By integration by parts
4.3) (& ya)(e,+ 2 @u(@y,u)) P, 32048y ,u,°0'0y,w)y
=((e;Fy2)0(e;+ 2 ax(@y,u)") 7%, L b0y, U0y, W)y
(et 7a)e T3 4@y )P C, B bidy -0y,
(e )+ 4By u )P, Dby -0,u,8,,w),
+((ej+yn)(e;+zk‘, a0y ,u,)") P22, Zk) by0'0y,w)y.

In addition

4.4) —(d|u,| *uy, L0'w)y=1+a)(d|u;1 %0’ u;, Lw)y,

+(d]u,|%uy, 0°C-w)y+@'d- | u,| *u;, Lw)y
and
(45) —(df]; Ca/w>y:(da’f,7; Cw)y+(df1: a’C'w)y_l"(a,d'fj, Cw)y-

Here we remember that weC* VN {y,=0}). However, at most first derivatives
only appear for w in each term on the right-hand sides of (4.2)-(4.5). Hence it
is enough to assume that weC(VN{y,=0}), if we take an approximating
sequence of w. This implies that we can put w=0"u,. By an easy computation

a/<51_{_§ ak(aykuJ)Z)(p—z)/z
=(p—2)(es+3 @48y, 1)) P AT asdy 4,3y 4u,)

T (D=2t S @By )T OE 5 0, By, 0,0,

Noting that b,=da,, we obtain the following equality from the above
mentioned

(4.6) —(e;yale;+2 ap(0y, ;") P 1%0 uy, 2 530y, 80y ,u5)y

+ (ﬁ—2>((s,+yn)(ej+§ a0y, u;)?) o

NJ]r—

-(; 0'a,-(0y,u)"C, %} 050y ,1; 00, ,1,)y
+((s]+yn)(51+§ PRCIOPLRILL U4 Zk: bidy 1,08y 1)y

+((5]+yn)(5]+; ak(ayku])Z)(p—Z)IZC, ; a/bk 'aykul'a,aykuJ)y
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+((e]+yn)(€]+§ ak<ayku])2)(p_2)/2cy Ek bk(a,ayku])z)y
+(d| U, | “Uy, aIC'aluJ)y‘l"(a/d | U, | “u,, ca,uj)y
=(dd’fy, L0'uy)y+(df;, 8'-0"u,)y+(0'd- ), L07uy)y -

We set the left-hand side of (4.6)=>1_;I;. And we put {=2%?% where n(y)e Ci(V),
namely, n(x)e CyU). Let us estimate each ;.
It is easily seen that

ol, [ 1], sl 1]
= Clnle;+ )" (e,+ [ Vu, [P0V, |,
N+ 197 D(es4ya) (e, + [ Vu, 5P,
where V=(0y,, ---, 0y,). Denoting by || ||, the norm in L%{y,=0}), we have
Uel, 1I:1 = Cllpya®luy |l o, o [+ IV DIE "Vl 5,y -
Further there is a positive constant ¢, such that

colln(e,4y2)"2(e,4 [ Vu, | H P2V, |5 <I;.

Next estimating each term on the right-hand side of (4.6), we have
1(da’f;, L0"u,)y |+ 1(df,, 0°C-0"u,y)y | +107d-f;, L0"u,)y]
=CUnya' 21l pr g 1032 PVl I+ 1IN )T PV, 5, -

Combining the above inequalities with (4.6), we obtain
(4.7) e+ 32)"5(e,+ | Vu, |?)P=2146"Vu, [}
SCLI+ V71,3212, + 1 Vu, 5715
TN+ IV DR PVl o, o U yat 2 lu, 4y
FIny2 2 ollpe s 1092 PV e )]

Coming back to the original (x,, ---, x,)-space, we use (2.7) and (2.8). Then it
follows that

I+ 199 DY PV, o < CUF )22,
I+ 199 1)(e, 4 92)2(e,+ | Tu, | 22112 < CLeP 24 (|, ]| o) P*].
And obviously
(DR B P o /L et 1 PO o) /5 I S
Further we have

792t 210,17 N g,y = CUIG ™ PO, [y ) 4
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From our assumptions on p and a we see that (14+a)p*<p and
1/p)—1<—1/p(14+a)). Thus by (2.7) and part (c) of Lemma 2.2 we have

6P s 05005 ClPE P2, S CU )P0
Combining the above inequalities with (4.7), we conclude that
(4.8) (e, ya) (e 54 | Vuy 1) P=2740" V|

< CLe? 2+ lwrzs, )P US s g0 P2/~ 2].
Since 0’=0,,=0®-V (i#n), the proof is completed with the aid of (2.8) and
4.8). Q.E.D.

We repeat the proof of Proposition 4.1 without reducing (2.6) to (3.6).
However we replace pe Ci(U) with p= Ci(£2). And as a test function we take
—5%0,,w, where w=0,,u; with 1<7/<n. Then the following proposition is
easily obtained :

Proposition 4.2. Let = CyQ), and let u; be the solution of (2.6). Then it
holds that
[9(e,+ [ Vu;| %) P=2/49, 0, u,?

=CLe " filwrgr,_ )P+ f sl puPr it @=2], 1<k, [<n,

where C is a constant depending on n and not on j.

§5. Proof of Theorem 1

Let {6}t be the vector fields in (3.4). We supplement 6™ =
Oy %1, =+, Oy, %n) to them. Then {#‘°}7, are linearly independent in U. Hence
there are functions &,(x)e C2NU) (1<i<n) such that

0= i‘ié‘i(x)ﬁ‘” in ONU.

From the assumption on 6 we see that ¢-V¢=0 on 0£2. On the other hand
0©.Yp=0 for i#n and §-Vé¢=1 in U. Thus &,(x)=0 on d2NU.

Let §=X777&:(x)0 and ne C)U). Then we have the following inequality
by Proposition 4.1:

(5.1) 7+ 601128+ | Tty | )2 =04(G - 7) Vs
< CLe3 - (fslwig, )"+ (w2 2-0].

In the proof Proposition 4.1 we replace by —7%%d,,w the test function v in
(3.6), where we C¥VN{y,=0}). By taking an approximating sequence, we can
take w from CY(VN{y,=0}). We put next w=0,,u; particularly. Since 9, =
6™ .V, it is easy to see that
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(5.2) 7(e;+@)"*(e,4 | Vu, | ) P=2146,(6 ™ -V)Vu,|*
S CLe (I lwtogty )7+ (I )Pt/ 2=]
From (5.1) and (5.2) it follows that
lI9(e;+@)%(e;+ | Vuy | BP0 -N)Tu, |®
S CLep P+ (I fillwrgr, )P S sl g P+ @=0]
Hence by Proposition 4.2 and by a partition of unity in £ we obtain
(5.3) ll(e;+ @) "*(e ;4 Ve, 12)P=214(0 - V)V, |*
S CLe2+ (I lwt gy, )7+ (U 772007,
From now on we denote by the same {u,} any subsequence of {u;}. And

we write simply by 0 any differential d,, (1<{<n). We omit sometimes the
notation of sums with respect to 7. Obviously

[V((e+ 1 Vu | 2)P220u,)| < Ce;~4 | Vuy | #)P-22|Noy,| .
Let 2’ be a subdomain of 2 with 2’C £ such that 692’ is appropriately smooth.
Since p*(p—2)/(2—p*)=p, we get by Holder’s inequality

[ 1 9o, 19, 2020w, 7 x

<C({, (e 1Ty 7 dx

)(2—1)*)/2

. (S-Q s+ quj] 2)(p-2)/2| Vau] | 2dx)p*l2.

We write the space Wi P5(Q’) simply by W1 ?5(Q2’), where W} ?" is in the sense
of W4?* with g=0. Thus the norm | [w} ?*y equals || [y r*g,. Combining
the above inequality, (2.8) and Proposition 4.2, we obtain

(5.4) (a5 1V, |5 222V ulwt oo, < C(27),

where C(£’) is a constant depending on 2’ and not on j.
By (5.4) and Sobolev’s compact imbedding theorem there are {g,}7-,C LEXQ)
such that for any subdomain 2’ of Q with 2'cQ

(6.5 (85 1Vu, [P 2020, u —> g, in LPQ),
which implies

(e +1Vu, [P0, u, —> g, a.e. in Q.
Accordingly there are {A;}7, satisfying

(5.6) Oz, Uy —> hy a.e. in Q
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and
gi=(2 AP 2"h;.
k

Since X; g2=(3; h2)?1, we have h;e LE (Q).

On the other hand each u; is in Wi2(Q) by part (b) of Lemma 2.2. And
{lu;llwi.»} are uniformly bounded by (2.7). Hence there is a function x €W 2(2)
satisfying

Uy —> u in WirQ).

And by Sobolev’s compact imbedding theorem
(5.7) ujp —>u in LP(Q)

for any @’ with 2’CQ. By virtue of Lemma 2.1 we see that h;=d,,u. Thus
gi=|u|?7%0,,u.
From (5.5) we have

(Blej+ | Vuy |22 D2y, V) —> (¢ Vu|?"WVu, Yv), ve Ci).
Since (a+1)p*<p, it follows from part (c) of Lemma 2.2 that

(5.8) 5] % uyll o= CClle5] )+

= C(luyllwy =)+,

so that {[||u,]|%u;|z+«} are uniformly bounded. Since ue L), |u|%uc L?*Q).
Thus it holds from Lemma 2.1 that

(ugl“uz v) —> (Jui®u, v), veCi(A).
And naturally
(fiv)—>(f,v), veCHD).
From the above and (2.6) it follows that for any ve Ci(Q)
(5.9) (@1 Vu |~ Nu, o)+ u|*u, v)=(f, v).
We show that (5.9) is valid for any vEW{’F(Q). We take an approximating
sequence {v,}CC5(£2) such that v,—v in Wi ?(Q2). From (5.9)
(5.10) (@|Vu|?~Nu, Yo,)+(u|*u, v,)=(f, v,).

Since
(@1 Vu|?=*Vu, V(,—v)i = C(lullwi. 2)? Hlv,—vlwt.»,

the first term on the left-hand side of (5.10) tends to (¢|Vu|?~*Vu, Vo). Simi-
larly as in (5.8) we have

(w1, —0)] < Cllwlwt 2 v~ vl .

Hence the second term on the left-hand side of (5.10) tends to (|u|%u, v). And
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the inequality
[(fs v,=0) | S Cl fllpellv;—vlwe e

yields that (f, v,)—(f,v). From the above mentioned we conclude that
uEWi’p(.Q) is a weak solution of (2.2) with p=1.

Now by using the coordinates transformation (3.3), we have the following
inequality from the assumption on ¢

(5.11) [(0-V)p|<Co in 2.
We consider again the solution u, of (2.6). From (5.11)
(6 -V)[(e;,4¢)"*(e,+ | Vu, | P41
S CLl(e,+¢)%(0-V)(e,+ | Vu, | 2)P|
+1I(e, 4 6)*(e,+ 1V, P17

Thus the family {||(8-V)[(e,+@)"%(e,+|Vu,|®)?/*]|} is uniformly bounded by
(5.3) and (2.8). Accordingly there is a function we L*£2) such that

(6.12) (8- N(ey +0) (e, +[Vu, [HP1], v) —> (w, v), veCi2).
On the other hand
(5.13) ((0-N(e,+¢)"%(e;+ [ Vu,[H)P*], v)

=—((e,+¢)"*(e,+ | Vuy| 9P, (0-V))
—((e;+8)"*(e;+ [ Vuy )P, (V- 0))

and the family {|(e,+¢)"'%(,+|Vu,|*)?’*|} is uniformly bounded from (2.8).
Further ueW?i?(Q) and 0g,u,—0z,u a.e. in £ from (5.6). Therefore by
Lemma 2.1 we see that the first term (the second term) on the right-hand side
of (5.13)——(¢'2|Vu|?%, (6-V)v) (—(¢%|Vu|?’%, (N-8)w)), which implies that

w=(0-V)(@'*|Vu|?/?)
from (5.12) and (5.13). Thus we obtain
(6 -V)(@*2 | Vu|?72)]| é},i%l 106 -V)[(e, +¢)/%(e, + | Vu, |)PH]] .

Combining (5.3), (5.11), (2.8) and this inequality, we have completed the proof
of Theorem 1. Q.E.D.

§6. Proof of Theorems 2 and 3

First we prepare the following lemma :

Lemma 6.1. Let 0<B<1. Then for ve CY(2)



470 Kazuva Havasipa

SQ¢-ﬂv2dx§C(ﬁ)Sg¢z-ﬁ(v2+;wmdx,
where C(B) is a constant depending on B and not on v.

Proof. For Pc0of2 we take the neighborhood U of P such that (3.3) is
defined. It is enough to show that for pe Ci(U)

SQ¢"9(7]v)2dx§CSQ¢2“’!V(r;v)lzdx.
For this sake it is sufficient to prove that
(6.1) Smt'ﬁw(t)zdt§ CSWzZ-ﬁw’(t)Zdt,

0 0

where we C*([0, o)) and w(t)=0 for large {. By an integration by parts

0 2 ©
-8 2 p—__ “ 1-8 ’
Sot w(t)?dt 5-1 Sot ww'dt.

Using Schwarz inequality, we have

) oo 1/2 /(oo 1/2
Sot-ﬂw(t)zdtgC(Sot—ﬂw(t)zdt) (Sotz—ﬁw’(t)zdt) ;
from which (6.1) follows. Q.E.D.

Proof of Theorem 2. First we see that

| V(e 10Ty )27

SCL(es+ [ Vuy [P0 -V)Vu, | +(e;+ | Vuy )77
Hence

(e, +8) "2V (e, + (0 -V)u, | *)?/4|

= CLI(es+¢) (5 Vuy|*)P=2740 - V) Vuy*

+ll(e;+6) (e, + [ Vuy | HP2].

Combining this inequality, (2.8) and (5.3), we obtain
(6.2) (es+8)'/*V(e;+1(0 - Vuy| )P

= CLeP P+ fsllwrgs, - )7 U f il pe) Pt e 2= ]
Therefore it follows from (2.8) and Lemma 6.1 that
(6.3) (Ig=P12(e+1(0- Dy 12172 )?

S CLeP 2+ sllwrgr, )P 1l pr)Pretr e/ 2=1]
for B with 0<B<1.
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By (6.2) and Sobolev’s compact imbedding theorem there is a function
we Ly (2) such that

(e, +1(0-VNuy |HP* —> w in LAH2")
for any subdomain £’ with 2’C£Q. On the other hand from (5.6)

(e, +1(0-Mu, |22 — |(6-V)u|?? a.e. in 2.
Hence we have

(e, +1(0-Vyu, | 2P/t — |(0-V)u|P® in LL’).
Combining this with (6.3), we obtain

[, 872 10D zdx=tim || 670, +1(0- Dy |7

S CLUSf wrpy, ) f | prEreired/e=D],

where C is independent of £’ and f. Since £’ is an arbitrary subdomain of £
with 2’C£, we complete the proof of Theorem 2. Q.E.D.

Before proving Theorem 3 we prepare the following proposition :

Proposition 6.1. Let u; be the solution of (2.6). If y>1/(p—1), it holds
that

a}”Sag(e,—i—IVquz)p’zdS —>0 as jooo,
where dS is the surface element of 0£.

Proof. Taking the new coordinates (y;, -+, y,) defined in (3.3), we consider
in (yg, ==+, yau)-space. Let U be the neighborhood of P02 such that (3.3) is
defined. We take p= C{U) and denote y’=(y,, -+ yp-;). Then it is sufficient
to prove that

6.4) s}”S et | Tuy |92y —> 0 as joo,
Yn=

From (3.6) we can write

(6.5) ayn(ﬂ(a‘;—!_yn)(sJ_i—; ak(aykuJ)Z)(p_Z)/zbﬂaynuJ)

=—1(e;472) B0y, (6+3 040y, 4)) 7 20,8,,u,)
+ndlu,|“u;—ndf;
+0y,1 eyt yale,+ 2 €a(@y 1)) P10y, u;.
Setting
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(6.6) F,:e]—}-g ax(0y,u,),

we have
[0y, (F{P2/2,0, u,) | S C(F{P-DI24 F(p-0i2| 0y, Vu,l).

By integrating both sides of (6.5) with y,, we obtain therefore
(6.7) &m0, 0F,(y’, 0)P2"2[(@,,u,)(y’, 0]
<c[[Ta+1991),+ v FFdy,
+ Ty P S 10, )y

+{Tnlus e dyat (T 1551 dya)-

In general it holds that for ¢, A=0
(68) sp*(E+A2)Pl2§CI:SP*(IJ+1)/2+5P*(A(E+AZ)(Z?—Z)N)P*] s
where C is a constant independent of ¢ and A. In fact
e(e+ AR PV Cled2(e4 A2)P-D/24 ¢ A(e+ A%)P-2r2],
And by Young’s inequality we get
53/2(5+AZ)(?—Z)/ZZe(P-\‘-l)/(Z(p—l)).8(P—2)/(P—1)(€+A2)(P—Z)/2
<0e(e+ A P-DI2L C(d)e®+D/2 - §>0,
Thus (6.8) is correct. From (6.7) and (6.8) it follows that
(6.9) | e 19,107y
Yn=
écl}:?*(mn/z_;_g (5;7]F;(p_2)'/2i(aynuj)”p*dy']
Yn=0
scleremnt] q+VyIXe 4y FY Ry
+] ey e nis 19,,3u,1dy
+] miwmady | gigimdy].
Yp20 Ynz0

Using Holder’s inequality, we have for k+#n

(S

TP FT G, T, P dy
Yn

A
a

14 */2 *(Pp—-2)/4
g et 9
{yp20lNnsupp 9

. ﬂp*(sj“_yn)p*lef*(p_Z)“ l aykvujl p*dy
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@-p*)/2

IA
@)

(65 Y22 e, + | Vuy | )72 y)
{yp20lnsupp 7
,( 2(8 + )( | IV |2)(p—2)/2|a v !2d >p*/2
yngoﬂ 1T Y& T INU, ypYU;i7ay ,
where we have used the equality p*(p—2)/(2— p*)=p. And similarly as in (5.8)
S Nlu, | P 0dy < Cl|u, w1 2)PrE e,
Ynz0
Combining the above, (6.9), (2.8) and Proposition 4.1, we obtain
s}’*S 07;?*(51+|aynuJ|2)P/2dy'§c.
Yn=
By using Theorem 2 we can prove more easily that for k#n
5§’*S 1,19y 9P2dy < C
Yn=
Therefore we conclude that
7| ne | Tu,1)rdy <C,
Yn=

which implies (6.4), because 147>p*. Thus we have finished the proof.
Q.E.D.

Proof of Theorem 3. We consider in (y,, ---, y,)-space defined in (3.3). Let
U be the neighborhood of P02 where (3.3) is defined. Let p=CiU) and F
be the function in (6.6).

By an integration by parts

TEPI2y— eﬁ”g |y NG
Syngon(sﬁ-yn) Frdy 1+7 L’n=°77A5U 4y

P
2(1+7)
1
1+7r

Synzo 77(51"'yn)HTFJ(p—Z)/zaynFde

Since
0y, Fy=2 33 040y, 505,y 1+ 2 8y, a0- @y, )%,
we see that

Syngo 7](61_‘—3}”)“-) F;P—?)/ZaynF]dy

:251/11,20 7](17!(8]+yn)H-TF;p—:)/EaUnuJ'agjnu]dy
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+235 0 naue Ay TR, 0,95y

EZ

+2 Sy o N0y, Qs (54 ya) TFP205, u)?dy

k
and

Synzo1]a"(Ej+y")HrFf(p_Z)/Zavnuj'a%/n”jdy
=—el|  nan P, uprdy
A D0, (e Y FP 0,00, s
—1{, _ naalert T F P, u,0dy
=, P00 ety TG,y
Combining the above inequalities we obtain

(6.10) | ot +yarFredy
ey

14y

S nF3dy’
Yn=0

p :
+ 1+T s}+7Syn=077anF](p 2)/2(aynuj)2dy,

+ Lgyngo Nan(e;+Y0) 0y, (e;FYa)F P20, u;):0,,u;dy
ﬂ—gyngo Naa(e;+ ) FP %0, u;)dy

+—‘p'“S ayn(‘)?a,,)-(e,+yn)“’TF](p'z)/z(aynu,)zdy

Ynz0

Tt & Synzo77ak(sj+y")1+rpf(p_2)/zaykuJ'aykaynquy

__r (& L7 -2/ z2
2(1+p) ;Shzo 10y, 0 5" (&5 ya) TEP7200, u)dy

__ 1

1+y

On the right-hand side of (6.10) the integral of the fourth term is rewritten as
follows :

|, dvan-(e by Ry

z0

S a5+ FPD2@, udy

:S ”(Efﬂn)’f‘"f”dy—sfg (e, + 7 FP20dy
Yn20 Yn20
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_k§"SUn20 yiak(ej_i—yn>TF.;p~2)/z(aykuj)2dy .

We insert this in the fourth term on the right-hand side of (6.10). Then using
the inequality py/(147y)>1, we find

(6.11) Sy _ e,y F7dy
éC[sﬁ.H‘S 7]F§”2d_’y'
yn=0
+gz/n;0 (e, + 9,010y, (e v ) Fi2220, u)||Vu;ldy
+sj§ynzo (e, Fya) FiP~21dy
+k¢nSynzo '0(81—1—_‘yn)TFJ(P—Z)/Z(ayku])zdy
+Syng0 -+ ) (e, +y,)HTF?%dy

+k§ng 20 1](81+yﬂ)1+TF](p_l)/Z‘aykvujl dy“

Yn

[
ECE]L, say.

First we have by Proposition 6.1
Ji—>0 as j—oo.
Next
1/
jzé(g 7)(6,+yn)”]Vu]if’dy) !
Ynz0
( !a ((c 1 )F(p—-Z)/2a )Ip*d )1/11*
ynzov ya\\&)T Vo)l v y .
Since yp>1, it follows from (2.8) that

Syngoﬂ“ﬁyﬂ”’lw]l"dyéCEe?'%(nfjup*)P*J.

From (3.6)
b1y, (& +yn) FiP 7210y 1 )= =0y ,b- (659 a) F3P 72750y 4u;
(e tya) 300, (F7 0,8, 1)
+dlu11“uj—dfj.
Hence

]ayn((51+yn)FJ(p—Z)/Zayn”J) |7~
< C[(51+yn>F}DIZ+(5;'f"yn)kz Fy@=»r1g, Yu,| >
1

| GrOP| £,[77].
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Therefore using the equality p*(p—2)/(2—p*)=p, we obtain by Hoélder’s inequality

Sy 20 7 |ay"(<6j+y”)FJ(p-g)/zaynuj) [P*dy

<cl| _ netynrydy
Ynz0

(2-p*)/2

+k§n Syngon(sj_‘_yn)Fg/Zdy)
.(S (6 + )F(p—Z)/2la vulgd )p*/Z
yn;on iT Yy 10y, YU ;|"CY
+]mlwleerdy+|  gif1may].

Further we use (2.7), (2.8), Proposition 4.1 and the similar inequality as in (5.8).
Then we conclude that

L= CLed "+ fsllwrgt, )7+l po) P2/ P72
By Young’s inequality it is obvious that
Jsgag ey FRedy+ C@ep, 60,
Yn

If k#mn,
e YV R0, ) dy

(p-2)/p 2/p
<({,. . metyrreoFpeay) (] g1d,,07dy)
éaS'y gon(51+yn)ng/2dy+C(5)Sy ZOy}‘&ykuJ‘de.

Hence it follows from (6.3) that

JS8\  ne 4y Fpdy
Ynz0
+C@OLER (I fslwiogr, )7 (If P ],
We have immediately from (2.8)
JS=CLed?+ (£l 07T,

Lastly we estimate J,.. If k=#n,
Syngo n(e,+ya)TTFP2219, Nu,|dy

é(gynzo 7](€j+yn)F§J/2dy>1/2
.<Synzoﬂ(ej—i-yn)F;p—z)/zlaykvqugdy)l/z.
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Thus we get from (2.8) and Proposition 4.1

Je= CLed?+(If llwrgt,_ )P+l pe)rrr e @]

Combining the above inequalities with (6.11), we conclude that

[ 2ty Fyedy
< LS gy )P 7 a7

-1

where p,—0 as j—oco. Therefore it follows by partition of unity for £ that

(6.12) SQ 71V, | Pdx < CLp,+( s lwiegr, )+ (f,

]p{)p’ (H-L‘z)/(P—l)] i

Without loss of generality we may assume that y<p—1. From parc (b) of
Lemma 2.2 we see that uJEW,l~P(.Q). Moreover, the family {‘.{1¢J||W)1,p} is
uniformly bounded by virtue of (6.12) and part (c) of Lemma 2.2. Hence there
is a function veW?(2) such that u, —v in Wt2(2). From this and (5.7) we
have v=u, where u is the solution of (1.1). Therefore we obtain

lullwyr<lim [lu, wi 2.
J' =2

Combining this inequality with (6.12), we complete the proof of Theorem 3.
Q.E.D.
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