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Some Connections between Heyting Valued Set
Theory and Algebraic Geometry

—Prolegomena to Intuitionistic Algebraic Geometry—
By

Hirokazu NISHIMURA*

Abstract

Rousseau [10] has shown that classical or standard function theory of n variables is
no other than intuitionistic function theory of one variable over C*~!, Similar works have
been done by Nishimura [9] in the realm of Sato hyperfunctions and by Takeuti and
Titani [16] in the realm of complex manifolds. The main purpose of this paper is to
pursue similar results in the arena of algebraic geometry. Since we would like to do so
in an intuitionistically valid manner, we reconstruct some rudiments of algebraic geometry,
using the complete Heyting algebra of radical ideals in place of the space of prime ideals
with Zariski topology as the starting point of our scheme theory.

§1. Preamble

As has been stressed recently by droves of authors, Heyting valued set
theory could be conceptually interesting and technically useful to various areas
of modern mathematics. Rousseau [10] has demonstrated that standard func-
tion theory of n variables is no other than intuitionistic function theory of one
variable over C*-%. This idea of internal-external transitions of the viewpoint
has been prodded further by Nishimura [9], who showed that Sato hyperfunc-
tions with » holomorphic parameters are none other than those without param-
eters over C™ Takeuti and Titani [16] have pursued the same idea in the
realm of complex manifolds to find out that vector bundles over a complex
manifold are apartness vector spaces, that families of complex structures are
simply complex manifolds, and so on. The present paper, belonging to this
vein, aims at pursuing the idea in the arena of algebraic geometry. We show
that fibred products of schemes over a base scheme are intuitionistically fibred
products of schemes over an affine scheme, that projective spaces over a scheme
are simply projective spaces over a ring, and that higher direct images of
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sheaves are just cohomology groups with sheaf coefficients.

To this end, we need to reconstruct algebraic geometry from an intuition-
istic standpoint. We use, as our starting point, the complete Heyting algebra
of radical ideals, whose importance in the context of topoi was noticed first by
Tierney [17]. After reviewing some rudiments of Heyting valued set theory
in Section 2, we approach the first concepts of scheme theory in Section 3.
Section 4 is devoted to projective spaces, while Section 5 deals with higher
direct images of sheaves. We do not intend this paper to be exhaustive at all.
On the contrary, we restrict our discussion to some rudimental aspects of
algebraic geometry, partly because the exhaustive treatment is surely beyond
our power and time, but mainly because we intend this paper to be illustratively
interesting both to logicians who may not be versed in algebraic geometry and
to algebraic geometricians who may not be experienced in Heyting valued set
theory at all.

§2. Heyting Valued Set Theory

In this section we review some rudiments of Heyting valued set theory of
Takeuti and Titani [14] together with some relevant materials of Fourman and
Scott [1].

2.1. Intuitionistic Set Theory

By ZF; we mean a first order intuitionistic theory with a unary relation
symbol E and two binary relation symbols € and = satisfying the following
nonlogical axioms:

(Al) Equality axioms: u=u,
u=v—v=u,
u=vApu)—¢w), and (EuVEv—u=v)-u=r.
(A2)  Extensionality: Vz(zeu—zev)AEu—Ev)—u=v.
(A3)  Pairing: JzVrx(xezeox=uVi=v).
(A4)  Union: FIwVx(xeveodycu(xey)).
(A5)  Power sets: FVx(xeveoVycsu(ysx)).
(A6)  e-induction: Vx(Vyexe(y)—o(x)—Vrp(x).
(A7)  Infinity: Jv@AxsvAVicvIyev(xy)).
(A8)  Separation: IVx(xeve xsuAp(x)).

(A9) Collection : gv(‘é’xeugygo(x, y)—)VxEuE!yEvgo(x. )
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In the above list Vx --- and 3Jx --- are abbreviations of Vx(Ex— ---) and
Jdx(ExA --). Since Vx and Jx will usually appear in these forms, we will often
write Yx and 3x simply for Vx and Jx.

2.2, Heyting Valued Models

Let V be an arbitrary universe of ZF; and let 2 be a cHa (complete Heyt-
ing algebra) in V. For each ordinal @« we define V? inductively to be the set
of all ordered pairs <u, Eu) such that:

(1) Eusf;

(2) u is an £-valued function defined on a subset D(u) of Vfgg) for some

ordinal 8<a;

3) x€D(u)u(x)<EuAEx).

Now V@ is defined to be the class \J,c0.V $?, which is to be called an
(2-valued) sheaf model, can be considered to be a Heyting valued model of ZF;

by defining [Eu] with
1) [Eu]=Eu,

and by defining [u=v] and [u=v] with the following simultaneous induction

2) [usvl=Vyeom@WN[u=y1D),
3 [u=vl=Azcowux)—=[x€v]DA Ayeow @)= [ycul)\(Eu - Ev),

and then by assigning a Heyting value [¢] to each nonatomic sentence ¢ induc-
tively as follows:

4) ﬂ:(Pl/\SDz]]:[SDl:U/\ [902]] ’

) [¢1V‘P2]]=[S01]] \/[9’2] ’

(6) [[@1 e GDZ:[I = [[§01]] - [[GDZJ] ,
(M) [Tlel="1l¢],

@) [Fxo(x)]=Veer@[p(x)],
©) [Vxp(x)]=Aser@[p(x)].

Now we have
Theorem 2.2.1. V is a model of ZF.

The class V can be embedded into V¥ by transfinite induction as follows:

y={<%, T>|x€y} and Ey=T for yeV, where T is the empty join of Q.

For ueV® and pc®, we define u[~p to be the element of V¢ such
that
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Dul p)={x plxcD(u)},

W P p=V{u®Aplte D), tp=xTp} for x=Du).
and
E(u p)=EuAp.

In the sequel we implicitly identify x, yeV“ time and again provided
[x=y]=T.

2.3. Sheaves over Complete Heyting Algebras

A presheaf over a cHa 2 is a triple <4, E, ™) of a set ¥ and two func-
tions E: $—Q and [ : X 2—9 with the following properties:

(1) al L=bl L;

(2) alEa=a;

(3) E(al" p)=EaAp;

@) (al™ Pl g=al (pAg).

For convenience we often say simply that & is a presheaf over @ without
mentioning E and ™ explicitly. Members a, b of a presheaf F over 2 are said
to be compatible whenever af Eb=0b Ea. A subset of F whose members are
pairwise compatible is called compatible. A presheaf F over Q is called a sheaf
over £ if for any compatible subset D of & there exists a unique c€F such
that:

(1) deD implies ¢[ Ed=d;
(2) Ec=V{Ed|deD}.

The subset {a=F|Ea=p} is denoted by I'(p, F) for any p=Q.
Given two sheaves &, ¢ over £, a function f from ¢ to 4 is called a
sheaf morphism provided :

(1) Ea=Ef(a);
2) flal p=f(al p).

The sheaf morphism f restricted to I'(p, F) and whose range is considered to
be I'(p, @) is denoted by f,.
Given a cHa @, a sheaf F over 2 and p=£, we write 2|, for

{geQ1q=p}
and ¥|, for

{asF|Ea<p}.

2|, inherits the cHa structure from 2 and 4|, can be regarded as a sheaf over
2|,

In this paper we consider empty and binary meets (T and A) and arbitrary
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joins (V) as primitive in our definition of cHa. This means in particular that
a cHa morphism is defined to be a function from one cHa to another preserv-
ing these primitive operations. Each cHa morphism f*:£—H has the right
adjoint fy: H—Q characterized by:

¥ p)=q e p=f«(@)

for any peQ and any g=H. We use freely other standard notations and
terminologies of sheaf theory, for which the reader is referred to Fourman and
Scott [1] and other standard textbooks on sheaf theory. In particular, given
a cHa morphism f*:2—H, a sheaf F on £ and a sheaf ¢ on H we can speak
of the direct image sheaf f«G@ on £ and the inverse image sheaf f*F on H,
for which the reader is referred to Fourman and Scott [1; 6.4 and 9.47.

Given a cHa £, elements of V¢ and sheaves over £ are essentially the
same. Indeed we have

Theorem 2.3.1. For any uceV®, a={xeV®|[xcu]=Ex} is a sheaf to
be called the sheaf represenied by u. Conversely, for any sheaf F over R, there
is an element ueV® such that the sheaf @i represented by u is isomorphic to F.

Similarly we have

Theorem 2.3.2. Let uy, u,=V®. Then any function f:u,—u, in VP
renders a unique function f:@,—#, such that for each a=i,,

Ea=Efle)=[a, fla) < f].
This gives a bijective correspondence between functions f:ur—u, in VP and

sheaf morphisims from @i, to .

2.4. Q-Sets

Let 2 be a cHa. An £2-sat is a set A equipped with an Q-relation
[-~-1: AXA—Q satisfying

(1) [a~b]=[b~a], and
2) [a~bIN[b~cl<[a~c].

Let A be an Q-set. A singleton of A'is a map s: A—Q such that

1) s(@)ATa~b]<s(b), and
2) st@)As)<[a~b]

for all a, b= A. For any c= A, the map a—[a~c] is a singleton, which is
denoted by & The £2-set A is cailed complete if every singleton occurs in this

manner. An Q-set A may not necessarily be complete, but the sheafification A
of A defined by

b
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A={s: A—Q|s is a singleton} with [s~t]=V{s(e)At(a)|ac A}

is always complete.
The relationship between sheaves over £ and complete Q-sets is simple.

Indeed we have

Theorem 2.4.1. Sheaves over Q and complete Q-sets come to the same thing.

Thus we can speak of elements of V¢, sheaves over £ and complete Q-
sets interchangeably. Exploiting this trinity, which of the three is most con-
venient will be preferably used on each occasion.

§3. Intuitionistic Algebraic Geometry I; First Concepts

Throughout this and succeeding sections a ring always means a commuta-
tive ring with identity element 1. And all homomorphisms of rings are sup-
posed to take 1 to 1. The discussion that follows (including the next two sec-
tions) is formalizable within the formal system ZF.

A ringed cHa is a pair (2, Op) consisting of a cHa £ and a sheaf of rings
Og on 2. A morphism of ringed cHas f from (H, Oy) to (2, Og) consists of a
pair (f*, f¥) of a cHa morphism f* from 2 to H and a map f*:0p—f«Oy of
sheaves of rings on £. The ringed cHa (2, Op) is called a locally ringed cHa
if the sheaf O, regarded as a ring in V¥, is a local ring. Given two locally
ringed cHas (H, 0y) and (2, Op), a morphism of ringed cHas (f*, f¥) from
(H, 05) to (2, 0g) is called a morphism of locally ringed cHas if f*, regarded
as a homomorphism of rings in V', is a local homomorphism of local rings.

Next we introduce a cHa version of affine schemes simply by gathering the
scattered materials of Fourman and Scott [1]. Given a ring A, we denote by
Spec A the cHa of all radical ideals of A, for which the reader is referred to
Fourman and Scott [1; 2.15, pp. 327-328]. Let 2=Spec A. Then the ring A
can be made an £2-set by defining [a~b] to be

{ce A|c"a=c"b for some n>0}.

We also introduce a nonstandard relation of separation on the same set by
defining [a+#b] to be

{ce Ajc"=(a—Db)A for some n>0}.
Using this £2-set A with separation [-#-], we make the set
S={ab*|a, be A}
an -set by defining [ab~'~cd™'] to be
[6#0Nd+#0ATe+0 e(ad—bc)~0].
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Finally the completion of this £-set renders the desired sheaf Ospecs. The pair
(Spec A, Ospec 4), Which is known to be locally ringed cHa, is called the spectrum
of A.

An affine scheme is a locally ringed cHa (£, Og) which is isomorphic (as a
locally ringed cHa) to the spectrum of some ring. A scheme is a locally ringed
cHa (2, ©g) for which there exists a family {p;}:c; of elements of 2 such that
(21p;, Oalp,) is an affine scheme for any i€/ and T=Vc;p;. We call 2 the
underlying cHa of the scheme (2, Op) and Qg its structure sheaf. By abuse of
notation we will often write simply £ for the scheme (2, Op). A morphism of
schemes is a morphism as locally ringed cHas and similarly for isomorphisms.

Let 2 be a scheme. Then a scheme over 2 or simply an $£-scheme is a
scheme H together with a morphism f from H to £. In this context the
scheme 2 is called the base scheme of (H, f) and the morphism f is called the
structure morphism of (H, f). We will often say that H is an £2-scheme without
explicitly menticning the structure morphism f. Given two £2-schemes H; and
H, with their structure morphisms f, and f, respectively, an Q-morphism from
H; to H, is a morphism of schemes ¢ from H,; to H, such that the following
diagram is commutative.

Hx"——>Hz

N/

Now let ¢: A—B be a ring homomorphism. Then we would like to define
its associated morphisin of schemes *@=(f*, /#) from (Spec B, Ospecs) to (Spec 4,
Ospeca). First we define f*:Spec A—Spec B to be

FEm)=+o[p)B

for any p&Spec A. L.e., f*(p) is the least radical ideal containing ¢(p). Then we
have

Proposition 3.1. f* is a cHa morphism.

Proof. Trivially f*(Vp)=V.f*®.). Since ¢1)=1, f*(A)=B. Thus it
remains to show that f*(pNaq)=7/*Nf*(q). Obviously f*(HNq)C f*m)NfF*(q).
Now let c= f*(p)N\f*(q). Then

c"=x0(a)+ - +xpp(a)
c"=:1p(b1)+ - +3.10(by)

for some positive integers £k, [, m, n, {a., -, a,}Cp, {bs, -=-, b;}Cq, and
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{xy, ==+, X, Y1, -+, ¥:}CB. Multiplying both sides, we have

c™ = > x;9,0(a.b,).

15k
2

-
IAIA
<

IAIA

Since the right-hand side apparently belongs to f*(p\q), the proof is complete.

Now it remains to define f% Since
[Hle#0D)=r*aA)
=vop(a)B
=[p(a)#0]
for any a<= A, the correspondence
ab™— g(a)p(d)™

gives our desired morphism f#: Ospec 4= «Ospecs, Which can be shown easily to
be a local homomorphism in V©Pec4 Thus we have the desired morphism of
schemes *@=(f*, f¥#), for which we have

Theorem 3.2. Let A and B be rings. Then the correspondence ¢—*°¢ gives
a bijection between Hom (A, B) and Hom (Spec B, Spec A), where Hom (A4, B)
denotes the totality of ring homomorphisms from A to B and Hom (Spec B, Spec A)
denotes the totality of morphisms of schemes from Spec B to Spec A.

Proof. Given an arbitrary ring homomorphism ¢ : A—B, we can recover ¢
from “p=(f*, f*) as f%, since I'(A, Ospecs)=A and (B, Ospeczg)=B. Therefore
the correspondence ¢—®¢ is injective. Now suppose that an arbitrary morphism
of schemes (f*, f#) from (Spec B, Ospecs) t0 (Spec A, Ospec ) is given. Let p=f4.
Since f*, regarded as a ring homomorphism in VP4 ig a local homomorphism
of local rings, we have

f¥(Vad)=f*la+0])
= [*([e(a)#0])
=+¢(a)B
for any a€A. Therefore we can see easily that (f*, f#)="C%¢.

This result can be generalized readily to

Theorem 3.3. Let A be a ring and let (2, Op) be a scheme. Then, by as-
signing fi to each morphism of schemes (f*, f%) from (£, Og) to (Spec A, Ospec 4),
we obtain a bijection between Hom (82, Spec A) and Hom (A, I'(T, Op)), where
Hom (£, Spec A) is the totality of morphisms of schemes from (£, ©g) to (Spec A4,
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Ospecs) and Hom (A, I'(T, Og)) is the totality of ring homomorphisms from A to
F(T, QQ)

Proof. Essentially the same as in litaka [4; Theorem 1.15].

Let f*:£2—H be a cHa morphism. Then we can embed the cHa H and
many constructs on H into V. Here we prefer using sheaf representations,
which can be regarded as elements of V¢, as was explained in the previous
section. First of all, we define the sheaf H to be

{(g, D)EHX2|g< f*(p)}, where
E(g, p)=p and
(g, P p'=@N X", PAD).

It is easy to see that H is indeed a cHa in V@,
Next, given a sheaf § on H, we define 4 to be

{(a, q, P)EFXHXRQ|Ea=q and (g, p)= H}, where
E(a, ¢, p)=p and
(a, g, DI p'=(al" fH(D"), g\ fX(D"), PAD).

It is easy to see that & is a sheaf on Hin V¥, Given two sheaves F,, F,
over H and a sheaf morphism w from &, to &, we define @ to be

a(a, q, p)=(w(a), q, p)

for any (a, ¢, p)%,. @ can be considered a sheaf morphism from &; to &,
in V&,

Now suppose that we are given three cHa morphisms f*: Q—H,, f%: Q—H,,
and ¢*: H,—H, such that the following diagram is commutative.

3
o7

H,

f1 f%

Then @*, defined to be

e*q, p)=(p*q), D)

for any (g, p)eﬁl, can be shown easily to be a cHa morphism in V. The
right adjoint of @&* is denoted somewhat ambiguously by ¢4 This ambiguity
does not cause confusion at all, since (p4)~ is essentially the same as ¢..

One of the most interesting applications of these constructs is in
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Theorem 3.4. Let (2, Og) be a scheme. Since the identity morphism of
schemes (idg, idog) : (2, O9)—(2, Og) subsumes the identity cHa morphism idg: 2—
2 we can apply the above constructions to (2, Og) to obtain a ringed cHa (2, Og)

in VO, Then we can assert that this ringed cHa (Q, Op) is even an affine scheme
in Vb,

Proof. We will show that the sheaf ©p, regarded as a ring in V¢, gives
rise to the desired affine scheme (2, Op), assuming without loss of generality
that the given scheme (2, Op) is an affine scheme, say, (Spec A, Ospec4) for

some ring A. Since{vaA|ac A} is a base for R, it suffices to show that for
each a€ A,

(1) I'(WaA, (Spec A)=I"(aA, Spec Ospec ), and
(H) F('\/G—A, (OSpecA)N):F('\/a_A, OSpecOspeCA)y

where in the right-hand sides of (I) and (II),

(1) Ospecs is regarded as a ring in V@,
(2) the ring Ospecs gives rise to a ringed cHa (Spec Ogpec 4, OspecOsepc 4) in
V@ and

(3) Spec Ospec4 and OspecOspec4 are€ then regarded as sheaves over £2.
Here we deal only with (1), leaving (II) to the reader. By definition,
I'(~/aA, (Spec A)")={peSpec A|pC+aA}.
According to Fourman and Scott [1; Theorem 6.12],
I'(vVaA, Ospec )= Aa,

where A, is the localization of A with respect to the multiplicative system
{1}U{a™|n>0}. Therefore (I) follows from the following analogue of Iitaka
[4; Proposition 1.2 (iv)].

(1) The cHa Spec A, is isomorphic to {p=Spec A|pC~ aA}.
To see (I), it is sufficient to note that the correspondence
q—{xa™|xeq, m>0}
from {peSpec A|pC+/aA} to Spec A, is bijective.

This result can be generalized to

Theorem 3.5. Let (H, Oy) be a scheme over a basz scheme (2, Og) with
(f*, %) as its structure morphism. Then the ringed cHa (H, Oy) is a scheme in
V@,

Proof. We can assume without loss of generality that the schemes (H, Og)
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and (9, ©Oy) are affine schemes, say, (Spec B, Ospecs) and (Spec A, Ospec4) Te-
spectively for some rings A, B. Then, by dint of Theorem 3.2, we can assume
also that the structure morphism (f*, f*) derives from a ring homomorphism
¢: A—B as “p. Under these assumptions we will show that the scheme (I—NI, Ox)
is an affine scheme in V® by demonstrating that the sheaf fyOspecs OVer 2,
if regarded as a ring in V9, gives rise to the scheme (H. &y). Since

F('\/G—E; f*OSpecB):F('\/QD(a)B: OSpecB)
:Bga(a)
for each a4, we can establish by the same method of Theorem 3.4 that

(1) I'(WadA, (Spec BY)=I'(v'aA, Spec(fsOspecr)), and
(H) [1( \ CZA, (OSpecB)~):F<‘\/ZZ_A; OSpch,OspeCB))'

As {+VaAlas A} is a base for the cHa Spec A4, the proof is complete.

Now given a scheme (2, Op) as a base scheme, two £-schemes (H;, Og),
(H,, Og,) with their structure morphisms f,=(f%, /%), f,=(f%, /%), and an Q-
morphism ¢=(¢*, ¢*) from (H,, Og,) to (H,, Oy,), we cau embed the three
morphisms 3, f; and ¢ into V9 as fi=(F%, /%), /o=(7%, /%) and ¢=(¢*, ¢*)
respectively, and we have the following commutative diagram :

(H,, 6x) (., On)

~ '~

J1 I
(2, Oo)
We summarize these considerations in

Theorem 3.6. ¢ is an Q-morphism in VO,

To conclude this section, we consider the notion of the fibred product of
two schemes H; and H, over the same base scheme 2, which is to be denoted
by H,XoH, For this notion we have

Theorem 3.7. Given an arbitray scheme 2 (as the base screme) and two 8-
schemes H; and H,, the fibred product H,XoH, alweys cxisis.

Proof. Essentially the same as in litaka [4; Theorem 1.16]. In other
words the standard proof is intuitionistically valid.

The following result is of considerable interest, though its proof is ele-
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mentary.

Theorem 3.8. Given a scheme Q (as the base scheme) and two 2-schemes H,
and H,, we have

(H1X!)H2)~=ﬁ1x§ﬁ2

in V&,

Proof. Follows readily from the definitions.

§ 4. Intuitionistic Algebraic Geometry 1I; Projective Spaces

Let A be a ring and let S be the polynomial ring A[x,, -+, x,] over A in
n+1 indeterminates x,, -+, x,. We denote by S, the ideal generated by
My, -, X, Which is apparently a homogeneous radical ideal. We denote by
Proj S the set of all the homogeneous radical ideals of S that are contained in
S,. Then we have the following.

Theorem 4.1. ProjS is a cHa.

Proof. Similar to that of Fourman and Scott [1; 2.15, pp. 327-328] claim-
ing that Spec A is a cHa. The details are left to the reader.

Next we would like to define the structure sheaf Op.o;5 On ProjS. To this
end, some definitions are in order. Let £=ProjS. For each natural number
m, let S, be the set of all the homogeneous polynomials of degree m. The
set S, can be made an £-set by defining [f~g] to be the ideal

{heS,|h*f=h*g for some k>0},

which is apparently a homogeneous radical ideal. We next introduce a non-
standard relation of separation # on S, by defining [f+#g] to be

{heS,|hte(f—g)S for some k>0}.
Let T be the set of fg~Vs for all pairs of homogeneous polynomials £, g of

the same degree. This set can be made an £2-set by defining [f,g7'~fog7"
to be

[g.#0Ag:=0A3 homogeneous h=#0 A(fogi—f122)~0].

Now the structure sheaf @p.;s shall be the sheaf obtainable from the Q-set 7.
Then we have

Theorem 4.2. Foir any homogeneous tolynomial f<S,,

I'(V[S, Oprojs)=Scr -
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where V' fS is the least homogeneous radical ideal contairing j and
Sh={gh'eS;lg and h are homogeneous polynomials of the same degree}

with Sy being the localizatin of S with respect to the multiplicative system {1}\U
{f™|m>0}.

Proof. Similar to that of Fourman and Scott [1; Theorem 6.12, p. 377].

In order to show that (Proj S, Opos) is a scheme, it remains to demonstrate
that (Proj S, Opr;s) is covered with affine schemes, which follows from

Theorem 4.3. Let R be the polynomial ring Alx., -+, x,) over A in n in-
determinates xi, -+, Xo. Then (Spec R, Ospecr) and (Proj S| zgs, Oprojsivzgs) are
isomorphic as ringed cHas.

Proof. First we will show that Spec R and Proj S|, z;s are isomorphic cHas.
Using the notation of Zariski and Samuel [18; p. 179], we denote by *f the
homogenized polynomial of any feR. lLe.,

hf(-xO; T xn):'Xg(f)f(xlx_Ol; ] l’nxﬂl);

where 0(f) denotes the degree of f. Slightly different from Zariski and Samuel
[18; p. 180], when we are given an ideal a of R, we denote by *a the homo-
geneous ideal generated by the forms x7-*f (m=1, f<a). Itis easy to see that
whenever a is a radical ideal, then *a is a homogeneous radical ideal, which
follows from the simple observation that f™<a implies f€a for any homogeneous
polynomial feS. To realize that the mapping a—"a gives an isomorphism be-
tween Spec R and Proj|,z;s, it suffices to note that x¥'-f<b (m=1) implies
xof€b for any beProj S| z;s, since (xof)"=(xTf)- f™ .

Now it remains to show that the isomorphism between cHas Spec R and
Proj S|, z;s can be extended to an isomorphism between ringed cHas (Spec R,
Ospecr) and (Proj Slyzgs, Oproislvzgs), since the family {VFR|feR} is a base
for Spec R, the family {*vfR|feR}={~(x,-"f)S|fE R} is a base for ProjS|,z;s.
Since Ry and S¢z,.ns, are naturally isomorphic, the proof is complete in view of
Theorem 4.2 of this paper and Theorem 6.12 of Fourman and Scott [1].

Corollary 4.4. The ringed cHa (Proj S, Op.ojs) IS @ screme, which is to be
denoted by P% and to be called the projective n-space over A.

Since any scheme £ is naturally considered a scheme over Spec Z and P
is also considered a scheme over Spec Z, the projective n-space over the scheme
2 can be defined as £2XspeczP% and denoted by P3.  Then we have

Theorem 4.5. Let (2, Og) be an arbitrary scheme. Then PJ is a scheme
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over 8 and we have
(P3)~=Pg,

in V9, where Og in the right-hand side is regarded as a ring in V.

Proof. Follows from the definitions. The reader is also referred to the
readable exposition of Hartshorne [3; pp. 160-169] for this and further research.

§5. Intuitionistic Algebraic Geometry III;
Higher Direct Images of Sheaves

Given a cHa £ and a sheaf & of abelian groups on £, cohomology groups
H™(Q, ) are defined by imitating the usual construction of Cech cohomology
with sheaf coefficients, for which the reader is referred to Takeuti and Titani
[16; 2.3].

Let f*:02—H be a cHa morphism and & be a sheaf of abelian groups on H.
Then the higher direct images R"f«(F) (n=0) are defined to be the sheaves as-
sociated to the presheaves

p—= HYH| rocpy, Flrocp)
on £.

By the way, as we have discussed in Section 3, the cHa H and the sheaf &
on H can be embedded into V9 as A and & respectively. Then we have

Theorem 5.1. The cohomology groups HH &) in V9 are externally the
higher direct images R"f«(F) (n=0).

Proof. Follows readily from the definition of R"f, and the construction of
H and 4.

§6. Concluding Remarks

As we have seen so far, our algebraic geometry differs from the standard
one in several critical points. The most important difference is that the ambient
logic is not classical but intuitionistic. Since prime ideals are not well-behaved
creatures in intuitionistic reasoning, this differece affects greatly our choice of
building blocks of scheme theory. Indeed we were forced to define affine schemes
by using radical ideals in place of prime ideals, which renders the second dis-
tinctive feature of our scheme theory. The third distinctive feature of our
scheme theory is that topological spaces and their related constructs should be
replaced by corresponding cHas and their related constructs. In particular, so-

called Zariski topology plays no role in this new context.
The best companion of algebraic geometry has been commutative algebra,
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which is expected to be the case in our intuitionistic context. Therefore full
development of intuitionistic algebraic geometry should be accompanied by some
corresponding maturity of intuitionistic commutative algebra, which seems to be
in an embryonic stage at present. The birth of intuitionistic algebraic geometry
will presumably accelerate the development of intuitionistic algebra.

Last but not least, Grothendieck has stressed in EGA [Eléments de Géometrie
Algébrique] the tenet that the main object of algebraic geometry is not schemes
but morphisms of schemes. As we have seen, our Heyting valued approach to
algebraic geometry is completely in resonance with his relativistic philosophy.
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