Publ. RIMS, Kyoto Univ. 23 (1987), 517-526

Type I Orbits in the Pure States of a C*-Dynamical System. II

By

Akitaka KISHIMOTO*

Abstract

For a C^* -algebra A with an action of a locally compact abelian group G, one considers the pure states of A with the associated action. Type I orbits are defined and studied in the previous paper [4]. We continue this study; in particular, we shall show that if A is separable and simple and if there is a type I orbit through a pure state f with trivial stabilizer $\{t \in G : \pi_f \circ \alpha_t \sim \pi_f\} = \{0\}$, then there is a type I orbit with stabilizer equal to any given closed subgroup of G.

Let A be a separable C*-algebra and let α be a continuous action of a separable locally compact abelian group G on A. Let P(A) denote the set of pure states of A and let $f \in P(A)$. We call the orbit $o_f = \{f \circ \alpha_t : t \in G\}$ through f in P(A) type I if the representation

$$\rho_f \equiv \int_G^{\oplus} \pi_f \circ \alpha_t dt$$

of A on $L^2(G, \mathcal{H}_f)$ is of type I.

We denote by $\bar{\alpha}$ the extension of α to an action on $\rho_f(A)''$; in other words, $\bar{\alpha}_t \circ \rho_f = \rho_f \circ \alpha_t$, $t \in G$. Since $\bar{\alpha}$ is ergodic on the center Z of $\rho_f(A)''$, $\operatorname{Sp}(\bar{\alpha}|Z)$ is a closed subgroup of \hat{G} , which we denote by $\Delta(\pi_f)$ or $\Delta(\pi_f, \alpha)$. Let G_f be the set of $s \in G$ such that $\pi_f \circ \alpha_s$ is equivalent to π_f . If o_f is type I, then $G_f = \Delta(\pi_f)^{\perp}$ (see 0.1 in [4]).

In this case there is a weakly continuous action β of G_f on $\pi_f(A)''=B(\mathcal{H}_f)$ such that $\beta_t \circ \pi_f = \pi_f \circ \alpha_t$, $t \in G_f$, but in general π_f may not be $\alpha | G_f$ -covariant, i.e., β may not be implemented by a unitary representation of G_f . If in addition π_f is $\alpha | G_f$ -covariant, we call the orbit o_f regular type I.

For the system (A, G, α) we defined $\Gamma_1(\alpha)$, a subset of \hat{G} , in [4] as follows: $p \in \Gamma_1(\alpha)$ if for any non-zero $x \in A$, any compact neighbourhood U of p, and

Communicated by H. Araki, November 25, 1986.

^{*} Department of Mathematics, College of General Education, Tohoku University, Sendai, Japan.

any $\varepsilon > 0$, there is an $a \in A^{\alpha}(U)$ such that ||a|| = 1 and $||xax^*|| \ge (1-\varepsilon)||x||^2$. Let us now define another technical spectrum $\Gamma_2(\alpha)$ as follows: $p \in \Gamma_2(\alpha)$ if for any non-zero $x \in A$, any compact neighbourhood U of p, and any $\varepsilon > 0$, there is an $a \in A^{\alpha}(U)$ such that ||a|| = 1 and $||x(a+a^*)x^*|| \ge 2(1-\varepsilon)||x||^2$.

Now our results are as follows when the C^* -algebra A is simple and unital. If there is a regular type I orbit o_f such that the Connes spectrum $\Gamma(\alpha | G_f)$ equals \hat{G}_f , then for any closed subgroup H of G there is a regular type I orbit o_f with $G_f = H$ (Theorem 2). In particular if (A, G, α) is asymptotically abelian, there is always a covariant irreducible representation (see 2.3 and 3.1 in [4]). If there is a covariant irreducible representation, then $\Gamma_2(\alpha) = \Gamma(\alpha)$ (Theorem 7). When G is a connected Lie group and α is not uniformly continuous, there is always a non-type I orbit (Theorem 9).

We first prove the following properties of $\Gamma_2(\alpha)$.

1. Proposition. Let A be a separable C*-algebra and let α be a continuous action of a separable locally compact abelian group G on A. Then the following properties hold:

(i) For any faithful family F of irreducible representations of A, $\Gamma_2(\alpha)$ includes $\bigcap_{\pi \in F} \mathcal{A}(\pi)$.

(ii) There exists a faithful family F of irreducible representations of A such that Γ₂(α)=∩_{π∈F}Δ(π). In particular, Γ₂(α) is a closed subgroup of Ĝ.
(iii) Γ₂(α)⊂Γ₁(α), and if Γ₁(α)=Ĝ then Γ₂(α)=Ĝ.

Proof. If $p \in \mathcal{A}(\pi)$, there is a sequence $\{x_n\}$ in A of spectrum p such that $||x_n|| \leq 1$ and $\lim \pi(x_n) = 1$ ([4]). Here $\{x_n\}$ is of spectrum p if for any neighbourhood U of p there is an N such that $x_n \in A^{\alpha}(U)$ for any $n \geq N$. This immediately implies (i).

To prove (ii) we adapt the proof of (3) \Rightarrow (5) in 3.1 in [4]. We take for $\{U_n\}$ the subsequence of $\{U_n\}$ consisting of those which intersect $\Gamma_2(\alpha)$. Since we are not assuming the primeness of A here, we simply take for $\{I_n\}$ a constant sequence consisting of a non-zero ideal of A. By the same procedure as in [4] in this setting we obtain a pure state f of A such that ||f|||=1, and for any $p \in \Gamma_2(\alpha)$ and any unit vector $\xi \in \mathcal{H}_f$ there is a $Q \in \mathcal{M}(p)$ such that $||Q|| \leq 1$ and $\operatorname{Re}\langle Q\xi, \xi \rangle \geq 1$, or in fact $||Q||=1=\langle Q\xi, \xi \rangle$. (See Section 1 of [4] for the definition of $\mathcal{M}(p)$.) Then by an argument given in the proof of 3.1 in [4] one can conclude that $\mathcal{M}(p) \geq 1$ for $p \in \Gamma_2(\alpha)$, or equivalent $\mathcal{A}(\pi_f) \supset \Gamma_2(\alpha)$. Taking for F the set of π_f for all non-zero ideals of A, one obtains that $\Gamma_2(\alpha) \subset \bigcap_{\pi \in F}(\pi)$. Hence the equality follows by (i). Since each $\mathcal{A}(\pi)$ is a closed subgroup of \hat{G} , so is $\Gamma_2(\alpha)$.

As for (iii), it is obvious that $\Gamma_2(\alpha) \subset \Gamma_1(\alpha)$. Suppose $\Gamma_1(\alpha) = \hat{G}$. Then since the same procedure as above applies, one can conclude that $\Gamma_2(\alpha) = \hat{G}$ (see 3.1)

in [4]).

Now we state our first main result:

2. Theorem. Let A be a separable prime C*-algebra and let α be a continuous action of a separable locally compact abelian group G on A. Let H be an arbitrary closed subgroup of G. Then the following conditions are equivalent:

(i) $\Gamma(\alpha) = \hat{G}$ and there exists an α -covariant irreducible representation of A such that the corresponding representation of the crossed product $A \times_{\alpha} G$ is faithful.

(i') $\Gamma(\alpha) = \hat{G}$ and there exists a family F of irreducible representations of A such that $\bigcap_{\pi \in F} \ker \pi = (0)$ and π is α -covariant for $\pi \in F$

(ii) $\Gamma(\alpha) = \hat{G} \text{ and } \Gamma_2(\hat{\alpha}) = G.$

(iii) $\Gamma_2(\alpha) = \hat{G}$.

(iv) $\Gamma(\alpha | H) = \hat{H}$ and there exists an $\alpha | H$ -covariant irreducible representation π of A such that the corresponding representation of $A \times_{\alpha + H} H$ is faithful and $\Delta(\pi) = H^{\perp}$.

(iv') $\Gamma(\alpha | H) = \hat{H}$ and there exists a family F of irreducible representations of A such that $\bigcap_{\pi \in F} \ker \pi = (0)$, and π is $\alpha | H$ -covariant and $\Delta(\pi) = H^{\perp}$ for $\pi \in F$.

Moreover, if G is discrete the above conditions are equivalent to

(v) α_t is properly outer for each $t \in G \setminus \{0\}$.

Proof. It is trivial that (i) implies (i') and (iv) does (iv'). Let F be as in (i') and for each $\pi \in F$ let u be the unitary representation of G which implements α , so that $\tilde{\pi} = \pi \times u$ is the corresponding representation of $A \times_{\alpha} G$. Since $\pi(A)'' = \tilde{\pi}(A \times_{\alpha} G)''$ and the spectrum of the action on the quotient $A \times_{\alpha} G/(\ker \pi) \times_{\alpha} G$ induced by $\hat{\alpha}$ is G, 1.3 in [4] implies that $\Delta(\tilde{\pi}, \hat{\alpha}) = G$ (note that the faithfulness assumption in 1.3 in [4] was needed only for ρ instead of π ; in this case this amounts to the property that $\bigcap_{p \in G} \ker \tilde{\pi} \circ \hat{\alpha}_p = (\ker \pi) \times_{\alpha} G$). Hence (i') implies (ii) by 1(i).

To prove (ii) \Rightarrow (iii) we first give the following result:

3. Proposition. Let A be a separable prime C*-algebra and let α be a continuous action of a separable locally compact abelian group G on A. Suppose that $\Gamma_2(\alpha) = \hat{G}$. Then there exists an α -covariant irreducible representation of A such that the corresponding representation of $A \times_{\alpha} G$ is faithful.

Proof. To prove this it suffices to show that $\Gamma(\alpha)=\hat{G}$ and $\Gamma_2(\hat{\alpha})=G$. Because, if this is the case, $A \times_a G$ is separable and prime ([5]), and hence due to 3.1 in [4] and the lemma below there exists a faithful irreducible representation π of $A \times_a G$ such that $\pi(A \times_\alpha G)'' = \overline{\pi}(A)''$, where $\overline{\pi}$ is the extension of π to the multiplier algebra $M(A \times_\alpha G)$. Thus $\overline{\pi} | A$ has the desired properties. **4. Lemma.** If π is a representation of $A \times_{\alpha} G$ such that $\Delta(\pi, \hat{\alpha}) = G$, then $\bar{\pi}(A)'' = \pi(A \times_{\alpha} G)''$.

Proof. Define a representation ρ of $A \times_{\alpha} G$ by

$$\rho = \int_{\hat{G}}^{\oplus} \pi \cdot \hat{\alpha}_p dp$$

on $L^2(\hat{G}, \mathcal{H}_{\pi}) = L^2(\hat{G}) \otimes \mathcal{H}_{\pi}$ and let β be the extension of $\hat{\alpha}$ to an action on $\mathcal{N} = \rho(A \times_{\alpha} G)''$. It suffices to prove that $\mathcal{N}^{\beta} = \overline{\rho}(A)''$ (see 1.1 in [4]). It is obvious that $\mathcal{N}^{\beta} \supset \overline{\rho}(A)''$. For $f \in L^1(G) \cap L^2(G)$ it is known ([5]) that $\overline{\rho}(\lambda(f))Q\overline{\rho}(\lambda(f)^*)$ is β -integrable for $Q \in \mathcal{N}$ and

$$\int \beta_p(\bar{\rho}(\lambda(f))Q\bar{\rho}(\lambda(f)^*))dp \in \bar{\rho}(A)''.$$

By a limiting procedure in f one can conclude that $Q \in \overline{\rho}(A)''$ for $Q \in \mathcal{I}^{\beta}$.

Going back to the proof of the proposition, it is obvious that $\Gamma(\hat{\alpha}) = \hat{G}$. To prove $\Gamma_{2}(\hat{\alpha}) = G$ we first note

5. Lemma. Under the assumption of the above proposition let H be a closed subgroup of G and suppose that there exists a faithful irreducible representation π of A such that π is $\alpha | H$ -covariant and $\Delta(\pi) = H^{\perp}$. Then there exists an irreducible representation Φ of $A \times_{\alpha} G$ such that Φ is $\hat{\alpha} | H^{\perp}$ -covariant, $\Delta(\Phi, \hat{\alpha}) = H$, and $\bigcap_{p \in G} \ker \Phi \circ \hat{\alpha}_p = (0)$. In particular, $\Gamma_2(\hat{\alpha}) \supset H$.

Proof. Let φ be a measurable function of G/H into G such that $\varphi(t)+H=t$, $t \in G/H$, and let v be a continuous unitary representation of H such that $\pi \circ \alpha_t = \operatorname{Ad} v(t) \circ \pi$. Define a representation Φ of $A \times_a G$ on $L^2(G/H, \mathcal{H}_{\pi})$ by

$$\begin{split} \bar{\Phi}(a) &= \int_{G/H}^{\oplus} \pi \circ \alpha_{\varphi(t)}(a) dt \,, \quad a \in A \,, \\ \bar{\Phi}(\lambda(g)) &= \left(\int_{G/H}^{\oplus} \nu(g + \varphi(s) - \varphi(s + \dot{g})) ds \right) u_{\dot{g}} \,, \quad g \in G \,, \end{split}$$

where $\overline{\Phi}$ is the extension of Φ to $M(A \times_{\alpha} G)$, λ is the canonical unitary representation of G in $M(A \times_{\alpha} G)$, $\dot{g} = g + H \in G/H$, and u is the unitary representation of G/H defined by

$$(u_s\xi)(t) = \xi(t+s), \quad \xi \in L^2(G/H, \mathcal{H}_{\pi}).$$

As is easily shown, Φ is in fact well defined, and since $\Phi(A)'' = L^{\infty}(G/H) \otimes B(\mathcal{H}_{\pi})$ and $u_s \in \Phi(A \times_a G)''$, Φ is irreducible. Define a unitary representation w of $(G/H)^{\wedge} = H^{\perp}$ on $L^2(G/H, \mathcal{H}_{\pi})$ by

$$w_p = \int_{G/H}^{\oplus} \langle s, p \rangle ds.$$

Then since $\Phi \circ \hat{\alpha}_p = \operatorname{Ad} w_p \circ \Phi$, $p \in H^{\perp}$, Φ is $\hat{\alpha} \mid H^{\perp}$ -covariant. Since $\overline{\Phi}(\lambda(g)) \in \overline{\Phi}(A)''$ for $g \in H$, one obtains that $\overline{\Phi}(A\lambda(g))^{-w} \ni 1$, for $g \in H$, i.e., $\Delta(\overline{\Phi}, \hat{\alpha}) = H$. Since $\bigcap_{p \in \mathcal{C}} \ker \Phi \circ \hat{\alpha}_p = (0)$ as π is faithful, this implies that $\Gamma_2(\hat{\alpha}) \supset H$.

6. Lemma. Under the assumption of the above proposition let H be a compact subgroup of G. Then there exists an $\alpha | H$ -covariant irreducible representation π of A such that the corresponding representation of $A \times_{\alpha \mid H} H$ is faithful and $\Delta(\pi) = H^{\perp}$.

Proof. Let $\beta = \alpha \mid H$. Then $\Gamma_2(\beta) = \hat{H} = \Gamma(\beta)$, and so $A \times_{\beta} H$ is prime. By the proof of 3.3 in [4], it suffices to show that the following two conditions are satisfied: For any neighbourhood U of any $p \in H^{\perp}$, and any $x \in A \times_{\beta} H$,

$$\sup\{\|x(a+a^*)x^*\|; a \in A^{\alpha}(U)_1\} = 2\|x\|^2,$$

where $A^{\alpha}(U)_{1}$ denotes the unit ball of $A^{\alpha}(U)$; for any neighbourhood U of any $s \in H$, and any $x \in A \times_{\beta} H$,

$$\sup\{\|x(a+a^*)x^*\|; a \in (A \times_{\beta} H)^{\hat{\beta}}(U)_1\} = 2\|x\|^2$$

or equivalently $\Gamma_{2}(\hat{\beta}) = H$. The former can be proved as in 3.3, [4], and the latter can be proved by using the fact that there is a β -covariant faithful irreducible representation of A (see [1], [4]).

To complete the proof of Proposition 3, we have to show that $\Gamma_2(\hat{\alpha})=G$. By the previous two lemmas and 3.3 in [4], it follows that $\Gamma_2(\hat{\alpha}) \supset H$ for any compact or discrete closed subgroup H of G. Since any compactly generated subgroup of G is of the form $K \times Z^1 \times R^m$ (where K is a compact group and l, m are non-negative integers) and $\Gamma_2(\hat{\alpha})$ is a closed subgroup of G, it easily follows that $\Gamma_2(\hat{\alpha})=G$.

Proof of Theorem 2. To prove (ii) \Rightarrow (iii) we apply Proposition 3 to $(A \times_{\alpha} G, \hat{G}, \hat{\alpha})$ to yield an $\hat{\alpha}$ -covariant faithful irreducible representation of $A \times_{\alpha} G$, which in turn gives a faithful irreducible representation π of A with $\mathcal{L}(\pi) = \hat{G}$. This implies that $\Gamma_{2}(\alpha) = \hat{G}$.

The proof of (iii) \Rightarrow (iv) goes in exactly the same way as the proof of Lemma 6 or 3.3 in [4] as we know by Proposition 3 that there is an α -covariant faithful irreducible representation of A.

Suppose that (iv') holds. Then applying (i') \Rightarrow (iii) for $\beta = \alpha | H$ one obtains that $\Gamma_2(\beta) = \hat{H} = \hat{G}/H^{\perp}$. One also knows that $\Gamma_2(\alpha) \supset H^{\perp}$. Using these two properties, as in the proof of 3.3 in [4], one obtains a faithful irreducible representation π of A such that $\mathcal{L}(\pi, \beta) = \hat{G}/H^{\perp}$ and $\mathcal{L}(\pi, \alpha) \supset H^{\perp}$. From this

Ακιτακά Κισηιμότο

follows that $\Delta(\pi, \alpha) = \hat{G}$ or (iii) $\Gamma_2(\alpha) = \hat{G}$. (By considering the representation ρ of A defined by

$$\rho = \int_{G}^{\oplus} \pi \circ \alpha_{t} dt \cong \int_{G/H}^{\oplus} \int_{H}^{\oplus} \pi \circ \alpha_{t+f(s)} dt ds$$

with f a measurable section of G/H into H, one can conclude that both the integrals are central and so the center of $\rho(A)''$ equals $L^{\infty}(G)\otimes 1$.) Then by taking G for H in the implication (iii) \Rightarrow (iv), one obtains (i).

In general (i) implies (v) via (iv) with H=(0). If G is discrete, $(v) \Rightarrow (i)$ follows from 3.4 in [4] by using [1]. This completes the proof of Theorem 2.

7. Theorem. Let A be a separable prime C*-algebra and let α be a continuous action of a separable locally compact abelian group G on A. If there is a faithful family of α -covariant irreducible representations of A, then for any closed subgroup H of G with $H \supseteq \Gamma(\alpha)^{\perp}$, there exists a faithful irreducible representation π of A such that π is $\alpha \mid H$ -covariant and $\Delta(\pi, \alpha) = H^{\perp}$. In particular, $\Gamma_2(\alpha) = \Gamma(\alpha)$.

Proof. Let F be the family of irreducible representations in the theorem. For $\pi \in F$ let u be the implementing unitary representation of G and let $\tilde{\pi} = \pi \times u$ be the corresponding representation of $A \times_{\alpha} G$. Then $\mathcal{A}(\tilde{\pi} \circ \hat{\alpha}_p, \hat{\alpha}) = G$ for each $\pi \in F$ and $p \in \hat{G}$, and the set F_1 of $\tilde{\pi} \circ \hat{\alpha}_p$, $\pi \in F$, $p \in \hat{G}$, is a faithful family of irreducible representations of $A \times_{\alpha} G$. Thus $\Gamma_{z}(\hat{\alpha}) = G$, by 1(i).

Let $\beta = \hat{\alpha} | H^{\perp}$. Since $H^{\perp} \subset \Gamma(\alpha)$, one has that $I \cap \beta_t(I) \neq (0)$ for any $t \in H^{\perp}$ and for any non-zero ideal I of $A \times_{\alpha} G$. We assert:

8. Lemma. For each $\rho \in F_1$, there is a primitive ideal P of $A \times_{\alpha} G$ such that P is β -invariant, $P \subset \ker \rho$ and $\Gamma_2(\beta/P) = (H^{\perp})^{\wedge} = G/H$, where β/P denotes the action on the quotient $A \times_{\alpha} G/P$ induced by β .

Proof. Let \mathscr{P} be the set of primitive ideals P of $A \times_{\alpha} G$ such that $P \subset \ker \rho$ and there is an irreducible representation π of $A \times_{\alpha} G$ satisfying $\ker \pi = P$ and $\mathscr{L}(\pi, \hat{\alpha}) = G$. We define an order on \mathscr{P} by inclusion.

For a totally ordered set $\{P_{\nu}\}$ in \mathscr{P} we claim that there is a P_1 in \mathscr{P} such that $P_1 \subset \bigcap_{p \in H^{\perp}} \beta_p(P_{\nu})$ for all ν . Once this is proved, we simply take a minimal one in \mathscr{P} for P in the lemma.

Let $\{P_{\nu}\}$ be as above and let $P_{0}=\bigcap_{\nu}P_{\nu}$. Since $A\times_{a}G$ is separable we may assume that the index set $\{\nu\}$ is the positive integers. (For example, let $\{x_{n}\}$ be a dense sequence in $A\times_{a}G$ and let ν_{n} be such that $||x_{n}+P_{\nu_{n}}|| \ge ||x_{n}+P_{0}||/2$ and $\nu_{n} \ge \nu_{n-1}$, and set $P_{n}=P_{\nu_{n}}$.) For each n let $\{I_{nk}\}$ be a decreasing sequence of ideals such that I_{nk} is not contained in P_{n} and for any non-zero ideal J not contained in P_{n} there is an I_{nk} with $J \supset I_{nk}$. (For example, for the primitive ideal $P=P_{n}$ of $A\times_{a}G$, let $\{x_{k}\}$ be a dense sequence in $A\times_{a}G \setminus P$ and let J_{k} be

522

the smallest ideal of $A \times_a G$ such that $||x_k + J_k|| \le ||x_k + P||/2$, and set $I_{nk} = J_1 \cap \cdots \cap J_k$.)

Let $\{p_l\}$ be a dense sequence in H^{\perp} . We consider the set $S = \{\beta_{p_l}(I_{nk}): n, k, l=1, 2, \cdots\}$.

We want to prove that if $J_i \in S$, $i=1, \dots, m$, then $\bigcap_{i=1}^m J_i$ is essential in J_1 . First, if $J_1=I_{nk}$ and $J_2=I_{n'k'}$, then we may assume that $J_1 \subset J_2$ or $J_1 \supset J_2$ and if $J_1 \supset J_2$, J_2 is essential in J_1 because $P_{n'}$ is primitive and $J_1 \supset J_2 \subset P_{n'}$. Second, if $J_1=I_{nk}$ and $J_2=\beta_{P_i}(I_{nk})$, and if $J \subset J_1$ is an ideal orthogonal to $J_1 \cap J_2$, one must have that $J \cap \beta_{P_i}(J)=(0)$ which contradicts that $\Gamma(\hat{\alpha}) \supset H^{\perp}$ unless J=(0). Thus $J_1 \cap J_2$ is essential in J_1 . Since if $J_1 \subset J_2$ and J_1 is essential in J_2 , then $J_1 \cap J$ is essential in $J_2 \cap J$ for any ideal J, combining these two cases we get the assertion.

Let $\{J_n\}$ be an enumeration of S; we may assume that $\{J_n\}$ is decreasing, replacing J_n by $J_1 \cap \cdots \cap J_n$. From what we have proved above it follows that J_m is essential in J_n for $m \ge n$.

Now we use the procedure in the proof of 3.3 in [4] for $(A \times_a G, \hat{G}, \hat{\alpha})$ with $\{J_n\}$ instead of $\{I_n\}$. Then we obtain an irreducible representation π of $A \times_a G$ such that $\Delta(\pi, \hat{\alpha}) = G$ and $\pi | J_n \neq (0)$ for any *n*. If ker $\pi \oplus \beta_{\mathcal{P}_l}(P_0)$, then ker $\pi \oplus \beta_{\mathcal{P}_l}(P_n)$ for large *n* and then ker $\pi \oplus \beta_{\mathcal{P}_l}(I_{nk})$ for large *k*, a contradiction. Thus ker $\pi \oplus \beta_{\mathcal{P}_l}(P_0)$ for any *l* and so ker $\pi \oplus (\beta_{\mathcal{P}_l}(P_0)) : p \in H^{\perp}\}$.

Now we resume the proof of Theorem 7. Let \mathscr{P} be the set of primitive ideals P of $A \times_a G$ such that P is β -invariant and $\Gamma_2(\beta/P) = G/H$. For each $P \in \mathscr{P}$, Theorem 2 is applicable to the system $(A \times_a G/P, H^{\perp}, \beta)$. Thus $\widetilde{P} = P \times_{\beta} H^{\perp}$ is a primitive ideal of $A \times_a G \times_{\beta} H^{\perp}$, and for the quotient system $(A \times_a G \times_{\beta} H^{\perp}/\widetilde{P}, G/H, \hat{\beta}/\widetilde{P}), \Gamma_2(\hat{\beta}/\widetilde{P}) = H^{\perp}$ follows. Since $\cap \{\widetilde{P}, P \in \mathscr{P}\} = (0)$, this implies that $\Gamma_2(\hat{\beta}) = H^{\perp}$.

On the other hand, by using $\Delta(\pi, \hat{\alpha}) = G$ for $\pi \in F_1$ as in the beginning of the proof, we obtain that for any $t \in H$, any neighbourhood U of t, and any $x \in A \times_a G \times_{\beta} H^{\perp}$,

$$\sup\{\|x(a+a^*)x^*\|: a \in (A \times_a G)^{\hat{a}}(U)_1\} = 2\|x\|^2.$$

By using this with $\Gamma_{2}(\hat{\beta})=H^{\perp}$ we obtain an irreducible representation ρ of $A \times_{a} G \times_{\beta} H^{\perp}$ such that $\bar{\rho}(A \times_{a} G)'' = \rho(A \times_{a} G \times_{\beta} H^{\perp})''$ and $\mathcal{L}(\pi, \hat{\alpha})=H$ for $\pi = \bar{\rho}|A \times_{a} G$. Moreover we can easily assume that $\bar{\pi}|A$ is faithful. By Lemma 5 or its proof we obtain an irreducible representation Φ of $A \times_{a} G \times_{\hat{a}} G \cong A \otimes K$, where K is the compact operators on $L^{2}(G)$, such that Φ is $\hat{\hat{\alpha}}|H$ -covariant, $\mathcal{L}(\Phi, \hat{\hat{\alpha}})=H^{\perp}$, and $\Phi|A$ is faithful. This completes the proof by the duality for crossed products.

For a C*-algebra A we denote by $P_f(A)$ the set of pure states φ of A with ker $\pi_{\varphi} = (0)$.

9. Theorem. Let A be a separable prime C*-algebra and let α be a continuous action of an abelian Lie group G on A. Then the following conditions are equivalent:

(i) α^* on $P_f(A)$ is strongly continuous.

(ii) For each $\varphi \in P_f(A)$, $\alpha | G_0$ extends to a σ -weakly continuous action on $\pi_{\varphi}(A)'' = B(\mathcal{H}_{\varphi})$, where G_0 is the connected component of the identity in G.

(iii) For each $\varphi \in P_f(A)$, $\rho_{\varphi}(A)''$ is of type I with atomic center, where ρ_{φ} is defined by $\rho_{\varphi} = \int_{-\infty}^{\oplus} \pi_{\varphi} \cdot \alpha_t dt$.

(iv) Every orbit in $p_f(A)$ is of type I.

(v) α_t is not properly outer for any $t \in G_0$, where G_0 is defined in (ii).

10. Remark. In the above theorem if in addition A is simple and unital, α is uniformly continuous (cf. [3]).

Proof. Suppose that (i) holds. Then for $\varphi \in P_f(A)$ there is an open neighbourhood U of $0 \in G$ such that

$$\|\varphi \circ \alpha_t - \varphi\| < 2, \quad t \in U,$$

which implies that α_t is weakly inner in π_{φ} for $t \in U$. Since G_0 is generated by $G_0 \cap U$, it follows that α_t is weakly inner in π_{φ} for any $t \in G_0$. Hence there is an action β on $\pi_{\varphi}(A)''$ such that $\beta_t \circ \pi_{\varphi} = \pi_{\varphi} \circ \alpha_t$, $t \in G_0$. Since β is automatically σ -weakly continuous (e.g. [4]), β is the desired action on $\pi_{\varphi}(A)''$ in (ii).

Suppose that (ii) holds. For $\varphi \in P_f(A)$

$$\rho_1 = \int_{G_0}^{\oplus} \pi_{\varphi} \circ \alpha_t dt$$

is quasi-equivalent to π_{φ} and so $\rho_1(A)''$ is a type I factor. Since G/G_0 is discrete, (iii) follows immediately.

 $(iii) \Rightarrow (iv)$ is trivial.

Suppose that (iv) holds and set

$$H = \{s \in G : \alpha_s \text{ is not properly outer}\}.$$

If *H* is not closed, let $s \in \overline{H} | H$. Then there is a $\varphi \in P_f(A)$ such that $\pi_{\varphi} \circ \alpha_s \circ \pi_{\varphi}$ (cf. [2]). Then the orbit o_{φ} through φ cannot be of type I. Because if o_{φ} were of type I, then $G_{\varphi} = \{t \in G : \pi_{\varphi} \circ \alpha_t \sim \pi_{\varphi}\}$ would be closed, but $G_{\varphi} \supset H$ and $G_{\varphi} \supset \overline{H}$. Hence *H* must be closed.

If H does not include G_0 , then G/H has a closed subgroup which is isomorphic to T or R. By using this fact one can easily find subgroups D_1 , D_2 of G/H such that $D_1 \cong \mathbb{Z} \oplus \mathbb{Z} \cong D_2$, $D_1 \cap D_2 = (0)$, and $\overline{D}_1 = \overline{D}_2$, and then subgroups D'_1 , D'_2 of G such that $D'_1 \cap H = (0) = D'_2 \cap H$, $q(D'_i) = D_i$, i=1, 2, where q is the quotient map of G onto G/H. By Theorem 2 applied to the discrete subgroup $D'_1+D'_2$, there is a $\varphi \in P_f(A)$ such that $\pi_{\varphi} \circ \alpha_t \sim \pi_{\varphi}$ for $t \in D'_1$, and $\pi_{\varphi} \circ \alpha_t \circ \pi_{\varphi}$ for $t \in D'_2$. Thus $G_{\varphi} \supset q^{-1}(D_1)$ and $G'_{\varphi} \supset q^{-1}(D_2)$. Since $\overline{D}_1 = \overline{D}_2$, it follows that $\overline{q^{-1}(D_1)} = \overline{q^{-1}(D_2)}$. This implies that G_{φ} is not closed and hence the orbit o_{φ} is not type I.

Suppose that (v) holds. Then for $\varphi \in P_f(A)$, α_t is weakly inner in π_{φ} for $t \in G_0$. Then as in the proof of (i) \Rightarrow (ii), one can show that the action β of G_0 defined by $\beta_t \circ \pi_{\varphi} = \pi_{\varphi} \circ \alpha_t$ is continuous. Hence $t \mapsto \alpha_t^* \varphi$ is norm continuous.

Let P be a primitive ideal of A. Then a pure state of the quotient C^* -algebra A/P is naturally regarded as a pure state of A. Thus P(A) is regarded as the disjoint union of $P_f(A/P)$ with P running over the primitive ideals of A.

11. Corollary. Let A be a separable C*-algebra and let α be a continuous action of an abelian Lie group G on A. Then the following conditions are equivalent:

(i) Every orbit in P(A) is of type I.

(ii) For any primitive ideal P of A the induced action $(\alpha | G_P)^*$ on $P_f(A/P)$ is strongly continuous, where $G_P = \{t \in G : \alpha_t(P) = P\}$.

Proof. Suppose that (ii) holds. Let $\varphi \in P(A)$. With $P = \ker \pi_{\varphi}$, φ belongs to $P_f(A/P)$. By the previous theorem

$$\rho_1 = \int_{G_P}^{\oplus} \pi_{\varphi} \circ \alpha_t dt$$

is of type I. Let f be a measurable function of G/G_P into G such that $f(s)+G_P=s$, $s\in G/G_P$. Then ρ_{φ} is equivalent to

$$\int_{G/G_P}^{\oplus} \rho_1 \circ \alpha_{f(s)} ds$$

and we assert that

$$\rho_{\varphi}(A)'' = L^{\infty}(G/G_P) \otimes \rho_1(A)''$$
,

which implies (i). To prove this it suffices to show that $N \equiv \operatorname{Sp}(\alpha | Z) \supset G_P^{\perp}$ where $\bar{\alpha}$ is the extension of α to an action on $\rho_{\varphi}(A)''$ and Z is the center of $\rho_{\varphi}(A)''$. If $s \in N^{\perp}$, then it follows that for any neighbourhood U of $0 \in G$

$$\int_{U}^{\oplus} \pi_{\varphi} \circ \alpha_{t} dt \quad \text{and} \quad \int_{U}^{\oplus} \pi_{\varphi} \circ \alpha_{s+t} dt$$

are mutually quasi-equivalent. In particular the kernels of these representations are equal:

Ακιτακά Κισημοτο

$$\bigcap_{t\in U}\alpha_{-t}(P)=\bigcap_{t\in U}\alpha_{-s-t}(P).$$

Since this is true for any neighbourhood U of $0 \in G$, one obtains that $P = \alpha_{-s}(P)$, i.e., $s \in G_P$. Hence $N^{\perp} \subset G_P$.

Suppose that (ii) does not hold. Then there is a primitive ideal P of A such that $(\alpha | G_P)^*$ on $P_f(A/P)$ is not strongly continuous. Then by Theorem 9 there is a $\varphi \in P_f(A/P)$ such that the orbit through φ under $(\alpha | G_P)^*$ is non-type I. Then as in the proof of (i) \Rightarrow (ii), $\rho_{\varphi}(A)'' = L^{\infty}(G/G_P) \otimes \rho_1(A)''$ and hence the orbit through φ under α^* is non-type I.

References

- [1] Bratteli, O., Evans, D.E., Elliott, G.A. and Kishimoto, A., Quasi-product actions of a compact abelian group on a C*-algebra, preprint.
- [2] Kishimoto, A., Outer automorphisms and reduced crossed products of simple C*algebras, Commun. Math. Phys., 81 (1981), 429-435.
- [3] ——, Universally weakly inner one-parameter automorphism groups of simple C*-algebras, Yokohama Math. J., 29 (1981), 89-100.
- [4] _____, Type I orbits in the pure states of a C*-dynamical system, Publ. RIMS, Kyoto Univ., 23 (1987).
- [5] Pedersen, G.K., C*-algebras and their automorphism groups, Academic Press, London-New York-San Francisco (1979).

526