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The Poincare Lemma for Variations of
Polarized Hodge Structure

By

Masaki Kasuiwara and Takahiro Kawar*

§0. Introduction

8§0.1. The purpose of this article is to prove the following Conjecture 0.1.1
when X is non-singular Xdhler manifold and Y* is the complement of a nor-
mally crossing hypersurface.

Conjecture @.1.1. et X be a compact complex anzlytic variely, binero-
morphic to a compact Kihler manifold, and let X* be o ner-singuler Zariski
opern subset of X. Then, for any volarizadle varialicn of Hedge struciure H
of weight w sn X*, the cohomology group F*(0;"E) of the minimal extension
“H of H admiis a canonical pure Fodge structure.

g o]

Here the miinimal ertension "H of H is, by definition, a unique perverse
sheaf on X such that it is an extension of A and that it does not have either
non-zero sub-perverse sheaf or a perverse quotient supported in X\ X*,

80.2. When X* is a non-singular Xihler manifold and A is a trivial variation,
the above conjecture is nothing but the clascical result of Hodge. When J7*
is a non-singuler K&hler manifold, this is proved by 2 Deligne (cf. [Z]} by
the same method of using the theory of harmonic integrals. When X is a
curve, this is proved by S. Zucker [Z].

The method of our proof follows the idea of Zucker in that we express
the cohomology group of the minimal extension by the L%cohomology groups
and use the theory of harmonic integrals.

§0.3, “We shall give an outline of the proof of our main result, i.e., the follow-
ing
Theorem G.3.1. Let X* be the complement of a normally crossing hyper-
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surface of a compact Kihler manifold. Then, for any polarizable variation
of Hodge structure H, H*(X; “H) has a canonical Hodge structure.

§0.4. The first step is to take a Kédhler metric @ on X* whose behavior near
the boundary Y=X\X* is as follows:

(0.4.1) o~} —\/ —100 loglog|z;|*+ 33 \/ —1dz;dz;
= >

for a local coordinate system (zy, -*-, z,) of X such that Y is defined by z;-:-z,
=0.

80.5. Let H=(Hg; F(H), F(H); S) be a polarized variation of Hodge struc-
ture on X*. Then, by the definition, H, is a local system on X* and F(H)
(resp., F(H)) is a filtration of Ox® H (resp., OxQ@H¢). (See §1.3.) Since
the polarization S gives rise to a Hermitian metric on the C*-bundle associ-
ated with Hg, we can define L%, (X*; H), the space of k-forms with coefficients
in H, which are square-integrable. Then this is a Hilbert space.

The L%cohomology group Hp)(X*; H) is, by definition, the quotient
space

{ue Lyy(X*; H); du = O} [{du; us L (X*; H) and duc Ly(X*; H)}.

We shall prove that H{,)(X*; H) coincides with H*(X;*H). Once this is
proved, then the finite-dimensionality of H*(X; “H) enables us to employ the
theory of harmonic integrals. Hence we find that Hf,(X*; H) is represented
by the space of harmonic forms. Then, by decomposing harmonic forms
to their (p, g)-components, we obtain a Hodge structure on H &) (X*; H).
The last part of the reasoning is almost identical with the classical one (e.g.
that in [W]).

Here we call reader’s attention to an advantage in using the metric of
the form (0.4.1); the metric is complete, and hence we do not need to worry
about the contribution from the boundary in performing the integration by
parts. This fact diminishes the trouble considerably in handling harmonic
integrals.

§0.6. Thus the problem is to show that H*X; "H) is isomorphic to
Ht(X*; H). This problem can be localized as follows:

Let us define the sheaf .L*(H) on X as the sheaf associated with the pre-
sheaf:



THE POINCARE LEMMA FOR HODGE STRUCTURE 347

XDU—{uelh(X*NU; H); ducs L (X*NU; H)} .
Then _L°(H) is a complex of sheaves, and we have
H(X*; H) = HHI(X; L°(H))) .

Here we note another advantage in using the particular Kihler metric o; .L°(H)
turns out to be a complex of soft sheaves, and hence

HNI(X; L°(H))) = HYX; L'(H)) .

Thus we reduce the problem to proving that _L°(H) is quasi-isomorphic
to "H; this is a local problem.

§0.7. In order to prove that _L°(H) is quasi-isomorphic to “H, we need to
know, of course, the behavior of the Hermitian metric on the bundle H; given
by the polarization. It is described in terms of the monodromy of H, around
X\X*.

80.8. Now that the problem is reduced to a local problem, we may assume
X=4" and X*=4%", where 4CC is the open unit disc and 4*¥=4\{0}, the
punctured disc. Moreover, by the hypothesis of the induction, we may as-
sume that _L°(H)="H holds on X\ {0}.

Let us now write X\ {0} == {¢; 0<r} X L, where L is a “link” and ¢ denotes
the radial coordinate. Then H'(X; _L°(#)) is isomorphic to the L2-cohomol-
ogy group H ) (X\{0}; H).

Now, H¥X\{0}; L (H)) is isomorphic to Hf,y(L; H), which is repre-
sented by the space 4* of harmonic k-forms on L. On the other hand, we
can show that Hy)(X\{0}; H) is isomorphic io the cohomology group of
square-integrable /zz@//e-valued forms on the 7-space with respect to the norm

S \e5h()\Rd ) .

Here K is an endomorphism of 4. (See §5.8.) Then, by the characteristic
property of the intersection cohomology groups, it suffices to verify

V2 for k<n

HEy(X\{0}; H)=
@N\A0}; #) {0, for k=n.

The proof of this fact can be reduced to the estimation of the eigenvalues of
K. The required estimation follows from the purity theorem (Theorem 4.0.1),
as we are going to explain below.
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§0.9. By [S], any variation of Hodge structure is locally described by a nil-
potent orbit. A nilpotent orbit of weight w is, by definition, (H; F; Ny, --=, N;;.5),
where {N;} is a set of commuting nilpotent endomorphisms of a vector space
H and z,~ W21,z AN, F gives a polarized Hodge structure of weight w
for 0<|z|, :*+, |z;] €1 (See Definition 1.2.3.) Then this gives a variation Hg
of polarized Hodge structure on 4** U, where U is a neighborhood of the
origin.

Now let "H be the minimal extension of Hg. Then its cohomology group
HY"Hg), can be calculated as the cohomology group of the partial Koszul
complex

TNy, +=v, N): H—> @ Im N; — @ Tm N;N, = -+

(See §3.)

Since II(NV,, ---, N,) can be regarded as a complex of mixed Hodge struc-
tures, the purity theorem (Theorem 4.0.1) asserts that the weight of H*II(V,,
<o, N))) is <k-+w. Then the required bound on the eigenvalues of K follows
from this fact. (See §5.13.)

§0.10. Theorem 0.3.1 was announced in [K-K, 1]. E. Cattani, A. Kaplan
and W. Scimid obtained similar results independently. ([C-K-S, 2])

An algebro-geometric construction of the Hodge filtration on H*(X;"H)
is announced in [K-K, 2]. Its details will be published in a forthcoming paper.

§0.11. As a by-product of Theorem 0.3.1, we obtain the following hard Lef-
schetz theorem (§6.3):

Theorem 0.11.1. Let w, be a Kéihler form on X and denote by [w,] its sec~
ond cohomology class. Then

(@] AY: H* XX "H) — H**(X; "H)

is an isomorphism (of Hodge structures). Here n=dim X.

§1. Preliminaries

In order to fix the notations, let us review basic notions and resuits con-
cerning a variation of polarized Hodge structure. Except for some minor
modifications, we mainly follow the notations used by Deligne [D], Schmid
[S] and Cattani-Kapian [C-K, 1], [C-K, 2].
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§81.1. Polarized Hedge Structures
Let us first recall the following

Definition 1.1.1. Let a be an Abelian category. A finite decreasing filtra-
tion F of an object M of a is, byde finition, a decreasing sequence {F?} of sub-
objects of A such that F=M for p&K0 and that 72=0 for p>0. Its gradua-
tion Gr} is, by definition, F#/F?*!,

Remark 1.1.2. (i) By setiing F,=F"?, we find an increasing filtration.
We use the convention that, if the index p is a subscript (resp., superscript),
then F, (resp., F?) is an increasing (resp., a decreasing) filtration. This con-
vention also applies to Gr¥ and Gr}.

(ii) If there is no fear of confusion, we usually omit the adjective “finite”.

For a filtration F, let F(/) be the filtration given by F,({)=F,4,.

Definition 1.1.3. A pair {F,, F,} of fltrations of M is called w-opposed
if either one of the following two conditions is satisfied:

(1.1.1) FIPF{s M  for ptg=w+1.
(1.1.2) @ (FINFY™3 M.
ptg=w

For a C-vector space V, we denote by ¥ ihe complex conjugate of V.
Let ~: V—V be the R-isomorphism such that ax=ax% for acC, x&¥. For
FE€Homg(V,, V,), we denote by f&Homg(V,, V) its complex conjugate.

Definition 1.1.4. For w ia Z, a Hodge siructure  of weight w consists,
by definition, of data (H,, F(H), F(H)), where Hy is a finite-dimensional C-
vector space, F(H) and F(H) are w-opposed filtrarions of H.

For a Hodge structure H, its complex conjugate H is naturaily defined by
Hy—=H,, F(H)=F(H) and F(H)=F(H).

Remark 1.1.5. Set H*9(H)=F*(H) N F*(H) for p-+g=w. Then we find

@ Hr(H)~ Hy.

brg=w
Furthermore H?9(H)=H**(d) holds.
Deiinition 1.1.6. The Weil operator C=C(H) is, by definition, the auto-
morphism of H given by
(1.1.3) C’H":“(Hc) = 77,



350 Masakt KASHIWARA AND TAXAHIRO KAWAIL

Remark 1.1.7. 1t is clear that C(H)=C(H) holds.

Definition 1.1.8. A polarization of a Hodge structure H is a bilinear homo-
morphism S: H,Q H,—C satisfying
( (1) SEXH), F(H))=S(F*(H), F'(H))=0 for p+q>w,
( (i) S(C(H)x,y) is a positive definite Hermitian form on H.

We then immediately find the following

Proposition 1.1.9. (i) S(x, 7)=(—1)"S(y, x) for x, yE Hy.
(i) S(C(H)x, C(H)y)=S(x,y) for x,yEHy.
(i) He= Q WHM(H) is an orthogonal decomposiiion.
iv) IfS ij; :z polarization of H, then §: H,Q Ho—C, given by, S(x, y)=S(X, 7)
=(—1)"S(y, x), is a polarization jor H.

Remark 1.1.10. (i) If H=H, then these definitions coincides with the
usual one (e.g. [D] with 4A=ZR).
(i) If H is a Hodge structure of weight w, then H'=H@ H is a Hodge struc-
ture of weight w with H'=H'. Therefore we can apply the results of [S],
[C-K, 2], [K], etc. in this setting.

Definition 1.1.11. Let W, F, F be three filtrations of H,. We say that
(W, F, F) is a mixed Hodge structure of weight w if (F(Gr}), F(Gr})) is (w-+k)-
opposed for any k. If w=0, we simply call it a mixed Hodge structure.

As proved in [D], mixed Hodge structures form an Abelian category and
W,, Gri, Grs, Grk, etc. are exact functors from the category of mixed Hodge

structures.

Definition 1.1.12. A mixed Hodge structure is said to be split if
(1.1.4) H = @ F/H) N F() N Wi f(H)
holds.

Remark 1.1.13. The condition (1.1.4) is equivalent to saying that {F(H),
F(H), W(H)} is distributive. (See [K].)

Definition 1.1.14. For a mixed Hodge structure H, we define H(k,, k,)
by H(ky, k;) = He, Wi(H(ky, ky)) = Wk+k1+kg(H), F?(H(k)) = FMk‘(H) and
F?(H(k,, k;))=F***(H). We denote H(n, n) by H(n).
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§1.2. The Monodromy Weight Filtraticns and Nilpotent Orbits

In later sections we encounter nilpotent endomorphisms defined through
monodromy transformations, and they are the starting of our reasoning. 5o
let us prepare some formalities related o nilpotent endomorphisms.

Let M be an object of an Abelian category and N a nilpotent endomor-
phism of M. Then there exists a unique filtration W of N which satisfies the
following conditions (See e.g. [D].)

(1.2.1) NW,CW,_,
(1.2.2) N*: Gr¥ — Gr”, is an isomorphism for k=1 .

This filtration is called the N-filtration or the weight filtration of N and de-
noted by W(N). This filtration is given inductively by the foliowing formula:

(1.2.3) W,_(N) = (ND'W_,_(N) and
W_yN) = N*W,N) for k=1.

For an integer k=0, we denote by P,(N) the kernel of N**:Grf®™—
Gr”®™),. Then we have

(1.2.4) Gri ™ = P(N)P NGt} S
= @ Prgi(N) -
=0

We have also

Ker N#*1

1.2.5 PN) = :
(125 i )(-Ker N*Tm N N Ker NF*

In order to introduce the notion of a nilpotent orbit (Definition 1.2.3
below), let us prepare some notations.

Let w be an integer, H a C-vector space, and /” a non-negative integer
such that dim H=3>h?. Let S be a non-degenerate bilinear form HQH—C
such that S(x, 5)=(—1)"S(y, X). We then denote by D the flag manifold
{F; F is a filtration of H such that dim Grb=Ah?}. For FED, we set F?—
(F**1=by-.  Here, for a subspace V of H, V*={x&H; S(x, V)=0} =
{xeH; S(V, x)=0}. Let D denote {FEJ_V); (F, F) is 2 Hodge structure of
weight w and S gives its polarization}. Set G=Gi{H) and Gp=U(S)=
{g=G; S(gx, g9)=S(x, )}, and let g and g denote their Lic algebras. Then
D and D are homogeneous spaces of Gy and G, respectively (if they are not
empty). For FED, T,D=g/F*g), where F¥g)={acg; aF*CF*** for any
k}. We define the subbundle T,(D) of TD by Ty(D)r=Fg)/F’g). A
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holomorphic map f: X —D from a complex manifold X to D is called horizon-
tal if d(TX)C T,(D).

We know that (e.g. [G-S], [K]) there exists a real analytic function ¢ on
D which satisfies the following conditions:

(i) For any e R, {x&D; d(x)<a} is compact:

(i) For any horizontal holomorphic map f: X—D, 0of is pluri-sub-

harmonic.
The following lemma is due to Cattani-Kaplan [C-K, 2].

Lemma 1.2.1. Let a be o subalgebra of Gz, NEa and F eD. Suppose
that AW (N)C W,_,(N) for any A<a, and that (W(N), F, F) is a mixed Hodge
structure of weight w. Then there exists AEgg such that

(1.2.6) (W(N), e4F, e"'4F) is split,
(1.27) [4, o] =0,
(1.2.8) AW(N)C Wy_o(N).

The main part of the following proposition is also due to Cattani-Kaplan
[C-K, 2].

Propesition 1.2.2. ZLet a be an Abelian subalgebra of Qg consisting of nil-
potent elements, C @ connected open cone of a and F eD.

Assume that
(1.2.9) NFCF*' for Nea.

Then the following conditions are equivalent:
(i) There exists Ny a such that
é"FeD for Ne&C+N,
(ii) There exists Ny&a such that
e"FeD for N&Ch(C)+N,,
where Ch(C) denotes the convex hull of C.
(iii) The N-filtration W(N) does not depend on N in C, and the following two
conditions are satisfied for any N in C.
(iiia) (F,F, W(N)) is a mixed Hodge structure of weight w.
(iiib) The bilinear form S(Grf™): Grf'MQGrf™ —C given by
S(x, N*y) endows the Hodge structure on Py(N) with a polariza-
tion for k=0.
(iv) We have (iii) except that we require (iii b) for some N in C.

Proof. (i)=>(iii) is due to Schmid [S] and Cattani-Kaplan [C-K, 2].
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(iil) < (iv) follows from the following two facts:

(1.2.9) if W() is independent of N and the condition (iii a) is satisfied,
then S(Gry ™) gives a non-degenerate Hermitian form on P().

(1.2.10) Any member of a continuous and connected family of non-degenerate
Hermitian forms is positive-definite if some member is positive-
definite.

Thus the proof of the proposition is completed if we show (iii)=>(ii). Let
us now begin its proof. Set W=W(N). By the preceding lemma, there exists
AE gy which satisfies the following conditions:

(1.2.11) AW, CWy_y,
(1.2.12) If we set Fy=e'4F and Fy=e *4F, then (W, F,, Fy) is split.
Then by [C-K, 2]

éVF,eD for NeC.
The map /: ag—D given by N—e¥F is horizontal. Therefore /(D) is a
holomorphically coavex. Moreover f~Y(D)-+ia=f"YD) holds, because D is
invariant under the action of Gp. Therefore we can apply the celebrated
theorem of Bochner: a connected pseudo-convex tube domain is convex. Thus

any connected component of f~YD) is convex.
Mow, let ¥ be an element of gz which satisfies

(1.2.13) YIanan Woigew —2Td—W-
Then we find

(1.2.14) YW, W,

(1.2.15) YIGr,, =k-id,
(1.2.16) [¥Y, N]= —2N for Nea,
(1.2.17) YF{CF}.

We also note

(1.2.18) éVFeDeYdVFeD.
On the other hand, a simple calculation shows
(1.2.19) HENF = oft IN-iANAR,

Writing A=214; with [Y, 4;]=j4;, we deduce
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(1.2.20) A; =0 for j=0

from AW,C W,_,. Hence we obtain

(1.2.21) Ad(tN)4 = % tA; .

Therefore Ad(t¥)A4 tends to 0 as ¢ tends to oo. Since ¢/’ F,& D, for any com-
pact subset K of C there exists a constant a,>0 such that

(1.2.22) eé"FeD if t7?NeK and t=a.

This shows that f~Y(D)D {t; t=a%}-K. In particular, f~Y(D)D {tNy; t=1}
for some N,&C. Let C' be the connected component of f~'(D) N agp which
contains {tN,; t=1}. Let us now prove

(1.2.23) C'DC+N,.

For Ne&C, take a connected compact subset K of C which contains both N
and N, Then

(1.2.24) C'DtK for t=dk.

Hence C’ contains
1 1
——(tN+1tNy) = N+Ny— ——(N+N,
t—%—1(+°) +ot+1(+o)
for t=a%. This means that the closure C’' of C’ contains N--N, Since
C'=IntC’, we obtain (1.2.23). This completes the proof of Proposition 1.2.2.
Now we introduce the following

Definition 1.2.3. If one of the equivalent conditions in Proposition 1.2.2
is satisfies, we say that (F, F; C) forms a nilpotent orbit of weight w. For a
finite set 7 of mutually commuting nilpotent elements of g5, we say that (F, F; I)
forms a nilpotent orbit if (F, F; C(I)) forms a nilpotent orbit, where

(1.2.25) CU) = {3 tal; 135>0} .

§1.3. Variation of polarized Heodge Structure

Let X be a complex manifold and X the complex conjugate of X. A
variation of Hodge structure of weight w on X is, by definition, a triplet
(Hg, F, F) of a locally constant Cy-module H, of finite rank and a finite
filtration F(H) (resp., F(H)) of OX(H)=OX§HC (resp., @;?(H)z@y;@HC)
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by vector subbundles which satisfy the following conditions:

(1.3.1) At each point x in X, H(x)=(Hc¢,,, F(H)(x), F(H)(x)) is a Hodge
structure of weight w.

(1.3.2) For any holomorphic vector field v, oF?(H)C F?~Y(H) and oF*(H)C
F?~Y(H) hold.

A variation of Hodge structure is said to be polarized, if a bilinear homomor-
phism S: Ho® H,—C} is given so that S, polarizes H(x) at each point x in X.

§2. Vanishing Cycle Theorem

§2.0. Let X* be a punctured disc and let / be a variation of Hodge structure
of weight w with a unipotent monodromy. Let ¢ be the near-by cycle. Then
Schmid’s theorem says that i carries a mixed Hodge structure, called the
limit mixed Hodge structure in literature. On the other hand, the vanishing
cycle ¢ in this setting is Im N and can: y—>¢ is given by N and var: g—1 is
given by the inclusion map. (cf. [D]) The purpose of this section is to prove
that the vanishing cycle also carries a mixed Hodge structure. (Theorem
2.1.5 below.)

8§2.1. Let N be a nilpotent endomorphism of an object M of an Abelian cate-
gory. Set My=ImN, N,=N |, EEnd(M,). Then we have the following
proposition.

Proposition 2.1.1. () W(N)=NW, . .(N)=M,NW,_(N).
(i) M—>My—>M induces a surjective morphism Grp’—Gr} ™o and an
injective morphism Grj YO—GrfY so that
Gy for k=0
Gry ™ e=Im (N: Gri{{> — Grf/\{) =~ { 1St
Gy for k=0.
(i) PyN) = ProyN) for k=0
Since the proof of this proposition is elementary, we leave it to the reader.

Let w be an integer. Let H be a finite dimensional C-vector space and
S a noa degenerate bilinear form HQH—C such that S(x, y)=(—1)"S(y, %).
Let N be a nilpotent element of 1(S; H), the Lie algebra of U(S)={g= GL(H);
S(gx, g)=S(x, y)}. Let H, (resp., Ny) dencte Im N (resp., N |1,, ) and define
a bilinear form Sy, : H,Q Hy—C as follows:

(2.1.1) Su,(Nx, Ny) = S(x, Ny) = —S(Nx, ) for x,yEH.
def
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It is clear that Sy, is a well-defined bilinear form on H,QH, Let us list up
some elementary properties of H, and Sy,

Lemma 2.1.2. (i) Sg(x, »)=(—1)"*'Sy(», X) holds for x, yE H,.

(i) Sg, is non-degenerate.

(i) If [4, N]=2kN and A is in w(S; H), then (4 —k)|y, belongs to
u(So; Ho)- _

(iv) N: Grf® —Grf ™o is isometric for k=0, that is, S(x, N*p) =
Sy (Nx, N¥(Ny)) holds for x, yE W4 (N).

The proof of this lemma is again a straightforward one, and it is omitted
here.
The following proposition is an immediate consequence of Lemma 2.1.2,

@iv).

Prepositien 2.1.3. If (S; F, F; N) forms a nilpotent orbit of weight w,
(Sw,; NF, NF; Hy; No) forms a nilpotent orbit of weight w+1.

Remark 2.1.4. The coincidence of NF? with F?~'N H, follows from the
fact that any morphism of mixed Hodge structure is strict with respect to the
Hodge filtration.

We are now ready to state the vanishing cycle theorem:

Theorem 2.1.5. (Vamishng Cycle Theorem) Suppose that {S; F, F;
Ny, ==+, N;} forms a nilpotent orbit of weight w. Set Hy=Im N, and let Sg,:
H,QH,—C be given by Sa,(Nyx, Ny)=S(x, N;y). Then we have

(i) {Su;; NiF, N\F; Nylg,, >, Nyl forms a nilpotent orbit of weight
(w-1).

(ii) Wk(N1al ) Nlllil):Nka+l(N1’ o0y N)=H N\ Wy (NVy, -+, N)).

Before starting the proof of this theorem, we state and prove the following
corollary.

Corollary 2.1.6. Suppose that {F, F; N, ---, N} forms a nilpotent orbit
of weight w, and set W= W(N,, ---, N|). Then, for any N{, N{, -, N, &
C(Ny, ===, N}), we have the following:

(i) N{---N}: Gy —Gr?, is an isomorphism for k=1.

(i) S(Cx, Ni---N}x) is a positive definite Hermitian form on Ker (N§---N4:
Gl —Gr¥,_),).

Proof. We prove (i) by the induction on k. If k=1, this is evident.
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Assume k=2. Set Hy=ImN{ and W =W(N|g, =, N;|g)) = V(1] g,)-
Then we have the following commutative diagram:
NYeoo N7 N
Gy —="Gr% —> 6%,
@12 3 & 21
ws w’ w’
Gl'k_l NénoNéGrl—k N(’) Gr_l_k .

The left bottom arrow being an isomorphim by these induction hypothesis,
the left upper arrow is also an isomorphism. The claim (ii) is also an im-
mediate consequence of the diagram (2.1.2).

In connection with this corollary we propose the following

Conjecture 2.1.7. Le: {F, F; N, -<, N;} be a nilpotent orbit of weighi w
and let k be a positive integer. Let f(x;, <=+, X;) be a homogeneous polynomial of
degree k. Suppose that f~X0)NR,Y={0}. Then f(N,, -+, N}): Grf PV —
GrPNe V) s an jsomorphism.

The corollary says that this conjecture is true if ;" is a product of real
linear functions.

Now we start the proof of the vanishing cycle theorem by proving it in
the following special case.

Lemma 2.1.8. Suppose that {F, F; N, N'} forms a nilpotent orbii of weight
w.  Suppose further that {F, F; W(N, NV} is split. Denoie Im N by H,. Then
we find:

(i) There exists a strictly positive number ¢ such thai {NF; N|g,
(N+4-cN")| g } forms a nilpotent orbit of weight w-1.

() Wu(N+cN) | g) =NWy(N, N')=H,N\ W,_«(N, N') holds for any
sufficiently small number ¢>0.

Proof. (i) Since (F, W{(N, N')) is split, the assumption implies that
(¢!N'F; N) forms a nilpotent orbit of weight w. Hence it follows from Pro-
position 2.1.3 that (¢!’ NF; N,) forms a nilpotent orbit of weight w+1. There-
fore Proposition 1.2.2 implies that

(2.1.3) EN'FHINNF & D

holds for r>c¢ 7!, where ¢ is a positive constant. Now, let us choose Y in
w(S: H) cuch that [Y, N]=—2N, [V, V']=—2N'" and YF?CF? hold. Then
Y+1| g, €1(Sy,; Ho). Then, for any strictly positive number a, (2.1.3) im-
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plies
(2.1.49) QY FliN HIN NE — Gia 2N +its 2N NE =D |
This means that (NF; N |z, (N+cN')| z,) forms a nilpotent orbit.

(ii) This follows from (i) and the following result of Cattani-Kaplan
[C-K, 2].

Propesition 2.1.9. Let N be a nilpotent endomorphism of H and let F, F,
W be three filtrations of H. Assume the following conditions:

(2.1.5) (W, F, F) is a split mixed Hodge structure of weight w.
(2.1.6) (W(N), F, F) is a mixed Hodge structure of weight w.
(2.1.7) NF*CF*™', NFCF'™', NW,CW,_,.

Then W=W(N).

Remark 2.1.10. Cattani-Kaplan [C-K, 2] added another condition which
is superfluous; their proof works well without it.

Let us now embark on the proof of Theorem 2.1.5.
Set W=W(N,, -*, N;). By Lemma 1.2.1, we can choose 4 in u(S; H) so
that it satisfies the following;

(2.1.8) AW, C Wiy,
2.1.9) [4,N]=0 (j=1-1),
(2.1.10) (W; ¢4F, e=i4F)  is split.

If we can prove Theorem 2.1.5 for (W; ¢'4F, e"'AF), then the theorem holds
for (W; F, F). Hence we may assume from the first that (W; F, F) is split.
We may further assume /=2. In fact, if the theorem holds for /=2, then,
for N in C(N,, «++, N}), {N\F; N,|y,, N | z,} forms a nilpotent orbit.

Now, we prove the theorem by the induction on dim H.

Define the set 4 by

{t>0; {N,\F; N,|u;, (N;+1tNy) |z} forms a nilpotent orbit}.

The preceding lemma guarantees that 4 is not void. The theorem is equivalent
to A={t;t>0}. Suppose A4=F{t; t>0}. Then A4=(0,c] for some ¢>0.
Let N, denote N,+cN,. If we can prove

(2.1.11) WiNol &) = NiWiiy

holds for every k, then Proposition 1.2.2 tells us that c¢+e (0<<e<K1) belongs
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to 4. This is a contradiction. Thus the proof of the theorem is reduced
to the proof of (2.1.11). In order to prove (2.1.11), it suffices to prove that

(2.1.12) NE: Gl — GeMy

—k+1
is an isomorphism for each k=1.
Let us now define a filtration {W(k)} of H,=Im N’ by the following:
(2.1.13) Wwik) = Nt Wiy, Ny) = HyN W (N;, Ny)

The last identity follows from the fact that N* is a morphism of mixed Hodge
structure, which is strict with respect to the weight filtration. Note that

(2.1.14 W(k) = W(N|g,) for any Ne&C(W,. Ny)

holds by the hypothesis of the induction.
In order to prove (2.1.12), let us consider the following statement A(j, g, k):

(2.1.15) A, a, k): N§N": Gr/® — Gr”%,  is bijective,
where N'=N,+eN, (0<eL]1).
Let us fix e(>0) sufficiently small so that A(j, 2,0) may hold. Since
W(k)=W(N'|,) for any k, A(0, a, k) is also true.
Next let us prove

(2.1.16) A(j+1,a, k+D+AG+1, e, k—D)+A4(j—1, a+1, k) = A, & k)
for j, k=1 and a=0.

Once this implication is proved, the induction proceeds and we obtain A(j, a, k)
for every j, a, k=0, in particular, 4(j, 0, 1). This is what we wanted to prove.

Now, let us return to the proof of (2.1.16). In what follows, C denotes
the Weil operator, as usual. Take N arbitrarily from C(N,;, Ny). By the
induction on dimH, we can employ the result in Corollary 2.1.5. Therefore

we have
raNj

(2117) G’I‘ZVJSI}) —‘:> Grﬂf,ﬁ’i),

and

(2.1.18)

B 7@ pji+l
Su,(Cx, N“N’x) is positive definite in x & Ker(G,4) ~ Grl7{8. ).
USNFES!

. 0 . . .
If we assume A(j+2, @, k), then Gr/® —— Gr”¥, _, is surjective. Hence
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ra i+l
Ker (Gr/® —— Gr”{®;_;) varies continuously on a neighborhood of

N=N, Hence by letting N tend to the boundary point N,, we find the fol-
lowing:

(2.1.19) If A(j+2, a, k) is true, then SHk(Cx N"°Nix) is positive

j+1
. . 0
semi-definite on K% ; = Ker(Grl® —— Gr¥®;_,).
def

Furthermore it follows from A(j+2, a, k) that

(2.1.20) If xEK? ; satisfies Sy, (Cx, N°N{x)=0, then N"°N{x=0.
To see this, let us first note by (2.1.19)

(2.1.21) Sz (CK% ;, N"Nix) =0.

Since Grf® =N,Grl &, +K} ; and Sy (NGri&.2 N“NiK% ;)=0, we have
Sy (Gr7®, NNix)=0. Since Sy, gives a perfect pairing between Grl ¥
and Gr”¥®,. We find N"*N{x=0.

Now let us show that, for k, j=1,
(2.1.22) NiN“: Gr7® — Gr”®, is injective under A(j+1, a, k+1),

A(G+1, a, k—1) and A(j—1,a+1,k).

Suppose NiN'“x=0 holds for x in Gr7<¥. Let us consider the follow-

ing diagrams:

k—1 W(k ’3 W(k~1
Grﬂ-éj-l—l) '__" Grﬂ-éj) — Grﬂ—lfj )

a
l N{)N’a J’ NJNIII
~
Grv_"ék_),- —_— va._Vgli191

and

r

Grl® —» Grrd

N,NiN" l l NiN'*
~

G’T.P_V,slf_)j_z — Gr'f,ﬁ’”,l_) .

Then A(j41, a, k—1) implies
Sy (CAG), N{T'N"B(x))=0,
and A(j+1, a, k+1) implies
0= Sy,, (Cr(x), Ni"N"r(x)) = Sy, (Cx, NiIN“Nyx) .
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Now take y=Gry %37 such that x=a(y). Then g(x)=N,y implies

SHk—l(CIB(x)’ N{l—‘lN,aﬂ(x)) = SHk_l(Cles ]\T'g_lNlale)
= — 5y, (Cy, N5N"NTy)
and
Su(Cx, N§T'N"*Nyx) = Sy, (Cy, N{7'N“Niy),
Therefore we find
Sty (CA(), N§T'N“B(x)) = C.
Hence (2.1.20) implies Nj"'N'"*B(x)=0. Then we obtain N{'N"’x=0. There-
fore A(j—1, a+1, k) entails x=0. This finishes the proof of (2.1.22). Since
dim Gr/® =dim Gr”{?,, this means that N{N'* is an isomorphism, that is,
A(j, ¢, k) is verified. Thus we have completed the prool of Theorem 2.1.5.

§83. The Minimal Extension amd the Partial Koszul Complex

§3.0. To understand the meaning of the purity theorem in the subsequent
section, we prepare an algebraic result which gives a concrete description of
the minimal extension " of a local system H.

83.1. Let X be a complex manifold. We denote by 9Dy the sheaf of linear
differential operators on X. TLet ¥ be a closed analytic subset of X and let
X*be X\Y and j: X*<X the open embedding. Let ¥ be a regular holono-
mic PDy~-module. We assume that Y extends to a coherent 9y -module.
This assumption is equivalent to saying that ji H*(DR (M) is constructible
for any k. Here DR=R Ao (O, ). Then there exists a regular holonomic
9 y-module “H such that

(3.1.1) "My = M
(3.1.2) "M does not have either non-zero coherent quotient or nomn-zero

coherent submodule with support in Y.

Such a 9y-module " is unique up to an isomorphism. We call it the mini-
mal extension of 4.

§3.2. Let f: X'—X be a finite morphism of complex manifolds. Set
Y =fY) and X¥ =X'\Y' =/"%¥*). For a regular holonomic Dy,
module M’ extendable to X', let "9’ be the minimal extension of i’
Set M= gf”ﬁ]/t', where f*" is X*¥—X*_ Then we have "f/%:&ﬂ?%’. This

follows from ihe following facts:
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3.2.1) 5f is a faithful exact functor from the category of coherent 9y/-
modules to that of coherent 9)y-modules.

3.2.2) Sfﬁ%* =( L My* for any holonomic 9Dy-module M, where *
means the adjoint system.

3.2.3) At Sfﬁ%') = gf (M) for any k and any coherent 9y-module
M.

§3.3. Let X be a non-singular algebraic variety defined over €. Let X be
the compactification of X, i.e., a non-singular proper algebraic variety which
contains X as a Zariski open subset and let ¢: X<»X be the open embedding.
Let X,, be the complex analytic variety associated with X. A coherent G-
module Y is called regular holonomic if Dz @¢x M is a regular holonomic
Dx,,-module. Then we have *

Hk(Xan: DRX,,,(L%M)) = Hk(XsDRX(L%{)) .

Here DR z(<H) denotes the algebraic de Rham complex and H,, is Ox,, @ M.
(¥

In fact, assuming ¢ affine, H*(X,,, DRz, ((¢x),.) S H(X,,; DRX,,,,(:%’ZM))

follows from the regularity of M and H*X,,, (((x+M).))DRz, =

HYX, DRx(tx M) follows from a result of Serre [Se]. Finally we have

HYX, DRx(¢x M))=H"(X, DRx(M)).

§3.4. Let us investigate the structure of *.% in the following special case:
Let X be an algebraic manifold C”, and let X*=C*"=(C—{0})" and

Y=X\X*= U Y;, where Y;={xeC"; x;=0}. Let H be a local system on
j=1

X* with the unipotent monodromy around Y; Then ,,=Dyz Q H

comes from a regular holonomic 9y:-module H=04RV with the structure

of 9 y+-module by
a L =

J

LNJ,-e (=1, -, n).

Xj

Here V is a finite dimensional C-vector space and {N} is a set of mutually
commuting nilpotent endomorphisms of ¥. Then we have the following

Lemma 3.4.1. * M is an Ox-submodule of j+. M given by

> 0[% Im N;.

JecI Xz
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Here I=A{1,-+,n} and xt=1]] x;, N;= [ N;. Of course, we understand
xg=1, Ny=1. = =

1
X
of j« M generated by ORV. Suppose that there is a surjective morphism
¢: Jl—_L to a coherent 9y-module supported in ¥. For any vV, we
have, for a sufficiently large m,

Proof. 1t is easy to see that Jl =EO[ ]ImN; is the 9 y-submodule

(x;9)"(1®v) =0 for j=1, ., n.

On the other hand, u = o(1Qw) satisfies (x; -+ x,)"u=0, and hence
ef

0= (al ter an)m(xl o x")ﬂlu ZISEH (‘xiai“—y)u o

1svsm

Together with (x;0,)"u=0 (j=1, ---, n), we then obtain u=0. Hence ¢ =0,
that is, .£=0. Since J] has no non-zero coherent 9),-submodule supported
in Y, this completes the proof of the lemma.

Let "H denote the minimal extension of # in the category of perverse
complexes; that is, “H is a perverse complex on X such that its restriction to
X* coincides with H and that there exists (in the category of perverse com-
plexes) neither non-zero quotient nor non-zero subobject of “H having its
support in Y. Then we have

ﬁH = DRXan(1tL%an) .
Further we have the following quasi-isomorphisms:

(ﬁH)O :—- RF(XIHZ; ﬂH)
U Ul
(341) DRXa,,(ﬂL%an)o : RF(Xan; DRXan(ﬁ‘-%/lan))
2
RI'(X; DRy(" M) = I'(X; DR(*H)) .

Here (“H), etc. denote the germ at 0 of “H etc.
Let II(N,, -++, N,) be the subcomplex of I'(X; DR x(*.#)) given by

TH(N,, -+, N,) = & (Im Ny) IT ¥ < 1 (x; 25@7H)
JcI ier x;

|Tl=t I

Remark 3.4.2. Let W be the n-dimensional vector space with the basis
{e;, -**, e,}. Then the complex K(N, ---, N,) given by
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Ky, -+, N = V@ AW

with the exterior product with >3 Ne; as the differential is called the Xoszul

complex. The complex II(N;, -+, N,) can be identified with the subcomplex

of K(Ny, ==, N,) given by >\ (Im N;)@ A e;, where e;=dx;/x;. Hence we call
Jcl jET

II(N,, -+, N,) the partial Koszul complex.
Proposition 3.4.3. II(NV, :--, N,) is quasi-isomorphic to I'(X; DRx(*H)).
Corollary 3.4.4. II(Ny, ---, N,) is quasi-isomorphic to ("H),.
Proof. The vector field x;0; operates on I'(X; DR(*.)) by the Lie
derivative L, of x;0;. For m=(my, -, m,)EZ", set

(I'(X; DRx(" M) = uET(X; DRx("M)); (Lyj0,—m)u =0
for ¢>»0,j=1, -, n} .
Then the complex I'(X; DR (")) decomposes as follows:

I(X; DRy (")) = & (X DRx("H)) -

Since we have II(N,, :--, N,) =I'(X; DRx(*H)),, it is enough to show that
I'(X; DR (" M)),, is homotopically equivalent to 0 if m==0. Since

Lejp; = dizjp;tipd
holds for the interior product i, of the vector field x;0;, L, 5, is homotopical-

ly equivalent to 0. On the other hand, (L,,;—m;)’=0 holds for ¢>0 on
I'(X; DRx(*M)),, by the definition. Hence

m3| 1 (X ; DRx(=)),,

is homotopically equivalent to 0. This proves the required result: If m;30

for some j, then I'(X; DR4(.H)),, is homotopically equivalent to 0.
The corollary is an immediate consequence of the proposition and (3.4.1).
Q.E.D.

8§4. Purity Theorem

8§4.0. Let {S; H, F, F; N,, ---, N} be a nilpotent orbit of weight w. Using
the mixed Hodge structure of H given by the weight filtration W(N,, ---, N)),
we endow the partial Koszul complex II(WV,, -, N)) (cf. §3.4) with mixed
Hodge structure as follows:
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(4.0.1) WiyIm Nj, «= Nj) = Njy =+ Ni (Wi, =+, N1))
(402) F‘D(Imle"'qu)=Nj1'°°quFP(H),
I_’P(Im le qu) = le quFﬁ(H) .

The purpose of this section is to prove the following theorem concerning the
weight of H*(II(N,, -+, N))).

Theorem 4.0.1. (Purity Theorem) The mixed Hodge structure on H*(II(N,,
««, N))) given above is of weight equal io or less than w-tk, that is,
Gr (H*IL(Ny, ++-, N,))=0 for j>w-+k.

In order to state the dual statement of the purity theorem, we introduce
the following complex II*(Ni, -+, N)):

TI*(Ny, »+=, Np)p = 'ﬁék(lm N,)eJcHQ}) /k\ z!
where e,, +++, ; is the base of Z' and erjé\J e;. The differential
IT*(Ny, +ooy N = ITF(NV,, <00y Npdpey
is given by the inner product with 'El} e;.  We endow with IT*(V,, ---, N;) the

=1

mixed Hodge structure by

WHIT*(Ny, -+, N)) = ©(Am Np) N Wio (N3, -+, N)))es
and

FHIT*(Ny, -+, Np) = ©((Im Ny) N FA(H))es

FP(H*(NI, =, N)) = ©(m NN F’(H))e.,- .

Then we have, as the dual statement of the purity theorem,

Theorem 4.0.2. The weight of H(II¥(Ny, :--, N))) is equal to or greater
than w—k.

§4.1. Before starting the proof of Theorem 4.0.1, we note the following:
@.1.1) H'IN,, =+, N)) =0, HI*WN, -, N) =0 for g=I,
(4.1.2) HYII(N,, -, N))) = Ker N,N---NKer N,,

Ker N, --- N,
1
2 KCI‘ Nl eee° Nj—'le“'l eee Nl

=1

(4.1.3) H"YII(N,, -+, N))) =

9

7
ﬂllm Ny Nj_yNjiy == N,
H,_(TI*(Ny, «--, — i=
ATy -, M) Im N, - N,
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Therefore the theorem is trivial for g=0 or /=1.
On the other hand, the purity theorem in g=/—1 implies

Corollary 4.1.1. Ker N, .-« N,CKer N; -« NN W,_; (N, ->-, N}) +
l 7
ZIKGI' Ny N;_yNjyy -+ N; and (-n1 Im Ny e N;yNjyy == N) N W_, (N, -+,
i= i=
NI)CIle““ Nl'

For 1=2, this can be restated as

4.1.4) Im N; N Ker N,C W_,(N,, N))+N(Ker N,) .

8§4.2. Let us first consider the case where the following condition is satisfied:
(4-2-1) W(N,) = W(Nb Ny, -+, N,).

This is equivalent to the existence of an open convex cone C in X RN;
such that COC(N,, -=-, N;), CD N, and that {F, F; C} forms a nilpotent orbit
(in the sense of Definition 1.2.3).

We start our reasoning by noting that the following exact sequence (4.2.2)
is obtained by regarding the diagram (4.2.3) below as a double complex that
defines II(NV,, ---, N;). Here and in what follows, H, denotes Im &,, as usual.

(4.2.2) 00— II(Ny| gy, =5 Nyl ) [=1] = Ny, o, Np) = II(Ny, ===, N) = 0.
H‘_")’Ga ImN]'_—)’ @IImNij'—)'“

i=2 i k=2 l
4.2.3) l l |
Im N, - @ Im N\N; > @' Im N,N;N, — - .
i=2 i k=2

Furthermore the assumption (4.2.1) guarantees that the exact sequence (4.2.2)
lies in the category of mixed Hodge structures. Note also that the vanishing
cycle theorem implies

(4.2.4) A{Nlu Nelw,s -=*> Nyl gy} forms a nilpotent orbit of weight w-1 with
W(NZIHp ) NI|H1) = W(Nlal ) N1|111) = W(NIIHI) .

Let us now prove the theorem by the induction on /. We obtain the following
exact sequence (4.2.5) from (4.2.2):

(425) Hk_l(H(NZIHp ) NIIHI)) - Hk(H(Nb ) NI)) - Hk(H(N27 T NI)) .

By the induction hypothesis, the left cohomology group in (4.2.5) has the weight
=w+D+(k—1)=w+k and the right one has the weight =w-k. There-
fore the middle one has also the weight <w-k. Thus the induction proceeds,
and the proof is completed if the condition (4.2.1) is satisfied.
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Next let us prove

(4.2.6) HYII(N,, -->, N})) is a quotient of
Hk(H(N1+N2’ NI+N2+N39 °% N1+"°°+Nl= Ny, ==, Nl)) for every k.

As it is clear that H¥IL(N, -+ N,, N;+ Ny-+ Ny, <ocy Ny+eoo-+ Ny, Ny, oo, N}))
satisfies the condition (4.2.1), the verification of (4.2.6) finishes the proof.
To prove (4.2.6), let us first prepare some sublemmas.

Sublemma 4.2.1. Im N, N Ker N,CIm (N,+N,) .

Proof. We prove this by the induction on the dimension of H. Let
N, denote N;+N,, and denote Im N, by H,. Then the hypothesis of the
induction implies

N{(Hy) NKer N,CNy(Hy) .

Hence N(Im N,NKer N,)CIm Nj, or Im N,NKer N,C Im Ny-+ Ker N;.  Set
W=W(N,). Then

Gr{(Im N,+Ker Ny) = Grf(Im N,)
holds for k>0. Hence it is sufficient to show that
Im NN Ker N,N Wy,CIm N, .
Let x& W, and N, x&Ker N,. We shall show Nyx&Im N,. We have
Nix = Nyy+z with yeW, and z&Kerkl,.
Setting y'=x—y, z' =—z, we have
“4.2.7). Nyx = Nyy'+2z'.

Since N;N,x=0, we have
N2N0y+NZZ =0 s

which implies NjN,y=0. Hence, by setting W' =W(N;| 1m n3)» we find
NyyeWw].

Moreover N,y mod W§ belongs to Py(Ny|limy,), the primitive part with
respect t0 Ny|mmy, Hence we obtain

Sim NZ(CNZJ’S NoN,»)=0,
that is,

(4.2.8) 0=8(Cy, NoN;y) = S(Cy, —Nyz) = S(Cy, Nyz) .
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Using (4.2.7) we can also verify
4.2.9) 0=S(Cy’, —Nz") = S(Cy’, N;2) .
Summing up (4.2.8) and (4.2.9), we find

(4.2.10) 0=<S(Cx, N;z)
= —S(CNx, z)
= —S(C(WNoy+2), 2)
= —S(CN,yy, z2)—S(Cz, 2)
= S(Cy, Nyz) — S(Cz, 2)
= —S(Cz z).

Since z is in Py(Ny). This means z&W_jCIm N, Therefore Nx=N,y+z
also belongs to Im N, Q.E.D.

Sublemma 4.2.2. Let N, and N, be mutually commuting endomorphisms
of a module M. Set Ny=N,-+N, and suppose

4.2.11) Ker N;NIm N,CIm N, .
Then
a
Ker Ny — Ker NyNIm N;NIm N, — 0

(4.2.12) l 7o l 2 l
M ——> Im N,@®Im N, - Im NN,
1 2

is a morphism of complexes and a quasi-isomorphism. Here

a(x) = Nix = —Nyx, py(x) = (Nix, Npx), Pyx,y) = Nx—N,y,

Tx) =x, 1) =, —x).

Proof. Since Biory=r,ca and B,or,;=0 are easily verified, this is a mor-
phism of complexes. Since Kera =Ker N;N KerN,=Kerg,, and g, is sur-
Jective, it is enough to show that Coker a—Ker 8,/Im p, is bijective.

(4.2.13) Injectivity: Assume that x&Ker NyNIm N, N Im N, satisfies 7,(x)=
Bi(y) for ye M. Then x=N,y=—N,y. Hence y&KerN, and
x=a(y).

(4.2.14) Surjectivity: Assume (x;, x,) € Im NyPIm N, satisfies B,(x;, x,) =
Nyx;—N;x,=0. Set x;=N;y;. Then N,;N,(y;—y,)=0, and hence the
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condition (4.2.11) entails
Ny(y,—y)eKer NyNim N,ClIm N .
Therefore there is z& M such that
Ny(p2—y) = Nz .

Setting u=~N,(y,—y,—z), we find u=N,z, and hence uIm N,NIm N,. Fur-
thermore Njyu=N,Nyzz=N,N,(3,—y,)=0. Hence we obtain

(X1, Xp) = Biz+yp—r,(0) . Q.E.D.

Now let us prove (4.2.6). First we consider the case where /=2. Then
we have the following commutative diagram, where Ny=N;+N,:

“4.2.15)

II,: KerNy—ImN, N ImN, N Kerk, 0 =0
| Y ! !

II(Ny, Ny, Ny): H—=ImN,BImN PImN,—Im NN, PIm Ny N,PImN, N, ~ImN,N, N,
! ! ! Y

(N, Ny): H— ImN,BIm N,——— Im N,N, 0

It follows from Sublemma 4.2.2 that the complex I, given in the top row
of (4.2.15) is quasi-isomorphic to the partial Koszul complex II{V;, N,).
Hence H*¥II(N,, N,)) is a direct summand of H¥TI(N,, N, N,)) for every k.

In the general situation, let II' denote II(Ni, --, N;). Then, in parallel
with (4.2.15), we find the following commutative diagram:

[}
{1’ N Ker N, — Ny(I1') | Ny(XI") \ Ker N} — TI(N,, Ny, Ny, «+-, N})

V
H(Nm le st NBa ) Nz) 5

where Ny=N,+N, and ¢ is a quasi-isomorphism. Hence FA*TI(N;, N,, «==, N,))
is a direct summand of H*(II(N;+N,, N, N, N, ---, N;)). Repeating this
procedure we finally find (4.2.6). At long last, this completes the proof of
the purity theorem.

§5. L*Cohomeology Groups and Intersection Cohomology Groups

8§5.1. Let X be a compact complex manifold, ¥ a normally crossing hyper-
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surface. We set X*=X\Y. Let H be a variation of polarized Hodge struc-
ture of weight w on X*. We assume

(5.1.1) H, is quasi-unipotent, i.e., the local monodromy of H, around any
irreducible component of Y is quasi-unipotent.

Let C(x) denote the Weil operator of the Hodge structure (Hg,,, F(x), F(x))
and define the inner product {f|g>, (f,gEH¢,,) by S,(C(x)f, g). Then the
C=-vector bundle on X* associated with the local system H is equipped with
the Hermitian metric defined by this inner product.

§5.2. To consider L2cohomology groups, let us equip X* with a Riemannian
metric g which behaves on a neighborhood of Y as follows:

Let y, be a point of Y and choose a local coordinate system (zj, *-*, z,)
such that Y is defined by z,---z,=0 in a neighborhood of y,. Then

(5.2.1) g~ N —1dzidz; 3V —1dz;dz; .

7= (17;[loglz, | 5>
Here, and in what follows the symbol ~ means that each of the two metrics
is bounded by a constant mulitiple of the other on a neighborhood of the point
in question. One can easily show (ef. [Z], §3) that such a metric exists. Fur-
thermore, as shown in [Z], Proposition 3.4, it enjoys the following properties.

(5.2.2) It is complete and the volume of X* is finite.
(5.2.3) The supremum of any C=-form on X is finite with respect to the metric.

§5.3. As we have thus introduced a Riemannian metric on X* and a Her-
mitian metric on Hg, we are now ready to define the L2:-cohomology groups.
In order to give their precise definitions, let us prepare some notations.
Let 942 denote the sheaf of distribution-valued p-forms, and let Dé% . (H)
denote the sheaf 9Dé5.@H,. Then, by the de Rham theorem Dbx«(H) is a

c
complex quasi-isomorphic to H.
Now we introduce the sheaf _L?(H) by the following

Definition 5.3.1. For any open subset U of X, I'(U; L?(H)) is, by defini-
tion, the totality of u in I'(U\ Y, 94?*(H)) such that, for any compact set K of U,
both u and its exterior derivative du are square-integrable on K N X* with
respect to the Riemannian metric g on X* and the Hermitian metric on the vector
bundle H.
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The sheaf _L?(H) thus defined does not depend on the choice of the Rie-
mannian metric g on X*, provided that g satisfies the condition (5.2.1). It
is also clear that .L°(H) forms a subcomplex of j49Déy(H), where j denotes
the inclusion map X*<X.

Furthermore we have the following

Lemma 5.3.2. -L?(H) is a soft sheaf.

In fact, for ue I'(U; L2(H)) and o = C7(U), both gu and d(pu)=edu-deu
are square-integrable because ¢ and dg have finite norms. Therefore L?(H)
is a fine sheaf and hence soft. (See [G].)

If we denote by Llxy(X*; Hg) the set of Hg-valued L?-p-forms on X%,
then we find

I'(X; L*(H)) = {u€ Lin(X*; He); dus L (X*; He)}.
Hence Lemma 5.3.2 entails

Ker (d: T(X; _LY(H)—T(X; L (H)))

Im (d: I'(X: L2 H)—I'(X: L2(H)))

_ {ue Ltpy(X*; He); du = O}

 {du; us Lz (X*; Hg) such that du& Liy(X*; Hp)}

HY(X; L(H)) =

We call this the p-th L2-cohomology group. We sometimes use the abbrevi-
ated notation H{y(X*; H) to denote H?(X; L°(H)).

§5.4. We can now state the main result of this article:

Theerem 5.4.1. The complex L°(H) is quasi-isomorphic to "Hg, the mini-
mal extension of Hg introduced in §3.4. In particular, the L*-cohomology group
HYX; L°(H)) coincides with the intersection cohomology group H*(X; “Hyg).

§5.5. For any point xE X, there exists an open neighborhood U of x and a
family of holomorphic functions {f;};c, defined on U such that {df;(x)};er
is linearly independent and YNU=U{x€U;f;(x)=0}. For /=0, we
el
define X, so that ’
xNU=U N0

JcI jer

[Tl=1
and we set

X =X\X4:-
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Then X7 is an /-codimensional submanifold of X and X=|| X¥ is a Whitney
stratification of X. :
Now, by a classical theorem, we know

(5.5.1) Hg — L°(H)| 5+ is a quasi-isomorphism.

Therefore we can use the following characterization of “Hg to prove Theo-
rem 5.4.1.

Lemma 5.5.1. "Hg is a complex of sheaves on X which satisfies the following

conditions:

(5.5.2) "Hg| x+ is quasi-isomorphic to Hg .

(5.5.3) If we denote by j, the embedding X\X;—X\X,4,, then
H'(CH) | xx =0  for vziz=1

and
cﬂv(Rj,*(ﬂHc]x\x,))lx’f oud <31'["(1?1'0)'):}‘ for v=I-1.

See Goresky-MacPherson [GM] for the proof of Lemma 5.5.1.

In view of Lemma 5.5.1, the proof of Theorem 5.4.1 is reduced to verify-
ing the following for /=1.

(5.5.4) For xeXi, H(L°(H),=0 for v=I.
(5.5.5) For x&X}¥, we have
(L), = lim HY(U\X;; L°(H))  for v=I-1,
/4=

where U ranges over a neighborhood system of x.

We shall proceed by the induction on /, and we may assume from the
beginning
(5.5.6) JG(H)lx\x, = ﬁHcIX\x, .

In the rest of this section, we prove (5.5.4) and (5.5.5) under the assump-
tion (5.5.6).

Since the question is local, we consider the problem locally on X so that
we may assume X,,,=#. Thus on a neighborhood of x, we may assume
(5.5.7) X =4"x4",

(5.5.8) X* = 4 g7,
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where 4={z; | z| <1} is the unit disc and 4* is the punctured disc 4\ {0}.
§5.6. Let us begin our discussion by showing the following

Lemma 5.6.1. Let M be a Riemannian manifold equipped with a metric
g0 Let I be an open interval {t€R; —1<t<1}. Suppose that IX M is equip-
ped with a Riemannian metric g. Let H be a local system on M and let p be the
projection IXM—>M. Suppose that the C=-vector bundle associated with p™*H
is equipped with a Hermitian metric ||%||¢,,. Suppose

(5.6.1) g~di’t+g,.

Suppose also that

(5.6.2) e, ~ 1[0, -

Then we have

(5.6.3) Hby(M; H) == Hipy(IXM; p™'H) .

Proof. We may assume without loss of generality that g=dt*+g, and
[#l¢:, o =Il*llco,n- Since an I*form (resp., closed I*form) on M can be
trivially extended as an L%-form (resp., closed L2-form) on 7 X M, we can define
a map

i H?g)(M, H) - Hfz)(IXM, p-lH) .
It is easy to verify that i is injective. IL.et us show that i is surjective. Let
i(t, x) =u(t, x)+dto(t, x) be a closed form on IxM, where u and » are free
def

from dt. Since u is supposed to be closed, we find

ou
5.6.4 U _ gy,
(5:64) or

Let us take a C™-function ¢(7) with compact support in 7 such that ggo(t)dt =I.
t

Set ¥ (t)= S o(s)ds. Then v{(#)=0 for t<<—1+4e and 1 for ¢>1—e.
Now we set

W(t) = g’ﬁ W($)o(s)ds — g:’ (1 —y(s))o(s)ds .
Then (5.6.4) implies

aw) = _ ws)""gf)

R du(s)
ds §t (1—s)s %% D

— o0 — [ pouts)ds+(1—p )
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+ | (—putsHds
— u(t)— | p(oyuts)ds

and
230(1) = PR+ —Oet) = ().
This implies
7 = dw+ | gloyuls)ds.

Since Sqn(s)u(s)ds is square-integrable, w and dw are also square-integrable.

Hence i is cohomologous to Stp(s)u(s)ds. Thus, the map i is surjective. Q.E.D.

§5.7. Before going further, we show that it suffices to prove Theorem 5.4.1
in the case where the local monodromies of H, are unipotent.

Let X* be 4% x 4*~!, where 4* is the punctured disc and 4 is the open disc.
For a variation of polarized Hodge structure H on X* with quasi-unipotent
monodromies, let f: X'—X be the covering (zy, =, z,)=>(2¥, **=, 27, Z1415 ***5 2Z,)
so that H'=f"YH) on X'*=f"Y(X*) has unipotent monodromies. Let
G=(Z|mZ)' be the Galois group of the covering X'*—X*, Then Rfx("H¢)
is also a perverse complex and it coincides with *(fx Hg). Hence, *H coincides
with G-invariants of Rfy("H{). Similarly G acts on fyu L (H') and L°(H)
coincides with G-invariants of fyL°(H'). Therefore "H'=_L°(H') implies
"H=_"(H). Hence we may assume from the beginning that H is with uni-
potent monodromies.

§5.8. Concrete Description of the Metrics

In order to find the concrete description of the L%cohomology groups
in terms of harmonic forms (Lemma 5.10.1), we do some preliminary con-
siderations on the metrics and related operators.

First let us try to find a coordinate system on X so that the metric g and
the norm on H, may take suitable forms for our purpose.

Thanks to Lemma 5.6.1, we may suppose /=n, i.e.,

1 é dz;dz;

X=4", X*=4% and g=\/_ .
2 A (I lloglz

Let us take a coordinate system (¢, x, y)=(t, Xy, >, Xy, V1, =>*, V) Of X%,
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with X3y;=I, by
(5.8.1) z; = exp 2a/ —1x;—(ty)™) .
Then X* is isomorphic to
{@, x, NERXR"|Z"VXR"; 1, y;, -+, y,>0, Zy;=1} .
Now, using the coordinate system (¢, x, y), we find the following

Lemma 5.8.1. The Riemannian metric g is equivalent to

2 #n n
(5.8.2) dr -~ + E 2yidx?+ 2 dy,
on X*,

Proof. The metric g takes the following form on X*:

a4+ iy )™ L dy;
;__w_(fy)_ zzydx,+2(t y,.>

On the other hand, it follows from the constraint >}y;=1 that

Hence we have
> dy;|®

jyj

2
- }2 (1—ypQi
7 y

i

< - (3%)

i
= @-n (%)
i y:
This shows

N2 2 2
2(52_‘_@) ~£li+ 29’%
J f Vi

Q.E.D.

In view of Lemma 5.8.1 we introduce the following family X*(¢) of sub-
manifolds of X*,

Definition 5.8.2. Let X*(#y) denote

{@t, x, V)EX*; t=1y}
for £,>0.

We equip X*(¢,) with the following Riemannian metric g(z,):
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(5.8.3) g(te) =14 2 yidxd)+ jE:lyFZdJ’? :

Next let us study the Hermitian metric on the fiber bundle H. Let N;
denote the logarithm of the monodromy of Hg around {z€ X; z;=0}. Since
we may assume without loss of generality that e¥; is unipotent (§5.7), N; is
nilpotent. Then {exp(3}x;N;)e; e€Hg} is a constant sheaf on X*. Let V

J

denote the sections of this sheaf. Then
EQRQH~=EQRQV

and
d(1Qe) = >3] dx;QN e for esV.

Here and in what follows, £ denotes the sheaf of C*-functions.
Now we know the following

Lemma 5.8.3. ([K], [C-K-S,1]) Let K be an endomorphism of V which
satisfies the following two conditions:
(5.8.4) [K, Nj;]=—2N;, j=1,-,mn.
(5.8.5) Klew =k, where W = W(Ny, -, N,).
Then we have
(5.8.6) le|x<(t, x, y) ~ |t EPe| 3(1, x, )  for e€V.
(5.8.7) For eV, if we write e=2>e, such that Ke,=ke,, then

el ~ Sleslxe.

Here |*| x«(t, x, y) denotes the Hermitian metric of H¢ at (¢, X, y).

Therefore, replacing the fiber metric of H with an equivalent one we may
assume the following:

(5.8.8) lelxdt, x,y) =|t752| 4(1, x,y)  for eEV.
(5.8.9) |e|x(¢, x, ) does not depend on x.

(5.8.10) K is a symmetric operator with respect to the metric |e| x«(z, x, x).

Thus we obtain a concrete description of the L%*norm of an Hg-valued
form. To write it down we introduce the following

Definition 5.8.4. For u in DE(H), Auis, by definition, (K+2p)u where
p denotes the degree of u with respect to dx;-:+dx,.
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In view of Lemrna 5.8.3, the L%norm ||u|| - is given by
(5.8.11) (§ |74 | % yd ),

where duy denotes the volume element of X* determined by the metric (5.8.2).
Therefore Lemma 5.8.3 entails

(5.8.12) il = § 72y -

Since |di/t] =1, for an element u(z)+o(¢)di/t of Lk (X*; H), u(t) can be
regarded as an L%, (X*(1); H)-valued function in ¢ and o{z) is an Li5'(X*(1);
H)-valued function in # which satisfy

(58.13) [l <eo
(5.8.14) g ||t~ %)|| % vydit )i < oo

The converse being true, we may regard L&) (X*; H) as the set of pairs
of such u and v that satisfying (5.8.13) and (5.8.14).
We end this subsection by showing the following Lemma 5.8.5.

Lemma 5.8.5. (i) [4, d1=2d,, where d, denotes the differential of the
coefficients of V-valued forms, i.e.,

d(e®e) = (d,a)Qe .
(i) [4, d¥e] =2 2 (E*97) Ytasos Lapos, -
Here df‘é*(,) denotes the adjoint operator of d in the Hilbert space Liaxn(X*(t);

Hg| x+p), and La/axj (resp., l'aa/xj) denotes the Lie derivaiive (resp., interior prod-

uct), operating on V trivially.

Proof. Let ¢ denote a®e with e in [,. Suppose that a is a p-form in
dxy, «--, dx,. Then it follows from the trivialization of H¢ that

(5.8.15) do = dxa®e+dya®e+2 dx;aQNje .

Hence it follows from the definition of 4 and the properties (5.8.4) of K that
(5.8.16) Adp = (k+2(p+1)d,aQe+(k+2p)d,aQe
+ 23 (k—2+2(p+1))dx;aQ Nje
=dAp+2d.aQe .
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This proves (i).

To prove (ii) let us first note that the symmetric property of A entails
(5.8.17) (4, dixoy] = —[4, dx]* .
Hence it follows from (i) that
(5.8.18) [4, di ] = —2d% .
Let us now calculate df¢ for p=dxs0. Let yv»=dx;0. Then

(e, V)xry = (95 dP)xvy

do
— (o 1,22 )
S(¢ 2; i x’ax,. x*()

=3e, j/\I)S <‘p’ 6_0) 1~V TT y7 2 dugery
ox ier

j

where
sgn(.']) if J={j}UIr
e(J, jAD) = B
0 otherwise.
Hence we obtain
@20, Vo = — 31 s 0, Vo

This proves (ii).

§5.9. The function : X*—R extends to X\ {0} —R. Let us denote by X(¢)
its fiber. Then X\{0} is isomorphic to the product of X(1) and {z;¢>0}.
Moreover, “H | y\(g is locally constant along the fiber of X\ {0} == X(1)Xx
{t; >0} —=X(1).

It follows from the induction hypothesis (5.5) that

(5.9.1) HYL.; L°(H)) = HXL.; “He)

holds. Here L, is the inverse image of {t; |t—1]| <e} by z: X\{0} =R. On
the other hand, Lemma 5.6.1 entails

(5.9.2) Hpn(X*(1); H)=<lim H*Ly; L*(H) .

Since H*(L,; L°(H)) is stable with respect to ¢, (5.9.1) and (5.9.2) entail

(5.9.3) Hp(X*(1); H)y=H*X*(1); "He| x+w)
=H*X\{0} ; “Hc) .
In particular, we observe
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(5.9.4) dimg Hlay(X*(1);H) <o .

Note that

(59.5)  Hb(X*(1); H)

~{ucs(X*(1); D&(H | x+w)); u is square-integrable and du=0 holds in the
distribution sense}

modulo
{dv; veIN'(X*(1); DEYH| x+p)) and both v and dov are square-integrable}

In order to be precise, let us denote by T, the weak closure of the exterior deri-
vative d acting on k-forms. Then (5.9.4) implies that the range R(T,_,) of
T,_,, i.e., the denominator in the right hand side of (5.9.5), is closed. See
Appendix for the terminologies and some basic results in functional analysis
which we are using here.

Now, the closedness of R(T,_,)’s guarantees the validity of the Hodge-
Kodaira decomposition ([Ko], Ch. IV, §1. See also Appendix Theorem A.2.1),
that is, the following lemma holds.

Lemma 5.9.1. For t>0, the space Ll(X*(t); H) of (H ' yrww)-valued
L%k-forms on X*(t) admits the orthogonal decomposition

(5.9.6) R(T,-)D#DR(TY),

where T,_, denotes the weak closure of the exterior derivative, T§ denotes the
adjoint operator of T,, and #* denotes the space of harmonic L*-k-forms.

§5.10. Harmonic Representatives of L>-Cohomology Groups

To complete the proof of Theorem 5.4.1 in a later subsection (§5.12),
we prepare a proposition which guarantees that we can choose a harmonic
form to represent a cohomology class in H*(X; -L°(H)). To be more precise,
we will prove the following

Propesition 5.18.1. Let o be a closed L’~form on X*N {t<a}. Then
we can find Kt) and h{t) which are Lygy(X*(1), H)-valued L*-form on {1; i<a}
satisfying the following conditions:

(5.10.1)  A(¢) and KXt) are harmonic. (Cf. Corollary 5.10.5).

(5.10.2) @—(A(t)+h'(t)dt/t) is the coboundary of a square-integrable form
on X*N {t<a}.

(5.10.3) On()/ot =0
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(5.10.4) KNt)dt/t is a square-integrable form on X* N {t<<a}.

In order to prove this proposition, we prepare several notations and lem-
mas. Let us first denote by [|f||x+, the L*norm of a distribution f defined
on X*(¢) which is determined by the Riemannian metric g(z) and the fiber metric
on H!| y«y. Then it follows from (5.8.3) and (5.8.6) that [|f]|x+s and || fllx+w
are equivalent for each ¢ and each ¢’ (0<<t=t?'). More precisely, there exists
a constant ¢ which satisfies

t, [4
o = () 1At -
Furthermore we can verify the following

Lemma 5.10.2. There exists a constant C which does not depend on t<2
and which enjoys the following property:

For any I*-coboundary form u on X*(t) we can find an L*-form v on X*(t)
which satisfies

(5.10.5) U = dyx?
(5.10.6) ol x+ = Cllullx+c -

Here dy+y means the exterior derivative on X*(t).

Proof. For an integer g=1, let us consider the following commutative

diagram
qK/2
V — ¥V
(5.10.7) ! Ja y
o X*(2) <— X*(q1)
U . U]

(& x',y) < (g8, %, 3),
where x'=gx. Note that f, is an isometry and preserves the fiber metrics
between the bundle V on X*(¢) and ¥ on X*(q¢). Moreover this commutes
with the exterior derivative d. In fact, for e ¥V we find

dyvin(q %) = Ej dx;QN,;g" "
= q%i? 2 qdx;Q N e
= g&~? 5‘_]_, dx;® Nje
= g dywpe,

because the commutation relation (5.8.4) implies
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(5.10.8) Nigt? = gEPHN, (=1, -, 1)

Now, for each # (0<t<2), we can find a positive integer g such that
1<qt<3. Then, by the Hodge-Kodaira decomposition (Lemma 5.9.1), we
can find a unique v which satisfies the following;

(5.10.9) fiv=4do
(5.10.10) @ is orthogonal to the space of Larmonic forms and R{(d*), the range
of the adjoint operator of (the weak closure of)) d.

Then o satisfies for some constant C (independent of ¢)

(5.10.11) 121 %o = CIIf *ull xxqn -

Since 7 is unique, v is stable under the covering transformation of f,. There-
fore we can find v such that 9=fF». Then

(5.10.12) u=dv.
Furthermore we have

(5.10.13) 1 *ullx¢on = ¢ llullxeo
and

(5.10.14) I *ollx o = G llollxeo -

Hence (5.10.11) implies

(5.10.15) [lo]
where C is independent of . Q.E.D.

o = Cllullyw,

Lemma 5.10.3. Let A be the operator given in Definition 5.8.4, and let

h be a square-integrable harmonic form on X*(t). Then we find

(5.10.16) La/axjh =0 foranmy j
and
(5.10.17) Ah is harmonic.

Here La/axj is the Lie derivative of 0/8x; acting on V (rivially.
Proof. Let us first recall the following well-known fact:

Sublemma 5.10.4. Let G be a connected lopologicel group acting on a
topological space X, F* a complex of sheaves on X (or objects in the derived cate-
gory). Lel f: GXX—X be the composition map and let p: GXX—X be the
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projection. Let a be an isomorphism f'F'Sp 'F. For any g in G let
igoa: g 'F° S F" be the morphism given by i,: X—G X X. Then we find

° ngGf 3 °
HYX; g 'F) — HYX; F))
\1 lid
g
HYX; F)
commutes.

Now we use this result in the following manner: Take G=R" and let
G act on X*(¢) by a: (x, y)—(x+a. y), which can be extended to the action
on "H so that it acts on V by e®*¢";. Therefore this action is trivial on the
cohomology groups H*(X*(t); “H| y+»)- In particular, for a€ Z", this action
is nothing but e**"; on “H. This means that the actions of N; on H*(X*(t);
"H | yrp) is trivial. Therefore for a€R", the action of a on X*(¢) and the
trivial action on ¥ induce the trivial action on the cohomology groups. Now,
by the induction hypothesis, the cohomology group is isomorphic to the space
of square-integrable harmonic forms. This implies /i(x-+a)=h(x) for any
square-integrable harmonic form 4. Hence La/a,,-hZO holds.

The assertion (5.10.17) is an immediate consequence of the commuta-
tion relations

[Aa dX*(t)] = 2dx= [Aa d*X*(t)] =2 g (tzy?)_lii)/aszalﬁxj .

proved in Lemma 5.8.4, and the fact that a harmonic form # satisfies dy+h=
d¥+nh=0. Q.E.D.

Corollary 5.10.5. Let us identify V-valued forms on X*(t) and those on
X*@) by (¢, x,y)=(t',x,y). Then a square-integrable harmonic form h on
X*(t) is also harmonic on X*(t").

Proof. Let X*(¢') be the universal covering of X*(r). Then we have
the following commutative diagram:

'K
V(/) v

Y
X0 X*()
! !

X51)  X*1).
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Here fis given by (', x', y)=(i, x, ) with x'=-"-x. Then and {i'[:}* give

isomorphisms of Riemannian manifolds and vecior bundles with Hermitian
metric. Hence the Laplacians 4, and 4, coincide. rherefore the resvit
follows from the fact that if /1 is harmonic then (¢'/.)¥%h is aiso harcionic.

Lemma 5.10.6. There exist a locaily finice open covering {I;} ;5. o
R* (={t€R; i>0}) and an associaied partition of unity {a;} ;- 5. Which scrisfy
the following conditions for some constanis a and c:

(5.10.18) If #, and 1, belong to I;, then |i,/t;| <a.

(5.10.19) @a; is a non-negative C*-function with its suppars in ;.
(5.10.20) >la; = 1.
J

(5.10.21) E{t%‘%ﬂéc.

Proof. Let J,(I=Z) denote an open interval {s€&;/—2<<s</+2}.
Let x(s) be a non-negative C=-function whose suppoit is containec in {s&R;
|s| <2} aad which is stricily positive on {se€R; |s| <1}. Let r.(s)(mE.>)
denoie x(s—m). Denote by b,(s) the function

x/(s) .
2 14(5)
Then we immediately see:
(5.10.22) supp b,CJ,
(5.10.23) $ by=1.

) 8 ) L L , ,
Since E[Fb,(s)l is a periodic function, it must be boundec on &. Nexi
T 9s

define 7, and a,(¢) by {t&R*; log (—2) <<t <<log (I+2)} and b, (log :), respective-
ly. By renumbering ; and g, suitably we can find the required .; and ;.
QEL.

Let us now embark on the proof of Proposition 5.10.i. Let us fix a soiné
{; in each interval f; in Lemma 5.10.6. Our strategy is tc decompose closec
I2form @ on X* in Ly (X*(z;); H| X*(,j)) first and then .0 patch their iogether
using the preceding lemmas. Let u and v be a form independent of di which
satisfies
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(5.10.24) © = %u-}—v .

Then the assumption that o is a closed L:-form implies the following:

8
(5.10.25) dyey = 127
(5.10.26) dy+@yo =0
, dt
(5.10.27) g (@] Zecr P
., dt
(5.10.28) S lo@)llx= PR

Here and in what follows we sometimes use the symbol dy+) to emphasize
that the exterior derivative is considered on X*(#). If there is no fear of con-
fusion, we simply denote it by d’.

In view of (5.10.26), we can decompose #(f) as

(5.10.29) h(@)+dgxywi(?)

with respect to the metric on X*(¢;), where £;(¢) is a harmonic form. It is
clear that 4;(#) is independent of j, and hence we denote it simply by 4{¢). By
Lemma 5.10.2 we may assume without loss of generality

(5.10.30) AN o = 1ol x+c
and
(5.10.31) Iwicollxo = Cllo(®)ll g -

By the orthogonal decomposition in L) (X*(¢;); H), we may further assume
(5.10.32) wj(, x) is orthogonal to the space of closed forms in L) (X*(¢;); H).

Let ¢(¢) be a compactly supported C~-function of t/&. Then it follows from
(5.10.24), (5.10.29) and (5.10.25) that

51033 @ {p0u? = —{ 2o ?
_ _f{uo a_ g {8 (1)
2 owpmny —a [ 2 opmn .

Since Sa%(qa(t))hdt is harmonic it must be orthogonal to the space of cobound-

ary forms, and hence this integral vanishes for any ¢. Thus we obtain



THE POINCARE LEMMA FOR HODGE STRUCTURE 385

8h _
(5.10.34) tar = ©
and
, dt 0 dry
(5.10.35) d (g go(z)u(z)7 + § (ra—t P()w; ?) =0.

Next let us decompose u(t) in Ly (X*(¢;); H) as
(5.10.36) u(t) = K@)+ ;) +d'ays),

where 7'(¢) is the harmonic part of u(¢) (independent of j) and B;(¢) is ortho-
gonal to the space of closed forms. Then we have

(5.10.37) N Ot p SNl ¢,
and
(5.10.38) 18O p S N1l -

Note that (5.10.37) implies
EOllxs S Cllu@llx+y  for €I,

with a constant C independent of j. Since A¢) is a globally defined form
it means

(5-10-39) ”hl(t)”X*(t) = C””(’)“x*(t)

with a constant C independent of ¢. It also follows from (5.10.36) that for
any compactly supporied C=-function ¢(z) we find

0 di
(51040)  § @OUO+ 2 o)
= oo % + | @08+ 2 om0
t ot t
+ e0ara .

Since the left hand side together with the first and the third terms in the right
side of (5.10.40) is closed, the definition of #; and the property (5.10.32) imply

ow;
5.10.41 c=f—,
( ) B; Py

Hence (5.10.38) implies

ow:
(5.10.42) 165 Ol y S Dl
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In view of the structure of the metrics and the condition (5.10.18) on the size
of the interval I;, we can find a constant C independent of j such that

(5.10.43) ”taw, llerr SCllullgry  for ¢ in ;.

Let wj, denote w;,—w,. Then it follows from the definition (5.10.29) that
wj; is a closed form on I; N [,. Furthermore we have

(5.10.44) Wil = Cllo@l | x+o
and

ow; .
(5.10.45) |2 g;k(t)llx*<t>§Cllu(t)llx*m for tinI;NI;.

Using the partition of unity {g;} introduced in Lemma 5.10.6, we define
a closed form 7; on I; by

(5.10.46) ; PRI

Then we obtain from Lemma 5.10.6, (5.10.44) and (5.10.45) the following:

(5.1047) IOl =Cle@llxo (€I

(51048) 12 Ollxrio = IS 2wt 3 a4 228 ey
=C(lOllx=w+u@llxw)  CEL,

where C’ is another constant independent of j.
On the other hand, it follows from the definition of w;, and r; that

(5.10.49) ri—Te = 2 a(wj—w)— 33 a(wi—w)
= W;—W;, (tEI,ﬂIk).

Set w=w;—r;. Then (5.10.49) guarantees that w is a globally defined form,
and (5.10.31) and (5.10.43) imply

(5-10-50) ”w(t)“X*(t) = C“'v(t)“X*(t) )
(5.10.51) n%”nmgc<nv<r)||x*<f>+||u(t)||x*<,>>

for some constant C independent of 7. Combining (5.10.36), (5.10.41) and
the definition of w, we obtain

ow or ,
5.10.52 —t—= =h+tLEtd'a,,
( ) u o1 + ot +d'a,



THE PoINCARE LEMMA FOR HODGE STRUCTURE 387

where 7, is a closed form on 7,. Hence u—tg—tu—] is a closed form. By (5.10.51),

(5.10.39), (5.10.27) and (5.10.28), it is a square-integrable form on X*. There-
fore, by the same reasoning as in the proof of Lemma 5.10.2, we find a(¢) and
a harmonic form #%(¢) which satisfy

u—t2Y ride,
ot

5.10.53 bl ,
(5.10.53) el S Cllu—1 3% 30 = C Ultllerco +lollerc).

”hz(t)“X*(i) = C’(l [ul lx*n+ | l’”l lx+)

with some constants C and C’ which are independent of . Hence (5.10.53)
combined with (5.10.27) and (5.10.28) entails that @ and A® are square-integ-
rable form on X*. Then it follows from the definition of #, v and w that

(5.10.54) =",
t
- ‘?(zg_:v LRLda)hd'w,

= dt%}f -+ dt112+ d’ (dta) +h+d'w

t t
= dgs(w+ d{a)—l—%{hz—l—h .
Since w-+ ‘!tfa is square-integrable by (5.10.50) and (5.10.53), the relations

(5.10.54) and (5.10.34) are exactly the same as what Proposition 5.10.1 asserts.
Thus we have completed the proof of Proposition 5.10.1 at long last.

The following proposition gives us a characterization of an L?*-coboundary
form on X*. Combining Proposition 5.10.1 and the following one, we have
complete description of the L2-cohomology groups in terms of L?harmonic
forms.

Proposition 5.10.7. Let h and h* be the harmonic forms given in Proposi-

tion 5.10.1. Then the following two statements are equivalent:

(5.10.55) h—i—a%t h' is a coboundary of an L*form on X*.
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(5.10.56) (i) A=0

and

(il) There exists a harmonic form H' which is square-integrable
oH*

on X* and satisfies B =t—— 5
t

Proof. It is clear that (5.10.56) implies (5.10.55). Let us show that
(5.10.55) implies (5.10.56). Let u and v be forms free from d¢ and suppose
that they satisfy

(5.10.57) hy @ hl dx*<d7’u+w)_
Since

(5.10.58) dx*( —i—v) ( 'yt 2 >+d'w,
we find

(5.10.59) h=dv

and

(5.10.60) W=t Z—;’ —du.

Since 4 is a harmonic form, (5.10.59) implies
(5.10.61) h=dv=0.

Hence, by the same reasoning as in the proof of Proposition 5.10.1, we can
find a square-integrable harmonic form H! and a square-integrable form w
which satisfy

(5.10.62) v =H'td'w
Then (5.10.60) and (5.10.62) imply

OH!
5.10.63 R—t— =d'(t=—=—u).
( ) Y ( a , u)
Hence we conclude
1
(5.10.64) w— 98
at

This completes the proof of Proposition 5.10.7.

§5.11. By the induction hypothesis, each cohomology class in H*(X*(1);
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“H | x+p) can be represented by a harmonic form % on X*(1), while Lemma
5.10.3 guarantees that A# is also harmonic. Thus the operator 4 defines an
endomorphism of H*X*(1); "H |x ). As we shall prove in a later subscc-
tion (§ 5.13), the purity theorem gives a bound on the eigenvalues 2 of the oper-
ator 4 acting on H¥X*(1); “H | x+(p) as follows:

Proposition 5.11.1. Let A be an eigenvalue of A acting on the space of
square-integrable harmonic k-forms on H | x+y. Then we find:
{ 1=k, i k<n

(5.11.1)
A=ktl,  if k=n.

§5.12. Admitting Proposition 5.11.1 for a while, let us show how Theorem
5.4.1 follows from it. We begin our discussion by recalling the following
celebrated inequality due to Hardy ((H-L-P], p. 245, 330):
Lemma 5.12.1. Let r be a real number different from 0. Let f(i) be a
measurable funciion such that Sm " f lzaTt is finite. Then we can find F(t) which
0

saticfies the following:

(5.12.1) f7 =,

(5.12.2) § t|F|2‘” ( >§‘”f|ﬂzgn
r 0 t

Using this lemma, we claim that /' in Proposition 5.10.1 may be sup-
posed to be 0. In fact, we may assume without loss of generality that 7' is
an eigenfunction of 4 with the eigenvalue 2. By (5.8.12), w= thea find

T P (G

Since Proposition 5.11.1 guarantees n—A==0, we can find by Lemma 5.12.1
a square-integrable harmonic form H? such that

1
' o0H

i

(5.12.3) =i,

Since H* is harmonic, Lemma 5.10.3 and (5.12.3) imply
]
(5.12.4) dy H' = QT!/II )

that is, ﬁhl is an exact I’form on X*. Thus we may suppose from the
I3
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frst that A'=0.
Next let us discuss 4 in Proposition 5.10.1. Again we may suppose that /

is an eigenfunction of 4 with the eigenvalue 2. Then thlﬁf*zgt““"l]hll 2. pdift,

and hence (5.10.3) implies that 4 should vanish if it is an Z?form on X*, in
case A=n. Therefore Proposition 5.11.1 implies #=0 if k=#n. On the other
hand, if k<, then, again by Proposition 5.11.1, we find that the finiteness of
[|4]| 5+ is equivalent to the finiteness of ||4||xs(y)-

Thus we have verified

(5125 HHX; _ﬁ(H))d{O if kzn
- 9 - LHAOO\{0}; L) ) if k<n,

and the induction proceeds.

§5.13. Now we shall prove Proposition 5.11.1. Tt will complete the proof
of Theorem 5.4.1 at long last.
For a positive integer ¢, let us consider the diagram

qK/Z
Hy — Hg

(513.1) l l

X —X

/e
Here, f, is the morphism (z,, -+, z,)> (2, ->-, z§). Then the morphism q=’:
He— foHp extends to

(5.13.2) 7. ﬁHC»Rf*ﬂHc.

Then, we obtain

(5.13.3) o2 HNX\A{O} ; “Hg) = HYX\ {0} ; Rfx*Ho)
— HYX\{0}; “H) .

Since HH(X\A{0}; “Hg) = H*(X(1); "H)== H5(X*(1); H) and since this space
is represented by the space 4* of harmonic forms, ¢{* is represented by g4/
on #*. Therefore in order to show Proposition 5.11.1, it suffices to show that
any eigenvalue z of ¢{? satisfies

u=qt? if k<n

(5.13.4)
ﬂgq(kﬂ)/z if k;n i

Let us first consider the case where k<<n. Then
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(5.13.5) HYX; "Hg) = HHX\{0}; “Ho)

holds. Hence ¢$¥’ defines an endomorphism of H¥(X; “Hg). We shall show
the required bound on the eigenvalues of ¢{® follows from the purity theo-
rem (Theorem 4.0.1.). For this purpose, we may, and do, enlarge X to C".
Let M be the 9 -module corresponding to “Hy, that is,

DR(M)="H.
Then the homomorphism 7 extends to
7: DR(M) — f« DR(M)

given by Qe f*o@qg % for o€ 2(xY) and e ¥. Now we can calculate
HYX; "Hg) by H¥II(N,, -+, N,)), because I'(X; DR(.H)) is quasi-isomorphic
to the partial Koszul complex II(N,, --, N,). Then, on II(¥,, -+, N,), the
homomorphism 7 is given by

7:Im Nj - Nj De— ¢gc* e .

If we endow II(N,, ---, N,) with the mixed Hodge structure, then X acts on
Gri/(II(N,, ---, N,)) by #—w—2k, and hence r acts by q%‘“‘“’“z’z””‘:q%”““’).

Now the purity theorem says
Gr/ (H*II(N,, -+, N,))) =0 for u>wtk.
Thus any eigenvalue £ of ¢{? satisfies
p= gz @b — gk
Let us now consider the case where k=n. In view of the long exact
sequence for local cohomology groups, we obtain
(5.13.6) HYX\A{0}; "H)=H"(X; "H) (k=n).
On the other hand, the Poincaré-Verdier duality implies
(5.13.7) HiG X; "H)=(H* " X; ("H)*))'.

Here ( )’ means the dual vector space, and (“H)* means & Homo(“H, C).
Since f'is a finite-covering map, (f."H)*== f(("H)*) holds. Let a* denote the
dual morphism of a: “Hy— R f.("He)="(f«H¢). If we denote by B the map
from “(H%) to fx"(H%) obtained in the same manner as in the definition of
a, we find

(5.13.8) a*of =¢q", the number of /7Y(z) for a generic z .
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In fact, since Hom(*Hg, “"Hg) =Hom(“Hg | x+, “Hg| x+), it is enough to
prove (5.13.8) on X*. This can be checked easily.

Passing to the level of the cohomology groups, we conclude the following
claim (5.13.9) from (5.13.8).

(5.13.9) The endomorphism H* *~Ya*)o H* *~Y(g) of
H*™*Y(X; *H*) coincides with g".

As k=n in the present situation, we have 2n—k—1<n. Hence any eigen-
value of H*7*-Y(B) should be equal to or smaller than g®~*=Y/2_ Therefore
it follows from (5.13.9) that any eigenvalue of H? *~!(a*) is equal to or bigger
than g®*W2  Since H* * Ya*)=H})(a)*=¢{", the eigenvalues of (" enjoy
the same property. Thus we have completed the proof of Proposition 5.11.1.

§ 6. The Hodge Decomposition and the Hard Lefschetz Theorem

§ 6.0. In the preceding sections, we showed that when X is a compact complex
manifold, the L2-cohomology groups give the intermediate cohomology groups
of the variation of polarized Hodge structure given on the complement of
a normally crossing hypersurface in X.

Now we shall show that, when X is a Kdhler manifold, the decomposi-
tion theorem of Hodge, Weyl, Kodaira, ... for the constant case still hold for
the variation of polarized Hodge structure.

Moreover, as observed in [Z], the results of Hodge (e.g. [W]) hold in this
case also. Referring to [Z] and [W] for the proofs, we shall just state the facts
that we need in our context.

§6.1. Let X be a Kéihler manifold with a Kéhler metric . Using a local
coordinate z; of X, @ has the form
V-1
©="5" ‘ZEB hypdz,dZg
with a positive definite Hermitian form (A,g),,s. We confuse this Kihler form
with a Riemannian metric 33 A,pdz,®dzs. Let H be a variation of polarized
Hodge structure of weight w. If we denote by & the sheaf of C™-functions,
E(H)=EQR H, has also a Hodge decomposition by
(4
(6.1.1) EH) = D I,
big=w

Here H**=EQF*(H)NEQF(H).
Ox Ox
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Denoting by &F the sheaf of C*-k-forms and by £°? the sheaf of C*-(p, g)-
forms, we define the filtration of E¥(H)=E*Q oH, by
FrENH) = EF Qe FI(H)
(6.1.2) [FHEEN = 2 M@0, £ (H)
| F(EHH)) = Qg FUi(H) .
Then &%(H) has also the Hodge decomposition
(6.1.3) EHH) = @ Jt,
ptg=k+uw
where H?1=F2EHH)) N FUEHH)).

Now the exterior derivative d of & exztends to & @ Hg and satisfies
(o}

(6.1.4) A(FHEH ) C FHEFYE))
(6.1.5) AF(EHE) C FYEFY(H)) .

Therefore we have
(6.1.6) A I e Gt
We shall decompose d: &' (H)— & (H) by d=d’+d" so that

(6.1.7) d' gpa— g(p+ia
(6.1.8) a’grec gt

Then we have

(6.1.9) d' FHE(H))C PP E(H)),
(6.1.10) d'FYE(H)C FYE(H)),
(6.1.11) 4" ENE () C P E(H)),
(6.1.12) d"FYE () CF Y (E () .

Let us denote the Hermitian metric of the C®-vector bundle &(H) by { | D.
Then we can define for a linear differential operator P acting on E°(H) its
formal adjoint P* by

§<P*ulv ®" = g {u| Pvyo”

for ue DF(H) and veE(H) with compact support.

Following [W], let L denote the operator u—w Aw, and 4 its formal adjoint.
We denote by d*, d’*, d”* the formal adjoints of d, d’ and d/ respectively.
Then we have

(6.1.13) dx gt Jr-taP gt



394 MAsAKT KASHIWARA AND TAKAHIRO KAWAIL

(6.1.14) d'* g gt
(6.1.15) d"* g gt

Then, as observed in [W] and [Z], we have

Proposition 6.1.1. (i) If we set d=d*d-+dd*, then 4=2(d'*d' +d'd'*)
:Z(dl/*d//_,_d/ld//*)'

(i) If e€EX(H) (p<n=dim X) satisfies L"?*'a=0, then *Cyo=(—1)?@~D/Zx
1
(n—p)!

x-operator and the Weil operator on &° by tensoring Hg, respectively.

(ill) did/ :'d”d//:(), d/d”'J,—d”d,:O, dr*dll* +dll*dl* :0’ dl*d”—f—d”d,* ___0’
d"*d' +d'd"*=0.

(iv) [L,d]=0, [4,d*]=0, [L,d*]=d® [4,d]=—d*°, [L, 4]=0.

Here d°=C7'dC and d*°=C™'d*C and C is the Weil operator defined by

L*?a, Here x and C, are the operators obtained by extending the

Cl gp.a=i"""

§6.2. Let X be a compact Kéhler manifold with a Kihler form @,, Y a nor-
mally crossing hypersurface of X, and H a variation of polarized Hodge struc-
ture on X*=X\Y. As in [Z], let us take a C=-function ¢ on X* with the
following property: for any point p of Y take a local coordinate (xy, -+°, Xx,)
such that Y is given by x; --- x;,=0. Then, for C=-functions a;,

4
@ = Z]llog(aj —log| z;1?).

If we take ¢>0 sufficiently small, then @ =w,+icdd¢ is a Kihler metric with
the desired behavior
o~isy P isvipar
izt (|z;]loglz; ) 9>
Therefore (X*, w) is a complete Riemannian manifold. As in § 5.3, let us
denote by L&) (X*; H) the space of square integrable k-forms with value in

Hg with the norm (| f)):S FIf>e". Since @ Hp— @ A is the

pta=k+w

orthogonal decomposition, L (X*, H) decomposes
(6.2.1) Lo(X*; H) = @D LEj(X*; H).
P+a=k+w

Here L{(X*; H) is the space of square integrable sections of the bundle H?-9.
The (6.2.1) is the decomposition of Hilbert spaces.
Set
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FALbyXC%; H)) = @ LEs(X*; H)
'zt
and define F?(L, (X *; H)) similarly. Then, with these filtrations, L{y(X*; H)
has a Hodge structure of weight k-+w.
In what follows, we simply denote by d and d* the weak closuve of them,

that is,

D{d) = {us L, (X*; H); du in the distribution sense belongs to L' (X*; H)},
D(d*) = {uc Lk)(X*; H); d*u in the distribution sense belongs to Lz (X *; H)}

Since @ is a complete metric, it is classically well-known that the strong
closure of d and the weak closure of d coincide In particular, d* is the (op-
erator-theoretic) adjoint of d. (See Appendix, Theorem A.4.1.)

Let us define 4 by specifying its domain as follows;

D(4) = {us D)N D@*); dus D(d*), d*ve D{d)}.

Then, again by the completeness of the metric, 4 thus defined coincides
with the weak closure of 4, i.e., the operator whose domain is given by
{ueLl(X*; H); 4u in the distribution sense belongs to Lixn(X*; H)},
and it is self-adjoint. ([Ch], see also Appendix, Theorem A.4.1.)

Since the strong closure of 4 preserves the Hodge decomposition, we have

(6.2.2) D(4) = DU N LE{X*; H) .
Now our main result (Theorem 5.4.1) asserts
H'(X;"H) = Ker d/R(d),

and this is finite-dimensional. Therefore 4 has closed range. Hence we can
use the result in |Ko] (cf. Theorem A.2.1 in Appendix). Denoting by 4* the
space of square-integrable harmonic k-forms, ie., 4*={u& L&) (X*; H);
Au=0}, we find

H=H"X;,"H).

In what follows, we denote by H the orthogonal projection from
L&y(X*; Hg) to 4%, and by G the Green operator (cf. Definition A.2.2 in Ap-
pendix); thus we have

(6.2.3) u = H(u)+4G) for ueLp(X*; dg).

Let 4% denote 4* (N L%{(X*; Hg), where p+g=k-+w. Since 4 preserves
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the Hodge decomposition, we then have

(6.2.4) B @ e,
pra=k+uw
(6.2.5) H(ILAH(X*; HY)Chtt
(6.2.6) GUAS(X*; HY)C LES(X*; H) .

We set FP(4)= @ 4"+ and define F(4,) similarly.
' +a’ =krw
V=

Now, we denote by d’ and d” their weak closures and d'* and d”’* their
adjoint operators in the operator theoretic sense. Therefore d’'* and 4*
are the strong closures. Although we can prove that their strong closure
coincides with their weak closure, we do not use this fact in this paper. How-
ever, we use the fact that

D'(4) = fus D(d') " D(d'*); d'uc D(d'*) d*ue D(d')}

and D(4) coincide.
In fact, 4|/, is a closed operator, because 4|p,y=2(d'd*+d*d").
Since the weak closure and the strong closure of 4 coincide, we have

6.2.7) D(4) = D'(4).
We have
(6.2.8) If ueD(d") satisfies d'u =0, then d'G(u) =0

and u = H(u)+2d'd'*G(u) .

In fact, we have u=H(u)+4G(u). Since H(u)eD(4)C D(d'), we have
4Gw)eD(d) and d'4G(u)=0. Therefore 2<d'*d'G(w)|d *d' G(u))>=<4G(u)|
d'*d'G(w)>=<d' 4G(u) | d'G(u)>=0, which implies d'*d'G(u)=0. Then {d'G(u)|
d'Gu)>=<d"*d'G(u)| G())=0 implies d’'G(u)=0.

Lemma 6.2.1. d"*D(4)CD(d').

Proof. For ue D(4)C D(d”*) let us take compactly supported C= sections
u, such that u,—>u, du,—4u. It is enough to show that d'd”*u, converges.
Setting v=u, —u,,, we have

{d'd"*v|d'd"*v)
= —({d"*d'v|d'd"*v)
= —(d'v|d"d'd"*v)
— (d'o|d'd"d" )
= {d'*d'v|d"d"*v)) .
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On the other hand,

4 *d ol (|4 d ol = (@ *a+d'd )

IZ
implies

lld "ol <\ 0]
Similarly we have

lld”d"*o||<||4o]] .
Thus we obtain ||d'd""*v|<||4v||. Hence

[|d'd"*u,—d'd"*u,|| — 0 if n,m-—>o0,
Therefore d'd”*u, converges. Q.E.D.
Let us define the filtrations F and F of .L°(H) by
FI(L(H)) = {us L'(H); uis a distribution valued sections of F/(E(H))}
and similarly
Fo(_L(H)) .

Since F?(L°(H)) is an &-module, F?(LL°(H)) is a complex of soft sheaves.
Then we have the following

Proposition 6.2.2. F2(4)— HYX; FY(L°(H))) is an isomorphism.
Proof. The injectivity is clear from the following diagram:
FA#) — HYX; FAL(H)))
(6.2.9) N y
w5 HMNXG LH))

Let us prove the surjectivity. Let u be an element of I'(X; F/(LL*(H)))C
Ly (X*; H) with du=0. Then we can write
u = Hu)+4Gu = H(u)+4g with g = Gu.

Since H and G preserve the Hodge decomposition, we find both H(v) and g
are in F/(Lly(X*; H)).
Now, du=0 implies dg=0, and hence we obtain

u == Hu)+dd*g .

Since d*g belongs to F* Y L&' X*; H)), we can write d*g=1v,+v, with 9,&
L5 (X*; H) and v, F/(L;(X*; H)) with g=k—p. Therefore we have
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u = H(u)+dvy+dv, = Hu)+d'vy+do,+d"v,
at least in the distribution sense. Looking at the (p—1, g-+1)-part, we obtain
d”v,=0, and, in particular, v,& D(d”’). Hence, by (6.2.8). we find
vy = H(®g)+2d"d"*G(v,) .
Thus we obtain, in the distribution sense,
u = H(u)+2dd"d"*G(vy)+dv,
= H(u)+d(—2d'd"*G(vy)+7)) .

Since G(vy) € D(4), d”"*G(vy) € D(d') by Lemma 6.2.1, that is, d’d”’*G(v,) is in L%
Since —d'd"*G(vy) € L~ (X*; H), v, F*(L{» (X*; H)) and H(u) € F*(4%), we
are done.

Thus we obtain

Theorem 6.2.3. (1) a«: HYX; F(L(H))— H*X; L°(H))
and
B: HYX; FA(L (H))—H*X; L'(H))
are injective.
(i) Let us denote by F and F the filtrations of H*(X; L (H))=H"(X; “H) given
by @ and B in (i), respectively. Then H¥X; “H) has a pure Hodge structure
of weight k-+w.

Note that L°(H), F(.L°(H)) and F(_L°(H)) do not depend on the choice
of a Kéhler metric, therefore neither does the Hodge structure on H*(X; “H).

§ 6.3. Let us define

o (EXQH)R(EY QHg) — EFY
by

(e Qe)R(BRS)) = S(e, flaNE .

Then we have the following
Lemma 6.3.1. The map u, naturaily extends to a map
w: LAH)QLY(H) — D,
and the map p commutes with the exterior differentiation d.

Proof. Let x be a point in Y=X\X* and let U be an open neighborhood
of x in X. Since the product of two square-integrable functions is integrable,
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the image of the map obtained by extending 4, to I'(U; -L2(H)QI(U; L' (H))
is contained in the space of iategrable (p-+p")-forms on X* with respect to
the metric form w. Since any compactly supported C*-form on X has a finite
supremum with respeci to o, the image of the map # thus obtained is con-
tained in D4,

To verify that the map x# commuies with d, it suffices to show
RV du/\v/\¢+(—1)1>§ UA GO A+ (— 1P+ g UADAdg =0

holds for any u in I'(U; L2(H)), any v in I'(U; .L?'(H)) and each compactly
supported 2n—p—p'—1)-form ¢ on U. Mulliplying a compactly supporied
C=-function which is equal to I on a neighborhood of supp e, we may assume
from the firsi that both # and v are compactly supported in U. Since the
weak closure of d coincides with its strong closure, there exist sequences u,
and v, of compactly supported C=-forms on X* such that v,—u, v,—v, du,~du
and dv,—>dv with respect to the L?norm. Since d and 4, commute by the
flatness of S, (6.3.1) holds for u, and v, in place of u and v, respeciively. Hence
we obtain (6.3.1) by taking the limit. Q.E.D.

Let C, denote the trivial extension to & QXA of the Weil operator C(H),
ie., C;=ido-@QC(H). Since the image of # is contained in the space of the
integrable (2n)-forms on X*, we find

(6.3.2)  w(CuA=*u) is a non-negative measure for any u in Lin*(X*; H).
(Cf. [W1)

§6.4. Let L be the operator L (X*; H)— L& X*; H) given by the ex-
terior multiplication of @. Then, since ® has finite length, Z is a continuous
operator. Let 4 be the adjoint operator of L. Then as in [W], we have

[4, L”sz)(X* cm) = n—k.
Thus we can apply the usual technique to show that
(6.4.1) LF: Lipk%; H) = LA (X *; H)
is bijective.
Since [4, L]=0, we have
(6.4.2) LF: A7k — 42+ g bijective .

Now let /e HXX; R) denoie the cohomology class of @, Then we have
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the following

/
Lemma 6.4.1. H*X;"H) — H*"'¥X;"H)
,/Lk i Ak+2

is a commutative diagram.

Proof. Since every C~-form on X has a finite length, we have the homo-
morphism of complexes
E'QL(H)— L(H).
Passing to the cohomology groups, we have
H(X; E)QHMNX; L(H)) — H*X; L°(H)).

Therefore, for a4, la is represented by the closed L,-form w,Aa. Hence
it is enough to show that @ A @ —w, A @=icd8¢ A a belongs to the L2-cobound-
ary. This is clear, because 899 Aa=d(8¢ Aa) and ¢ has also finite length.

Q.E.D.

Now we have the following
Theorem 6.4.2. (i) (Hard Lefschetz Theorem)
lkl Hn—k(X; -rtH) —_ H”-H'(X; 'rtH)

is an isomorphism (of Hodge structures).
(ii) Let P, denote the kernel of

lk+1: Hn—k(X; 1!H) — H"+k+2(X; th) .
Then
(_1)(n—k)(n—k—1)/2(a’ lkﬂ)
gives a polarization of the Hodge structure on P,. Here ( , ) is the pairing
given by
S ﬁHc@“ﬁg —> CX
and
H*(X; *Hg) @ H"**(X; “H)
2 T T HZ”(S) 2
— H*(X; "Hc®"He) —> HM'(X; C) —>C.

Proof. (i) This is an immediate consequence of (6.4.2) and Lemma 6.4.1.
(i) For @ and B in P,, let us choose harmonic representatives f and g of «
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and g, respectively. Let C, denote the trivial exiension to &° @ Hy of the Weil
operator on &°. (cf. Proposition 6.1.1. (1)) Then it follows from (6.2.4)
that CoCy| 4, coincides with C(H ©=k) the Weil operator on H* *(X;"H).

Hence we have
(6.43) (CE" e, #8) = | MG AR).
On the other hand, Proposition 6.1.1 (i) tells us

e —B) (= 1
% — (1 \a—k)(—k=1)/2 kr
(6.4.4) Cof = (—1) = LEF,

if L¥*1f=0. Therefore, if @=2 (and hence we choose f=g), we find

(C(H”-k)ai, lk&) — k!(_l)(:z—k)(ﬂ—k—-l)/zg M(Clcof/\*CQJF) .

Then the proof is completed by (6.3.2).

Appendiy: Review or Functlonal Amalysis

In order to fix the notions and notations we list up basic facts concerning
Hilbert spaces and operators upon them. We follow [Ch}, [H], [Ko] and
[Y] in our presentation.

§ A.l. Let H, and K, be two Hilbert spaces. An operator 1" from H,; io
H, is, by definition, a C-linear homomorphism from a linear subspace D(T)
of H, to H,. We sometimes use the symbol T: H;—H, to denote an operator
T from H,; to , although D(T) may not be #,. The linear space D(T) is
called the domain of 7. If D(T) is dense in H,, we say 7 is densely defined.
The graph G(T) of an operator T'is, by definition, {(x, 7x)E H; X Hy; x& D(T)}.
We denote by G(T) the space {(—Tx, x)EH,xH;; x&€D(T)}. If G(T) is
closed, we call T a closed operator. Note that, even for a densely defined
closed operator 7, there may exist another closed operator I such that D(T")
RD(T) and Tx'=Tx for x& D(T), if D(T)=* H,. In what follows, R(T) denotes
the range of T, i.e., {Tx; x&D(T)} and Ker T denotes {x&D(T); Tx=0}.
[As we {requently use the symbol N in this paper, we avoid the more common
notaion N(7).] For a densely defined operator 7, we define itc adjcint ope-
rator 7% from &, to H, by G(T*)=G*(T)", the orthogonal complement of
G%(T); in other words,

G(T*) = {(x, )€ Hy X Hy; (%, T2)m, = (3, 2), for any z in D(T)}.
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Then T* is a closed operator, and, if T is a densely defined closed operator,
then T* is also densely defined and T**=T holds.

The pre-Hilbert structure of D(T) induced by D(T)—G(T)C H/PH, is
called the graph norm. If T is a closed operator, then D(T) is a Hilbert space
with the graph norm.

Lemma A.1.1. Let T be a densely defined closed operator and E a dense
subset of D(T) (in the norm of Hy)). If (T|z)*=T%*, then E is dense in D(T)
with respect to the graph norm. Here T |5 denotes the restriction of T to E with

D(T | p)=E.

In fact, (T'|z)*=T* means G(T|z")=G(T*). Hence G(T|z) is dense in
G(T).

The following proposition is usually referred to as the closed range theo-

rem (of Banach).

Proposition A.1.2. Let T be a densely defined closed operctor. If R(T)
is closed, so is R(T*) and R(T)=(Ker T*)* holds.

See e.g. [Y], p. 205 for the proof.
The importance of a closed operator with closed range lies in the follow-

ing

Proposition A.1.3. (The open mapping theorem) If T: H,— H, is a closed
operator with closed range, then T is an open mapping and (T | (xerp-npm) "~ S
a bounded operator from R(T) to (Ker T)™.

See e.g. [Y], p. 79 for the proof.

8§ A2. Let H,, H, and H; be three Hilbert spaces. Let 7: H,— H, and
S: H,—Hj, be densely defined closed operators. We assume

(A.2.1) R(T)C D(S)
and
(A.2.2) STx =0 for xeD(T).

Then S*: Hy;—H, and T*: H,—H, satisfy the same conditions, namely,

(A.2.3) R(S*)CD(T¥*)
and
(A.2.9) T*S*x =0 for x&D(S*).
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We define 4: H,—~H, by

(A.2.5) D(4) = {xeD(S)N D(T*); T*x= D(T), Sx&D(S*)},
(A.2.6) dx = S*Sx+TT*x for xeD(4).

Lemma A.2.1. 4 is a closed operator.

Proof. Assume that a sequence x,&D(4) converges to x and 4x, con-
verges to y. We shall show x&D(4) and 4x=y. Setting z=x,—x,,, we have

(4z, z)y, = (T*z, T*Z)Hl—{—(SZ, SZ)y, -

Therefore 7*(x,—x,) and S(x,—x,) tends to zero and hence T*x, and Sx,
converge. This implies x& D(S)N D(7T*) and T*x, (resp., Sx,) converges to
T*x (resp., Sy). Since (4z, 4z)y,=(S*Sz, S*Sz)y, +H(IT*z, TT*z)y, S*Sx,
and T*Tx, converge. Thus we find Sx& D(S§*), Txe D(T¥), and $*Sx,, (resp.,
T*Tx,) converges to $*Sx (resp., T#Tx). Hence x& D(4) and 4dx=y.

Now we have the following abstract version of the Hodge-Kodaira de-
composition due to Komatsu [Ko].

Theorem A.2.2, Let S, T and 4 be as above, and suppose that both R(T)
and R(S) are closed. Denoting Ker 4 by 4, we find the following:
(1) 4 is self-adjoint, that is, 4=4% holds.
(i) 4=Ker(T*)NKer S and #-=R(4).
(iii) Denoting by p 4 the projection operaicr: H,—>%, we find that the operator
(], )1 —p ) s well-defined and bounded.

Defimition A.2.3. The operator (4| AJ_)“1(1 —pé) is called the Green

operator.

As the reference [Ko] is written in Japanese, we give the proof of the theo-
rem for the convenience of the reader. It is exactly the same as [Ko] p. 124~
p. 125.

Let us first verify (ii). Since 4=Ker (T* N Ker S is clear, it suffices to
verify

(A.2.7) Ker(T*)NKer S)" = R(4) .

Since S is supposed to be a closed operator with closed range, R(S*)=
(Ker S)* holds. Hence we find

(A.2.8) AP R(S*) = Ker(T%) .
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Here and in what follows, the symbol A@ B means that 4 and B are closed
subspaces which are mutually orthogonal. Since T is supposed to be of closed
range, we find

(A.2.9) H, = Ker(T*)®R(T) .
Combining (A.2.8) and (A.2.9), we find

(A.2.10) H, = R(T)P4DR(S*) .
In particular,

(A2.11) Rk .

Let us now verify 4~ C R(4). Let T denote T | (xer 19 nn(r)» i-€. 1 is a map
from (Ker T)*ND(T) to R(T). It then follows from the open mapping
theorem that 7 has a bounded inverse on R(T). Since R(T*) is also closed
by the closed range theorem, T *=T* .. %~npir» has also bounded inverse
on R(T*)=(Ker T)*. Hence, for y in R(T), z=(T*)~Y(T)* yd—_e—fGl y is well-
defined, and G, is a bounded operator. We have TT*G,y=y for yeR(T)
such that S*SG,y=y for y& R(S*¥). Similarly, as R(S) and R(S*) are also
closed by the assumption, we can find a bounded operator G,: R(S)— R(S).
Since £#-=R(T)P R(S*) follows from (A.2.10), and since R(T)CKer S and
R(S*)C Ker T* hold by the assumption, for each y in 4™, we can find z,& R(T)
and z,& R(S¥) so that

(A.2.12) y = TT*z;+S*Sz, = (TT*+S*S)(2,+2,)

holds. Thus we have verified 4-=R(4). The above reasoning also implies
the boundedness of the operator (4| /LJ_)“I(I —p é). This completes the proof
of (ii) and (iii).

If we set 4=(4| 4)» then 4 is clearly symmetric (i.e. (du, v)=(u, 4v) for
every u, v&D(4)). Furthermore it is invertible on 4~ as we have verified.
Therefore it is self-adjoint on #-. (See e.g. [Y], p. 199.) Since

4= Zpé_,_ =p/LJ_Zp/L_,_
hold, 4 is also self-adjoint. This completes the proof of (i). Q.E.D.

§ A3. Let M be a C~-manifold with volume element g, and ¥ a C=-vector
bundle equipped with Hermitian form. Let us denote by C*(M; V') the space
of C=-sections of ¥, and by Cg(M; V) the space of compactly supported
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C=-sections of V. Let us denote by L,(M; V) the space of square integrable
sections of V. Now, let ¥; and ¥, be two C=-vector bundles and P: C=(M; V)
—C>(M; V,) be a linear differential operator. Let P*: C=(M; Vy)—C=(M; V7)
be its formal adjoint; i.e., the differential operator satisfying

(A.3.1) {P*u|vd> = (u| Po) for ueC=(M;V, and
veCy(M; V).
The strong extension P, of P is a linear operator: Ley(M; V) —Lpy(M; V)

such that G(P,) is the closure of G(PIC?;(M ;vp). The weak extension P, of P
is, by definition, a linear operator given by

(A.3.2) P, = P*cpwsvp)*
that is,
(A.3.3) D(P,) = {us Ly(M; V)); the distribution Py

belongs to Ly (M; Vy)} .«
Hence we find

(A.3.4) Py = ((P¥))*, Py =((P¥)u)"
This fact combined with Lemma A.1.1 entails the following

Lemma A.3.1. The following conditions are mutually equivaleni:
» P=P,
(i) C§(M; V) is dense in D(P,) with respect to the graph norm.
@iil) (P*)=(P*),
(iv) For ueD(P,) and v = D(P¥),, we have

(Pyu|v)=(ul|(P*),0) .
Proof. (i) (i) is obvious.
(i) e (i) follows from Lemma A.l.l, because (P*),=(P,)* and (P¥*),=
(2] coms Vl))*'
(i)« (iv) is obvious.

§ A.4. Let M be a Riemannian manifold and let H be a local system on M.
Assume that the C>-vector bundle associated with H has a Hermitian metric.
Let L%y (M; H) be the space of square integrable H-valued p-forms and let
CHY(M; H) be the space of compactly supported H-valued C><-p-forms, and
C?(M; H) the space of H-valued C=-p-forms. Then we can define the exterior
derivative
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d. C*(M; H) — C**\(M; H)
and its formal adjoint
d*: C¥(M; H) — C*"Y(M; H)

with respect to the inner product given by the Hermitian metric on H and the
Riemannian metric. The p-th L,-cohomology group H%)(M; H) is also
defined as the following quotient space:

(A4.1l) {usLiy(M; H); du=0 in the distribution sense} modulo
{du; ue L' (M; H) and the distribution du, belongs to Liy(M; H)}.

In order to compute the L,-cohomology groups in terms of harmonic forms,
i.e., forms annihilated by 4=dd*-+d*d, we need to make precise the domain
of the operators in question. Fortunately we have the following result due
to Chernoff [Ch]:

Theorem A.4.1. Let M be a complete Riemannian manifold, and let H
be a Hermitian vector bundle over M. Then d,, (d*),, (d+d*), and their powers
are all essentially self-adjoint, i.e., their (operator-theoretic) adjoint is self-ad-
joint. In particular, d,=d,,, (d*),=(d*),, (d+d*),=(d+d*), and 4,=4, hold.
Furthermore we find the following:

(A.4.2) (d%), is the (operator-theoretic) adjoint of d,,.
(A43) D(4,) = {usD(d,) N D(d*),); duE D(d*¥),), (d*),wE D(dy)}.

Proof. Although [Ch], p. 410 discussed the case where H is trivial, the
argument there goes well without any change. In fact, since the symbol o(£)
of d is given by £ A, tensoring H with the exterior bundle of cotangent bundle
of M has nothing to do with verifying the boundedness of ||o(&)]]/| €|, which
is needed there. The coincidence of the strong closure and the weak closure
immediately follows from Lemma A.3.1 and the essential self-adjointness.
Hence what remains to be proved is (A.4.3). It follows from the fact that
the right hand side of (A.4.3) is closed with respect to the graph norm and
the fact that Cy(M; H) is dense in D(4,)=D(4,,).
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