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§§olo The purpose of this article is to prove the following Conjecture 0.1.1

when X Is non-singular Kahler manifold and }f* Is the complement of a nor •

mally crossing hyper surface.

Conajectwe CLloL Let X be a compact complex analytic variety, biniero-

jnorphic to a compact Kahler manifold, and let X* be a non-singular Zariski

open subset of X. Then, for any uolarfzaMe variation of Hodge structure H

of weight w on X*y the cohowology group Hk(X; ^H} of the minimal extension

*H of R admits a canon leaf pure Hodge structure.

Here the minimal extension *H of H is? by definition, a unique perverse

sheaf on X such that It is an extension of H and that It does not have either

non-zero sub-perverse sheaf or a perverse quotient supported in X\X*.

§0=2o When X* Is a non-singular Kahler manifold and PI Is a trivial variation,

the above conjecture is nothing but the classical result of Hodge. When X*

is a non-singular Kahler manifold, this is proved by ? Deligne (cf. [Z]} by

the same method of using the theory of harmonic integrals. When X is a

curve, this Is proved by S. Zucker [Z].

The method of our proof follows the Idea of Zucker in that we express

the cohomology group of the minimal extension by the L2-cohomology groups

and use the theory of harmonic Integrals.

§®o3. We shall give an outline of die proof of our mai'i result, i.e., the follow-

ing

TIieOTera fOoL Let X* be the complement of a normally crossing hyper-
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surface of a compact Kahler manifold. Then, for any polarizable variation

of Hodge structure H, Hk(X; *H) has a canonical Hodge structure.

§0o40 The first step is to take a Kahler metric o> on X* whose behavior near

the boundary Y=X\X* is as follows:

(0.4.1) G>~S -V^ldd loglog|z,.|2+ S V^ldzjdzj
j^l 3>l

for a local coordinate system (zl5 °"3zw) of X such that Y is defined by Zj-^z,

=0.

§0o5o Let H=(HC; F(H),F(H); S) be a polarized variation of Hodge struc-

ture on X*. Then, by the definition, Hc is a local system on X* and F(H)

(resp., F(H)) is a filtration of OX®HC (resp.5 Ox®Hc). (See §1.3.) Since

the polarization S gives rise to a Hermitian metric on the C°°-bundle associ-

ated with Hc, we can define L\2^(X*; H), the space of k-forms with coefficients

in Hc which are square-integrable. Then this is a Hilbert space.

The L2-cohomology group Hk
(2)(X*;H) is, by definition, the quotient

space

(Jr*; H); du = Q}/{du; u^Lfa\X*; H) and du<=Lk
(2)(X*; H)}.

We shall prove that Hk
(2)(X*;H) coincides with Hk(X;«H). Once this is

proved, then the finite-dimensionality of Hk(X; *H) enables us to employ the

theory of harmonic integrals. Hence we find that Hk
(2)(X* ; H) is represented

by the space of harmonic forms. Then, by decomposing harmonic forms

to their (p, ^-components, we obtain a Hodge structure on H(2)(X*;H).

The last part of the reasoning is almost identical with the classical one (e.g.

that in [W]).

Here we call reader's attention to an advantage in using the metric of

the form (0.4.1); the metric is complete, and hence we do not need to worry

about the contribution from the boundary in performing the integration by

parts. This fact diminishes the trouble considerably in handling harmonic
integrals.

§0o6o Thus the problem is to show that Hk(X; *H) is isomorphic to

Hk
(2)(X*; H}. This problem can be localized as follows:

Let us define the sheaf J?k(H) on X as the sheaf associated with the pre-

sheaf:
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Jf =) U\-*{u<=Ut2)(X* PI U; H); du^L^X* n U\ H)} .

Then -C\H) Is a complex of sheaves, and we have

Hkw(X*\ H) = H\r(X\ X\H))) .

Here we note another advantage In using the particular Kahler metric o>; J2\H)

turns out to be a complex of soft sheaves, and hence

H\r(X; _T (/I))) = Hk(X; .

Thus we reduce the problem to proving that -C°(H) is quasi-isomorphic
to *H; this Is a local problem.

§Ho7o In order to prove that J2°(H) is quasl-lsomorphic to *H, we need to
know, of course, the behavior of the Heraiitlan metric on the bundle Hc given
by the polarization. It is described In terms of the monodromy of Hc around
X\X*.

§0.8. Now that the problem Is reduced to a local problem, we may assume
X=An and X*=d*n, where AdC is the open unit disc and J*=J\{0}, the
punctured disc. Moreover, by the hypothesis of the induction, we may as-
sume that £\H)s**H holds on X\{0}.

Let us now write X\{0} ^ {t; 0<f} XL, where L is a "link95 and t denotes
the radial coordinate. Then H°(X; J2\H)) Is isomorphlc to the L2-cohomol-
ogy group H°(2)(X\{0};H).

Now, Hk(X\{Q};-C\H)) is isomorphic to Hk
(2)(L; H), which is repre-

sented by the space Ak of harmonic /c-forms on L. On the other hand, we
can show that Hw(X\ {0}; H) is Isomorphlc to the cohomology group of
square-integrable A=0A*-valued forms on trie /-space with respect to the norm

Here K is an endomorphism of A. (See §5.8.) Then, by the characteristic
property of the intersection cohomology groups, it suffices to verify

fe, for k<n

, for k^n .

The proof of this fact can be reduced to Ihe estimation of the eigenvalues of
K. The required estimation follows from the purity theorem (Theorem 4.0.1),
as we are going to explain below.
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§0o9c By [S], any variation of Hodge structure is locally described by a nil-
potent orbit. A nilpotent orbit of weight w is, by definition., (H; F; Nl9

 a a a
9 N l ; S ) ,

where {Nj} is a set of commuting nilpotent endomorphisms of a vector space

H and z1~(1/^')^i"'Z/~(1^Zrf')JV/jF gives a polarized Hodge structure of weight w
for 0< |zx | , • • • , |z;| < 1 (See Definition 1.2.3.) Then this gives a variation Hc

of polarized Hodge structure on A*n fl U, where U is a neighborhood of the
origin.

Now let *HC be the minimal extension of Hc. Then its cohomology group
Hk(*Hc)0 can be calculated as the cohomology group of the partial Koszul
complex

U(N19 .-, Ni): H-+ 0 Im N, -> © Im N.-N* -* - .
y y<*

(See §3.)

Since n(7Vl5 ° ° o , JV7) can be regarded as a complex of mixed Hodge struc-
tures, the purity theorem (Theorem 4.0.1) asserts that the weight of Hk(H(Nl9

° ° ° 5 Nf)) is ^/c+vy. Then the required bound on the eigenvalues of K follows
from this fact. (See § 5.13.)

§0.1®. Theorem 0.3.1 was announced in [K-K, 1]. E. Cattani, A. Kaplan

and W. Schmid obtained similar results independently. ([C-K-S, 2])

An algebro-geometric construction of the Hodge filtration on Hk(X; *H)

is announced in [K-K, 2]. Its details v/ill be published in a forthcoming paper,,

§00110 As a by-product of Theorem 0.3.1, we obtain the following hard Lef-
schetz theorem (§6.3):

Theorem O.ll.L Let o)0 be a Kdhler form on X and denote by [a>0] its sec-
ond cohomology class. Then

([o>J A)*: H*-\X\ *H} -> H*+k(X; *H)

is an isomorphism {of Hodge structures). Here n=dimX.

§1-

In order to fix the notations, let us review basic notions and results con-
cerning a variation of polarized Hodge structure. Except for some minor
modifications, we mainly follow the notations used by Deligne [D], Schmid
[S] and Cattani-Kaplan [C-K, 1], [C-K, 2].
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§ 1.1. Polarize

Let us first recall the following

Ll.L Let a be an Abelian category. A finite decreasing filtra-
tion F of an object M of a is, byde finition, a decreasing sequence {Fp} of sub-

objects of M such that Fp=M£oip<^Q and that Fp=0 for /7>0. Its gradua-
tion Grp

F Is, by definition, FP/FP+1.

Remark 1.1.2. (I) By setting Fp=F~p, we find an Increasing filtration.
We use the convention that, If the Index p Is a subscript (resp.3 superscript).,
then Fp (resp., Fp) is an increasing (resp.3 a decreasing) filtration. This con-
vention also applies to Gr£ and GrJ.
(II) If there is no fear of confusion., we usually omit the adjective "finite".

For a filtration F, let F(l) be the filtration given by Fp(l)=Fp+l.

1.L3. A pair {Fl3 F2} of nitrations of M is called ir-opposed
if either one of the following two conditions Is satisfied:

(1.1.1) F{®Fq
2 ^ M for p+q=w+l .

(1.1.2) 0 (

For a C- vector space V, v/e denote by V the complex conjugate of V.

Let ": V->V be the ^Isomorphism such that ax=ax for a^C, x^V. For
/^HomC7(F1, F2), we denote by /^Hom^F^ V2} its complex conjugate.

L1A For w In Z, a Hodge structure H of weight w consists,
by definition, of data (Hc, F(H), F(H))9 where Hc is a finite-dimensional C7-
vector space., F(H) aad F(U) are u'-opposed filtraiioris of Hc.

For a Hodge structure JJ, Its complex conjugate 5 Is naturally defined by
=HC, F(B)=F(H) and F(H)=F(H).

Remark 1.1.5. Set ̂ -«(tf) =FP(H) n F(/0 for ^4 tf=";- Then we find

Furthermore Hp>q(H)=Hq>p(H) holds.

DeiimitioiQ LL6e The Weil operator C=C(JJ) is, by definition, the auto-
morphism of Hc given by

(1.1.3) Cl^.o =/*-'.



350 MASAKI KASHIWARA AND TAKAHIRO KAWAI

Remark 1.1.7. It is clear that C(H)=C(H) holds.

Definition 1.1.8. A polarization of a Hodge structure His a bilinear homo-

morphism S: HC®HC->C satisfying

j (i) S(F*(H)9 F\H))=S(F*(H\ F(fl))=0 forp+q>w,
( (ii) S(C(H)x9 y) is a positive definite Hermitian form on Hc.

We then immediately find the following

Proposition 1.1.9. (i) S(x, y) =( - 1)WS( y, x) for x, y e Hc.

(ii) S(C(H)x,C(H)y)=S(x,y) for x,

(lii) Hc= © Hp'q(H) is an orthogonal decomposition.
_

(iv) If S is a polarization of H, then S: HC®HC-^>C, given by[S(x,y)=S(x,y)

=(—l)wS(y, x), is a polarization for S.

Remark 1.1.10. (i) If H=H, then these definitions coincides with the

usual one (e.g. [D] with A =R).

(ii) If If is a Hodge structure of weight w? then H'=H@H is a Hodge struc-
ture of weight >v with H'=Hr. Therefore we can apply the results of [S],

[C-K, 2], [K], etc. in this setting.

1.1.11. Let W, F, F be three nitrations of Hc. We say that

(W, F5 F) is a mixed Hodge structure of weight w if (F(Grf)5 F(Grf )) is (w+k)~
opposed for any k. If w=0, we simply call it a mixed Hodge structure.

As proved in [D], mixed Hodge structures form an Abelian category and

Wk, Grf , Gr£, Gr|r, etc. are exact functors from the category of mixed Hodge

structures.

Definition 1.1.12» A mixed Hodge structure is said to be split if

(1.1.4) H - © F*(H) n F\H) n Wp+q(H)
P,q

holds.

Remark 1.1.13. The condition (1.1.4) is equivalent to saying that [F(H),

F(H\ W(H)} is distributive. (See [K].)

1.1.14. For a mixed Hodge structure H, we define H(kl9 k2)

by H(kl9kJ=HC9 Wk(H(kl9 k2)) = Wk+h+k2(Hl F*(H(kJ) = F*+*i(H) and

Fp(H(kl3 k2))=Fp+k2(H). We denote H(n9 n) by H(ri).



THE POINCARE LEMMA FOR HODGE STRUCTURE 351

L2o Tine Monodromy Weight FIttrailoMs ami Mlpoiemt Orbits

In later sections we encounter nilpotent endomorphisms defined through.
monodromy transformations., and they are the starting of our reasoning. So
let us prepare some formalities related to nilpotent endomorphisms .

Let M be an object of an Abelian category and N a nilpotent endomor™
phism of M. Then there exists a unique filtration W of N which satisfies the
following conditions (See e.g. [D].)

(1.2.1)

(1 .2.2) Nk : Grf -» Gr^ is an isomorphism for k^

This filtration is called the TV'-filtration or the weight filtration of N and de-
noted by W(N). This filtration Is given Inductively by the following formula:

(1.2.3) Wk_1(N)=(Nk)-lW_k_.1(N) and

W-k(N) = NkWk(N) for

For an integer k^O, we denote by Pk(N) the kernel of Nk+1:GrY(N)

Then we have

(1 .2.4) GrJT (JV) = Pk (JV)0 JVGr?

We have also
T^pr ATft

(1.2.5) ~
Ker Nk+lm N fl Ker Nk+1

In order to Introduce the notion of a nilpotent orbit (Definition 1.2.3
below), let us prepare some notations.

Let if be an integer, H a (C-vector space, and hp a non-negative Integer
such that dimH=^hp. Let S be a non-degenerate bilinear form
such that S(x,y)=(—l)wS(y9x). We then denote by D the flag manifold
{F;F Is a filtration of H such that dimGr£=A*}. For FeJ&, we set F* =
(Fw+i-p^m Heres for a subspace V of £T, F^ = -f;ce j^; 5(x, F7) =0} =

{x^H;S(V, x)=0}. Let D denote {F^D;(F,F) is a Hodge structure of
weight w and S gives Its polarization}. Set G=GL(H) and GR = U(S) =

ig^G; S(gx, gy)=S(xyy)}:) and let g and g^ denote their Lie algebras. Then
D and D are homogeneous spaces of GR and G, respectively (If they are not
empty). For F&D, TF®^Q/F°($), where Fp(Q) = {a^Q; aFkdFk+p for any
k}. We define the subbundle Th(D) of TB by Th(D)F=F'1(s)/F°(Q). A
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V V

holomorphic map /: X-*D from a complex manifold X to D is called horizon-
tal if df(TX) C Tk(D).

We know that (e.g. [G-S], [K]) there exists a real analytic function 5 on
D which satisfies the following conditions :

(i) For any a^R, {x^D; d(x)^a} is compact:

(ii) For any horizontal holomorphic map /: X-^D, dof is pluri-sub-
harmonic.

The following lemma is due to Cattani-Kaplan [C-K, 2].

Lemma L2.L Let a be a subalgebra of QR9 N^a and F^D, Suppose
that AWk(N)d Wk_2(N)for any A<=a, and that (W(N\ F, F) is a mixed Hodge
structure of weight w. Then there exists A^QR such that

(1.2.6) (W(N\ eiAF, e~iAF) is split,

(1.2.7) [A,a]=0,
(1.2.8)

The main part of the following proposition is also due to Cattani-Kaplan

[C-K3 2].

Proposition L2020 Let a be an Abelian subalgebra of QR consisting of nil-
V

potent elements, C a connected open cone of a

Assume that

(1.2.9) NFpc:Fp-1 for

Then the following conditions are equivalent:
( i ) There exists NQ^a such that

eiNF^D for N(=C+NQ.
(ii) There exists 7V"0eEa such that

eiNFs=D for Ns=Ch(C)+NQ,

where Ch(C) denotes the convex hull of C.

(iii) The N-filtration W(N) does not depend on N in C, an d the following two
conditions are satisfied for any N in C.

(iii a) (F, F9 W(NJ) is a mixed Hodge structure of weight w.
(iiib) The bilinear form S(Grf(jV)): Grfw®Grf(JV)->(0 given by

S(x, Nky) endows the Hodge structure on Pk{N} with a polariza-
tion for fc^O.

(iv) We have (iii) except that we require (iii b) for some N in C.

Proof. (i)==>(iii) is due to Schmid [S] and Cattani-Kaplan [C-K, 2].
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(iii)<=>(iv) follows from the following two facts:

(1.2.9) If W(N) Is Independent of TV" the condition (Ilia) Is satisfied,,
then S(Gn% (JV)) gives a non-degenerate Hennitlan form on Pk(N).

(1.2.10) Any member of a continuous and connected family of non-degenerate
Hermitian forms Is positive-definite If some member Is positive-

definite.

Thus the proof of the proposition Is completed If we show (Hi)=t>(Il). Let
us now begin Its proof. Set W=W(N). By the preceding

S which satisfies the following conditions:

(1.2.11)

(12,12) If we set FQ=eiAF and FQ=e~iAF9 then (W,FQ9FJ is split

Then by [C-K, 2]

for

The map /: ac-*D given by N±-*eiNF Is horizontal. Therefore f~\D) Is a
holoinorphically convex. Moreover f~1(D)+ia=f~1(D) holds, because D Is
Invariant under the action of GR. Therefore we can apply the celebrated
theorem of Bochner: a connected pseudo-convex tube domain Is convex. Thus
any connected component of /~1(D) is convex.

Now, let Y be an element of QM which satisfies

(1.2.13)

Then we

(1.2.14) YWkdWk

(1.2.15) 7|G rjr=fc.i

(1.2.16) [Y,N] = -2N for

(1.2.17)

We also note

(1.2.18)

On the other hand, a simple calculation shows

(1.2.19)

Writing A=^Aj with [Y9 Aj]=jAj, we deduce
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(1.2.20) A,=0 for y^O

from AWkd Wk^. Hence we obtain

(1.2.21) Ad(tY)A = S tjAj .
j<0

Therefore Ad(tY)A tends to 0 as t tends to oo. Since e?NF^D9 for any com-
pact subset K of C there exists a constant aK> 0 such that

(1.2.22) eiNF<=D if t~2N^K and

This shows that f~\D)^> {/; t^a2
K} *K. In particular, f-\D)l) {tN0; t^l}

for some NQ^C. Let C' be the connected component of f~\D) fl Qjg which

contains {f7V0; f ̂  1} . Let us now prove

(1.2.23) C'=)C+7V

For N^C, take a connected compact subset ^ of C which contains both N

and N0, Then

(1.2.24) C'lDtST for

Hence C' contains

= N+N0

for t^a2
K. This means that the closure C' of C" contains N+N0. Since

C'=IntC', we obtain (1.2.23). This completes the proof of Proposition 1.2.2.

Now we introduce the following

DefinitioE L2030 If one of the equivalent conditions in Proposition 1.2.2
is satisfies, we say that (F, F; C) forms a nilpotent orbit of weight w. For a
finite set / of mutually commuting nilpotent elements of QR, we say that (F, F; I)

forms a nilpotent orbit if (F9 F; C(/)) forms a nilpotent orbit, where

(1.2.25)

§lo3o Variation of polarized Hodge Structure

Let X be a complex manifold and X the complex conjugate of X. A
variation of Hodge structure of weight w on X is3 by definition, a triplet
(Hc, F, F) of a locally constant C7z-module Hc of finite rank and a finite
filtration F(H) (resp., F(H}) of OX(H) = OX®HC (resp., Ox(H) = Ox

c c
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by vector subbundles which satisfy the following conditions :

(1.3.1) At each point x in X5 H(x)=(HC}X, F(H)(x), F(H)(x)) is a
structure of weight w.

(1.3.2) For any holomorphic vector field v, vFp(H)c:Fp-l(H) and vFp(H)d
Fp-\H) hold.

A variation of Hodge structure is said to be polarized, if a bilinear homomor-
phism S: HC®HC->CX is given so that Sx polarizes H(x) at each point x in X.

§20 VamsMmg Cycle TtaeOTem

§2o00 Let X* be a punctured disc and let H be a variation of Hodge structure
of weight w with a unipotent monodroniy. Let ^ be the near-by cycle. Then
Schmid's theorem says that ^ carries a mixed Hodge structure, called the
limit mixed Hodge structure in literature. On the other hand, the vanishing
cycle <p in this setting is Im N and can: i/r-*<p is given by N and var: 9— >i^ is
given by the inclusion map. (cf. [D]) The purpose of this section is to prove
that the vanishing cycle also carries a mixed Hodge structure. (Theorem
2. 1.5 below.)

§2ol0 Let N be a nilpotent endornorphism of an object M of an Abelian cate-
gory. Set M^lmN, Ar

0=]¥|MoeEnd(M0). Then we have the following
proposition.

Proposition 2.1.1. (i) Wk(N0)=NWk+1(N)=M0 fl Wk

(ii) M->M0->M induces a surjective morphism Grf+^-^Grf (^o) and an
infective morphism Gi^(N^—>GT^l^ so that

(iii) Pk(N0)~Pk+1(N) for fc^O.

Since the proof of this proposition is elementary, we leave it to the reader.

Let w be an integer. Let H be a finite dimensional C7-vector space and
S a non degenerate bilinear form H(g)3->C such that S(x, y) =(—!)"' S(y, x).
Let A^ be a nilpotent element of n(S; H), the Lie algebra of U(S) = {g(=GL(H);

$(gx, gy)=S(x, y)} . Let H0 (resp.9 N^ denote Im N (resp., N\lmN) and define
a bilinear form Sffo: HQ®H0-*C as follows:

(2. 1 . 1) SHQ(Nx, Wy) = S(x, Ny) = -S(Nx, y) for A-, y e H .
def
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It is clear that $HQ Is a well-defined bilinear form on HQ®HQ, Let us list up
some elementary properties of HQ and SffQ.

2olo2o (i) SffQ(x, y)=(—l)w+1SHo(y5 x) holds for x,
(il) Sffo is non-degenerate,
(iii) If [A5N] = 2kN and A is in n(S; H), then (A—k)\ffQ belongs to

(iv) N: GrKf-^GrfW & isometric for k^Q, that is, S(x, Nk+1y) =

SffQ(Nx, Nk(Ny)) holds for x, y^ Wk+1(N).

The proof of this lemma is again a straightforward one9 and it is omitted
here.

The following proposition is an immediate consequence of Lemma 2.1.2,
(iv).

20lo30 If (S; F5 F; N) forms a nilpotent orbit of weight w,
(SffQ; NF, NF; HQ; N0) forms a nilpotent orbit of weight w+l.

Remark 2.1.4. The coincidence of NFP with Fp~l fl H0 follows from the
fact that any morphism of mixed Hodge structure Is strict with respect to the
Hodge filtration.

We are now ready to state the vanishing cycle theorem:

Theorem 20L§0 (Vamshng Cycle Theorem) Suppose that {S; F, F;

Nl9 -•- , NI} forms a nilpotent orbit of weight w. Set H^ImNi and let SHl:
Hl@B1->C be given by Sg^N^ N1y)=S(x9 N^). Then we have

(i) {Sff^N-fiNj?\N-i\Htf o o ° 5 NI\H^ forms a nilpotent orbit of weight
(w+l).

Before starting the proof of this theorem3 we state and prove the following
corollary.

Corollary 20L60 Suppose that {F5F;Nl9 ">% N^ forms a nilpotent orbit

of weight w, and set W=W(Nl, — , Nj). Then, for any N'Q9 N{, — , N'k e
9 o ° ? 7Vj)3 we have the following:

( I ) N i • • • N'k : Grjf —> Gr^ is an isomorphism for k^l.

(II) S(Cx9 Ni-^Nix) is a positive definite Hermitian form on Ker (]¥ooo°]V^:

-Gr^_2)«

Proof, We prove (i) by the Induction on k. If k= 1, this Is evident.
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Assume k^2. Set HQ=ImN{ and W = W(Nl\H^9 — , Nt\H9) = W(N{ \H{).

Then we have the following commutative diagram:

(2.1.2)

The left bottom arrow being an isomorphim by these induction hypothesis.,

the left upper arrow is also an isomorphism. The claim (ii) is also an im-

mediate consequence of the diagram (2.1.2).

In connection with this corollary we propose the following

2.L7o Lei {F, F\ Nl9 ->% Nt} be a nilpotent orbit of weight w

and let k be a positive integer. Let f(xl3 < ° - 3 #/) be a homogeneous polynomial of

degree k. Suppose that f~\G) f]Ml
+ = {0} . Then f(Nl9 — ,#/): Grf (Nv'"- */> ->

Gr^kNr'"tN^ *"•? ®n isomorphism.

The corollary says that this conjecture is true if / is a product of real

linear functions.

Now we start the proof of the vanishing cycle theorem by proving it in

the following special case.

Lemma 20L80 Suppose thai: {F, F; N9 N'} forms a nilpotent orbit of weight

w. Suppose further that {F, F; W(N9 Nf)} is spill. Denote ImN by HQ. Then

we find:

(i) There exists a strictly positive number c such that {NF; N\HQ,

(N+cN')\ffQ} forms a nilpotent orbit of weight ir+L

(ii) Wk((N+cN') | HQ) = NWk+l(N, N') =HQn W^N, N') holds for any

sufficiently small number c>0.

Proof, (i) Since (F, W(N, N')) is split, the assumption implies that

(em'F; N) forms a nilpotent orbit of weight w. Hence it follows from Pro-

position 2.1.3 that (eiN/NF; 7V0) forms a nilpotent orbit of weight w+1. There-

fore Proposition 1.2.2 implies that

(2.1.3) eiN/+iiNNF^D

holds for f>c ~1
5 where c is a positive constant. Now, let us choose Y in

n(S:N) such that [7,#] = -2#, [Y,N'] = -2Nr and YFpdFp hold. Then

\ffQ€=n(Sff0'9 HQ). Then? for any strictly positive number a, (2.1.3) im-
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plies

(2.1.4) aY+1eiN'+itNNF = eia~2N/+ita~ZNNF^D .

This means that (NF; N \HQ9 (N+cN')\ffo) forms a nilpotent orbit.
(II) This follows from (I) and the following result of Cattani-Kaplan

[C-K, 2].

2olo90 Let N be a nilpotent endomorphism of H and let F, Ff

W be three filiations of H. Assume the following conditions:

(2.1.5) (W, F, F) is a split mixed Hodge structure of weight w.

(2.1.6) (W(N), F, F) is a mixed Hodge structure of weight w.

(2.1.7)

Then W=W(N).

Remark 2.1.10. Cattani-Kaplan [C-K, 2] added another condition which

is superfluous; their proof works well without it.

Let us now embark on the proof of Theorem 2.1.5.
Set W=W(N19 •-, Nt). By Lemma 1.2.1, we can choose A in u(5; H) so

that it satisfies the following;

(2.L8)

(2.1.9) [A,Nd=0 (j=l,-,l),

(2.1.10) ( W; eiAF, e~iAF) is split.

If we can prove Theorem 2.1.5 for (W; eiAF, e~iAF\ then the theorem holds
for (W; F, F). Hence we may assume from the first that (W; F, F) is split.
We may further assume 1=2. In fact, if the theorem holds for 1=2, then,
for N In C(7V23 • --, Nt), I/V^F; A^ | Hl, N \ Hl} forms a nilpotent orbit.

Now, we prove the theorem by the induction on dim J?.
Define the set A by

{t > 0 ; { JVxF; ^ | ffl, (^ + tN2) \ HI} forms a nilpotent orbit} .

The preceding lemma guarantees that A is not void. The theorem is equivalent
to A= {t;t>®}. Suppose A=^{t;t>Q}. Then A= (0, c] for some c>0.
Let 7V0 denote Nl+cN2. If we can prove

(2.1.11) Wk(N0\Hl)=N1Wk+1

holds for every k, then Proposition 1.2.2 tells us that c+e (0<£<1) belongs



THE POINCARE LEMMA FOR HODGE STRUCTURE 359

to A, This Is a contradiction. Thus the proof of the theorem Is reduced
to the proof of (2.1.11). In order to prove (2.1.11), It suffices to prove that

(2.1.12) ^Giftf-Gi-^

Is an Isomorphism for each fc^ 1.
Let us now define a filtration {W(It)} of Hk=lmNi by the following:

(2.1.13) Wt(k) = N\Wl+h(Nl9 N2) = Hk n W,-k(Nl9 N2) .

The last Identity follows from the fact that N* Is a morphlsm of mixed Hodge
structure, which is strict with respect to the weight filtration. Note that

(2. 1.14) W(k) = W(N | Hk) for any N e C(Nln N0)

holds by the hypothesis of the Induction.
In order to prove (2.1.12), let us consider the following statement A(j, a, k):

(2.1.15) A(J9 a, k): NJ
0N

/a: Grf+
(*} -> Grl!fjff Is bijective,

where N'=N0+eNj (0<e< 1) ,

Let us fix e(>0) sufficiently small so that A(j,a,Q) may hold. Since
W(k) = W(N'\H^ for any k, A(®, a, k) Is also true.

Next let us prove

(2.1.16) ,4(j+l5 a, k+l)+A(j+l, a, k-l)+A(j-l, a+i, k) ̂  A(J9 a, k)

for j, k"Z>l and a^O.

Once this Implication Is proved, the induction proceeds and we obtain A(j, a, k)
for every 7, a, fc^03 In particular, A(j, 09 1). This is what we wanted to prove.

Now9 let us return to the proof of (2.1.16). In what follows, C denotes
the Weil operator, as usual. Take N arbitrarily from C(N19 7V0). By the
Induction on dinLfl", we can employ the result In Corollary 2.1.6. Therefore
we have

N'aNj

(2.1.17) GrE5> -— Gr^l^

and

(2.1.18)
_ N'aNj+l

SHk(Cx, N'aNjx) Is positive definite In xeKer(Gf+
(^ - ^ Qr^l^z) .

If we assume A(j+2, a, fc), then Grf^} -- > Gr?^7_2 Is surjective. Henc



360 MASAKI KASHIWARA AND TAKAHIRO KAWAI

N"NJ+1

Ker(GrJ^*) > GrJJi^) varies continuously on a neighborhood of
N=NQ. Hence by letting N tend to the boundary point N0, we find the fol-
lowing:

(2.1.19) If A(j+2, a, k) Is true, then Sffk(Cx9 N"NJ
0x) Is positive

semi-definite on Kk
aJ = Ker(Grf+<y - ^ Gr?<V2) .

def

Furthermore it follows from A(j+29 a, k) that

(2.1.20) If x^Klj satisfies SHk(Cx, N'aNJ
Qx)=05 then N'aNJ

0x=0 .

To see this, let us first note by (2.1.19)

(2.1.21) S^(C**.y, NNlx) = 0 .

Since GrY&=N0GrY£\2+K*j and Sffk(N9GrY&2, N"NiK*j) = 09 we have

Sak(GrY&, N"NJ
0x)=Q. Since 5^^ gives a perfect pairing between

and Gr?fja. We find N"N'0x=Q.
Now let us show that, for k,j"^l,

(2.1.22) JVJ^'tf: Grf+
(^->Gr^ is injective under A(j+l, a, k+1),

A(j+l,a,k-l) and A(j-l, a+l, k) .

Suppose NlN'ax=Q holds for x In Grf+
(«}. Let us consider the follow-

ing diagrams:

a

and

Then A(j+l, a,k—l) implies

and A(j+l, a, k+l) implies

= SH6(Cx,
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Now take jeGrJ^+i' such that x=a(y). Then ft(x)=N,y implies

and

Sffk(Cx,

Therefore we find

= C .

Hence (2. 1 .20) Implies NiTlN'ap(x) =0, Then we obtain Ni-1N"x=Q. There-
fore A(j—l9 a+l, k) entails #=0. This finishes the proof of (2.1.22). Since
dimGr^^dimGr^jl^, this means that N3

0N'a is an isomorphism, that is,
A(j, a, k) is verified. Thus we have completed the proof of Theorem 2.1.5.

§3o The Mammal Extension? amd tine Partial Eoszul Complex

§3.dL To understand the meaning of the purity theorem in the subsequent
section, we prepare an algebraic result which gives a concrete description of
the minimal extension *H of a local system H.

§3ol0 Let X be a complex manifold. We denote by 3)x the sheaf of linear
differential operators on X, Let Y be a closed analytic subset of X and let
X* be X\Y 3,ndj: X*c->Xthe open embedding. Let <SSi be a regular holono-
mic ^)jr*-module. We assume that <JA extends to a coherent .SJy-module.
This assumption is equivalent to saying that 7i«^*(DRA-i(^)) is constructive
for any k. Here BR.=J§ Jtw* (O, ). Then there exists a regular holonomic

*3li such that

(3.1.1) *JHX^JH
(3.1.2) *<3H does not have either non-zero coherent quotient or non-zero

coherent submodule with support in Y".

Such a 3)x -module *^M is unique up to an isomorphism. We call it the mini-
mal extension of JA,

§3o2o Let /: X'-^-X be a finite raorphism of complex manifolds. Set
T=f~\Y) and X*' =X'\T =f~\X*). For a regular holonomic S)x»-
rnodule Jff extendable to X\ let *<3tt' be the minimal extension of c5ff .

Set JK= { c5T? where/*' is T^-->r*. Then we have *JK = f *JK'. This
J/" ^ J/

follows from the following facts:
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(3.2.1) 1 Is a faithful exact functor from the category of coherent S)X'-

modules to that of coherent Jj^-modules.

(3.2.2) { <3tt* =( f c5IO* for any holonomic ^/-module <3tt, where *
J/ J/
means the adjoint system.

(3.2.3) Mk
Y({ JH') = f Mk

Y,(3tt') for any k and any coherent ^/-module
Jf J/

JT.

§ 3e3o Let X be a non-singular algebraic variety defined over C* Let X be

the compactification of X, i.e., a non-singular proper algebraic variety which

contains X as a Zariski open subset and let c : X^>X be the open embedding.

Let Xan be the complex analytic variety associated with X. A coherent 3)x-

module JM is called regular holonomic if 3)x ®t*3ft is a regular holonomic

.S^-module. Then we have

H\Xan: DRZ JJJU) ̂  jy^DRjG^O) .

Here DRz(c5K) denotes the algebraic de Rham complex and 3ftan is Ox ® <3M-an o
In fact, assuming t affine? ^(Xflra? DKxmH((t*3M.J)2iHk(X.ui

follows from the regularity of <3tt and Jy*(^, ((
follows from a result of Serre [Se]. Finally we have

§3o40 Let us investigate the structure of *3H In the following special case:

Let X be an algebraic manifold C\ and let X* =C*n =(€-{®})n and

Y=X\X*= U YJ9 where 7,— {^eCB; ̂ -=0}. Let If be a local system on

X* with the unipotent monodromy around Fy. Then JHan=^x^n®H

comes from a regular holonomic .2)̂  ̂ -module c3K=Gz*®K with the structure

of ,2)z*-module by

dJe = l-Nje (7=1, -,n).
Xy

Here F is a finite dimensional C-vector space and {]Vy} is a set of mutually

commuting nilpotent endomorphisms of V. Then we have the following

Lemma 384oL *JM is an Qx-submodule qfj^^i given by

JcJ
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Here /={!, o o ° , n} and xr~ Jl Xj9 Nj= fl Nj. Of course, we understand
1 *T * J'eJ" '^x^=L9 N$=l.

Proof. It is easy to see that 32 = SO — \ImNj Is the ^-submodule

of 7#c_5K generated by O®V. Suppose that there Is a surjective morphism
9: 32 ->.£ to a coherent .g^-module supported In 7. For any ^e F9 we
have, for a sufficiently large m,

(xjdj)m(l®v)=0 for 7 = 1, -,ii.

On the other hand, w = 9(1 ®z>) satisfies (;q °°° :KII)
WM=O, and hence

def

o = (a, - 9Bf(^ - *•)"« = H (V,-+")« •
1^J^»
l^V^wz

Together with (Xjdj)mu=Q (7=15
 0 0 0

3 «), we then obtain w=0. Hence 9=09

that Is, _£=0. Since 57 has no non-zero coherent ^)^- submodule supported
In Y, this completes the proof of the lemma.

Let *H denote the minimal extension of PI in the category of perverse
complexes; that is, *H Is a perverse complex on X such that Its restriction to
X* coincides with H and that there exists (in the category of perverse com-
plexes) neither non-zero quotient nor non-zero subobject of *H having its
support In Y. Then we have

Further we have the following quasi-isomorphisms :

Here (*H)0 etc. denote the germ at 0 of *H etc,
Let U(N19 ••*, JVn) be the subcomplex of T(Z; DRZ(*J^)) given by

n*(^lf -, tf.) - 0 (Im ̂ ) H ^ CF(X; J3i®*c5K)
JCJ ;ej V '

IJI=*

Remark 3.4.2. Let FF be the 72-dImensional vector space with the basis

{e^ °°°^n}' Then the complex K(N19 • • - , ̂ Vn) given by
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with the exterior product with 2 N^ as the differential is called the Koszul

complex. The complex n(TVl9
 o o ° 5 TVJ can be identified with the subcomplex

of K(N^ • ° ° 5 Nn) given by 2 (ImTVj)® A e.-9 where ei=dxi/xi. Hence we call
Jd yej

n(TVl9 ° ° ° 9 TVJ the partial Koszul complex.

Proposition 304030 U(N19 — , TVJ w quasi-isomorphic to r(X; DR^(*JK)).

Corollary 3.4.4. II(7V13 • • • , TVB) & quasi-isomorphic to (*H)0.

Proof. The vector field *ydy operates on r(X; DRX(*«JO) bY the Lie

derivative L^^. of Xjdj. For m=(ml9 ••• , mn)^Zn, set

L.^-mtfu = 0

for c>0,./=l,-,Ji}.

Then the complex ^(X; DR^(*<^/)) decomposes as follows :

Since we have n(JVl5 •-, NH)=T(X; DRx(*JI{j)09 it is enough to show that

F(X'9 DR_y(*c^))« is homotopically equivalent to 0 if m 4=0. Since

holds for the interior product /,yej. of the vector field *ydy, I/,^y is homotopical-
ly equivalent to 0. On the other hand, (Lx.dj—mj)c = Q holds for c>0 on

F(X\ DR^(* Jlf))^ by the definition. Hence

is homotopically equivalent to 0. This proves the required result : If m^ ̂ F 0

for some j9 then r(X; BRz(c5f/))m is homotopically equivalent to 0.

The corollary is an immediate consequence of the proposition and (3.4.1).

Q.E.D.

§40 Ferity Theorem

§4.0. Let {S; H, F, F\Nl9*»9 Nt} be a nilpotent orbit of weight w. Using

the mixed Hodge structure of H given by the weight filtration W(Nl9 ° 9 ° ? TV/),
we endow the partial Koszul complex n(TVj, ••• , TV/) (cf. §3.4) with mixed

Hodge structure as follows :
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(4.0.1) W,(lm N

(4.0.2) F'(Im J

P(Im tfy

The purpose of this section is to prove the following theorem concerning the

weight of H\U(N1, -,

Theorem 4.0.1= (Parity Theorem) The mixed Hodge structure on Hk(ll(N1,
•,N,)) given above is of weight equal to or less than w+k, thai is,

ls ..-, N,))=0forj>w+k.

In order to state the dual statement of the purity theorem, we introduce
the following complex H*^, — , N,):

„ ..-, JV,)4 = © (ImNJejCH® A
\J\=k Z

where e^ • • • , et is the base of Zl and ej= A £/. The differential

is given by the inner product with S £/• We endow with n*(7Vl3 • • » , JV/) the
1=1

mixed Hodge structure by

-., #7)) - 0((Im ̂ )

and

Then we have? as the dual statement of the purity theorem5

4Jo2o The weight of Hk(U*(Nl9 •••5^V/)) is equal to or greater

than w—k.

§4olo Before starting the proof of Theorem 4.0.1, we note the following:

(4.1.1) Hq(U(N1,-,Nly)=0, Hq(H^Nh-^Nl))=0 for

(4.1.2) H°(U(N19 -, N,)) = Ker N, n - H Ker ̂  ,

(4.1.3) ^
Ker J^
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Therefore the theorem Is trivial for q=0 or 1=1.

On the other hand, the purity theorem in q =1—1 Implies

Corollary 4.1.1. Ker N, — N, C Ker N, — Nt H W^ (N19 — , N,) +

S Ker ̂  - tfy-i^y+i - N, and ( h Im JV, - N^Ni+l - #,) f) W-/(JVi, -,

Nt.
For 1=2, this can be restated as

(4.1.4) Im N, n Ker 7V2C W^(N

§4c20 Let us first consider the case where the following condition is satisfied:

(4.2. 1) W(Nj) = W(N19 N29-, N,) .

This Is equivalent to the existence of an open convex cone C In

such that dDC(Nly —, Nt), C^Nt and that {F, F\ C} forms a nilpotent orbit

(in the sense of Definition 1.2.3).

We start our reasoning by noting that the following exact sequence (4.2.2)

is obtained by regarding the diagram (4.2.3) below as a double complex that

defines 11(7̂ , • • • , N^. Here and in what follows, H^ denotes lmNl9 as usual.

(4.2.2) 0 -> n(A^i? .-, ^|Fl)[-l] -* U(N19

H

(4.2.3)

Im #! -> ® Im

Furthermore the assumption (4.2.1) guarantees that the exact sequence (4.2.2)

lies In the category of mixed Hodge structures. Note also that the vanishing

cycle theorem Implies

(4.2.4) {.A/iltfj, N2\ffl, °a°, Nt\H^ forms a nilpotent orbit of weight w+1 with

W(N2\ffl, ' - 9 N t \ f f l ) = W(Nl\Hl9 -9Ni\ffl) = W(Nl\Hl}.

Let us now prove the theorem by the induction on /. We obtain the following

exact sequence (4.2.5) from (4.2.2):

(4.2.5) H*-\TL(N2\Hv9 -, tf^)) -> H\TL(Nl9 -, N,J) -> Hk(U(N29

By the induction hypothesis, the left cohomology group in (4.2.5) has the weight

<;(w+l)+(£— l)=w+k and the right one has the weight ^w+k. There-

fore the middle one has also the weight ^ w+k. Thus the induction proceeds,

and the proof is completed if the condition (4.2.1) is satisfied.
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Next let us prove

(4.2.6) H*(U(N19 •»• , NtJ) Is a quotient of

H\H(Nl+N2, N,+N2+N33 -, #H- "•+#/, Nl9 -, #,)) for every /c.

As It Is clear that H^UWi + NtoNi + Nz + Na, '••9Nl + --- + NhNl9 •••9Nl))
satisfies the condition (4.2.1), the verification of (4.2.6) finishes the proof.

To prove (4.2.6), let us first prepare some sublemmas,

4o2olo Im #! n Ker jV2Clm (N^N^ *

Proof. We prove this by the Induction on the dimension of H. Let
NQ denote N1+N25 and denote lmNQ by HQ. Then the hypothesis of the

Induction Implies

Hence N^lmN^Kei N2)C.lmN2
0, or Im^nKer^cIm^o + Ker NQ. Set

W=W(Ng). Then

Grf (Im JV0+Ker 7¥0) - Grf (Im NQ)

holds for /c> 0. Hence It is sufficient to show that

Im #! n Ker N2 n IF0Clm JV"0 .

Let x^W2 and ̂ x e Ker ̂ 2. We shall show JV^ e Im JV0. We have

NlX = NQy+z with y e FF2 and z e Ker ]V0 .

Setting j/=.x— j, z7 = — z9 we have

(4.2.7). ^2^: - NQyf+zf .

Since NlN2x=0^ we have
= 0 ,

which Implies NlN2y=Q. Hence., by setting Wrf==W(NQ\ImN2), we find

Moreover N2y mod fFo belongs to Pi(NQ\ImN2)5 the primitive part with

respect to ^V0lim^2- Hence we obtain

that is9

(4.2.8) 0^^(Cj;? N0N2y) = S(Cy, -N2z) =



368 MASAKI KASHIWARA AND TAKAHIRO KAWAI

Using (4.2.7) we can also verify

(4.2.9) 0£S(Cye, -NlZ') = S(Cy', N,z) .

Summing up (4.2.8) and (4.2.9), we find

(4.2.10)

= -S(CNlX, z)

= -S(C(N0y+z)5 z)

= -S(CN0y, z)-S(Cz, z)

= S(Cy5 NQz) - S(Cz, z)

= -S(Cz, z) .

Since z is in P0(N0). This means z^W^c.JmNQ. Therefore N1x=NQy+z
also belongs to Im N0. Q.E.D.

42o2o Let N! and N2 be mutually commuting endomorphisms

of a module M. Set N0=Nl+N2 and suppose

(4.2.1 1) Ker ̂  n Im ̂ 2c:Im ̂ 0 .

Then

Ker NQ -

(4.2.12) | r0

M > Im N&lm N2 > Im N^

is a morphism of complexes and a quasi-isomorphism. Here

a(x) = NjX = -N2x , pfc) - (Njx, N2x) , /92fe y) = N2x-N,y ,
TQ(x) = x , TI(X) =(x, —x) .

Proof. Since Aor0=ri0« and fiz°Ti=® are easily verified, this is a mor-
phism of complexes. Since Ker a ^KerT^nKerTV^Ker^, and ^2 is sur=

jective, it is enough to show that Coker a— >Ker /?2/I
m Pi i§ bijective.

(4.2. 1 3) Injectivity : Assume that x e Ker NQ n Im N1 n Im N0 satisfies TI(X) =
P^y) for j*EM, Then x = Nly = —N2y. Hence jeKerJV0 and
x=a(y).

(4.2.14) Surjectivity: Assume (xl9 x2) elm^SIm^ satisfies fi2(x1,x2) =

NtX^Q. Set xi=Niyi. Then N1N2(y1—y2)=Q, and hence the
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condition (4.2.11) entails

N2( y2 —yi) e Ker Nt fl Im N2 c Im N0 .

Therefore there is z^M such

Setting u=N2(y2—y1—z), we u=Nlz9 and hence Melm^nim-A^. Fur-
thermore N0u=NlNQz=N1N2(y2—yj)=0, Hence we obtain

Now let us prove (4.2.6). First we consider the where 1=2. Then
we have the following commutative diagram., where NQ=Nl

J
rN2:

(4.2.15)

n0 : Ker^/o— >Im^ n lmN2 fl Ker7V0 - - > 0 - > 0

V V V V

1? N2) : H - > Im^SIm #2 - — > IniTV^ - — - - — -> 0

It follows from Sublemma 4.2.2 that the complex II0 given in the top row
of (4.2.15) is quasi-isomorphic to the partial Koszul complex n(7Vj, N2),
Hence Hk(U(Nl9 N2)) is a direct summand of Hk(H(NQ5 N19 N2J) for every k.

In the general situation? let II' denote H(N39 - -" ,7V/) . Then3 in parallel
with (4.2.15), we find the following commutative diagram:

{IT n Ker ̂ Y0 - 7̂ (11 ') n N2(H
f) n Ker NU(N19 N2, N3, .-, N,)

where NQ=N1+N2 and <j is a quasi-isomorphism. Hence Hk(H(NL, N2, °°
is a direct summand of Hk(H(Nl+ N2,, N19 N2, N& • • - , TV/)). Repeating this
procedure we finally find (4.2.6). At long last, this completes the proof of
the purity theorem.

§So £2-CoftaomoIogy Groups ami lEtersecikm Cekemotogy Groups

5oI0 Let X be a compact complex manifold,, Y a normally crossing hyper-
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surface. We set X*=X\Y. Let H be a variation of polarized Hodge struc-
ture of weight w on X*. We assume

(5.1.1) Hc is quasi-unipotent, i.e., the local monodromy of Hc around any
irreducible component of Y is quasi-unipotent.

Let C(X) denote the Weil operator of the Hodge structure (HCwX9 F(x), F(x))
and define the inner product </|gX (/,geJJc^) by Sx(C(x)f9g). Then the
C°°-vector bundle on X* associated with the local system Hc is equipped with
the Hermitian metric defined by this inner product.

§5.2a To consider L2-eohomology groups., let us equip X* with a Riemannian
metric g which behaves on a neighborhood of Y as follows:

Let j0 be a point of Y and choose a local coordinate system (zl9 •°*9zn)

such that Y is defined by z1«--z;=0 in a neighborhood of yQ. Then

(5.2.1) g - S +
2

Here, and in what follows the symbol ~~ means that each of the two metrics
is bounded by a constant mulitiple of the other on a neighborhood of the point
in question. One can easily show (ef. [Z], §3) that such a metric exists. Fur-
thermore, as shown in [Z], Proposition 3.4, it enjoys the following properties.

(5.2.2) It is complete and the volume of X* is finite.

(5.2.3) The supremum of any C°°-form on X is finite with respect to the metric,

§5«,3o As we have thus introduced a Riemannian metric on X* and a Her-
mitian metric on Hc, we are now ready to define the L2-cohomology groups.

In order to give their precise definitions, let us prepare some notations.
Let 3)$x denote the sheaf of distribution- valued /7-forms, and let 3)^(H)

denote the sheaf <3)#x*®Hc. Then, by the de Rham theorem <Db°x4H) is a
c

complex quasi-isomorphic to Hc.

Now we introduce the sheaf ~CP(H) by the following

Definition 5.3.1. For any open subset U of X, F(U; ~CP(HJ) is, by defini-
tion, the totality of u in F(U\ Y, 2)&P(H)) such that, for any compact set K of U,
both u and its exterior derivative du are square-integrable on K (1 X* with
respect to the Riemannian metric g on X* and the Hermitian metric on the vector
bundle H.
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The sheaf J?P(H) thus defined does not depend on the choice of the Rie-
mannian metric g on X*9 provided that g satisfies the condition (5.2.1). It
is also clear that -C*(H) forms a subcomplex ofj**D6x*(H)9 where j denotes
the Inclusion map X*<^>X.

Furthermore we have the following

Lemma 503020 -CP(H) is a soft sheaf,

In fact, for u^F(U; -C*(H)) and ^e Co(U)9 both <pu and d(<pu)=<pdu+d<pu
are square-lntegrable because <p and d<p have finite norms. Therefore J2P(H)

is a fine sheaf and hence soft. (See [G].)
If we denote by Lfa(X*; Hc) the set of ^-valued Informs on X*,

then we find

r(X',

Hence Lemma 5.3.2 entails

Ker (dH*(X-
Im (d: r(X:

{du\ u&Lfa\X*\ Hc) such that du^Lp
(2}(X*\ Hc)}

We call this the p-th L2-cohomology group. We sometimes use the abbrevi-
ated notation Hfa(X*; H) to denote HP(X; -C°(H)).

§ 5o40 We can now state the main result of this article :

Theorem 5AL The complex «£°(H) is quasi-isomorphic to *HC, the mini-
mal extension of Hc introduced in §3.4. In particular, the L2-cohomology group
Hk(X; J?°(HJ) coincides with the intersection cohomology group Hk(X; *HC).

§505o For any point x^X, there exists an open neighborhood U of x and a
family of holomorphic functions {//}y<=/ defined on U such that {dfj(x)}jel

is linearly independent and Y 0 U= U {x^ U'JAx) = 0} . For /^ 05 we
yei

define Xl so that

Xtf}U= U n/7x(0)
jcj yej
IJI=/

and we set

X) = Xt\Xl+1 .
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Then Xf is an /-codimensional submanifold of X and X= \\ Xf Is a Whitney
stratification of X,

Now, by a classical theorem, we know

(5.5.1) Hc -» ~C°(H) \x* is a quasi-Isomorphlsm.

Therefore we can use the following characterization of *HC to prove Theo-
rem 5.4.1.

Lemma S.S.L *HC is a complex of sheaves on X which satisfies the following
conditions:

(5.5.2) *HC | z* is quasi-isomorphic to H€ .

(5.5.3) If we denote by jl the embedding X\Xt^>X\Xl+l9 then

and

See Goresky-MacPherson [GM] for the proof of Lemma 5.5.1.

In view of Lemma 5.5.1, the proof of Theorem 5.4.1 Is reduced to verify-
ing the following for /^> 1.

(5.5.4) For x&X? , M\£°(H))X = ® for v^l .

(5.5.5) For x^Xf , we have

for p^l-l 9

where 17 ranges over a neighborhood system of x.

We shall proceed by the Induction on /, and we may assume from the
beginning

(5.5.6) ^(^Ixxx^tfclxxx!-

In the rest of this section., we prove (5.5.4) and (5.5.5) under the assump-
tion (5.5.6).

Since the question Is loca!9 we consider the problem locally on X so that
we may assume Xl+l=<f>. Thus on a neighborhood of x, we may assume

(5.5.7) X

(5.5.8) X* =
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where d = {z; \z\ <!} is the unit disc and J* Is the punctured disc J\{0}0

§ 5,6o Let us begin our discussion by showing the following

Lemma §.6«,1. Let M be a Riemannian manifold equipped with a metric
g0. Let I be an open interval {t^M; — 1<?<1}0 Suppose that IxM is equip-
ped with a Riemannian metric g. Let H be a local system on M and let p be the
projection IxM—>M. Suppose that the C°° -vector bundle associated with p~lH

is equipped with a Hermitian metric ||*||(^). Suppose

(5.6.1) g^dt2+go.

Suppose also that

(5.6.2) ll*lk,>~ ll*ll(o.,> •

Then we have

(5.6.3) ff?2)(M; H) « Hk
(2)(IxM; p^H) .

Proof. We may assume without loss of generality that g=dt2+g0 and

li*ll(M)HNI(o,*)- Since an L2-forai (resp.? closed L2-form) on M can be
trivially extended as an L2-form (resp., closed L2-form) on IxM, we can define
a map

; H) -> Hk
(2^IxM; p~lH] .

It Is easy to verify that i Is Injective. Let us show that i is surjective. Let
u(t, x)=u(t, x)-}-dtv(t, x) be a closed form on IxM, where u and v are free

def

from dt. Since u Is supposed to be closed, we find

(5.6.4) — = </,« .1 ' 9t

Let us take a C°°-function <p(l) with compact support in I such that I <p(f)dt=\.
c* i

Set ir(t)=\ <p(s)ds. Then -vKO=0 for t<—\ + e and 1 for t>l—e.
J -00

Now we set

Then (5.6.4) implies
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(—<p(s))u(s)ds

= u(t)— I <p(s)u(s)ds

and

This implies

u = dw+ I <p(s)u(s)ds .

Since I <p(s)u(s)ds Is square-integrable, w and dw are also square-integrable.
J f

Hence u is cohomologous to \<p(s)u(s)ds. Thus, the map / Is surjective. Q.E.D.

§So7o Before going further, we show that it suffices to prove Theorem 5.4.1

in the case where the local monodromies of Hc are unipotent.

Let X* be J*J x A*~1
9 where J* is the punctured disc and A is the open disc.

For a variation of polarized Hodge structure H on X* with quasl-unlpotent

monodromies., let /: X'-*X be the covering (zl3 •••, zji—>(zf, • • » , zf, zm, ° B O , zj

so that H' =f~~l(H) on JT* =f~\X*) has unipotent monodromies. Let

G=(ZlmZ}1 be the Galois group of the covering X'*-»X*. Then Rf*?H'c)

is also a perverse complex and It coincides with *(/##£). Hence, */?£ coincides

with G-invariants of Rf*f?H'c). Similarly G acts on /#-£"W) and ^°(^0

coincides with (/-invariants of f*£\H'). Therefore *H'~£°(H') implies

*H—J2\H). Hence we may assume from the beginning that H is with uni-

potent monodromies.

§5ofL Concrete Description of the Metrics

In order to find the concrete description of the L2-cohomology groups

in terms of harmonic forms (Lemma 5.10.1), we do some preliminary con-

siderations on the metrics and related operators.

First let us try to find a coordinate system on X so that the metric g and

the norm on H€ may take suitable forms for our purpose.

Thanks to Lemma 5.6.1, we may suppose I=n9 I.e.,

and g
2 (|

Let us take a coordinate system (t, x,y)—(t9 xl9 •"9xn9yl9
 o o ° 5 jj of X*3
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with Sj^—1, by

(5.8.1) z; = exp (2^\/^iXj—(tyj)~l).

Then X* Is isomorphic to

Now9 using the coordinate system (t, x, y), we find the following

Lemma §.80L The Riemannian metric g is equivalent to

(582) —+*£ t2y2dx2+ S ^

on X*.

Proof. The metric g takes the following form on X*:

S^

On the other hand, it follows from the constraint ^yj = l that

Hence we have

Vj I '

This shows

V (— -I- ̂ Y ~ — 4- V ^
> w v, / ^2 v2'

Q.E.D.

In view of Lemma 5.8.1 we introduce the following family X*(t) of sub-

manifolds of X*.

§Q8o2o Let X*(tn) denote

for r0>0.

We equip X*(tQ) with the following Riemannian metric g(f0):
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(5.8.3) g(?0) =tl( y]dX%+ yfdy] .
j = l j=l

Next let us study the Hermltlan metric on the fiber bundle H. Let Nj
denote the logarithm of the monodromy of Hc around {ze X; Zy=0}. Since
we may assume without loss of generality that CNJ is unipotent (§ 5.7), Nj is
nilpotent. Then {expQ^XyA^e; e^Hc} is a constant sheaf on X*. Let F

denote the sections of this sheaf. Then

and

for

Here and in what followss 6 denotes the sheaf of C°°-functions.
Now we know the following

Lemma 5.8.3. ([K], [C-K-S,!]) Let K be an endomorphism of V which

satisfies the following two conditions:

(5.8.4) [K, Nj] = -2N, , j=\,-",n.

(5.8.5) K\Glw=k, where W = W(N» -, Nx) .

Then we have

(5.8.6) \e\z*(t9x9y)~~\r*fle\z.(l,x,y) for e^V .

(5.8.7) For e^ F, if we write e=^ek such that Kek=kek, then

Here \ * | x*(t, x, y) denotes the Hermitian metric of H€ at (t, x, y).

Therefore, replacing the fiber metric of H with an equivalent one we may
assume the following:

(5.8.8) \e\^(t9x9y)=\r^e\z^l9x9y') for e^V.

(5.8.9) \e\ x*(t, x, y) does not depend on x.

(5.8.10) K is a symmetric operator with respect to the metric | e \ x*(t, x9 x).

Thus we obtain a concrete description of the L2-norm of an ff^-valued
form. To write it down we introduce the following

5o8o40 For u in 3)&(H)9 Au Is, by definition, (K-\-2p)u where
p denotes the degree of u with respect to dx^-dx^
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In view of Lemma 5.83,, the L2~norm \\u\\ x* is given by

(5.8.11)

where dvx denotes the volume element of X* determined by the metric (5.8.2).
Therefore Lemma 5.8.3 entails

(5.8.12) IMIi*=5^lk"^ll^(D-* -

Since \dt/t\ =1, for an element u(t)+v(t)dt/t of Lfa(X*; H), u(t) can be
regarded as an Lf2)(X*(l); Unvalued function in t and v(t) is an Lk^l(X*(l);
j?)-valued function In t which satisfy

(5.8.13)

(5.8.14)

The converse being true, we may regard L^(X*; H) as the set of pairs
of such u and v that satisfying (5.8.13) and (5.8.14).

We end this subsection by showing the following Lemma 5.8.5.

L8o50 (i) [A,d\=2dic, where dx denotes the differential of the
coefficients of V-valued forms, i.e.,

dx(a®e) = (dxa}®e .
/"\ T A J% 1 ") X^ f#2-, ,2\- l / r
(11) [A, wjr*(OJ — £ 2^ (I yj) ^9/9* ••^'d/dx • '

j J J

Here d$*(/) denotes the adjoint operator of d in the Hilbert space Lkw(X*(t)l
Hc\x*(t))> and L$/dx. (resp., i^/x) denotes the Lie derivative (resp., interior prod-

uct), operating on V trivially.

Proof. Let 9 denote a®e with e in Ik. Suppose that a Is a p-form in
dxl9 ° ° ° 9 dxn. Then It follows from the trivialization of Hc that

(5.8.15) d<p = dxa®eJrdya®e-\-^ dx^a®Nje .

Hence it follows from the definition of A and the properties (5.8.4) of K that

(5.8.16) Ad<p = (k+2(p+l)}dxa®e+(k+2p)dya®e
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This proves (i).
To prove (ii) let us first note that the symmetric property of A entails

(5.8.17) [A, d$*(t)] = —[A, dx*(t)]* .

Hence it follows from (i) that

(5.8.18) W, <&(*)] = -2d}.

Let us now calculate d*<p for <p=dxjp. Let ^r=dxIG, Then

- S 47, y A/)((y, |2-
J \ d;c/

fsgn(/ 7 ) if /^{j}
\^ j i /

where

0 otherwise.
Hence we obtain

- - S

This proves (ii).

§5o90 The function r: X*-»Jg extends to X\{Q}-*B. Let us denote by X(t)
its fiber. Then ^\{0} is isomorphic to the product of X(l) and {t;t>0}.
Moreover, "^|z\{0} is locally constant along the fiber of X\ {0} as X(l) X

It follows from the induction hypothesis (5.5) that

(5.9. 1)

holds. Here L, is the inverse image of {t; t~l\<s} by f. X\{Q}^R. On
the other hand, Lemma 5.6.1 entails

(5.9.2) ff*2)Gr*(l); ^)^lim//*(L5; JT(/f)) .
g

Since Hk(Lt; X'(H)) is stable with respect to e, (5.9.1) and (5.9.2) entail

(5.9.3) # ?2>(**(1); ^)«^*(r»(l); rf/f

In particular, we observe
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(5.9.4)

Note that

(5.9.5) #?2)(JT*(1); //)

— {u^r(X^(l)i^k(H 1^(^)1 u is square-integrable and du=® holds in the
distribution sense}
modulo
{dv; v^r(X*(l); 3)#~\H\x*ufi) and both v and J^ are square-integrable}

In order to be precise, let us denote by Tk the weak closure of the exterior deri-°
vative d acting on Worms. Then (5.9.4) implies that the range R(Tk^ of
T£_I? i.e., the denominator in the right hand side of (5.9.5), is closed. See
Appendix for the terminologies and some basic results in functional analysis
which we are using here.

Now, the closedness of ^(IV^s guarantees the validity of the Hodge-
Kodaira decomposition ([Ko], Ch. IV, § 1. See also Appendix Theorem A.2.1),
that is, the following lemma holds.

Lemma 5.9.1. For t>0, the space L\^(X*(t)'9 H) of (H * x*w)-valued
L2-k-forms on X*(t) admits the orthogonal decomposition

(5.9.6) R(Tk-J®#@R(Tt) ,

where Tk_1 denotes the weak closure of the exterior derivative, T* denotes the
adjoint operator of Tk9 and $ denotes the space of harmonic L2-k-forms«

To complete the proof of Theorem 5.4.1 in a later subsection (§5.12),
we prepare a proposition which guarantees that we can choose a harmonic
form to represent a cohomology class in Hh(X; J?°(H)). To be more precise.,
we will prove the following

5.10.1. Let co be a closed L2-form on X*n{t<a}. Then
we can find h(t) and h\t) which are L(2)(X*(l), H)-valued L2~form on {l; i<a}
satisfying the following conditions:

(5.10.1) /z(/) and h\t) are harmonic. (Cf. Corollary 5.10.5).

(5.10.2) a)—(h(t)+h\t)dt/t) is the coboundary of a square-integrable form
on

(5.10.3)
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(5.10.4) hl(t)dtjt is a squar e-integrable form on X* fl {t<a}.

In order to prove this proposition., we prepare several notations and lem-
mas. Let us first denote by ||/IL*co the L2-norm of a distribution / defined
on X*(t) which is determined by the RIemannian metric g(t) and the fiber metric

on H*\x*(t). Then It follows from (5.8.3) and (5.8.6) that \\f\\x*w and ||/||z*ao
are equivalent for each t and each t' (0<t^tf), More precisely., there exists
a constant c which satisfies

Furthermore we can verify the following

Lemma 5010020 There exists a constant C which does not depend on t<2

and which enjoys the following property :
For any L2-coboundary form u on X*(t) we can find an L2-form v on X*(t)

which satisfies

(5.10.5) u = dx*(t)i>

(5.10.6) IHIz*c*)^C|M|z.(f).

Here dx*($ means the exterior derivative on X*(t).

Proof. For an Integer q^l, let us consider the following commutative
diagram

qK/2

y — _ > y

\ f I

01 . 01
(t, x'9 y) <- (qt, x, y) 9

where x'=qx. Note that fq is an Isometry and preserves the fiber metrics
between the bundle V on X*(f) and V on X*(qt). Moreover this commutes
with the exterior derivative d. In fact, for e^ V we find

= qK/2 S

= qK/2 dx*w

because the commutation relation (5.8.4) implies
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(5.10.8) Njq
K/2 = qK/2+1Nj (j=l, ° ° ° 9 n)

Now? for each t (0<f<2)3 we can find a positive integer q such that
l<qt<3. Then., by the Hodge-Kodalra decomposition (Lemma 5.9.1), we
can find a unique v which satisfies the following;

(5.10.9) f*u = dv

(5.10.10) v Is orthogonal to the space of harmonic forms and R(d*)9 the range
of the adjoint operator of (the weak closure of) d.

Then v satisfies for some constant C (independent of t)

(510.11) \\*\\zw^C\\f*u\\z.w .

Since 5 is unique, v Is stable under the covering transformation offq. There-
fore we can find v such that v=ffv. Then

(5.10.12) u = dv .

Furthermore we have

(5.10.13) \\f*u\\rw = q*\M\x*v

and

(5.10.14) \\f*v\\z<w = q*\\v\\zw.

Hence (5.10.11) Implies

(5.10.15) I M I ^ W ^ C I M I ^ O ) ,
where C is independent of t. Q.E.B0

Lemma §.10.3o Let A be the operator given in Definition 5.8.49 and let

h be a square-integrable harmonic form on X*(t). Then we find

(5.10.16) Ld/dx.h=Q for any j

and

(5.10.17) Ah is harmonic,

Here L^x. is the Lie derivative of d/dxj acting on V trivially,

Proof. Let us first recall the following well-known fact:

U0o4o Let G be a connected iopological group acting on a
topological space X, F° a complex of sheaves on X (or objects in the derived cate-
gory). Let /: GxX-*X be the composition map and let p: GxX-
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projection. Let a be an isomorphism f~lFa^>p~lF°. For any g in G let

ig°
a' g^^^F0 be the morphism given by ig: X-*GxX, Then we find

commutes.

Now we use this result in the following manner: Take G=Mn and let
G act on X*(t) by a: (x, y)\-*(x+a, j)9 which can be extended to the action
on *H so that it acts on V by e**iNi. Therefore this action is trivial on the
cohomology groups Hk(X*(f)\*H\x*(t-j). In particular, for a^Zn, this action
is nothing but e*ajNJ on *H. This means that the actions of Ns on Hh(X*(t)\
*H\xt(t)) is trivial. Therefore for a^Mn, the action of a on X*(t) and the
trivial action on V induce the trivial action on the cohomology groups. Nows

by the induction hypothesis, the cohomology group is isomorphic to the space
of square-integrable harmonic forms. This implies h(x+a)=h(x) for any
square-integrable harmonic form h. Hence L8/9 A=0 holds.

The assertion (5.10.17) is an immediate consequence of the commuta-

tion relations

[A, dm] = 2dX9 [A, rf V(*)l = 2 S (t^Y1^^. .

proved in Lemma 5.8. 49 and the fact that a harmonic form h satisfies dx*^h=

d$*u>h=0. Q.E.D.

Corolary 501005o Let us identify V-valued forms on X*(t) and those on
X*(t') by (t,x,y)*-*(t',x9y). Then a square-integrable harmonic form h on

X*(t) is also harmonic on X*(t').

Proof. Let X*(t') be the universal covering of X*(t). Then we have
the following commutative diagram:

x*(t)
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Here / Is given by (t'9 x
f, y)^->(t, x, y) with x' = -^- x. Then / and (Y'/' }K/2 give

Isomorphisms of Riemannian manifolds and vector bundles witli Menniilao
metric. Hence the Laplacians At and /V coincide. Therefore fclie resi.ii
follows from the fact that If h Is harmonic then (ff/t)A/2h Is also hariuoijic.

5.10.6o There exist a locally finite open covering i^};==ir2,... of
M+ (={f GEJ2; />0}) and an associated partition of winy {fl/}/=i,2,... which satisfy
the following conditions for some constants a and c:

(5.1018) I f t l and 12 belong to IJ9 then \ tjt2\ ^a.

(5.10.19) aj is a non-negative C°°-function with its support in Ij.

(5.10.20) S*y = 1.
j

(5.10.21) SJI^I^c.
dt

Proof. Let Jt(l^Z) denote an open Interval {s^R; 1—2<s<!+2}.
Let x(s) be a non-negative C°°-function v/hose suppoit is contained In {s&B;
\s\ <2} and which is strictly positive on {s^M; \s\ <!}. Let xtu(s} (m&.3)

denote x(s—iri). Denote by bt(s) Lhe function

S

Then we Immediately see :

(5.10.22)

(510.23) S 6/ = 1 -

5
Since 5] I — £/(•*)! is a periodic functlon3 it must be bounded on M, Next

/ ds

define 77 and at(t) by {r elg+ ; log (1—2) <i <log (/+2)} and 67 (log 0, respective-
ly. By renumbering I"/ and «/ suitably v/e can find the required /• and a^,

Q0E0D0

Let us now embark on the proof of Proposition 5.10.1. Let us ibc a .joint
/y In each Interval Jy In Lemma 5.10.6. Our strategy *s tc decompose closec

L2-form o) on X* In Lk
(2)(X*(tj)\ #!**(?.)) first an(i ^en -° patcli them iogethei

using the preceding lemmas. Let 21 and v be a form Independent of di which
satisfies
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(5. 10.24) © =—«+*.
t

Then the assumption that o) is a closed L2-form Implies the following:

(5.10.25) dx*(t) u = &

(5.10.26) dx»(f)V = 0

(5.10.27) (l|«(Olli*Cfl-«*>
J t

(5.10.28)

Here and in what follows we sometimes use the symbol dx*(t) to emphasize
that the exterior derivative Is considered on X*(f). If there is no fear of con-
fusion, we simply denote It by d'.

In view of (5.10.26)3 we can decompose v(t) as

(5.10.29) A/0+<*z*wW/0

with respect to the metric on X*(tj), where hj(t) is a harmonic form. It Is
clear that hj(t} Is independent of j, and hence we denote It simply by h(t). By
Lemma 5.10.2 we may assume without loss of generality

(5.10.30)

and

(5.10.31)

By the orthogonal decomposition In L(2)(X*(tj); H), we may further assume

(5.10.32) Wj(t, x) is orthogonal to the space of closed forms in Lk
(2)(X*(tj); H),

Let <p(t} be a compactly supported C°°-functIon of t ̂ R. Then it follows from
(5.10.24), (5.10.29) and (5.10.25) that

(5.10.33) d' ( K0«(0- ^ - (
J t J

S r$
— (<p(f))hdt Is harmonic It must be orthogonal to the space of cobound-
at

ary formss and hence this integral vanishes for any <p. Thus we obtain
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(5.10.34) /— =0

and

(5.10.35) d'( \ ?>(0«(0- + \ (*|?>(OK -) = 0 .
J i J of r

Next let us decompose w(0 in £(2)C^*(0)> ^0 as

(5.10.36) u(t) = h\

where #(0 is the harmonic part of ti(0 (Independent of j) /9/r) Is ortho-

gonal to the space of closed forms. Then we have

(5.10.37)

and

(5.10.38)

Note that (5.10.37) Implies

for

with a constant C Independent of j. Since h\t) Is a globally defined form

It means

(5.10.39) \\h\t)\\z^t^CMt)\\^t}

with a constant C Independent of t. It also follows from (5.10.36) for

any compactly supported C°°-function <p(t) we

(5.10.40) J (<p(t)u(t)+ (

-
t

Since the left hand side together with the first and the third in the right

side of (5.10.40) Is closed, the definition of ^ and the property (510.32) Imply

(5.10.41) ^ = '^-

Hence (5.10.38) Implies

(5.10.42) l l
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In view of the structure of the metrics and the condition (5.10.18) on the size
of the interval IJ9 we can find a constant C independent of j such that

(5.10.43) l l f l l z ' M ^ C I M L r o , for t in/,.

Let Wjk denote Wj— wk. Then it follows from the definition (5.10.29) that
Wjk is a closed form on /,- n /*. Furthermore we have

(5-10.44) IK*«ll**(^C|KOIUrt

and

(5.10.45) ||f^*(Ollz*M^C||«(Ollz*o> for tml^I,.

Using the partition of unity {a,} introduced in Lemma 5.10.6, we define

a closed form n on Is by

(5.10.46) 2fl*wy4.

Then we obtain from Lemma 5.10.6, (5.10.44) and (5.10.45) the following:

(5.10.47) ll

(5.10.48) ||r^(r)||,.(/) = ||( S f~

where C' is another constant independent of j.
On the other hand, it follows from the definition of wik and j-y that

(5. 10.49) r,-rt = S «/K— wi) - S «/(w4 - w,)

Set w=wy— r,-. Then (5.10.49) guarantees that w is a globally defined form,
and (5.10.31) and (5.10.43) imply

(5.10.50)

(5.10.51) lk|y

for some constant C independent of t. Combining (5.10.36), (5.10.41) and
the definition of w, we obtain

(5.10.52) u-t^ = hl+td-^+d'ak ,
dt dt
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where TH is a closed form on Ik. Hence u—t— Is a closed form. By (5.10.51),

(5.10.39), (5.10.27) and (5.10.28), it is a square-integrable form on X*. There-

fore, by the same reasoning as in the proof of Lemma 5.10.2, we find a(t) and

a harmonic form h\t) which satisfy

dt
(5.10.53)

with some constants C and C" which are independent of t. Hence (5.10.53)

combined with (5.10.27) and (5.10.28) entails that a and h2 are square-integ-

rable form on X*. Then it follows from the definition of u, v and w that

(5.10.54) a> = —
t

dt t \t

— d *( 4-— a\4-— /2+/
t t

Since w+— a is square-integrable by (5.10.50) and (5.10.53), the relations

(5.10.54) and (5.10.34) are exactly the same as what Proposition 5.10.1 asserts.

Thus we have completed the proof of Proposition 5.10.1 at long last.

The following proposition gives us a characterization of an L2-coboundary

form on X*. Combining Proposition 5.10.1 and the following one, we have

complete description of the L2-cohomology groups in terms of Inharmonic

forms.

Proposition 5.10.7. Let h and hL be the harmonic forms given in Proposi-

tion 5.10.L Then the following two statements are equivalent:

(5.10.55) h+ — h1 is a coboundary of an L2-form on X*\



388 MASAKI KASHIWARA AND TAKAHIRO KAWAI

(5.10.56) (I) h = 0
and
(II) There exists a harmonic form H1 which is square-integrable

on X* and satisfies hl=\
dt

Proof. It Is clear that (5.10.56) Implies (5.10.55). Let us show that
(5.10.55) Implies (5.10.56). Let u and v be forms free from dt and suppose
that they satisfy

(5.10.57) h + ~hl = dx*l-u+v]

Since

(5.10.58) d

we find

(5.10.59) h = d'v

and

(5.10.60) h1 = t ~-d'u .

Since h Is a harmonic form, (5.10.59) Implies

(5.10.61) h=d'v=0.

Hence3 by the same reasoning as In the proof of Proposition 5.10.1, we can
find a square-integrable harmonic form H1 and a square-Integrable form w

which satisfy

(5.10.62) v=Hl+d'w.

Then (5.10.60) and (5.10.62) Imply

(5.10.63) hl-t— = d'(t— -u).dt dt
Hence we conclude

(5.10.64) hl = t^.1 ; dt

This completes the proof of Proposition 5.10.7.

§ S.llo By the Induction hypothesis., each cohomology class In Hk(X*(l);
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*^1 **(!)) cari be represented by a harmonic form h on Z*(l), while Lemma
5.10.3 guarantees that Ah Is also harmonic. Thus the operator A defines an
endomorphism of H\X*(\)\ *H\X*($). As we shall prove In a later subsec-
tion (§ 5.13), the purity theorem gives a bound on ihe eigenvalues 2 of the oper-
ator A acting on Hk(X*(l}; *H\X^ as follows:

.llolo Let 1 be an eigenvalue of A acting on the space of
square-integrable harmonic k-forms on H \ x*($. Then we find:

, if k<n
(5.11.1) ~

if k^n

§ 5ol20 Admitting Proposition 5.1 LI for awhile, let us show how Theorem
5.4.1 follows from It. We begin our discussion by recalling the following
celebrated inequality due to Hardy ([H-L-P], p. 245,

Lemnma 5ol20lo Let r be a real number different from 0. Let f ( l ) be a

measurable function such that \ f \ f \2 ̂ — is finite. Then we can find F(t) which
Jo t

satisfies the following:

(5.12.1) t^f =f,
at

(5.12.2) (°YiFi 2 —^(—y
Jo t \ r /

Using this lemma, we claim that h1 In Proposition 5.10.1 may be sup-
posed to be 0. In fact, we may assume without loss of generality that h1 is
an eigenfunctlon of A with the eigenvalue X. By (5.8.12), we then find

•-*IIAi|H,(0A.t

Since Proposition 5.11.1 guarantees n—l^pQ, we can by Lemma 5.12.1
a square-lntegrable harmonic form H1 such that

(5.12.3) .
dt

Since If1 is harmonic. Lemma 5.10.3 and (5.12.3) imply

(5.12.4) dz^H1=—h1
9

that is, —h1 Is an exact L2-form on X*. Thus we may suppose from the
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first that #=().
Next let us discuss h In Proposition 5.10.1. Again we may suppose that h

is an eigenfunction of A with the eigenvalue L Then

and hence (5.10.3) implies that h should vanish if it is an Inform on X*3 in
case A*>n. Therefore Proposition 5.11.1 implies A=0 if k^n. On the other
hand, if k<n, then, again by Proposition 5.11.1, we find that the finiteness of
\\h\\x* is equivalent to the finiteness of ||/z|U*a).

Thus we have verified

0 if k>n

if

and the induction proceeds.

§Sol3o Now we shall prove Proposition 5.11.1. It will complete the proof
of Theorem 5.4.1 at long last.

For a positive integer q, let us consider the diagram

(5 13.1)

Here, fq is the morphism (zl5 ••• , z,,)i-»(z?, •••,z%). Then the morphism g*/2:
extends to

(5.13.2) r:*Hc

Then, we obtain

(5.13.3) tf>

Hk(X\{Q}'9*Hc) — Hk(X(l)'9 *Hc) — Hfa(X*(l); H) and since this space
is represented by the space ^ of harmonic forms3 9^ is represented by qA/z

on J£. Therefore in order to show Proposition 5.11.1, it suffices to show that
any eigenvalue p. of 9^ satisfies

tf k<n
if

Let us first consider the case where k<n. Then
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(5.13.5) H\Xi «H€}

holds. Hence ffi defines an endomorphism of H*(X; *HC\ We shall show
the required bound on the eigenvalues of <p(^ follows from the purity theo-
rem (Theorem 4.0.1.). For this purpose, we may, and do, enlarge X to Cn,
Let c5K be the .2^-module corresponding to ^JJ^, that is,

Then the homomorphism r extends to

given by co§§ev-*f*c0§§qK/2e for o>e<0(*F) and e& Y. Now we can calculate
H\X\ *HC) by H\U(N19 •-, Na)), because F(X\ DR(JK)) is quasi-isomorphic
to the partial Koszul complex H(N19 • ••, Nn). Then, on T1(N19 "•, Nn), the

homomorphism r is given by

r : Im Nh — N^e t-+ qK/2+v e .

If we endow II(7V"1? • • • , Nn) with the mixed Hodge structure, then K acts on
Gr^(n(^l3 ..., N^k) by ja-w-2k, and hence r acts by

Now the purity theorem says

Gi%(Hk(n(Nl9 - , JNT,))) =0 for

Thus any eigenvalue # of 9^ satisfies

Let us nov/ consider the case where fc^/?. In view of the long exact
sequence for local cohomology groups, we obtain

(5.13.6) Hk(X\{0} ;

On the other hand3 the Poincare-Verdier duality implies

(5.13.7) Hk
(£}\X; 'H^H2*-1-^; f*^)*))'.

Here ( )' means the dual vector space, and (*#)* means R ^omc(*H, C).

Since /Is a finite-covering map, (/#*/0*^ /*((*•#)*) holds. Let a* denote the
dual morphlsm of a: 'lfHc-^Mf^Hc)^'rC(f^Hc). If we denote by ft the map
from *(H *) to f**(H$) obtained in the same manner as In the definition of
a, we find

(5.13.8) a*oft = q\ the number off~\z) for a generic z ,
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In fact, since Hom(?Hc, *Hc) = Hom(*Hc\x*,*Hc\x*}9 it Is enough to

prove (5.13.8) on X*. This can be checked easily.
Passing to the level of the cohomology groups, we conclude the following

claim (5.13.9) from (5.13.8).

(5.13.9) The endomorphism H2n~k-\a^H2n-k-\^) of

H2n~k-\Xi *H*) coincides with qn
0

As k^n in the present situation, we have 2n—k—l<n. Hence any eigen-
value of H2n~k-l(p) should be equal to or smaller than gC2"-*-1)/2. Therefore
it follows from (5.13.9) that any eigenvalue of j^2""*'1^*) is equal to or bigger
than 0<*+i)/*B Since H2n-k"1(a*)=Hk

(Q](a)*=^9 the eigenvalues of p<*> enjoy
the same property. Thus we have completed the proof of Proposition 5.11.1.

§ 60 Tfee Hodge Decomposition and the Hard Lefsefaetz Theorem

§ 6cOo In the preceding sections, we showed that when X is a compact complex
manifold, the L2-cohomology groups give the intermediate cohomology groups
of the variation of polarized Hodge structure given on the complement of
a normally crossing hypersurface in X,

Now we shall show that, when X is a Kahler manifold, the decomposi-
tion theorem of Hodge, Weyl, Kodaira, ... for the constant case still hold for
the variation of polarized Hodge structure.

Moreover, as observed in [Z], the results of Hodge (e.g. [W]) hold in this
case also. Referring to [Z] and [W] for the proofs, we shall just state the facts
that we need in our context.

§ 6ol0 Let X be a Kahler manifold with a Kahler metric CD. Using a local
coordinate zj of X, co has the form

<» = — 9 — S htfdZtdZp
^ O5,|3

with a positive definite Hermitian form (h^)a^. We confuse this Kahler form
with a Riemannian metric ^h^dz^dzp. Let H be a variation of polarized
Hodge structure of weight w. If we denote by S the sheaf of C°°-functions,
8(H)=8®HC has also a Hodge decomposition by

c

(6.1.1) 6(H)= 0 M*-q.
p I q = w

Here Mp'q=G®Fp(H) n 8®F\H).
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Denoting by £k the sheaf of C°°-/ofornis and by Gp>q the sheaf of C°°-(/?, q)-

forms, we define the filtration of 8k(H)=8k®€Hc by

Then £k(H) has also the Hodge decomposition

(6.1.3)

where Jlp-*=Fp(£k(H)) fl F*(£*(H)).
Now the exterior derivative rf of 5° extends to S*®H€ and satisfies

€7

(6. 1 .4) d(Fp(£*(H)) c Fp(Sk+1(H))

Therefore we have

(6.1.6)

We shall decompose rf: g\H)-*e°(H) by d=d'+<i" so that

(6.1.7)

(6.1.8)

Then we

(6. 1 .9) d'Fp(S\H)) C Fp+1(£\H)) ,

(6.1 .10) d'Fq(£°(H))c:Fq(S\H)) ,

(6.1.11) d/f Fp(£°(H}} C Fp(ff(H)) ,

(6. 1.12) rf"P(fi°(#)) C F'+\£*(H)) .

Let us denote the Hermitian metric of the C°°-vector bundle <S°(^) bY < 1 >•
Then we can define for a linear differential operator P acting on £\H) its

formal adjoint P* by

for u^3)£(H) and v^£\H} with compact support.
Following [W], let L denote the operator itf->G)/\u, and ^ its formal adjoint.
We denote by rf*, rf'*, ^///:!i the formal adjoints of rf, rf' and dff respectively.
Then v/e have

(6.1.13)
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(6.1.14)

(6.1.15)

Then, as observed in [W] and [Z], we have

6.1.1. (I) If we set A=d*d+dd*, then d=2(d'*d'+d'dr*)

=2(d"*d"+d"d"*).

(ii) Ifa<=Sp(H) (p^n=dim X) satisfies Ln~p+la=®, then *C0o: = (-l)^-1)/2X

- Ln~pa. Here * and C0 are the operators obtained by extending the
(n-p)l
^-operator and the Weil operator on S° by tensoring Hc> respectively,

(lii) d'd'=d"d"=Q9 d'd"+d"d'=Q9 d'*d"*+d"*d'*=Q, d'*d"+d"d'*=Q5

d"*df+d'd"*=Q.

(iv) [L,d]=0, [A,d*]=0, [L,d*]=dc, [A,d] = -d*c, [L,4=0.
Here dc=C~1dC and d*c=C'ld*C and C is the Weil operator defined by

c\MP,g=ip-«.
§ 6o20 Let X be a compact Kahler manifold with a Kahler form o>0, Y a nor-
mally crossing hypersurface of X, and H a variation of polarized Hodge struc-
ture on X*=X\Y. As in [Z], let us take a C°°-function <p on X* with the
following property: for any point p of Ftake a local coordinate (xl9

 o o ° 3 xn)

such that Y is given by x1 -8° xl=Q. Then, for C°° -functions a^

If we take c>0 sufficiently small, then a)=Q)0+icddq> is a Kahler metric with
the desired behavior

^ , rf2^ J J

Therefore (X*, co) is a complete Riemannian manifold. As in § 5.3, let us
denote by L^)(X*9 H) the space of square integrable Worms with value in

Hc with the norm {{/ 1 /)} = (</ 1 fov. Since <Sk®Hc= 0 &*« is the
J P+q =k+w

orthogonal decomposition, L^(X*, H) decomposes

(6.2.1) Lf2)(J$r*;#)= ® IJM(X*;H).
p+q=k+w

Here Lf^ffZ*; fT) is the space of square integrable sections of the bundle Mp'q,
The (6.2.1) is the decomposition of Hilbert spaces.
Set
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(X*; H)) = 0 £&«'(**; H)

and define Fp(Lk
(Z}(X*; H)) similarly. Then, with these filiations, Lk

w(X*; H)

has a Hodge structure of weight fc+w.
In what follows, we simply denote by d and d* the weak closure of them,

that is,

D(d) = {weELf2)(X*; H); du In the distribution sense belongs to Lk^(X*;

D(d*) = {u<^Lk
(2}(X* ; H); d*u In the distribution sense belongs to Lk

(2]\X* ; H)} .

Since co is a complete metrlc3 It is classically well-known that the strong
closure of d and the weak closure of d coincide In particular., d* Is the (op-
erator-theoretic) adjoint of d, (See Appendix, Theorem A.4.1.)

Let us define A by specifying Its domain as follows;

D(A) = {wc=£(<0n/>(rf*); duf=D(d*)9 d*ut=D(d)}.

Then, again by the completeness of the metric9 A thus defined coincides
with the v/eak closure of J, i.e., the operator whose domain Is given by
{HeL(2)(-Y *; H); Au In the distribution sense belongs to L(2)(X*m

9 H)},
and it Is self-adjoint. ([Ch], see also Appendix, Theorem A.4.1.)

Since the strong closure of A preserves the Hodge decomposition, we have

(6.2.2) D(A] = ©D(J) n L$(X* ; H) .

Now our main result (Theorem 5.4.1) asserts

H\X\ *H) = Ker d/R(d) ,

and this is finite-dimensional. Therefore d has closed range. Hence we can
use the result in |Ko] (cf. Theorem A.2.1 in Appendix). Denoting by IP the
space of square-integrable harmonic fc-forms, i.e., $ ={u£= L^(X*'9 H);

du=Q}i we find

In what follows, we denote by H the orthogonal projection from
L*2)(X*; Hc) to ^*, and by G the Green operator (cf. Definition A.2.2 in Ap=
pendix) ; thus we have

(6.2.3) u = H(u)+ AG(u) for u^L^(X*; Hc) .

Let &*•* denote #riL$(X*; Hc\ where p+q=k+w. Since A preserves
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the Hodge decomposition, we then have

(6.2.4) A*= 0 #•«,
p+q=k+w

(6.2.5)

(6.2.6) G(L$(X*; H))dLffi(X*; H) .

We set F*(#) = © #'+«' and define F(Ak) similarly.
' '

Now, we denote by d' and d" their weak closures and d'* and rf"* their
adjoint operators in the operator theoretic sense. Therefore d'* and dfr*

are the strong closures. Although we can prove that their strong closure
coincides with their weak closure, we do not use this fact in this paper. How-
ever, we use the fact that

D\A) = iu<=D(d')nD(df*); d'u<=D(d'*)

and D(d) coincide.
In fact, ^Is'u) is a closed operator,, because

Since the weak closure and the strong closure of A coincide, we have

(6.2.7) D(A) = D'(A) .

We have

(6.2.8) If u(=D(df) satisfies d'u=Q, then d'G(u)=Q
and u = H(u)+2d'd'*G(u).

In fact, we have u=H(u)+AG(u). Since H(u}^D(A)c.D(d>}, we have
AG(u)^D(dr) and d'4G(u)=Q. Therefore 2(d'*d'G(u}\d'*d'G(u)y=<AG(u}\
d'*d'G(ii)y=(d'AG(u) \ d'G(«)>=0, which implies d'*d'G(u)=Q. Then <d'G(u) \

d'G(u)y=<d'*d'G(u) | G(w)>=0 implies d'G(u)=Q.

Proof, For u^D(A)dD(d"*) let us take compactly supported C°° sections
un such that un-*u, Aun-*Au. It is enough to show that d'd"*un converges.
Setting v=un—itm, we have

((d'd"*v\d'd"*v))
= -((d"*d'v\d'd"*v))
= -((dfv\d"dfd/f*v)}

= ((d'v\d'd//d/'*v}}
= ((df*d'v\d"d"*v}}.
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On the other hand3

\\d'*d'v\\2+\\d'd'*v\\2 = \\(d'*d'+dfd'*)v\\2

Implies

Similarly we have

Thus we obtain || d'd"*v\ ^ ||̂ ||. Hence

\\drd"*un-d'd"*um\\ -> 0 if /i, m -> oo.

Therefore d'd"*un converges. Q.E.B.

Let us define the filtrations F and F of -£"(#) by

F*(£\Hy) = {we .£'(#); u is a distribution valued sections of FP(£(H))}

and similarly

Since FP(-C\H)) is an <?-module, FP(-C*(H)) is a complex of soft sheaves.
Then we have the following

6o202o Fp(^k)-*Hk(X; FP(X°(H))) is an isomorphism,

Proof. The injectivity is clear from the following diagram:

> H k(
(6.2.9)

Let us prove the subjectivity. Let u be an element of F(X; Fp(J?k(H)J)c:

Lk
(2)(X*\ H) with du=0. Then we can write

u = H(u)+AGu = H(u)+Ag with g = Gu .

Since H and G preserve the Hodge decomposition, we find both H(u) and g

Now, du=0 implies dg=Q, and hence we obtain

u = H(u)+dd*g .

Since ^/*g belongs to ^"^Lfe1^*; •flr))» we can write ^^^^o+^i with ^O

Lfi^1'^*; H) and ̂ eF^Lfo1^*; J^)) with q=k-p. Therefore we have
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u = H(u)+dvQ+dvl = H(u)+d\+dv1+d"vQ

at least in the distribution sense. Looking at the (p—l, #+l)-part3 we obtain
d"vQ=Q, and, in particular, v^D(d"). Hence, by (6.2.8), we find

^o = H(vQ}+2d"d"*G(vQ) .

Thus we obtain, in the distribution sense,

u = H(u)+2dd//d//*G(v^+dv1

Since GK)GED(J), d"*G(v^D(d') by Lemma 6.2.1, that is, d'd"*G(vd is In L2.

Since -d'd"*G(v^U$-l(X*\ H\ v^F^LfcftX*; #)) and J5T(ii)eF*(#), we
are done.

Thus we obtain

Theorem 6.2.3. (i) a: Hk(X;
and

ft : H\X; F*(£° (H)) -* H\X; J7°(
are injective.
(ii) Let us denote by F and F the filiations of Hk(X; X\H))^H\X\ *H) given
by OL and ft in (i), respectively. Then Hk(X; *H) has a pure Hodge structure
of weight k+w.

Note that J:\H\ F(X°(H)) and F(X\H)) do not depend on the choice
of a Kahler metric, therefore neither does the Hodge structure on H\X\ *H).

§ 6.30 Let us define

by
juQ((a®e)®(ft®f)) = S(e,f)a/\fl .

Then we have the following

Lemma 6030L The map JUQ naturally extends to a map

and the map & commutes with the exterior differentiation d.

Proof, Let x be a point In Y=X\X* and let U be an open neighborhood
of x in X. Since the product of two square-integrable functions is integrable,
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the linage of the map obtained by extending /e0 to r(U; ~Cp(B))®r(U; XP\H))

Is contained In the space of integrable (jp+j?')-fonns on X* with respect to

the metric form cy0 Since any compactly supported C°°-form on IT has a finite

supremum with respect to Q), the image of the map p, thus obtained is con°

tamed In 3)^pl '.

To verify that the map fi commutes with d9 It suffices to show

(6.3.1) du/\v/\<p+(-iy MA* Ap+(-l)*+*' "A« My = 0
J J J

holds for any u In F(U; J:p(N)), any v in F(U; XP\H)) and each compactly

supported (2n— p —p' — l )~forrn <p on 17. Multiplying a compactly supported

C°° -function which Is equal to 1 on a neighborhood of supp^9 we may assume

from the first that both ?/ and v are compactly supported In U. Since the

weak closure of d coincides with Its strong closure., exist sequences un

and vn of compactly supported C'°° -forms on Z* such that un-^us vn-*>v, dun-^du

and dvn->dv with respect to the L2-norm. Since rf /«0 commute by the

flatness of S9 (6.3.1) holds for un and «;„ in place of u and ^9 respectively. Hence

we obtain (6.3.1) by taking the limit. Q=E.D0

Let Q denote the trivial extension to 6°®H of the Well operator C(H),

I.e. 5 Cj=Id^o(g)C(lf). Since the linage of ju Is contained In the space of the

Integrable (2;i)-forms onX*9 we

(6.3,2) XQ^A*S) Is a non-negative measure for any u In L"^*(X*; ^) .

(Cf. [W].)

§6.4. Let L be the operator Lf2)(Z*; /f)->Lf2
+)2(Z*; /T) given by the ex-

terior multiplication of o). Then? since &) has finite length, L is a continuous

operator. Let J be the adjoint operator of L, Then as In [W], we have

[^ L^2)(x* ; #) = *-/c •
Thus we can apply the usual technique to show that

(6.4. 1) Lk : Lfak(X* ; H) -> L$*(X* ; H)

is bljective»

Since [A9 L]=0P we have

(6.4.2) Lk: /tn~k -> 6*+h Is bljectlve .

Now let I^H\X; M) denote the cohomology class of Q>O. Then we have
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the following

Lemma 6AL Hk(X; *H) -> Hk+\X; -fT)

# -i ^+2

is a commutative diagram,

Proof, Since every C°°-form on X has a finite length, we have the homo-
morphism of complexes

Passing to the cohomology groups9 we have

H\X; £°)®Hk(X; £\H)) -* Hk+2(X;

Therefore, for aeA*9 la is represented by the closed L2-form coQ/\a, Hence

it is enough to show that co/\a—c0Q/\a=icdd<p/\a belongs to the L2-cobound-

ary. This is clear, because dd<p/\a=d(d<p/\a) and d<p has also finite length.

Q.E.D.

Now we have the following

Theorem 6.420 (i) (Hard Lefschetz Theorem)

lk: Hn~k(X; *H) -> Hn+ll(X; *H)

is an isomorphism (of Hodge structures),

(ii) Let Pk denote the kernel of

/*+!. Hn~\Xi *H) -> Hn+k+2(X; *H) .

Then

gives a polarization of the Hodge structure on Pk, Here ( , ) is the pairing

given by

and

_ H2n(S)
«* H2n(X; «H€®«HC) - —» H2"(X; C) -> C .

Proof, (i) This is an immediate consequence of (6.4.2) and Lemma 6.4.1.

(ii) For a and ft in Pk, let us choose harmonic representatives / and g of a
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and 09 respectively. Let C0 denote the trivial extension to &°®HC of the Weil
operator on Q\ (cf. Proposition 6.1.1. (I)) Then it follows from (6.2.4)
that CoQI^-ft coincides with C(Hn~\ the Weil operator on H*~h(X\*H}.

Hence we have

On the other hands Proposition 6.1.1 (I) us

(6.4.4) *Q/= (-l)^-*^"-*-1^— L*/,
/c!

If Lk+1f=®, Therefore,, If ce=y0 (and hence we choose f=g), we

Then the proof Is completed by (6.3.2).

ix ° Review OE Fameiikmal

In order to fix the notions and notations we list up basic facts concerning
Hilbert spaces arid operators upon them. We follow [Qi], [H], [Ko]
[Y] In our presentation.

§ A. I. Let jfiTj and H2 be two HilberL spaces. An operator T from iYj to
H2 is, by definition, a C-linear homomorphism from a linear subspace D(T)
of Hl to H2. We sometimes use the symbol T: H^H^ to denote an operator
T from fij to A7

2, although D(T) may not be E^ The linear space D(T) Is
called the domain of T. If D(T) Is dense In Hl9 we say r Is densely definedo
The graph G(T) of an operator TlsP by definition, {(xy Tx)&Hj xH2; x^D(T)}.
We denote by G\T) the space {(-Tx9 x^H^H^ x^D(T)}. If G(T) Is
closed, we call T a closed operator. Note that, even for a densely
closed operator J3 there may exist another closed operator T' such that D(T')
3#(T) and Tx' =Tx for jceD(r)3 if DCT)^^. In what follows, i?(T) denotes
the range of T3 i.e., {Tx; x<=D(T)} arid Ker T denotes {x^D(T); Tx=0}a

[As we frequently use the symbol N in this paper? we avoid the more common
notation N(T).] For a densely defined operator Z", we define its adjoint ope-
rator T* from HZ to HL by G!(r*)=GI*(r)'1% the orthogonal complement of
Ga(T) ; In other words9

fe 2z)^2 - (j? Z)FI for any z IE B(T)}.
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Then J* Is a closed operator, and, If T Is a densely defined closed operator,
then J* is also densely defined and T** = T holds.

The pre-Hilbert structure of D(T) Induced by D(T)-*G(T)c.Hl@Hi Is
called the graph norm. If T Is a closed operator, then D(T) Is a Hilbert space
with the graph norm.

Lemma AoLL Let T be a densely defined closed operator and E a dense

subset of D(T) (in the norm of H^. If (T\E)* = T*, then E is dense in D(T)

with respect to the graph norm. Here T \ E denotes the restriction of T to E with

D(T\E)=E.

In fact, (T\E)* = T* means G(T\£-
1-)=G(T-±-). Hence G(T\E) is dense In

G(T).

The following proposition Is usually referred to as the closed range theo-

rem (of Banach).

A.1.2. Let T be a densely defined closed open tor. If R(T)

is closed, so is R(T*) and R(T)=(KQi T*)"1" holds.

See e.g. [Y], p. 205 for the proof.
The importance of a closed operator with closed range lies In the follow-

ing

Proposition AeL30 (The open mapping theorem) If T: H^-^H2 is a closed

operator with closed range, then T is an open mapping and (r| (Ker^nixr))"1 is
a bounded operator from R(T) to (Ker TY~.

See e.g. [Y], p. 79 for the proof.

§Ao2o Let H19 H2 and H3 be three Hilbert spaces. Let T: H^Hi and
S: H2-*H3 be densely defined closed operators. We assume

(A.2.1) R(T)dD(S)

and

(A.2.2) STx = 0 for x<=B(T).

Then &*: H3-*H2 and T*: H2->H1 satisfy the same conditions, namely,

(A.2.3) ^(5*)c/)(r*)

and

(A.2.4) T*S*x = 0 for
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We define A: H2-*H2 by

(A.2.5) D(A) = {x^D(S) f! D(T*)\

(A.2.6) Jx = S*Sx+TT*x for

Lemma A02010 A is a closed operator,

Proof, Assume that a sequence xn^D(A) converges to x and Axn con-
verges to y. We shall show x^B(A) and Ax=y. Setting z=xn—xm, we have

(Az, z)H2 = (T*z, T*z)ffl+(Sz, Sz}H2 .

Therefore T*(xn— xm) and S(xn—xm) tends to zero and hence T*xH and Sxn

converge. This Implies x^D(S)r\ D(T*) and T*xtt (reap., Sxtt) converges to
T*x (resp.3 Sy). Since (Az, Az)H2=(S*Sz9 S*Sz)ffa+(TT*z, TT*z)ff,9 S*Sxn

and T*Txn converge. Thus we find Sx^D(S*)9 Tx^D(T*), and S*Sxn (resp.3
T*Txa) converges to S*Sx (resp., T*Tx\ Hence A-eD(^) and Ax=y.

Now we have the following abstract version of the Hodge-Kodaira de-
composition due to Komatsu [Ko].

Theorem Ae2020 Let S, T and A be as above, and suppose that both R(T)
and R(S) are closed. Denoting Ker A by ^ we find the following:

(I) A is self-adjoint, that is, A=A* holds,

(ii) A=Ker (T*) n Ker S and ̂  =R(A).
(iii) Denoting by p / the projection operator: /f2— >A3 we find that the operator

(A | /L)"^! —p/) is well-defined and bounded.

Definition Ao2030 The operator (A\ /^)~\l— p/) is called the Green
s^ rZ-

operator.

As the reference [Ko] is written in Japanese, we give the proof of the theo-
rem for the convenience of the reader. It is exactly the same as [Ko] p. 124~
p. 125.

Let us first verify (ii). Since <4=Ker (T*)n Ker S is clear, it suffices to
verify

(A.2.7) (Ker (7**) n Ker S^ = R(A) .

Since S is supposed to be a closed operator with closed range, R(S*) =

(Ker S)^ holds. Hence we find

(A.2.8) ^0^(5*) - Ker(r*) .



404 MASAKI KASHIWARA AND TAKAHIRO KAWAI

Here and In what follows., the symbol A ©I? means that A and B are closed

subspaces which are mutually orthogonal Since T is supposed to be of closed
range, we find

(A.2.9) H2 =

Combining (A.2.8) and (A.2.9), we find

(A.2.10) H2 = R(T)@*@K(S*) .

In particular,

Let us now verify 6^dR(A). Let f denote T \ (Kerzo^n D(T)> i-e- f is a, map
from (Ker T)^ H D(T) to R(T). It then follows from the open mapping
theorem that f has a bounded inverse on R(T). Since R(T*) Is also closed

by the closed range theorem., ?*=r*(Kerr*)-j-n0(r*) has also bounded Inverse
on R(T*)=(Ker T)-1-. Hence, for y in R(T), z=(f*)-\fr1y=Giy is well-

def

defined, and G1 Is a bounded operator. We have TT*G1y=y for
such that S*SG2y=y for j; ££(£*). Similarly, as R(S) and £(£*) are also
closed by the assumption, we can find abounded operator G2: R(S)-*R(S).

$incQ^-±-=R(T)®R(S*) follows from (A.2.10), and since R(T)dKex S and
R(S*)dKer T* hold by the assumption, for each y In £\ we can find
andz2eU(S*) so that

(A.2.12) y = TT*Zl+S*Sz9 = (7T*+S*5)(z1+z2)

holds. Thus we have verified ^~=R(A). The above reasoning also implies
the boundedness of the operator (A\ />}~\l— p/). This completes the proof

of (ii) and (III).
If we set 2=U\ , , ) , then 2 Is clearly symmetric (i.e. (2u, v)=(u, 2v) for^

every u9 v^D(2)). Furthermore It is invertlble on ^ as we have verified-
Therefore It Is self-adjoint on ^. (See e.g. [Y], p. 199.) Since

A =

hold, A Is also self-adjoint. This completes the proof of (I). Q.E.D.

§ Ao3o Let M be a C°°»manifold with volume element g, and V a C°° -vector

bundle equipped with Hermltian form. Let us denote by C°°(M ; V) the space
of C°°-sections of V, and by C%(M; V) the space of compactly supported
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C°°-sections of V. Let us denote by L^(M; V) the space of square Integrable

sections of V. Now9 let Vl and V2 be two C°°-vector bundles and P: C°°(M; Fj)
-»C°°(M ; V2) be a linear differential operator. Let P* : C°°(M ; F2)->C°°(M ; Fx)

be its formal adjoint; I.e., the differential operator satisfying

(A J.I) <f*u \ vy = {(u I Pv)} for us= C°°(M; V2) and

The strong extension Ps of P Is a linear operator: Z,(2)(M; F1)->L(2)(Af; V2)

such that G(PS) Is the closure of G(P \ C~(M • FI)). The weak extension Pw of P

Is 5 by definition, a linear operator given by

(A.3.2) Pw = (P*\c%(M;v^*,

that is,

(A.3.3) D(P^ = {^<EL(2)(M; Fj); the distribution Pu

belongs to L(2)(M; F2)} .

Hence we find

(A.3.4) Pw = ((P*).)*, Ps = ((P*)J*.

This fact combined with Lemma A. 1.1 entails the following

Lemma A03ol0 The following conditions are mutually equivalent:

(i) P,=P.
(ii) Co(M; Fx) is dense in D(Pm) with respect to the graph norm.

(iii) (P*).=(P*).
(i v) Por M S D(P J a«rf w e Z)(P *)„, we have

Proof. (i)o(II) is obvious.

(ii)<^(IIi) follows from Lemma A. 1.1, because OP*)S=CPW)* and (P*)w=

(^S!C^(M;FI))*-
(!)<=» (iv) Is obvious.

§ A A Let M be a Riemannlan manifold and let H be a local system on M.

Assume that the C°°-vector bundle associated with H has a Hermitian metric.

Let Lf2)(M; If) be the space of square integrable J7-valued /7-forms and let

C$(M; If) be the space of compactly supported //-valued C^-p-forms, and

CP(M; H) the space of U-valued C°°-/7-forms. Then we can define the exterior

derivative
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d: CP(M; H) -> CP+1(M; H)

and its formal adjoint

d*: Cp(M; H) -* Cp~\M; H)

with respect to the Inner product given by the Hermitian metric on H and the
Riemannlan metric. The p-th L2-cohomology group Hfa(M', H) is also
defined as the following quotient space:

(A.4.1) iu^Lp
(2)(M; H); du=0 in the distribution sense} modulo

{du\ u^Lfa^M; H) and the distribution du9 belongs to Lfa(M; H)}.

In order to compute the L2-cohomology groups in terms of harmonic forms,
i.e., forms annihilated by d=dd*+d*d, we need to make precise the domain
of the operators in question. Fortunately we have the following result due
to Chernoff [Ch]:

o4L Let M be a complete Riemannian manifold, and let H
be a Hermitian vector bundle over M. Then ds9 (d*)s9 (d+d*)s and their powers
are all essentially self-adjoint, i.e., their (operator-theoretic) adjoint is self-ad-
joint. In particular, ds=dw, (d*\=(d*)v, (d+d*)s=(d+d*)w and AB=AW hold.
Furthermore we find the following :

(A.4.2) (d*)w is the (operator-theoretic) adjoint of dw.

(A.4.3) D(AW) = {u

Proof. Although [Ch], p. 410 discussed the case where H Is trivial, the
argument there goes well without any change. In fact, since the symbol cr(f)
of d is given by <? A, tensoring H with the exterior bundle of cotangent bundle
of M has nothing to do with verifying the boundedness of | |ff(f)| |/ |£|, which
is needed there. The coincidence of the strong closure and the weak closure
Immediately follows from Lemma A.3.1 and the essential self-adjointness.
Hence what remains to be proved is (A.4.3). It follows from the fact that
the right hand side of (A.4.3) is closed with respect to the graph norm and
the fact that C0(M; H) is dense In D(AS)=D(AW).
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