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Abstract

For positive operators A, B on a Hilbert space H and an operator monotone function
/on (0, oo), the following inequalities are proved:
(1) When lim/(j)=0, \\f(A)-f(B)\\^f(\\A-B\\).

(2) If A^<z^0 and B^b^O, then for any operator X on H9

>\f(A)X-Xf(B)\\p^C(fl,b)\\AX-XB\\p,

where 1 ^ p fS <*> and

if

I/'(a) if a=b.

Other related inequalities for the Schatten p-norm are also considered.
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§ 1.

The following inequalities, due respectively to Powers and Stormer [11,
Lemma 4.1] and van Hemmen and Ando [5, Proposition 4.1], are of special
importance in mathematical physics.

Theorem A (Powers and Stormer) Let A and B be positive operators on

a Hilbert space H. Then \\A^-B^\\l<\\A-B\\l9 or equivalently \\A-B\\l^
\\A*-B%.

Theorem B (van Hemmen and Ando)s Let A and B be positive operators

on a Hilbert space H with A+B^c>Q. Then for any operator-monotone func-
tion f and any symmetric norm ®9
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\\f(A)-f(B)\\0< —- \\A-B\\,. In particular,

for 0<r<l.

Theorem A has been recently generalized by the first named author [9,
Corollary 2] to a general Schatten /?-norm (K/><oo) so that ||^4— £||l£<||y42

-B2\\p. It follows easily by induction that \\A-B\\$P^\\A*—&\\P for every
positive integer n and 1 </?< oo.

In section 2 (Theorem 2.3) we will give a related inequality (involving
an operator monotone function) for the usual operator norm (/>=oo).

As for Theorem B, a natural generalization would be a commutator ver-
sion of this result. Assuming that either A or B is positive definite enables
us to obtain a commutator version of Theorem B with a presice estimate. This
is considered in Section 3 (Theorem 3.1).

Throughout this paper (except in Theorem 2.4), the term operator means
a bounded operator on a Hilbert space H, and Cp, I ̂ /?^S °°, denotes the Schat-
ten /7-class equipped with the associated p-norm \\*\\p. (IHU is the usual ope-
rator norm.)

The first version of the present article with a slightly weaker version of
Theorem 2.3 was written by the first named author in the spring of 1986. The
second named author would like to mention that the only contribution by
him (H.K) is Theorem 2.3 in its present form and Theorem 2.4.

§2. On the Powers-Stormer Inequality

One important consequence of the generalized Powers-Stormer inequality
[9, Corollary 2] is the following result concerning the continuity of the map
r-» | T\ from Cp into itself, where | T\ =(T*T)1'2.

Theorem 2.1. If T and S are operators on H, then \\ \ T\ — \S\\\2p<\\T

Proof. Applying the generalized Powers-Stormer inequality to the posi-
tive operators | T \ and | S \ , we see that

i^|2||. But
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\T\2-\S\2 = T*T-S*S=— (T-S)*(T+S)+— (T+S)*(T-S).

Thus || mMS|2||,<^]|(T-SH^^

< y \\T-S\\2P\\T+S\\2P+^ \\T+S\\2P\\T-S\\2P

= \\T-S\\2P\\T+S\\2P.

Here we used Holder's inequality for C^ [4]. And therefore || | T\ — \ S\ \\lp<

\\T+S\\2P \\T-S\\2P as required.

It has been shown in [7, Theorem 5] that if A and B are positive operators
on H such that A+B^c^O, then c\\A-B\\p^\\A2-B2\\p for !</><oo (see
also proposition 3.2 in [5]). Using this inequality we now give another related
continuity result.

Theorem 2.2 If T and S are operators on H such that

\T\ + \S\>c>09 then c\\ \T\-\S\ \\p<\\T+S\\2p\\T-S\\2p for Kp^oo .

Proof. Applying Theorem 5 in [7] to the operators \T\ and |5|, the
desired conclusion follows as in the proof of Theorem 2.1 above.

Remarks (1) The coefficients 1 and c in Theorems 2.1 and 2.2 respectively
ro i

are the best possible as illustrated by the two-dimensional example T=

and S=
1 0_

(2) It has been known that for operators T and S on H9

\\\T\-\S\ 1^. ||T-S||(2+log ) (see [6]),
n \\1— i||

| r| -\S\ I^VT lir-SH, (see [1] and [8]),

I |J| -\S\ H^N/T ||r+5||i/2 \\T-S\\\'* (see [2] and [10]).

Using elementary calculus, it can be shown that for non-negative real

numbers a and b, \ar—br\^\a—b\rforr>lsind \ar—br\ < |0— 6| rforO<r<l.
Since these two numerical inequalities are equivalent, we will focus our atten-
tion on the second one. This inequality says that the function defined on
[0, oo ] by f(s)=sr is a Lipschitz function of order r. A non-commutative

version of this inequality is sought. If r=—ir for some positive integer n, then
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it follows from the generalized Powers-Stormer inequality (p=oo) that \\Ar—Br\\

<||v4 — B\\r, whenever A and B are positive operators on H. Actually it re-

mains valid for a general r between 0 and 1. Indeed we will present a more

general result involving an operator monotone function.

Recall that a real-valued continuous function / on (0, oo) is said to be

operator monotone if, for any positive operators A, B9 the relation A^B al-

ways implies f(A)^f(B). It is well-known [3] that such an / has the unique

integral representation

where a is real, /?2^0, and v is a positive measure on (0, oo) satisfying

-<oo .
Jo rM-1

The most important examples of operator monotone functions are log s and

sr (0<r^l) with integral representations

n Jo\t+s t2

and for 0<r<l

f = cos («/2)- ™^ ("U ___ U f dt .
^ ' n h\t+s t2+l/

Let us further assume limf(s)=Q (so let us set/(0)=0). It is easy to see that

and

It is clear from this expression that / is concave (actually operator concave).

Theorem 2.3. If A, B are positive operators on a Hilbert space H, then

for any operator monotone function f with /(0)=0 we have
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\\f(A)-f(B)\\^f(U-B\\) .

Proof. At first let us assume ^^5^0. Since A=B+ (A—B) with
A—B^O, we get

A£B+\\A-B\\1 ,

f(A)^f(B+\\A-B\\l) .

Since B and \\A— B\\l commute and /is concave (for positive scalars a, b, we

), we get

f(A)£f(B)+f(\\A-B\0 1 ,

which implies that

)-f(B)^f (\\A-B\\) 1 ,

\\f(A)-f(B)\\£\\f<\\A-B\\) \\\=f(\\A-B\\) .

Before dealing with the general case, we prepare the following claim:

lfX=Xl-X2 mihX=X* and X^Q, then HJP+H^HJrJI and ||Z_||^||X2||, where
X=X+— X_ is the Jordan decomposition. In fact, let p be the support pro-
jection of X+. Then, X=X1—X2^X1 implies

and

Repeating the same argument for X_, we also get H A L I I ^ I I ^ I I - Now let us
assume A, B^Q, and A— B=(A— B)+— (A— B}_ be the Jordan decomposition.
Since A+(A— B)_=B+(A— B)+, we get

f(A)-f(B) = [f(B+(A-B)+)-f(B)]-[f(A+(A-B^)-f(A)] .

Here, both otf(B+(A—B)+)—f(B) and f(A+(A—B)_)—f(A) are positive be-
cause of the operator monotonicity of / Hence the above claim and the
first half of the proof show that

\\<f(A)-f(By>+\\£\\f(B+(A-B)+)-f(B)\\

^f(\\(A-B)+\\) ,

\\((fA)-f(B))_\\g\\f(A+(A -B).)-f(A)\\

Therefore, we estimate
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\\f(A)-f(B)\\ =

For j?^00, one cannot estimate ||/(^4)— /CB)||P in terms of ||>4— U||f (even
if B=0)9 the reason being that the trace Tr on B(H) satisfies Tr(l)=oo0 For
a finite von Neumann algebra, a situation is completely opposite, and we have

Theorem 2.4. Let M be a finite von Neumann algebra with a normalized
faithful trace Tr. For positive operators A, B in the non-commutative Lf -space
LP(M: Tr), l^S/?^°°, and an operator monotone function f with /(0)=0, we have

\\f(A)-f(B)\\p^2f(\\A-B\\p) .

The definition of LP(M; Tr) and \\*\\p can be found for example in [12],
but the reader unfamiliar with von Neumann algebras may consider the fol-
lowing situation: Let A, B be in Mn(C), the set of the « x^-matrices, and
the Schatten j^-norm on Mn(C) is defined by using the normalized trace (Tr(A)

Proof. Recall the expression

before Theorem 2.3. Since

f(A)-f(B) = f*(A-

we get

JO

Firstly, the well-known formula

A(t+A)-l-B(t+B)~l = t(t+BY\A-

implies that

"II U-B\\t
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Secondly, the obvious fact

-1 ̂  -B(t+BYl^A(t+AYl-B(t+BYl^A(t+AY1^ 1

and 7>(1)=1 (hence ||1||,=1) imply that

We thus have shown

\\A(t+AYl-B(t+BYl ||^Min(l, t~l\\A-B\\J *

It is elementary to see that the above right side is majorized by 2||X — B\\p (t+

| \A —B\\pr
l. Therefore, we get

t

and the right side is obviously majorized by 2f(\\A—B\\p).

§3. On the van Hemmen-Ando Inequality

In this section we will establish a commutator version of the van Hemmen-
Ando type inequality as stated in Theorem B. Although, our inequalities are
valid for any symmetric norm on sequences, we will formulate these results in
terms of the Schatten p-noim (!</?< oo). Our technique is again the theory
of operator-monotone functions.

Theorem 3.1. If A and B are positive operators on H such that
and j£>Z?>0, then for any operator-monotone function f and any operator X
on H, \\f(A)X-Xf(B)\\p^C(a, b)\\AX-XB\\p, where

C(a, b) =
if

I /'(«) if fl = .
and

Proof. Let f(s)=a+fts—( (— —— \dv(f) be the integral repre-
<* ^ rr« ^° \t + S t*+l/sentation of/. Then

f(A)X-Xf(B) = J3(AX-XB)+r (X(B+trl-(A+t)~l X) dv(i) .
Jo

Since X(B+t)-1-(A + t)-lX=(A+tr\AX-XB)(B+t)-\ it follows that

\\(A+t)-l(AX-XB) (B+t)-l\\P
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But \\(A+t)-\AX-XB) (B+tY\<;\\(A+t)^\\ lltfH-O'1!! \\AX-XB\\t

< - - - \\AX-XB\L .
(H-fl)(H-6)N "'

Therefore, \\f(A)X-Xf(B)\\t<fi\\AX-XB\\t+( \" dv(t) ) \\AX-XB\\,
\ Jo (t+a) (t+by

= Q+
V Jo

Now the proof can be completed by noticing that

(t+a)(t+b) , _ if a = 0.

An important special case of Theorem 3.1, which deserves attention is
the following result.

Corollary 3.2. If A and B are positive operators on H such that A > c> 0
and B^c>Q, then for any operator X on H, \\ArX—XBr\\p<,rcr~~l\\AX-XB\\p,

where 0<r< 1 and I •

In comparison with Theorem 5 in [7] or Proposition 3.2 in [5], it follows
from Theorem 3.1 that if A and B are positive operators on H such that A^c
>Q and B^c>Q, then 2cp-£||/,<p2-J5% for l<^<oo. Equality holds
if and only if A =B as demonstrated in the following theorem.

Theorem 3.3. Assume that A and B are positive operators on H with

>QandB^c>0. Then:
(i) 2c \\A-B\\ = P2-£2|| if and only if A = B.
(ii) 2c \\A-B\\P = \\A2-B%<oo far some 1 </?<oo, if and only if A=B.

Proof. Let T=A-B. ThenA2-B2=AT+TB. If2c\\A-B\\=\\A*-B2\\,
then 2c||r||=pr+:ra||. We will show that r=0. Since T is self-adjoint,
there exists a sequence {fn} of unit vectors in H such that Tfn—tfn-*Q as ^-»oos

where |/|=im|.
Now

2c\t\ = \\AT+TB\\>\((AT+TB)fu,fJ\

= \((T-t)fn9 AfJ+(Bfn, (T-t)fn)+t(Afn,fn)+t(Bfn9fn)\

>\t\((Afn9fn)+(Bfn,fn))-\((T-t)fn, 4M+(Bfu, (T-t)fn}\ .

If lim(Afn9 fn}>c or llm (Bfn, fn)> c (we consider subsequences if necessary),
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then in view of the fact that lim (T—t)fn=Q, it follows that 2c \ t \ >2c \ t \ which
K-^oo

is absurd. Therefore lim (Afn,fn)=c and lim (Bfn,fn)=c and so t=lim (Tfn,fn)
»->oo M-H*» «-*•<*>

=lim(Afn,fn)—lim(Bfn9fn)=Q. Hence T=09 which proves (i). Next assume
«-*oo »-*oo

that for some !</?<oo we have 2c \\A-B\\p = \\A2-B2\\p<oo. Then 2c \\T\\P

= \\AT+TB\\p<oom Since T is a compact self-adjoint operator, it must be

diagonalizable. Let {en} be an orthonormal basis for H such that Ten=tn en,

Then

(2cy>\\T\\p
P = \\AT+TB\\*P> ^\((AT+TB)en, en)\*

If (AeH, en}>c or (Ben, en)>c for some /i, then (2c)*||r||J>(2c)*||r||J which is

also absurd. Thus (Aen, en)=(Ben, en)=c for all n, and so tn=(Ten, en)=Q for

all /?, hence r=0, which proves (ii).

Applying Theorem 3.1 to the function f(s)=logs, we see that if A and B

are positive operators on H9 then for any c>0 and any operator X on U, ||log

(A-^c)X-Xlog(B + c)\\p<i—\\AX-XB\\p9 where !<^<cx). jn particular,
c

\\\og(A+c)—\Qg(B+c)\\p<i— \\A—B\\P. If we further require that 0<c<
c

\\A— B\\9 then we have the following inequality for the usual operator norm, the

proof of which has a flavor similar to that of Theorem 2.4.

Theorem 3,4 If A and B are positive operators on H and c is a constant

such that Q<c<\\A—B\\9 then

\\log (A+c)-log(B+c)\\<log(^- \\A-B\\}.
\ c /

J o o / l t \

- — — — ) dt9 it follows that log (A+c}— log
o \ t+s r2+l/

(B+c)={°° ((5+c+O"1— C^+c+0"1) dt. Now if r>0, we write
Jo

+ ((B+c+tr^A+c+t)-1) dt
Jr

Thus
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tr*\\ dt.

To estimate the first integral on the right, we notice that

t+c

=IOS(£±L\ TO
t+c

Hence (' ||(j+c+f)-i_(x+c+f)-i|| <jjf<(r_*_=iOgf£i±Y To estimate
Jo Jo t+c V c /

the second integral, we notice that

\\(B+c+t)-l-(A+c+ty*\\ = \\(A+c+tYl(A-B-)(B+c+ty*\\

Hence P \\(A+c+tYl-(B+c+t)-l\\ dt< \°°
Jr Jr (f+c)2

Therefore, ||logU+c)-log(£+c)||<log- + ~j • But as a func-
V c / c+r

tion of r, the expression log ( c )+- — — — - attains its minimum at r=
\\A-B\\-c. V C ) C+r

Hence \\log (A+c) -log (^+c)||<log(ll^~jg|l)+l-log(— \\A-B\\) as re-
. , V c / V c /

quired.
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