Entire Functions of Several Complex Variables Bounded Outside a Set of Finite Volume

By

Yasuichiro NISHIMURA*

Introduction

In this paper, we generalize two theorems of A. Edrei and P. Erdös [2] for the 1 dimensional case to the $n \ (\geq 2)$ dimensional case.

The first one is the following:

Theorem 1. Let f(z) be a nonconstant holomorphic function on \mathbb{C}^n (i.e., entire function of n complex variables) such that

(A)
$$\liminf_{r \to +\infty} \frac{\log \log \log M(r)}{\log r} < 2n \\ \left(M(r) = \max_{\|z\| = r} |f(z)|, \|z\| = (|z_1|^2 + \dots + |z_n|^2)^{1/2} \right).$$

Then, for every positive constant B, it satisfies the condition

(B) $m_{2n}(\{z \in \mathbb{C}^n \mid |f(z)| > B\}) = +\infty$,

where m_{2n} denotes the 2n dimensional Lebesgue measure.

(*Remark.* The case n=1 is the Edrei-Erdös theorem.)

The second result of [2] is the construction of an example which shows that, when n=1, the constant 2n=2 in the right side of the inequality (A) is the largest possible in order to ensure the condition (B).

Let us recall this example. Let \mathcal{Q} be the domain in \mathcal{C} defined by

$$(\Omega.1) \quad \Omega = \left\{ w = x + iy \left| e^2 < x, -\frac{\pi}{2x(\log x)^2} < y < \frac{\pi}{2x(\log x)^2} \right\}.$$

Note that we have

$$(\Omega.2)$$
 $m_2(\Omega)=\frac{\pi}{2}<+\infty$,

Communicated by S. Nakano, October 7, 1986. Revised November 27, 1986.

^{*} Department of Mathematics, Osaka Medical College, Takatsuki City 569, Osaka, Japan.

where m_2 denotes the 2 dimensional Lebesgue measure. Then, the holomorphic function $\Phi(w)$ on C, which we call the Edrei-Erdös function in this paper, has the following two properties:

- (E.1) $\Phi(w)$ remains bounded for $w \in C-\Omega$,
- (E.2) $\Phi(w) \exp(\exp(w \log w)^2)$ remains bounded for $w \in \Omega$, where the branch of $\log w$ is determined so as to take real values for real $w \in \Omega$.

Especially, combining $(\Omega.1)$, $(\Omega.2)$, (E.1) and (E.2), we have

- (E.3) $\lim_{r \to +\infty} \frac{\log \log \log M(r)}{\log r} = 2 \left(M(r) = \max_{|w|=r} |\Phi(w)| \right),$
- (E.4) $\{w \in C \mid |\Phi(w)| > B_1\} \subset \Omega$ and hence $m_2(\{w \in C \mid |\Phi(w)| > B_1\}) < +\infty$ for some suitable $B_1 > 0$.

In order to state our second result, we need to introduce some special polynomials. For each integer $k \ge 1$, we define the polynomials $Q_{n,k}(z)$ of n variables $z=(z_1, \dots, z_n)$ inductively on $n \ (\ge 2)$ by

(Q.1) $Q_{2,k}(z_1, z_2) = z_1^2 + z_2^k$ $Q_{n,k}(z_1, z_2, \cdots, z_n) = Q_{2,k}(z_1, Q_{n-1,k}(z_2, \cdots, z_n)) \quad (n \ge 3).$

Observe the following properties:

(Q.2) degree of $Q_{n,k}(z) = k^{n-1}$, (Q.3) $Q_{n,k}(0, \dots, 0, r) = r^{k^{n-1}}$.

The following theorem will be proved in §2.

Theorem 2. If $k \ge 4$, we have

 $(\mathcal{Q}\mathbf{Q},1) \quad m_{2n}(\{z \in \mathbb{C}^n \mid Q_{n,k}(z) \in \mathcal{Q}\}) < +\infty.$

Consider the composition $\Phi_{n,k} = \Phi \circ Q_{n,k}$ of the Edrei-Erdös function Φ and the polynomial $Q_{n,k}$. Then, combining (E. 3), (E. 4), (Q. 2), (Q. 3) and Theorem 2, we have

$$(\varPhi, 1) \quad \lim_{r \to +\infty} \frac{\log \log \log M(r)}{\log r} = 2k^{n-1} \quad \left(M(r) = \max_{\|z\| = r} |\varPhi_{n, k}(z)| \right),$$

 $\begin{array}{ll} (\varPhi,2) & \{z \in C^n \mid |\varPhi_{n,\,k}(z)| > B_1\} \subset \{z \in C^n \mid Q_{n,\,k}(z) \in \mathcal{Q}\}, \text{ hence} \\ & m_{2n}(\{z \in C^n \mid |\varPhi_{n,\,k}(z)| > B_1\}) < +\infty \text{ when } k \geq 4, \text{ where } B_1 \text{ is the constant in } (E.4). \end{array}$

Especially, when k=4, we have

Corollary. The holomorphic function $\Phi_{n,4}(z)$ on C^n $(n \ge 2)$ has the following two properties:

- (C) $\lim_{r \to +\infty} \frac{\log \log \log M(r)}{\log r} = 2^{2n-1} \left(M(r) = \max_{\|z\|=r} |\Phi_{n,4}(z)| \right),$
- (D) $m_{2n}(\{z \in \mathbb{C}^n \mid |\Phi_{n,4}(z)| > B_1\}) < +\infty$, where B_1 is the constant in (E.4).

Remark. Compare this Corollary with Theorem 1. Then, because of the difference between 2n in (A) and 2^{2n-1} in (C), our results leave something to be improved.

Such problems as are dealt with in this paper were also treated by A.A. Gol'dberg [4] and L.J. Hansen [5] for the case n=1. Moreover, G.A. Camera [1] considered the case of subharmonic functions in \mathbb{R}^m (see Remark to Theorem 1 in §1).

In §1, we prove Theorem 1. For that purpose, for each point x in the unit sphere $S = \{z \mid ||z|| = 1\}$ in \mathbb{C}^n , we consider the so-called slice function $f_x(t) = f(tx)$ which is a holomorphic function in $t \in \mathbb{C}$. We adapt the argument of [2] for these slice functions $\{f_x \mid x \in S\}$.

In §2, after making some observations about the polynomials $\{Q_{n-k}(z)\}\$, we prove Theorem 2.

Acknowledgement. The referee made some useful comments. Especially, the simple proof of Lemma 4 in §2 is due to him. The author thanks him for these things.

§1. Proof of Theorem 1

In [2], Edrei and Erdös used a lemma of Borel type to prove Theorem 1 when n=1. In our proof of Theorem 1 when $n \ge 2$, we use a lemma of the same type. So we prepare it first of all.

Lemma 1. Let U(r) be a positive continuous nondecreasing function on $[1, \infty)$ such that

(1.1)
$$U(1) > e$$
.

Let $\delta > 0$ be an arbitrarily chosen constant. Then, there exists a closed subset $\mathcal{E} \subset [1, \infty)$ such that

(a) for every $r \in \mathcal{E}$ with $r \geq 1$,

(1.2)
$$U(r+r(\log U(r))^{-(1+\delta)}) < eU(r);$$

(b) for every s, t with $1 \leq s < t < \infty$ and with

$$(1.3) \qquad \qquad \delta(\log U(s)-1)^{\delta} > 4,$$

we have

(1.4)
$$m_1(\mathcal{E}(s, t)) < \frac{t}{4}$$

where $\mathcal{E}(s, t) = \{r \mid s \leq r \leq t, r \in \mathcal{E}\}$ and m_1 denotes the 1 dimensional Lebesgue measure.

Remark. A sharper form of Lemma 1 is found in the paper of Edrei and Fuchs [3]. But in their statement, the extent of s (the above condition (1.3)) to ensure the estimate (1.4) is implicit. As we need (1.3) later on, we give the proof of Lemma 1.

Proof. Put $\phi(x) = \log U(e^x)$ $(0 \le x < \infty)$. Since U(r) is nondecreasing, (1.1) implies $\phi(x) > 1$ $(0 \le x < \infty)$. Consider the function $h(x) = x^{-(1+\delta)}$ $(0 < x < \infty)$, and put $H(x) = \phi(x+h(\phi(x))) - \phi(x) - 1$ $(0 \le x < \infty)$. Then H(x) is well-defined and continuous. Put $E = \{x \mid 0 \le x, H(x) \ge 0\}$ and $\mathcal{E} = \{r \mid r = e^x, x \in E\}$. Then E and \mathcal{E} are closed subsets of $[0, \infty)$ and $[1, \infty)$ respectively. Using the inequality $e^{\alpha} \ge \alpha + 1$, we can see that (a) holds.

In order to prove (b), put $y = \log s$, $z = \log t$ and $E(y, z) = E \cap [y, z]$. We claim

$$m_1(E(y, z)) \leq \int_{\phi(y)-1}^{\phi(z)} h(x) dx.$$

In fact, we define $y_1, y'_1, y_2, y'_2, \cdots$ inductively by

$$y_{1} = \min E(y, z) \qquad y'_{1} = y_{1} + h(\phi(y_{1}))$$

$$y_{n} = \min E(y'_{n-1}, z) \qquad y'_{n} = y_{n} + h(\phi(y_{n})) \quad (n \ge 2)$$

where $E(y'_{n-1}, z) = E \cap [y'_{n-1}, z]$. Since $\phi(y'_n) - \phi(y_n) \ge 1$, there exists some integer $N \ge 1$ such that $y'_N > z$ or $y'_N \le z$ with $E(y'_N, z) = \emptyset$. Hence $E(y, z) \subset \bigcup_{n=1}^N [y_n, y'_n]$. Noting that $\phi(y_n) - \phi(y_{n-1}) \ge 1$ $(n \ge 2)$, we have

$$\begin{split} m_1(E(y, z)) &\leq \sum_{n=1}^N (y'_n - y_n) \\ &= \sum_{n=1}^N h(\phi(y_n)) \\ &\leq h(\phi(y_1)) + \sum_{n=2}^N h(\phi(y_n))(\phi(y_n) - \phi(y_{n-1})) \\ &\leq h(\phi(y_1)) + \int_{\phi(y_1)}^{\phi(y_N)} h(x) dx \\ &\leq \int_{\phi(y_1) - 1}^{\phi(z)} h(x) dx \\ &\leq \int_{\phi(y) - 1}^{\phi(z)} h(x) dx . \end{split}$$

Then, in view of (1.3), a calculation yields

$$m_1(\mathcal{E}(s, t)) \leq t \delta^{-1} (\log U(s) - 1)^{-\delta}$$
$$\leq \frac{t}{4}.$$

This proves Lemma 1.

Let C^n be the *n* dimensional complex Euclidean space, and let *S* be the unit sphere $\{z \mid ||z||=1\}$ in C^n . Especially, the unit circle (when n=1) is denoted by $T: T = \{e^{i\theta} \mid 0 \le \theta \le 2\pi\}$. We denote by dm_{2n} the 2n dimensional Lebesgue measure on C^n , by dS the rotation-invariant area element of *S* and by $d\theta$ the line element of *T*. Considering the identification $C^n - \{0\} = (0, \infty) \times S$, we obtain $dm_{2n} = r^{2n-1} dr dS$.

Definition 1. Let f(z) be a holomorphic function on C^n $(n \ge 2)$. For r > 0 and $x \in S$, define

$$M_{f}(r, x) = \max_{e^{i\theta} \in T} |f(re^{i\theta}x)|$$
$$T_{f}(r, x) = \frac{1}{2\pi} \int_{T} \log^{+|f(re^{i\theta}x)|} d\theta$$

where $\log^{+}t = \max(\log t, 0)$ (t>0). Then these two functions are continuous in $(0, \infty) \times S$.

Concerning the functions $M_f(r, x)$ and $T_f(r, x)$, the following facts are well known.

Lemma 2. Let f(z) be a holomorphic function on \mathbb{C}^n $(n \ge 2)$. Then $M_f(r, x)$ and $T_f(r, x)$ are related by the following inequalities:

(1.5)
$$T_f(r, x) \leq \log^+ M_f(r, x) \leq \frac{s+r}{s-r} T_f(s, x) \quad (0 < r < s).$$

For $x \in S$ such that the slice function $f_x(t) = f(tx)$ $(t \in \mathbb{C})$ is not a constant function, $M_f(r, x)$ and $T_f(r, x)$ are unbounded continuous increasing function in r.

Definition 2. Let f(z) be a holomorphic function on C^n $(n \ge 2)$. For r > 0 and $x \in S$, we put

$$\begin{split} &\Lambda_{f}(r, x) = \left\{ e^{i\theta} \in T \mid \log |f(re^{i\theta}x)| > \frac{1}{2} T_{f}(r, x) \right\} \\ &\Lambda_{f}(r) = \left\{ y \in S \mid \log |f(ry)| > \frac{1}{2} T_{f}(r, y) \right\} \\ &\Lambda_{f} = \left\{ z \in C^{n} - \{0\} \mid \log |f(z)| > \frac{1}{2} T_{f}(||z||, ||z||^{-1}z) \right\}. \end{split}$$

Then $\Lambda_f(r, x)$, $\Lambda_f(r)$ and Λ_f are open subsets of T, S and $\mathbb{C}^n - \{0\}$ respectively.

A subset $M \subseteq S$ is said to be circular if $e^{i\theta} x \in M$ whenever $x \in M$ and $e^{i\theta} \in T$.

Lemma 3. Let f(z) be a holomorphic function on C^n $(n \ge 2)$. We put $l_f(r, x) = \int_{\Lambda_f(r, x)} d\theta$ on $(0, \infty) \times S$. Let M be a measurable circular subset of S.

(a)
$$l_f(r, x)$$
 is a measurable function in $(0, \infty) \times S$

(b) For r>0, $\int_{\mathcal{M} \cap \mathcal{A}_f(r)} dS(x) = \frac{1}{2\pi} \int_{\mathcal{M}} l_f(r, x) dS(x)$.

Proof. Consider the characteristic function g(z) of the open subset Λ_f of $C^n - \{0\}$ (i.e., g(z)=0 for $z \in C^n - (\{0\} \cup \Lambda_f)$; g(z)=1 for $z \in \Lambda_f$). Consider the mapping $\tau : (0, \infty) \times S \times T \to C^n - \{0\}$ defined by $\tau(r, x, e^{i\theta}) = re^{i\theta}x$. Then we have

$$l_f(r, x) = \int_T g \circ \tau(r, x, e^{i\theta}) d\theta.$$

So, from Fubini's theorem applied to the function $g \circ \tau(r, x, e^{i\theta})$ on $(0, \infty) \times S \times T$, the assertion (a) follows.

Next, consider the characteristic function h(x) of the subset $\Lambda_f(r)$ of S, and the mapping $\rho: S \times T \rightarrow S$ defined by $\rho(x, e^{i\theta}) = e^{i\theta}x$. Then according to Fubini's theorem, we have

$$\int_{M \times T} h \circ \rho(x, e^{i\theta}) dS(x) d\theta$$
$$= \int_{T} d\theta \int_{M} h \circ \rho(x, e^{i\theta}) dS(x).$$

Since dS is rotation-invariant and M is circular, the inner integral in the last integral is independent of $e^{i\theta}$ and is equal to $\int_{M \cap A_1(r)} dS(x)$. On the other hand,

$$\int_{M \times T} h \circ \rho(x, e^{i\theta}) dS(x) d\theta$$
$$= \int_{M} dS(x) \int_{T} h \circ \rho(x, e^{i\theta}) d\theta$$
$$= \int_{M} l_{f}(r, x) dS(x).$$

Consequently, the assertion (b) is proved.

Proof of Theorem 1 when $n \ge 2$. Let f(z) be a nonconstant holomorphic function on \mathbb{C}^n satisfying the condition (A). We fix a positive constant B. For simplicity, we assume

(1.6)
$$|f(0)| > \exp(e)$$
.

Note that this assumption is always fulfilled if we replace f(z) by $f(z-z_0)$ for a suitable $z_0 \in \mathbb{C}^n$, and that this replacement does not change the assumption (A) nor the conclusion (B).

According to the assumption (A), there exist a constant $\eta > 0$ and an infinite set I of positive numbers with $\sup\{r \mid r \in I\} = +\infty$ such that

(1.7)
$$\log \log M(r) < r^{2n(1-\eta)} \text{ for every } r \in I.$$

We take a > 0 which is big enough to yield

(1.8)
$$\eta(a-1)^{\eta} > 4$$
.

Next, define the subset $Q{\subset}S$ by

 $Q = \{x \in S \mid T_f(r, x) \text{ is not bounded as } r \rightarrow \infty \}.$

Since $S-Q=\{x \in S \mid f_x(t) \text{ is identically equal to } f(0)\}$, S-Q is a closed subset of measure 0. So Q is an open subset, and putting $c_n = \int_S dS$, we have

(1.9)
$$\int_{Q} dS = c_n \, dS = c_n$$

For r > 0, let Q(r) be the open subset of Q defined by

(1.10)
$$Q(r) = \{x \in Q \mid T_f(r, x) > \max(e^a, 2 \log B)\}.$$

Then from $Q(r) \subset Q(r')$ (r < r') and $Q = \bigcup_{r>0} Q(r)$, (1.9) yields

$$\lim_{r\to+\infty}\int_{Q(r)}dS=c_n$$

Hence we can choose a constant $r_1 > 0$ such that

(1.11)
$$\int_{Q(r_1)} dS \ge \frac{1}{2} c_n \,.$$

For $R \ge r_1$, we define the open subset G(R) of \mathbb{C}^n by

$$G(R) = \left\{ z \in C^n \mid R < \|z\| < 2R, \ \log |f(z)| > \frac{1}{2} T_f(\|z\|, \|z\|^{-1}z), \ \|z\|^{-1}z \in Q(r_1) \right\}.$$

Then for every $z \in G(R)$, in view of (1.10), we have

$$\log |f(z)| > \frac{1}{2} T_f(||z||, ||z||^{-1}z) > \frac{1}{2} T_f(r_1, ||z||^{-1}z) > \log B,$$

which implies

$$(1.12) \qquad \{z \in \mathbb{C}^n \mid |f(z)| > B\} \supset G(R).$$

In order to prove Theorem 1, we shall estimate from below the measure $m_{2\pi}(G(R))$. We start with the following obvious inequality:

$$T_{f}(r, x) \leq \frac{1}{2\pi} \int_{A_{f}(r, x)} \log M_{f}(r, x) d\theta + \frac{1}{2\pi} \int_{T} \frac{1}{2} T_{f}(r, x) d\theta.$$

From this inequality, we have

YASUICHIRO NISHIMURA

(1.13)
$$l_f(r, x) \ge \frac{\pi T_f(r, x)}{\log M_f(r, x)}.$$

In order to estimate the right side of (1.13), we apply Lemma 1. In view of (1.6), $U(r)=T_f(r, x)$ $(x \in S)$ satisfies (1.1). Take the number η in (1.7) as δ in Lemma 1. Note that, for $x \in Q(r_1)$, (1.8) and (1.10) implies $\eta(\log T_f(r_1, x)-1)^{\eta} > 4$, which corresponds to the condition (1.3). Hence for each $x \in Q(r_1)$, there exists a closed subset $\mathcal{E}(x) \subset [1, \infty)$ such that

(a) for every $r \in \mathcal{E}(x)$ with $r \ge 1$,

(1.14)
$$T_{f}(r+r(\log T_{f}(r, x))^{-(1+\eta)}) < eT_{f}(r, x),$$

(b) for every $R \ge r_1$

(1.15)
$$m_1(\mathcal{E}(R, 2R; x)) < \frac{R}{2},$$

where $\mathcal{E}(R, 2R; x) = \{r \mid R \leq r \leq 2R, r \in \mathcal{E}(x)\}.$

Especially, for $r \ge 1$ with $r \notin \mathcal{E}(x)$, (1.5) and (1.14) yield

$$\log M_f(r, x) \leq 3e(\log T_f(r, x))^{1+\eta} T_f(r, x)$$

and hence, in view of (1.13)

(1.16)
$$l_f(r, x) \ge e^{-1} (\log T_f(r, x))^{-(1+\eta)}.$$

Note that $Q(r_1)$ is a circular subset of S. Hence we can apply Lemma 3. According to Fubini's theorem, (1.15) and (1.16), we have

$$\begin{split} m_{2n}(G(R)) &= \int_{R}^{2R} r^{2n-1} dr \int_{Q(r_1) \cap \mathcal{A}_f(r)} dS(x) \\ &= \int_{R}^{2R} r^{2n-1} dr \frac{1}{2\pi} \int_{Q(r_1)} l_f(r, x) dS(x) \\ &\ge R^{2n-1} \int_{Q(r_1)} dS(x) \frac{1}{2\pi} \int_{[R, 2R] - \epsilon(R, 2R; x)} l_f(r, x) dr \\ &\ge \frac{1}{4\pi e} R^{2n} \int_{Q(r_1)} (\log T_f(2R, x))^{-(1+\eta)} dS(x). \end{split}$$

If we choose R such that $2R \in I$, then (1.5), (1.7) and (1.11) yield

$$m_{2n}(G(R)) \ge \frac{c_n}{8\pi e} R^{2n} (2R)^{-2n(1-\eta^2)} = \tilde{c}_n R^{2n\eta^2}.$$

Hence letting $R \to +\infty$ with $2R \in I$, we find that $\limsup_{R \to +\infty} m_{2n}(G(R)) = +\infty$. In view of (1.12) we conclude (B).

Remark. Let u(x) be a subharmonic function in \mathbb{R}^m $(m \ge 2)$. We put $B(r) = \max_{\|x\|=r} u^+(x)$ and $T(r) = \frac{1}{c_m} \int_{x \in S} u^+(rx) dS(x)$, where dS is the area element of $S = \{\|x\|=1\}, \ c_m = \int_{x \in S} dS(x)$ and $u^+ = \max(u, 0)$. Then they are related as follows:

$$T(r) \leq B(r) \leq \frac{s^{m-2}(s+r)}{(s-r)^{m-1}} T(s) \quad (0 < r < s).$$

By a direct adaptation of the argument of [2], using the above inequalities, we can prove the following:

If u(x) is not bounded above and satisfies

(1.17)
$$\liminf_{r \to +\infty} \frac{\log \log B(r)}{\log r} < \frac{m}{m-1},$$

then, for every real constant B,

$$m_m(\{x \in \mathbb{R}^m \mid u(x) > B\}) = +\infty.$$

As was shown in [1], the constant $m(m-1)^{-1}$ on the right side of (1.17) is the largest possible. On the other hand, the constant on the right side of (A) in Theorem 1 is not $2n(2n-1)^{-1}$ but 2n. This improvement seems to come from the fact that slice function $\varphi_x(t) = \varphi(tx)$ ($x \in S$, $t \in C$) of a plurisubharmonic function φ in \mathbb{C}^n is subharmonic (or $\equiv -\infty$), while the restriction to a proper linear subspace of a subharmonic function in \mathbb{R}^m is not necessarily subharmonic.

§2. Proof of Theorem 2

Recall the polynomials $Q_{n,k}(z)$ which were introduced in Introduction. We shall make some preparations in order to prove the property ($\Omega Q.1$) (Theorem 2).

For integers $n \ge 2$, $k \ge 1$ and $N \ge 1$, we put

$$J_{n,k}(N) = m_{2n}(\{z \in \mathbb{C}^n \mid N - 1 \leq |Q_{n,k}(z)| \leq N\}).$$

We shall estimate $J_{n,k}(N)$.

First of all, we confine ourselves to the case n=2. For integers $k \ge 1$ and $N \ge 1$, and for $z_2 \in C$, we pose

$$s_{k}(z_{2}, N) = m_{2}(\{z_{1} \in C \mid N-1 \leq |Q_{2, k}(z_{1}, z_{2})| \leq N\})$$
$$= m_{2}(\{z_{1} \in C \mid N-1 \leq |z_{1}^{2} + z_{2}^{k}| \leq N\}).$$

Put $r = |z_2|$. Then $s_k(z_2, N)$ depends only on r:

$$s_k(z_2, N) = s_k(r, N) = m_2(\{z_1 \in C \mid N - 1 \leq |z_1^2 + r^k| \leq N\}).$$

Lemma 4. For $k \ge 1$ and $N \ge 1$, we have

YASUICHIRO NISHIMURA

(2.1)
$$s_{k}(r, N) \leq \alpha_{1} N^{1/2} \quad if \ r^{k} \leq N$$
$$s_{k}(r, N) \leq \alpha_{2} N^{3/2} r^{-k} \quad if \ r^{k} \geq N$$

where α_1 and α_2 are absolute constants.

Proof. Changing the notations for simplicity, we put

$$D = \{z \in C \mid \text{Re} z > 0, \ a < |z^2 - c| < b\} \ (0 \le a < b, \ c \ge 0)$$

We estimate the area of the domain *D*. Consider the holomorphic function $w=z^2$ and the annulus

$$D' = \{ w \in C \mid a < |w - c| < b \}.$$

Then by this function, D is mapped conformally onto the domain D'-{the negative part of the real axis}. Consequently, taking the polar coordinates $w = \rho e^{i\phi}$,

$$m_{2}(D) = \int_{D} dm_{2}(z)$$

$$= \int_{D'} \left| \frac{dz}{dw} \right|^{2} dm_{2}(w)$$

$$= \int_{D'} \frac{1}{4|w|} dm_{2}(w)$$

$$= \frac{1}{4} \int_{D'} d\rho d\phi.$$

Denote by $l(\phi)$ the length of the intersection of the half line $\{\arg w = \phi\}$ with $D' \ (0 \le \phi \le 2\pi)$. Then, we have

$$m_2(D) = \frac{1}{4} \int_0^{2\pi} l(\phi) d\phi.$$

We estimate $l(\phi)$ by examining the two cases below separately.

(i) When $b \ge c$, we have $l(\phi) + l(\phi + \pi) \le 2(b^2 - a^2)^{1/2}$ $(0 \le \phi \le \pi)$. Hence, $m_2(D) \le \frac{\pi}{2} (b^2 - a^2)^{1/2}$.

(ii) When $b \leq c$, we have $l(\phi) > 0$ only when $|\phi| < \operatorname{Arc} \sin \frac{b}{c}$. We also have $l(\phi) \leq 2(b^2 - a^2)^{1/2}$. It follows that

$$m_2(D) \leq (b^2 - a^2)^{1/2} \operatorname{Arc} \sin \frac{b}{c} \leq \frac{\pi}{2} (b^2 - a^2)^{1/2} \frac{b}{c}.$$

Thus, putting a=N-1 and b=N, we obtain (2.1).

Lemma 5. If $k \ge 3$, then for every $N \ge 1$, we have $(Q, 4)' \qquad \int_{2, k} (N) \le c N^{(k+4)/2k}$

where c > 0 is some absolute constant.

Proof. For a positive integer M, we put

$$S_k(M, N) = \max_{M - 1 \le r \le M} S_k(r, N)$$

Then, we have

(2.2)
$$J_{2,k}(N) \leq 2\pi \sum_{M=1}^{\infty} MS_k(M, N)$$

It can be easily deduced from Lemma 4 that

(2.3)
$$S_{k}(M, N) \leq \beta_{1} N^{1/2} \quad \text{if } M \leq N^{1/k} + 2$$
$$S_{k}(M, N) \leq \beta_{2} N^{3/2} (M-1)^{-k} \quad \text{if } M \geq N^{1/k} + 2$$

where $\beta_1 = \max(\alpha_1, \alpha_2)$ and $\beta_2 = \alpha_2$.

When $k \ge 3$, according to (2.3) and the following estimates

$$\sum M \leq (N^{1/k} + 2)^2 \leq 9N^{2/k}$$

$$\sum M(M-1)^{-k} \leq \int_{N^{1/k} + 1}^{\infty} x(x-1)^{-k} dx \leq 2N^{(-k+2)/k}$$

where the first and the second summations extend over integers with $1 \le M \le N^{1/k} + 2$ and $N^{1/k} + 2 \le M < +\infty$ respectively, we obtain

(2.4)
$$2\pi \sum_{M=1}^{\infty} MS_k(M, N) \leq c N^{(k+4)/2k}$$

in which we put $c=2(9\beta_1+2\beta_2)$. In view of (2.2) and (2.4), Lemma 5 is proved.

Now, we return to the general case $n \ge 2$.

Lemma 6. Let $n \ge 2$ and $N \ge 1$ be integers. If $k \ge 4$,

(Q.4)
$$\int_{n,k} (N) \leq c^{n-1} N^{(k+4)/2k}$$

where c > 0 is the absolute constant in Lemma 5.

Proof. We shall proceed by induction on n. The case n=2 was proved in Lemma 5. Assume that $n \ge 3$. Then observing

$$\begin{split} m_{2n}(\{z \in C^n \mid N-1 \leq |z_1^2 + Q_{n-1,k}(z_2, \cdots, z_n)^k| \leq N, \\ M-1 \leq |Q_{n-1,k}(z_2, \cdots, z_n)| \leq M\}) \\ \leq m_{2n-2}(\{(z_2, \cdots, z_n) \in C^{n-1} \mid M-1 \leq |Q_{n-1,k}(z_2, \cdots, z_n)| \leq M\})S(M, N) \\ = J_{n-1,k}(M)S_k(M, N), \end{split}$$

we obtain

YASUICHIRO NISHIMURA

(2.5)
$$J_{n,k}(N) \leq \sum_{M=1}^{\infty} J_{n-1,k}(M) S_k(M, N).$$

According to the induction hypothesis, (2.4) and (2.5), when $k \ge 4$,

$$J_{n,k}(N) \leq c^{n-2} \sum_{M=1}^{\infty} M^{(k+4)/2k} S_k(M, N)$$
$$\leq c^{n-2} 2\pi \sum_{M=1}^{\infty} M S_k(M, N)$$
$$\leq c^{n-1} N^{(k+4)/2k}.$$

Thus, Lemma 6 is proved.

For $e^{i\theta} \in T$, let $R_{\theta}: C \to C$ be the rotation defined by $R_{\theta}(w) = e^{i\theta}w$. For a subset $E \subset C$, the image of E under R_{θ} will be denoted by $R_{\theta}(E)$.

Lemma 7. For $e^{i\theta} \in T$, we have

$$(Q.5) \qquad m_{2n}(\{z \mid Q_{n,k}(z) \in E\}) = m_{2n}(\{z \mid Q_{n,k}(z) \in R_{\theta}(E)\})$$

where both sides may be infinite simultaneously.

Proof. For simplicity, we shall prove Lemma 7 only when n=2, writing $Q(z_1, z_2)$ in place of $Q_{2,k}(z_1, z_2)$. The proof for the general case is similar. Define a unitary transformation U of C^2 by

$$U(z_1, z_2) = \left(\exp\left(-\frac{i\theta}{2}\right)z_1, \exp\left(-\frac{i\theta}{k}\right)z_2\right).$$

Then we have $Q \circ U(z_1, z_2) = e^{-i\theta}Q(z_1, z_2)$. The invariance of the Lebesgue measure under the unitary transformations yields

$$m_4(\{(z_1, z_2) \mid Q(z_1, z_2) \in R_\theta(E)\})$$

= $m_4(\{(z_1, z_2) \mid Q \circ U(z_1, z_2) \in E\})$
= $m_4(\{(z_1, z_2) \mid Q(z_1, z_2) \in E\}).$

In addition, we prepare the following lemma concerning the domain Ω .

Lemma 8. There exists an absolute constant β such that, for every integer $N > e^2$,

$$(\mathcal{Q}.3) \quad \{w \in \mathcal{C} \mid N-1 \leq |w| \leq N, \ w \in \mathcal{Q}\} \subset \{w \in \mathcal{C} \mid N-1 \leq |w| \leq N, \\ |\arg(w)| \leq \beta (N \log N)^{-2}\}.$$

Proof is quite obvious.

Now, we can prove Theorem 2.

Proof. According to Lemma 7 and Lemma 8,

(2.6)
$$m_{2n}(\{z \in \mathbb{C}^n \mid N-1 \leq |Q_{n,k}(z)| \leq N, Q_{n,k}(z) \in \mathcal{Q}\})$$
$$\leq \pi^{-1} \beta(N \log N)^{-2} J_{n,k}(N) \quad (N > e^2).$$

Consequently, when $k \ge 4$, Lemma 6 yields

$$m_{2n}(\{z \in \mathbb{C}^n \mid Q_{n,k}(z) \in \mathcal{Q}\})$$

$$\leq \pi^{-1} \beta c^{n-1} \sum_{N=2}^{\infty} N^{(-3k+4)/2k} (\log N)^{-2}$$

$$\leq \pi^{-1} \beta c^{n-1} \sum_{N=2}^{\infty} N^{-1} (\log N)^{-2} < +\infty$$

where we used the fact that the measure on the left in (2.6) is equal to 0 when $N < e^2$. This proves Theorem 2.

References

- [1] Camera, G.A., Subharmonic functions on sets of finite measure, Quart. J. Math. Oxford Ser. (2), 33 (1982), 27-43.
- [2] Edrei, A. and Erdös, P., Entire functions bounded outside a finite area, Acta Math. Hung., 45 (1985), 367-376.
- [3] Edrei, A. and Fuchs, W.H.J., Bounds for the number of deficient values of certain classes of meromorphic functions, *Proc. London Math. Soc.*, **12** (1962), 315-344.
- [4] Gol'dberg, A.A., Sets on which the modulus of an entire function is bounded below, Siberian Math. J., 20 (1980), 360-364.
- [5] Hansen, L. J., On the growth of entire functions bounded on large sets, Canad. J. Math., 29 (1977), 1287-1291.