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Entire Functions of Several Complex Variables
Bounded Outside a Set of Finite Volume

By

Yasuichiro NISHIMURA*

Introduction

In this paper, we generalize two theorems of A. Edrei and P. Erdds [2]
for the 1 dimensional case to the n (=2) dimensional case.
The first one is the following :

Theorem 1. Let f(z) be a nonconstant holomorphic function on C" (i.e.,
entire function of n complex variables) such that

(A) lim inf log log log M(r)
T—+00 log v

(M=max| @)1, Izl =1+ - + ]2 1%'").

<2n

Then, for every positive constant B, it satisfies the condition
(B) msn({2€C™ | | f(2)| >B})=+00,

where my, denotes the 2n dimensional Lebesgue measure.
(Remark. The case n=1 is the Edrei-Erd¢s theorem.)

The second result of [2] is the construction of an example which shows
that, when n=1, the constant 2n=2 in the right side of the inequality (A) is
the largest possible in order to ensure the condition (B).

Let us recall this example. Let £ be the domain in C defined by

. — ; 2 — r ad
(2.1) .Q—{w—x—{—zy\e <x, 2x(log %) <y< 2x(log x)z}.

Note that we have

(2.2) my@)=F <+oo,
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where m, denotes the 2 dimensional Lebesgue measure. Then, the holomorphic
function @(w) on C, which we call the Edrei-Erdés function in this paper, has
the following two properties:
(E.1) ©@(w) remains bounded for weC—2,
(E.2) @(uw)—explexp(wlogw)?) remains bounded for we&, where the
branch of logw is determined so as to take real values for real we Q.

Especially, combining (2.1), (2.2), (E.1) and (E.2), we have

E.3) lim log log log M(r)
Tote logr

(E.4) {weC | |9w)|>B,;}cfQ and hence m,({weC| |®(w)|>B;})<+oo
for some suitable B;>0.

=2 (M(r)=m§§r ! @(wﬂ):

In order to state our second result, we need to introduce some special
polynomials. For each integer 2>=1, we define the polynomials @, .(z) of =
variables z=(z,, ---, 2z,) inductively on n (=2) by

Q.1) Qz,k(Zh z)=2. 42"
Qn, 1(z1, 22, =+, 22)=Qs, 1(21, Qn—l,k(ZZ; e, Zy) (n=23).
Observe the following properties :
(Q.2) degree of Qn (2)=Fk",
(Q.3) Q@ x0, =+, 0, r)=r¥"",

The following theorem will be proved in §2.

Theorem 2. If k=4, we have
(2Q.1) men({2€C™ | Qu, 1{2)E2}) <00

Consider the composition @, ,=®-Q,, , of the Edrei-Erdés function @ and
the polynomial @, ,. Then, combining (E. 3), (E.4), (Q.2), (Q.3) and Theorem 2,
we have

. log log log M(r) .. . _
(0.1) Tliixzo——————logr =2k M(r)——r"rzluzfrci@n,k(z)o,

(0.2) {z€C™ | |D,. ()| >B,}C{zeC™ | Q.. ,(2)€2}, hence
Man({z€C™ | | Dy, x(2)| >B,})<+oc when k=4, where B, is the con-
stant in (E. 4).

Especially, when k=4, we have

Corollary. The holomorphic function @, (z) on C™ (n=2) has the following
two properties:

¢
(C) lim log log log M(r)
Tt logr

(D) me({z€C™ | 1@, (2)|>B,})<+oo, where B, is the constant in (E.4).

—292n-1 (M(r):maxld)n,4(2)l),

lzl=r
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Remark. Compare this Corollary with Theorem 1. Then, because of the
difference between 2n in (A) and 2°"~! in (C), our results leave something to
be improved.

Such problems as are dealt with in this paper were also treated by A.A.
Gol’dberg [4] and L. ]J. Hansen [5] for the case n=1. Moreover, G. A. Camera
[1] considered the case of subharmonic functions in R™ (see Remark to Theo-
rem 1 in §1).

In §1, we prove Theorem 1. For that purpose, for each point x in the
unit sphere S={z | |z|=1} in C", we consider the so-called slice function
fz(t)=f(tx) which is a holomorphic function in te{. We adapt the argument
of [2] for these slice functions {f, | x=S}.

In §2, after making some observations about the polynomials {@, .(z)}, we
prove Theorem 2.

Acknowledgement. The referee made some useful comments. Especially,
the simple procf of Lemma 4 in §2 is due to him. The author thanks him for
these things.

§1. Proof of Theorem 1

In [2], Edrei and Erdos used a lemma of Borel type to prove Theorem 1
when n=1. In our proof of Theorem 1 when n=2, we use a lemma of the
same type. So we prepare it first of all.

Lemma 1. Let U(r) be a positive continuous nondecreasing function on [1, co)
such that

(L.1) Ul)>e.

Let 0>0 be an arbitrarily chosen constant. Then, there exists a closed subset
EC[1, oo) such that
(a) for every re&& with r=1,

(1.2) Ur+r(log U(r))" ) <elU(r);

(b) for every s, t with 1<s<t<co and with

(1.3) d(log U(s)—1Y>4,

we have

(1.4) mi(e(s. t))<%

where &(s, ty={r | s<r<t, reé&} and w. denotes the 1 dimersional Lebesgue

measure.
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Remark. A sharper form of Lemma 1 is found in the paper of Edrei and
Fuchs [3]. But in their statement, the extent of s (the above condition (1.3))
to ensure the estimate (1.4) is implicit. As we need (1.3) later on, we give
the proof of Lemma 1.

Proof. Put ¢(x)=logU(e®) (0=<x<o0). Since U(r) is nondecreasing, (1.1)
implies ¢(x)>1 (0<x<oo). Consider the function A(x)=x"*» (0<x<o0), and
put H(x)=¢(x+h(@(x))—¢d(x)—1 (0<x<co). Then H(x) is well-defined and
continuous. Put E={x | 0<x, H(x)=0} and &€={r | r=e*, x<E}. Then E and
& are closed subsets of [0, o) and [1, oo) respectively. Using the inequality
e*=a-+1, we can see that (a) holds.

In order to prove (b), put y=logs, z=logt and E(y, z)=EN[y, z]. We
claim

é2)
m(E(y, =" hwds.

In fact, we define y,, y{, ¥s, ¥, --- inductively by
yi=min E(y, 2) Vi=y:1+h(@(y1)
Ya=minE(yr-1, 2)  yn=y+h(@(y.) (n=2)

where E(y7-1, 2)=EN[ys-1, z]. Since ¢(y,)—P(y.)=1, there exists some integer
N =1 such that y5, >z or y), <z with E(y%, z)=@. Hence E(y, 2)CT\U5-i[Va, y2].
Noting that ¢(y,)—@(yn-1)=1 (n=2), we have

m(E, 2D 3 (h—7a)
N
= 33 h(@(y)

Sh@OD+ 3, RGO GGn)—$(anr)

gh<¢(yl>>+5:i’;f) n(x)dx

éCyp-1

gggsw hix)dx.

$Cyd-1

<S¢(Z) h(x)dx

Then, in view of (1.3), a calculation yields

my(&(s, 1)<td~*(log U(s)—1)"?

z
T

IA

This proves Lemma 1.
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Let C™ be the n dimensional complex Euclidean space, and let S be the
unit sphere {z | |z|=1} in C". Especially, the unit circle (when n=1) is denoted
by T:T={e" | 0<6<2r}. We denote by dm,, the 2n dimensional Lebesgue
measure on C®, by dS the rotation-invariant area element of S and by d@ the
line element of T. Considering the identification C™®—{0}=(0, c©)X S, we obtain
dmy,=r*""*drdS.

Definition 1. Let f(z) be a holomorphic function on C* (n=2). For r>0
and xS, define

M(r, x)=max | f(re*’x)|
erber

T (r, x)= %STlog’fl Flrei9x)|d6

where logtt=max(logt, 0) (¢>>0). Then these two functions are continuous in
(0, c0)X S.

Concerning the functions M(r, x) and T ,(r, x), the following facts are
well known.

Lemma 2. Let f{z) be a holomorphic function on C® (n=2). Then M,(r, x)
and Ty(r, x) are related by the following inequalities :

s+r

(L5) T (r, x)<log* My(r, 1)<~

T (s, x) (0<r<s).

For x<S such that the slice function f.(t)=f(tx) (t<C) is not a constant function,
My(r, x) and Ts(r, x) are unbounded continuous increasing function in r.

Definition 2. Let f(z) be a holomorphic function on C® (n=2). For »>0
and xS, we put

A(r, x)z{eweT ] log| f(re'x)| >%Tf(r, x>}
A,)={yeS] log| frs) 1> 5 Tstr, »}
I i 2 I\

1
Ay={zeC— {0} | og| &) > F T (el 1212}
Then A(r, x), A;(r) and A, are open subsets of T', S and C™— {0} respectively.
A subset MCS is said to be circular if ¢!?xe M whenever x&M and e’ T.

Lemma 3. Let f(z) be a holomorphic function on C™ (n=2). We put

Ly(r, x)-——S df on (0, ©)XS. Let M be a measurable circular subset of S.

Agcr, 2>
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(a) Iy(r, x) is a measurable function in (0, 00)XS.

0 For r>0, | dS(x):%Sle(r, £)dS(x).

MnApcry

Proof. Consider the characteristic function g(z) of the open subset A, of
C*—{0} (i.e., g(2)=0 for zeC"—({0}\UAd,); g(z)=1 for ze A;). Consider the
mapping 7: (0, c0)X SXT—C"— {0} defined by 7(r, x, ¢**)=re*?x. Then we have

L4(r, x):STgar(r, x, e")d6.

So, from Fubini’s theorem applied to the function gez(r, x, ¢*?) on (0, c0)XSXT,
the assertion (a) follows.

Next, consider the characteristic function A(x) of the subset A,) of S,
and the mapping p:SXT—S defined by p(x, e*?)=¢?x. Then according to
Fubini’s theorem, we have

S hep(x, e*?)dS(x)d 8
MxT

=\ db\ hep(x, ¢®)dS(x).
1,45,

Since dS is rotation-invariant and M is circular, the inner integral in the last

integral is independent of ¢’ and is equal to SM y dS(x). On the other hand,
NnAg(r)

SMxThop(x, ¢'9)dS(x)df
=SMdS(x)SThop(x, ¢0)df

=Ssz(r, 2)dS(x).
Consequently, the assertion (b) is proved.

Proof of Theorem 1 when n=2. Let f(z) be a nonconstant holomorphic
function on C™ satisfying the condition (A). We fix a positive constant B.
For simplicity, we assume

(1.6 | F(0)] >expl(e).

Note that this assumption is always fulfilled if we replace f(z) by f(z—z,) for
a suitable z,eC", and that this replacement does not change the assumption
(A) nor the conclusion (B).

According to the assumption (A), there exist a constant >0 and an infinite
set I of positive numbers with sup{r | r&I}=+o0 such that
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1.7 log log M(r)<#?*“-7 for every r<l.
We take a>0 which is big enough to yield
(1.8) P{a—1)7>4.
Next, define the subset QCS by
Q={xeS | T/, x) is not bounded as r—oo}.
Since S—Q={x<S | f,(t) is identically equal to f(0)}, S—@Q is a closed subset

of measure 0. So @ is an open subset, and putting cn:SSdS, we have
(1.9) S dS=c,.
Q

For »>0, let Q(r) be the open subset of @ defined by
(1.10) QN={xeQ | T ;(r, x)>max(e*, 2log B)}.
Then from Q(r)C Q') (r<#’) and Q= Q(r), (1.9) yields

limg dS=c,.
Q)

T—>+o00
Hence we can choose a constant #,>0 such that

L
2

Cn-

(L.11) S dS=
Q(ry)
For R=r,, we define the open subset G(R) of C* by

G(R={reC | R<2<2R, log| /(2)| > 5 To(lzl, 1212}, |z1-2= Qur}

Then for every ze G(R), in view of (1.10), we have
' 1 -1 1 -1
10g|f(Z)l>7Tf(HZII, Izl 2)>7Tf(7'1, lz]*z)>log B,

which implies
(1.12) {zeC™ | | f(2)| >B}DG(R).

In order to prove Theorem 1, we shall estimate from below the measure
men(G(R)). We start with the following obvious inequality :

1 1¢1
Z < (1~ \ _’l (- x .
1, %) 27 SAfu-.x)lOg Mylr, x)d6 2 ST g )¢

From this inequality, we have
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ﬂ.'Tf(?', x)
(1.13) L D= g MyGr, 5y

In order to estimate the right side of (1.13), we apply Lemma 1. In view
of (1.6), U(r)=T(r, x) (x<S) satisfies (1.1). Take the number % in (1.7) as 0
in Lemma 1. Note that, for x€Q(r,), (1.8) and (1.10) implies p(log T /(r;, x)—1)7
>4, which corresponds to the condition (1.3). Hence for each x=Q(r,), there
exists a closed subset &(x)C[1, co) such that

(a) for every re&(x) with r=1,
(1.14) T ;(r+r(log T s(r, x))" 1)< eT f(r, x),

(b) for every R=r,
R
(1.15) my(€(R, 2R ; x))<7,

where &(R, 2R ; x)={r | REr<2R, re&(x)}.
Especially, for r=1 with r&&(x), (1.5) and (1.14) yield

log M,(r, x)<3e(log T ;(r, x)**"T ;(r, x)
and hence, in view of (1.13)

(1.16) ly(r, x)=e Y(log T s(r, x))~ 7P,

Note that Q(r,) is a circular subset of S. Hence we can apply Lemma 3.
According to Fubini’s theorem, (1.15) and (1.16), we have

M GURY = 7ot 4S(x)

Qurdndsgiry

_SZR 201 _]'_S 1:( YdS(x)
_Rr r27r Q(rl)fr’x *

1
> p2n-1 L
=R SQ(Tl)ds<X) 27 S[R, 2R]-:(R,2R; z)lf(r’ x)dr

1
>_ - p2n -1+
Z e R SQ<T1)(10g T (2R, x)) dS(x).

If we choose R such that 2Re1, then (1.5), (1.7) and (1.11) yield

%RZn(ZR)—Zn(l—r)z)ZEnRZnﬂZ .

mea(G(R))Z 5

Hence letting R—-+o0 with 2Rel, we find that Iirgfupmzn(G(R)):—}—oo. In
view of (1.12) we conclude (B).
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Remark. Let u(x) be a subharmonic function in B™ (m=2). We put B(r)

=max u"(x) and T(r)zjl—g su*(rx)dS(x), where dS is the area element of
Izl=r m JTE

S={|x|=1}, cm=S (dS(x) and w'=max(u,0). Then they are related as
re
follows :

T(<Br< S8+

= o

T(s) O<r<s).

By a direct adaptation of the argument of [2], using the above inequalities, we
can prove the following :
If u(x) is not bounded above and satisfies

(1.17) lim inf 28 08 B®) . m
Ttoo logr m—1

then, for every real constant B,
mn({x€R™ | u(x)>B})=-+o0.

As was shown in [1], the constant m(m—1)"! on the right side of (1.17) is the
largest possible. On the other hand, the constant on the right side of (A) in
Theorem 1 is not 2n(2n—1)"! but 2n. This improvement seems to come from
the fact that slice function @,(t)=¢(x) (xS, t€C) of a plurisubharmonic
function ¢ in C* is subharmonic (or =—oo), while the restriction to a proper
linear subspace of a subharmonic function in R™ is not necessarily subharmonic.

§2. Proof of Theorem 2

Recall the polynomials @, ,(z) which were introduced in Introduction. We
shall make some preparations in order to prove the property (£2Q.1) (Theorem 2).
For integers n=2, k=1 and N>1, we put

Ja sl (N)=man({z€C™ | N=1Z[Qy, 1 (2)| SN},

We shall estimate [, (N).
First of all, we confine ourselves to the case n=2. For integers k=1 and
Nz=1, and for z,eC, we pose

$i(2e, N)=my({z,€C | N=1Z1Q;, 4(21, 22)| SN}
=my({z,€C | N—1=Z]|z,2+2,*]| <N}.

Put »=|z,]. Then s,(z,, N) depends only on r:

Se(ze, N)=5,(r, N)=m,({z;€C | N=1= |2+ r*[<N}).

Lemma 4. For k=1 and N=1, we have
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2.1) sp(r, N)<a,N'? if T*" <N

sp(r, N)Sa,N*2r* if r*=N

where a, and «, are absolute constants.

Proof. Changing the notations for simplicity, we put
D={zeC | Rez>0, a<|z*—c{<b} (0Za<b, c=0).

We estimate the area of the domain D. Consider the holomorphic function
w=2z% and the annulus

D'={welC|a<|w—cl<b}.

Then by this function, D is mapped conformally onto the domain D’—{the

negative part of the real axis}. Consequently, taking the polar coordinates
— i

w=pe'?,

ma(D)=\ dmy(2)

I,
AET.

Il

1 14
SD’ m dms{w)

—i—SD’dpdqﬁ.

Denote by /(¢) the length of the intersection of the half line {argw=¢} with
D’ (0<¢=<2m). Then, we have

my(D)= —i—g:”l(qi)dqﬁ.

We estimate /(¢) by examining the two cases below separately.

(i) When b=c¢, we have [@)+Ug+nm)<2(b°—a®)'® (0<¢=<x). Hence,
my(D)< %(bz—cﬂ)m.

(i) When 6=¢, we have {(¢)>0 only when |@|<<Arc sin%. We also have
U(P)=2(0°—a®M*. It follows that
b

(b*— a2 =,

. b
my(D)Z (b2 —a?)%Arc sin— <
¢

o)y

Thus, putting a=N—1 and b=N, we obtain (2.1).

Lemma 5. [f k=3, then for every N=1, we have

Q4 Jo s(N)S N0



ENTIRE FuNcTiONS OF SEVERAL VARIABLES 497
where ¢>0 is some absolute constant.

Proof. For a positive integer M, we put
S.(M, N)= max s,(r, N).
M-1=1=M

Then, we have
(2.2) JusN)=27 32 MS,(M, N).

It can be easily deduced from Lemma 4 that

2.3) Sp(M, N)SB.NY? it M<NYEL2
SrM, N)SBNP(M—1)~% if M=NY*+2

where B;=max(a;, a;) and S,=a,.

When 223, according to (2.3) and the following estimartes

SMZ(NY 2P <9N?*

SMM-D (T ) daS2Nh e
+

where the first and the second summations extend over integers with
1ISMENY 42 and NY*4+2<M< +oo respectively, we obtain

(2.4) Zﬂé“lMSk(M’ N)< N D12k

in which we put ¢=2(98,428.). In view of (2.2) and (2.4), Lemma 5 is proved.
Now, we return to the general case n=2.

Lemma 6. Let n=2 and N=1 be integers. If k=4,
(Q.4)  Ja w(N)ScrINHr2E
where ¢>0 is the absolute constant in Lemma 5.

Proof. We shall proceed by induction on n. The cese n=2 was proved
in Lemma 5. Assume that n=3. Then observing

man({z€C™ | N=1= |2+ 0nos, 1(2, -, 20) [ SN,
M—=1=1Qn-1,4(2e, -, 20) | =M})
Sian-s({(z2, -+, 2a)EC™ ! | M—1=|Qnov, (25, -+, 22) [ SM}B)S(M, N)

:]n-l, k(M)Sk(A1) N):

we obtain
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(2.5) ]n,k(N)églfn—l,k(M)Sk(M, N).
According to the induction hypothesis, (2.4) and (2.5), when k>4,
Ja NS 33 MA+ORES (M, N)

<cn2n élMSk(M, N)

IA

cn—lN(k+4)/2k )
Thus, Lemma 6 is proved.

For ¢*<T, let Ry:C—C be the rotation defined by Rs(w)=e*Yw. For a
subset ECC, the image of E under R, will be denoted by R4(E).

Lemma 7. For e*’=T, we have
Q.5)  mu({z | @ w(R)EE}N)=man({z | Qn, 2(2)E Ro(E)})
where both sides may be infinite simultaneously.
Proof. For simplicity, we shall prove Lemma 7 only when n=2, writing

Q(z,, z») in place of @, .(z1, z5). The proof for the general case is similar.
Define a unitary transformation U of C* by

i0 i0
Uzy, z2)= eXp(——T)zl, exp(—— T)ZZ)'
Then we have Q-U(zy, z,)=e¢ %Q(z,, z,). The invariance of the Lebesgue

measure under the unitary transformations yields

my{(z1, 25) | Qz1, z2)€ Re(E)})
=m,({(21, z2) | Q°U(zy, z,)€E})
=m{(z1, z2) | Q(z1, z)E€ E}).

In addition, we prepare the following lemma concerning the domain £.

Lemma 8. There exists an absolute constant B such that, for every integer
N>e?,
(2.3) {fwelC | N-1Z|w|EN, wel}c{welC | N—1<|w! €N,
larg(w)| < B(Nlog N)7%}.

Proof is quite obvious.

Now, we can prove Theorem 2.
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Proof. According to Lemma 7 and Lemma 8,

(2.6) Men({2zEC™ | N=1=1Q4, x(2)| =N, Qn 1(2)E2})
< 'B(Nlog N)*]s o(N) (N>e?).
Consequently, when 2=4, Lemma 6 yields

Man({z€C™ | Qn, 1(2)E82})

< -1 n-1 < (-8k+4)/2k -2
sz'fcn 5N (log N)
<mifent 35 N-log N)*<+oo

where we used the fact that the measure on the left in (2.6) is equal to 0 when
N<e?® This proves Theorem 2.
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