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Entire Functions of Several Complex Variables
Bounded Outside a Set of Finite Volume

By

Yasuichiro NISHIMURA*

Introduction

In this paper, we generalize two theorems of A. Edrei and P. Erdos [2]
for the 1 dimensional case to the n (^2) dimensional case.

The first one is the following:

Theorem 1. Let f(z) be a nonconstant holomorphic function on Cn (i.e.,
entire function of n complex variables] such that

l im .nflogloglogM(r)
r-+~ logr

(M(r)=max|/(z)|, \\z\\ = (\z^+ - +k.|')1").
v llzll=r /

Then, for every positive constant B, it satisfies the condition

(B) 77i£n({*eCB I |/(z)|>S})= + oo,

where mzn denotes the 2n dimensional Lebesgue measure.

(Remark. The case n = l is the Edrei-Erdos theorem.)

The second result of [2] is the construction of an example which shows
that, when n = l, the constant 2n=2 in the right side of the inequality (A) is
the largest possible in order to ensure the condition (B).

Let us recall this example. Let Q be the domain in C defined by

" ' 2*(log;c)2 "-/" 2*(log;c)2

Note that we have
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where mz denotes the 2 dimensional Lebesgue measure. Then, the holomorphic
function @(w) on C, which we call the Edrei-Erdos function in this paper, has
the following two properties:

(E.I) 0(w) remains bounded for w^C—Q,
(E.2) @(iu)—exp(exp(i6>logK;)2) remains bounded for w^Q, where the

branch of log w is determined so as to take real values for real

Especially, combining (Q. 1), (Q. 2), (E. 1) and (E. 2), we have

(E.3) l i m l°glogl°gMr)= 2

(E.4) {w<=C\ @(iv}\>B1}C.Q and hence m2({w^C\
for some suitable BjX).

In order to state our second result, we need to introduce some special
polynomials. For each integer k^l, we define the polynomials Qn,k(z] of n
variables z=(zlt -• , zn] inductively on n (^2) by

(Q.I) Q8.*(*i, *,)=*!«+*.*
Qn.k(Zl, *2, "• , Zn}—Q2ik(zl} Qn-l,k(Zz, '" , *J

Observe the following properties :

(Q.2) degree of Qn,k(z)=kn-1,
(Q.3) Qn.k(Q, -,0, r)=r*B"1.

The following theorem will be proved in §2.

Theorem 2. // &^4, we have

Consider the composition ®n,k~®0Qn,k of the Edrei-Erdos function 0 and
the polynomial Qn>k. Then, combining (E. 3), (E.4), (Q.2), (Q.3) and Theorem 2,
we have

(0.2) {z^Cn \0n,k(z)\>B1}c:{ztECn\Qn,k(z^Q}, hence
7n2n({z^Cn | \0n.k(z)\>B1})< + oo when ^^4, where B! is the con-
stant in (E.4).

Especially, when &=4, we have

Corollary. The holomorphic function 0n,±(z') on Cn (n^2) has the following
two properties:

log log log M(r~) / \
(C) lim —22n~l (M(r)=max|@n 4(z)| ),

r-»+oo lOgr \ ilz||=r ' /

(D) mZn({z^Cn \ \0n.*(z)\>B1})< + oQ, where B^ is the constant in (E.4).
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Remark. Compare this Corollary with Theorem 1. Then, because of the
difference between 2n in (A) and 2"n~l in (C), our results leave something to
be improved.

Such problems as are dealt with in this paper were also treated by A. A.
Gol'dberg [4] and L. J. Hansen [5] for the case n = l. Moreover, G. A. Camera
[1] considered the case of subharmonic functions in Rm (see Remark to Theo-
rem 1 in § 1).

In § 1, we prove Theorem 1. For that purpose, for each point x in the
unit sphere S={z \ Hz|| = l} in Cn, we consider the so-called slice function
f x ( t ) = f ( t x ) which is a holomorphic function in t^C. We adapt the argument
of [2] for these slice functions {fx x^S}.

In §2, after making some observations about the polynomials {Qn k(z)}, we
prove Theorem 2.

Acknowledgement. The referee made some useful comments. Especially,
the simple proof of Lemma 4 in § 2 is due to him. The author thanks him for
these things.

§ 1. Proof of Theorem 1

In [2], Edrei and Erdos used a lemma of Borel type to prove Theorem 1
when n = l. In our proof of Theorem 1 when ?z^>2, we use a lemma of the
same type. So we prepare it first of all.

Lemma 1. Let U(r} be a positive continuous nondecr easing function on [1, co)
such that

(1.1) £/(!)>*.

Let d>Q be an arbitrarily chosen constant. Then, there exists a closed subset
, oo) such that

(a) for every r^G with

(1.2)

(b) for every s, t with l^s<£<oo and with

(1.3)

we have

where €(s, t)={r \ s^r^t, r^6] ai:a ? / - : denotes the 1 dimensional Lebesgue
measure.
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Remark. A sharper form of Lemma 1 is found in the paper of Edrei and
Fuchs [3]. But in their statement, the extent of s (the above condition (1.3))
to ensure the estimate (1.4) is implicit. As we need (1.3) later on, we give
the proof of Lemma 1.

Proof. Put $(x)=logU(ex) (0^;c<oo). Since U(r) is nondecreasing, (1.1)
implies $(x)>l (0^%<oo). Consider the function h(x)=x~a+8:> (0<*<oo), and
put H(x)=$(x + h($(x)))—$(x)—l (0^x<oo). Then H(x) is well-defined and
continuous. Put E={x \ 0^%, H(x)^Q} and <S={r \ r=ex, x^E}. Then E and
8 are closed subsets of [0, oo) and [1, oo) respectively. Using the inequality
ea^a-\-l, we can see that (a) holds.

In order to prove (b), put jy^logs, z=logif and E(y, z)=Er\[y, z]. We
claim

m1(E(y} z)}^ \ t h(x)dx .

In fact, we define ylt y(, yz, y'z, ••• inductively by

y1=mmE(y9z) y(=.

where E(y'n-l9 z^E^y'n-^ z\. Since <f>(yf
n)—<j>(yn}^, there exists some integer

N^l such that y'N>z or y'N^z with E(y'N, z}=0. Hence E(y, z)c:{J%=1lyn, y'n].
Noting that (f>(yn}-<t>(yn-i)^l (n^2), we have

m1(E(y9 z)}^ S (y'n-yn)
71 = 1

= S h(<f>(yn))
71 = 1

+ 2 AW
71=2

h(x)dx

C2)
h ( x ) d x .

Then, in view of (1.3), a calculation yields

4
This proves Lemma 1.
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Let Cn be the n dimensional complex Euclidean space, and let S be the
unit sphere {z \ ||z|| = l} in Cn. Especially, the unit circle (when n = l) is denoted
by T:T={eiff \ 0^0^2?r}. We denote by dm2n the 2n dimensional Lebesgue
measure on Cn, by dS the rotation-invariant area element of S and by dO the
line element of T. Considering the identification Cn— {0}=(0, oo)x5, we obtain
dm2n=rZn~ldrdS.

Definition 1, Let f(z) be a holomorphic function on Cn (n^2). For r>0
and x^S, define

M f ( r , x)=

Tf(r, J c ) = - - log+\f(reiex)\dO
LTt JT

where log+£=max(log£, 0) (f>0). Then these two functions are continuous in
(0, oo) xS.

Concerning the functions Mf(r, x) and Tf(r, x), the following facts are
well known.

Lemma 2. Let f(z) be a holomorphic function on Cn (n>2}. Then Mf(r, x)
and Tf(r, x) are related by the following inequalities :

-
(1.5) Tf(r, x}<\og+Mf(r, x)^-Tf(s, x} (0<r<s).

For x^S such that the slice function fx(t)=f(tx) (t^C) is not a constant function,
Mf(r, x) and Tf(r, x) are unbounded continuous increasing function in r»

Definition 2. Let f(z) be a holomorphic function on Cn (n^2). For r>0
and x^S, we put

Af(r, x)={e^^T \og\f(rei6x)\>-^Tf(r,

\>-^Tf(\\z\\, \\z\\-lz)}.

Then Af(r, x\ Af(r} and Af are open subsets of T, 5 and Cn— {0} respectively.

A subset McS is said to be circular if ei6x^M whenever x&M and eie^T.

Lemma 3. Let f(z) be a holomorphic function on Cn (n^2). We put

f ( r , x}=\ dO on (0, oo)x5. Let M be a measurable circular subset of S,
JJ/Cr, a?)
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(a) l f ( r , x) is a measurable function in (0, oo)xS.

(b) For r>0, f dS(x)=^\ l f ( r , x)dS(x).
jAfn^/cr) ZTTJJ f

Proof. Consider the characteristic function g(z) of the open subset Af of
Cn—{0} (i.e., £(z)=0 for zeCn—({0}U^t/); £(*)=! for z^Af). Consider the
mapping r : (0, oo)xSxT->Cr l—{0} defined by r(r, *, eld)=reidx. Then we have

So, from Fubini's theorem applied to the function g°r(r, x, eld] on (0, oo)xSxT,
the assertion (a) follows.

Next, consider the characteristic function h(x) of the subset Af(r) of 5,
and the mapping p:SxT-^S defined by p ( x , eid}=el6x. Then according to
Fubini's theorem, we have

= \ dO\ h°p(x, eJr JM

Since dS is rotation-invariant and M is circular, the inner integral in the last

integral is independent of eid and is equal to \ dS(x). On the other hand,
JJfWl/Cr)

= { dS(x)(
JM J

= ( l f ( r , x
JM

Consequently, the assertion (b) is proved.

Proof of Theorem 1 when n>2. Let f(z) be a nonconstant holomorphic
function on Cn satisfying the condition (A). We fix a positive constant B.
For simplicity, we assume

(1.6) |/(0)|>exp(e).

Note that this assumption is always fulfilled if we replace f(z] by f(z—zQ) for
a suitable z0^Cn, and that this replacement does not change the assumption
(A) nor the conclusion (B).

According to the assumption (A), there exist a constant rj >0 and an infinite
set J of positive numbers with sup{r | re/} = + oo such that
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(1.7) log logM(r)<r27lC1-^ for every re/.

We take <2>0 which is big enough to yield

(1.8) iy(fl-l)*>4.

Next, define the subset QdS by

Q={x^S | Tf(r, x) is not bounded as r-»oo} .

Since S—Q={x^S \ fx(t) is identically equal to /(O)}, S—Q is a closed subset

of measure 0. So Q is an open subset, and putting cn=\ dS, we havej s

(1.9) f dS=cn.
JQ

For r>0, let Q(r) be the open subset of Q defined by

(1.10) Q(r)={x^Q \ T/r, *)>max(ea, 2 log 5)} .

Then from Q(r)C<?(r') (r<r r) and <2=Ur>oQ(r), (1.9) yields

lim \ dS=cn.
r-»+ooJQ(r)

Hence we can choose a constant r^O such that

(LID

For R^r1} we define the open subset G(#) of Cn by

-~TXIkll , Wl-

Then for every z<^G(R], in view of (1.10), we have

\Qg\f (z}\>~Tf(\\z\\, |k||-

which implies

(1.12) {zeC71 | \

In order to prove Theorem 1, we shall estimate from below the measure
mzn(G(R}}. We start with the following obvious inequality :

From this inequality, we have
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r, x)
— ~, - TT~~, - r-logM/r, x)

In order to estimate the right side of (1.13), we apply Lemma 1. In view
of (1.6), U(r)=Tf(r, x) (*eS) satisfies (1.1). Take the number 7] in (1.7) as d
in Lemma 1. Note that, for x^Q(rJ, (1.8) and (1.10) implies y(logTf(rlt x}-l}*
>4, which corresponds to the condition (1.3). Hence for each x^Q(r^, there
exists a closed subset £(*)C[1, oo) such that

(a) for every r^e(x) with r^l,

(1.14) T/r+rdogT/r, x)Y«+»)<eTf(r, x} ,

(b) for every R^rl

(1.15)

where <?(/?, 2R ; ^:)={

Especially, for r^l with r&8(x\ (1.5) and (1.14) yield

logM/r, x)^

and hence, in view of (1.13)

(1-16) //(r, ^

Note that 0(^i) is a circular subset of S. Hence we can apply Lemma 3.
According to Fubini's theorem, (1.15) and (1.16), we have

S ZR r
rzn-ldr\ dS(x}

R JQCr^n^/Cr)

S Z R I f
r»»-idr I i (r x ) d S ( x )

R Zn Jecr j )

^, 2/2] -£(^2, 272; a;)

(logT/2/?,

If we choose /? such that 2R<=I, then (1.5), (1.7) and (1.11) yield

Hence letting ^-^ + 00 with 2J?e/, we find that lim supmzn(G(R)}= + oo. In
R^>+°°

view of (1.12) we conclude (B).
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Remark. Let u(x) be a subharmonic function in Rm (m^2). We put B(r)

=maxtt^(;t) and T(r)= — I u+(rx}dS(x), where dS Is the area element of
I|jc0=r CmJx^S

S={||^|| = 1}, cm=[ dS(x) and u+=max(u, 0). Then they are related as
JxtES

follows :
~ 7 7 l - 2 / ~ _ | _ \

(0<r<s).

By a direct adaptation of the argument of [2], using the above inequalities, we
can prove the following:

If u(x) is not bounded above and satisfies

(1.17) 1 . m i n f l og log^( r ) < _ m
logr 77-z— 1 '

then, for every real constant B,

As was shown in [1], the constant m(m— I)"1 on the right side of (1.17) is the
largest possible. On the other hand, the constant on the right side of (A) in
Theorem 1 is not 2n(2n — l)~1 but 2n. This improvement seems to come from
the fact that slice function <px(t)=<p(tx) (x^S, t^C) of a plurisubharmonic
function <p in Cn is subharmonic (or = — oo), while the restriction to a proper
linear subspace of a subharmonic function in Rm is not necessarily subharmonic.

§ 2. Proof of Theorem 2

Recall the polynomials Q n i k ( z ) which were introduced in Introduction. We
shall make some preparations in order to prove the property (£?Q. 1) (Theorem 2).

For integers n^>2, k:>l and N^l, we put

We shall estimate Jn,k(N).
First of all, we confine ourselves to the case n —2. For integers k^l and

N^l, and for z2^C, we pose

Put r=\zz\. Then sk(zz, N) depends only on r :

Sk(z2, N)=sk(r, N)=mz({Zl<=C N-

Lemma 4. For k^l and N^l, we have
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(2.1) sk(r, N)^a,Nlf2 if rk<

sk(r, N)<a2N*/2r~k if rk^

where a1 and az are absolute constants,

Proof. Changing the notations for simplicity, we put

Rez>0, a< z2-c\<b] (Q^

We estimate the area of the domain D. Consider the holomorphic function
w—z2 and the annultis

D'={w^C\ a<\w-c <b}.

Then by this function, D is mapped conformally onto the domain D'— {the
negative part of the real axis}. Consequently, taking the polar coordinates

= 1 dmz(z}
JD

_f dz
JD'

, , .
dmz(w)

Denote by /(^) the length of the intersection of the half line {argi# = 0} with
D' (0^^27r). Then, we have

We estimate l(<j>) by examining the two cases below separately.
(i) When b^c, we have l(<f>)+l(0+x^2(b2-a2Y/2 (O^^^Tr). Hence,

(ii) When b<c, we have /(0)>0 only when |^ |<Arcsin—. We also have
— a2}1'2. It follows that

,«_fl*)'/'A.
C '

Thus, putting a=N— 1 and b=N, we obtain (2.1).

Lemma 5. // &^3, then for every N^l, we have

(Q.4)x J2
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where c>Q is some absolute constant.

Proof. For a positive integer M, we put

Sk(M, W)= max sk(r, N}.
AT-l^rSAT

Then, we have

(2.2) A k(N)^2x 2 M5,(M, TV).
jtf=i

It can be easily deduced from Lemma 4 that

(2.3) Sk(M, N)<^N1/2 if M^N1'k+2

Sk(M, AO^/327V3/2(M-1)~* if M^

where ^81=max(a1, «2) and ^a^^B-

When &^3, according to (2.3) and the following estimates

.
Ni/K

where the first and the second summations extend over integers with
and Nl/k+2^M< + oo respectively, we obtain

(2.4) 27r
j/=i

in which we put c=2(9/31+2j82). In view of (2.2) and ^2.4), Lemma 5 is proved.

Now, we return to the general case n>2.

Lemma 6. Let n^2 and N^l be integers. If k^4,

(Q.4)

where c>0 is the absolute constant in Lemma 5.

Proof. We shall proceed by induction on n. The case n =2 was proved
in Lemma 5. Assume that n^3. Then observing

we obtain
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(2.5) Jn.k(N^ S/»-i.*(M)S»(M, N).
M — 1

According to the induction hypothesis, (2.4) and (2.5), when

Jn *(AO^-2SMcfe+45/2*S,(M, 7V)
M=l

Thus, Lemma 6 is proved.

For eid^T, let R0:C-^C be the rotation defined by Rd(w}=eldw. For a
subset EdC, the image of E under R0 will be denoted by R0(E).

Lemma 7. For el°^T, we have

(Q.5) msn({2 Qn.*(*)eE})=roaB({*| Qn.

where both sides may be infinite simultaneously.

Proof. For simplicity, we shall prove Lemma 7 only when n=2, writing
Q(zlf zz) in place of QZtk(zi, ^2)- The proof for the general case is similar.
Define a unitary transformation U of Cz by

Then we have Q°U(zi, z^—e~iQQ(zl, z^). The invariance of the Lebesgue
measure under the unitary transformations yields

In addition, we prepare the following lemma concerning the domain Q.

Lemma 8e There exists an absolute constant /3 such that, for every integer
N>ez,

Proof is quite obvious.

Now, we can prove Theorem 2.



ENTIRE FUNCTIONS OF SEVERAL VARIABLES 499

Proof. According to Lemma 7 and Lemma 8,

(2.6)

^
Consequently, when &^4, Lemma 6 yields

where we used the fact that the measure on the left in (2.6) is equal to 0 when

N<ez. This proves Theorem 2.
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