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Local Moduli Spaces In Analytic Geometry

By

Jiirgen BINGENER*

Introduction

In this paper we formulate a general existence theorem for local moduli
spaces for maps of graded complex spaces (3.2). From this result, which is
proved in detail in [6], we obtain easily the existence of semiuniversal deforma-
tions of compact complex spaces, isolated singularities, coherent analytic sheaves
with compact supports or isolated singularities, principal bundles over compact
complex spaces and the existence of the Douady space and so on. Further ap-
plications are given in [5].

§ 1. Graded Complex Spaces

1.1. Let A be a commutative ring. By a (positively) graded A-ringed space
we understand an A-ringed space X=(X, Ox) such that the structure sheaf of
X is an JV-graded A-algebra Ox=lLi&N(Ox\. Then r'(U, Ox] :=lLi&Nr(U, (0Z)*)
is a graded A-algebra for every subset U of X. In an obvious way one defines
the notion of a morphism of graded A-ringed spaces.

Examples 1.2. (1) Let X be a graded A-ringed space and c an element of
N\J{^}. If we put (Ox)c^c) :=-lLisc(0j-)i, then X^:=(X, (0A*C>) is again a
graded A-ringed space, which is functorial in X. We will use the abbreviation

(2) Let X be an A-ringed space and 3 an C^-module. Then the trivial
extension X\J3'] of X by 3" is a graded A-ringed space in a natural way with

=0z and

(3) Let X be an A-ringed space and r=(rlf ••• , rm] an element of Nf.
There exists a unique graduation of the polynomial algebra Ox[_wly ••• , wm~]
such that the variable Wj has degree r3 for l<j<m. Hence (X,Ox\_wL, ••• , wm~\)
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is a graded ^4-rmged space being denoted by X(m ; r).

1.3. Let X be a graded ^L-ringed space. By a graded Ox-module we un-
derstand a module 3" over Ox endowed with a ^-graduation 2r = JLLiez2ri being
compatible with the graduation of Ox> Then SFC S C ) :=JIiSC2r

i resp. EF^o : —
Jligcffi is a graded submodule resp. quotient module of EF for any element c of
Z\j{-oo}.

1.4. A graded complex space is a graded C-ringed space J£ such that the
following properties hold : (1) (X, (Ox)o) is a complex space. (2) Ox is an (Ox)0-
algebra of finite presentation. (3) The homogeneous components (Ox}i are
coherent modules over (OX}Q.

The graded complex spaces form a full subcategory of the category of all
graded C-ringed spaces. It's easy to see that this category has finite fibre
products.

By a graded pseudo complex space we understand a graded C-ringed space Z
being locally isomorphic to a space of the form (T, OX\T), w^here X is a graded
complex space and T is a closed subset of X. The graded pseudocomplex
spaces again form a category with finite fibre products.

Examples 1.5. (1) Let X be a graded complex space and c an element of
7Vu{oo}. Then Zcsc) is again a graded complex space, which in case c^N is
a complex space at the same time.

(2) Let X be a complex space. If we provide Ox with the trivial gradua-
tion, X becomes a graded complex space. In this way we consider the category
of complex spaces as a full subcategory of the category of graded complex
spaces.

(3) Let X be a complex space and r—(r^ ••• , rm) a tuple from N+. Then
X(m ; r) is a graded complex space. In particular Cn(m ; r) is a graded complex
space.

1.6. Let Z be a fixed graded complex space. We then define a groupoid
Dz over the category (Gan) of germs of analytic spaces as follows : An object
of Dz over a space germ S=(S, 0) is a triple f=(3C-^y, K, L] consisting of
S-flat graded complex spaces 3C, Qf over SxZ, closed subsets /fi=3?(0), L
and an SxZ-morphism /:3£— ><y such that f(K)^L. The morphisms in Dz

are defined in an obvious way.

/ / ( O )

For an object f=(3C-+Qf, K, L) of DZ(S), let /(0)=(^(0) — ><V(0), K, L}
denote the object of Dz(Spec(C)) obtained from / by base change via the in-
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elusion of Spec(C) into (S, 0). Further we have for any ceJV a natural functor

(1.6.1) ^:nz—>DZC$C)

of groupoids over (Can) sending an object (T-+1J, K, L) to the object

1.7. Let now f=(X^>Y, K, L) be an object of Dz(Spec(C)). Then

is again a groupoid over (Can) such that Deff/ iA- )L ) / z(Spec(C)) consists of one
object (up to isomorphism) admitting only one automorphism. We call the ob-
jects of that groupoid (graded) deformations of the map germ (/, K, L) : (X, K)
-*(Y, L} relative Z. Such a deformation over a space germ S=(S, 0) is thus

an object / = (3f-^y, K, L) of Dz over S endowed with an isomorphism
in Dz(Spec (C)). The functor (1.6.1) induces a functor

(1-7-1) Vefft.K.Lvz—* >Deffj^ c ) ,*,L ) / X ( , c ) .

The fibre of this functor is a groupoid over (Gan), which we denote by

An object of this groupoid over a space germ S consists of a deformation / of
(/, K, L)/Z over S endowed with an isomorphism (/c^s-^/cgc). In such a
deformation, the homogeneous components of degree <c of / are thus deformed
in a trivial way. Finally we put Deff/;|0iZ,)/z : = Deff/, A ' ) L ) ,z<

In case K~f~l(L) we write (/, L) resp. DeffJ',l?/z instead of (/, K, L) resp.
.zo/z for a^K If K=0 is empty, we put Deff;;£f,z:=DeffJ;^L)/z and

a :=Deffy>,|-)/z for a^N. Finally we suppress in case Z=Spec((7) the
index Z in the notations introduced above.

If / : X-+Y is a map of complex spaces over a complex space Z, we shall
consider / as a Z-morphism of graded complex spaces with trivial graduation
and omit the index "gr" in the above groupoids.

§ 2. Resolvents

2.1. Let X be a graded complex space. By a quaslpolyhcdron for X we
mean a triple (P, <p, E] consisting of a compact subset P of J£, a closed embed-
ding 9 : U-*V of graded complex spaces, where U is an open subspace of X
and V is an open subspace of a number space C n ' ( n " m , r ) , and an open special
polycylinder E^Cn' (n" ; r ) with center z0 and E<^V, such that CD"1(E)=P holds.

If <p-l(xQ) is non-empty, we say that (P, (/>, E) is a polyhedron for X and
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call the unique point x^P such that <p(x)=x0 the center of (P, <p, E). In the
following we write P instead of (P, <p, E] and denote U resp. V resp. <p resp.
E by £7<P> resp. F<P> resp. ^><P> resp. £<P>.

2.2. Let now / : X-+Y be a morphism of graded complex spaces, A
quasipolyhedron for f (or for X relative F) is a pair (P, Q) consisting of a
quasipolyhedron P resp. Q for X resp. F having the following properties : (1)
/Oy<P»g£7<Q>. (2) F<P> is of the form V(Py=V(QyxW with an open sub-
space W of a number space Cl'(l";s), and the diagram

<p<P>

f\U<P>\

commutes. (3) £<P> is of the form £<P>=£<Q>XF with a polycylinder F in
Cl'(l" } s ) . If P and Q are moreover polyhedra, we call (P, Q) & polyhedron for
f (or /0r Z relative F).

For any element f of ]0, 1], the pair ((^<P>, £<<2>XFc t )), Q) is again a
quasipolyhedron for /, which we call the shrinking of (P, Q) with respect to t,
and denote by (P, QYl\ Suppose that Q is a polyhedron with center 3; and
put U :=U(Pyr\X(y) and P(y}:=PC\X(y\ Then ^<P> induces a closed embed-
ding <p : U—*W, and (P(y), <p, F) is a quasipolyhedron for the fibre X(y), which
we denote by (P, Q}(y\

2.3. Let now &=(Pit Q)i&1 be a family of polyhedra for / : X-*Y over the
same base polyhedron Q. The nerve of the family (Pi)iGI of compact subs£fc
of X is a simplicial scheme over /, which we denote by Ner(<P) and call the
nerve of &. The subset |5»| :=\Ji&IPi of Z is called the support of 5>.

For a tuple t=(tl)l&1 of elements of ]0, 1], 5»CJ) :=((Pt, 0)CJi))»e/ is again a
family of polyhedra for /. If 5 is a number such that ti=s for all f, we shall
write 5>cs) instead of <PC C ) . If 3; denotes the center of Q, then £P(;y) :=
((P^ Q)(30)iei is a family °f polyhedra for the fibre ^(3;) of / in y. Finally
we put

here PFi is the graded complex space such that V(Piy=V(QyxWl.

We say that & satisfies the polyhedral axiom, if : (1) There exists a tuple
t=(ti)iel of elements from ]0, 1[ such that Ner^^Ner^0^)). (2) For any
subset {*'„, *'i} in Ner(^), we have
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2.4. Let / : X-+Y be a morphism of graded complex spaces and <P=(Pir (?)ie/
a finite family of polyhedra for /. Suppose that F<P i>=Vr<0>xPF i, £<FZ>=
£<Q>XF* and 0><,Pi>=(pi, Tt) with pt:=<p<Q>*(f\U(Pty) and morphisms
rt: £7<Pi>-»W<. For an element a of 32:=Ner(50 we abbreviate C7a :=

>, Wa :=

> ) i e « ) : t f a — > ^ a ,

and Pa'=C\i<EaPi^Ua. Then
((Pa, (pa, £«), Q) is a quasipolyhedron for /. Further U#:=U*(&>:=(U&)ae!n
resp. Vr*:=VHc<5>>:=(Vr

a)ae3Z is an 22-coobject in the category of graded complex
spaces over £/<Q> resp. F<<2>, and <p :=(</>a)aGm is a closed embedding of U* into
V*- Putting (/} :=<p(Qy, the canonical diagram

_9

(2.4.1)

commutes. We abbreviate F*:=F*<5>>:=(Fa)ae3.. Then F^:=(Fa)ae3] and P*:
= P*<£P>:—(Pa)aE3i are in a natural way 32-coobjects in the category of graded
pseudocomplex spaces. With these notations we obtain from (2.4.1) the follow-
ing canonical diagram

(2.4.2)

0

where the horizontal arrows are closed embeddings.

2.5. Let the assumptions and notations be as in 2.4. By a sheaf resolvent
for f (or for X relative Y) with respect to & we understand a pair (<B, Si) con-
sisting of a ^-finite free graded DG-Algebra $=(&, s) over $£<$> with ^°=
0£<Q> and a ^-finite free graded DG-algebra &=(&, s] over

with ^°=0£<Q>XF, such that ^ resp. 31 is a resolution of ^i(0r Q) resp.
¥>*(#* I ^*)« One can easily show that for a given £P there always exists a sheaf
resolvent for / with respect to <P.

2.6. Let now X and F be two graded complex spaces over a complex space
Z and let /: X-+Y be a Z-morphism. By a polyhedron for f/Z we understand
a triple (P, 0, M) such that (F, (3) resp. (Q, M) is a polyhedron for / resp. for
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Y relative Z. The phrases and notations introduced in 2.3 carry over in an
obvious way to families of polyhedra for f/Z.

Let S>=(Pi} Q, Af)<6/ be a finite family of polyhedra for f/Z. Then £> in-
duces in a natural way a commutative diagram

see (2.4.2). By a sheaf resolvent for f/Z with respect to & we understand a
pair consisting of a sheaf resolvent JL-+& for Y relative Z with respect to
(Q, M) and a sheaf resolvent $-*§i for / with respect to (Piy Q)ie/.

2.7. Let Z, / : X-+Y and 5>=CP,, Q, M),eJ be as in 2.6. Further let 32 :=
Ner(^) be the nerve of &, and let Jl^^^Sl be a sheaf resolvent for f/Z with
respect to 5>, and put S:=£<Q>0. Moreover let c resp. d be a fixed number
from N resp. Z^0. By CM&\® resp. C^51J? resp. c^5il^1^ we denote the DG-
module over Os, whose sections over an open subset V of 5 are the compatible
families of homomorphisms from

resp.

resp.

the differential being the map M->[S, M]. Further let 3d(c<3tt$i\gi) resp.
resp. <Sd(c<3tt&\$\ji) be the subcomplex of C3&&,® resp. c^^,^ resp.
whose sections over an open subset V of S are the families vanishing on the
Q^/glVxF* resp. fl&M I ^ resp. on the £^M]FxF* and QV

S/JL\V for v^rf.
Then

are in a natural way complexes in K(PQlil(Os)) having nuclear free components
(see [3], 2.3, 3.4 and 3.6), and the canonical sequence

(2.7.1) 0 — ̂  < c -«c5W a , a — > "•vjAsLWji — > cc 'd)^s,^ — > 0

of complexes is exact and splits naturally in
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§ 3. Versal Deformations of Maps of Graded Complex Spaces

3.1. Let X and Y be two graded complex spaces over a graded complex
space Z, f : X— >Y a Z-morphism, c^N a natural number, T :=Supp((Ojr)c^C))?

Lgr a closed subset and K\=f~l(L)r\T.

Theorem 3.2. Let the assumptions and notations be as in 3.1. Moreover sup-
pose that:

(1) T is proper over Y, and L is finite.

(2) The C-vector space Deff/.^D/^CD) of isomorphism classes of deformations

of (f , K, L} in Deff/;ic
iL)/z over the double point D is finite dimensional.

Then the germ (/, K, L) : (X, K}— >(Y , L) has a semiuniversal deformation in
the groupoid DeffJ;|c>L)/z over (Can).

Sketch of proof. We may assume that L={y} consists of one point. Then
there exists a family 3?=(Pi} Q, M)ie/ of polyhedra for f /Z and an element z
of ]0, 1[ such that the following properties hold: (1) IP is finite and satisfies
the polyhedral axiom. (2) y is the center of Q. (3) We have Ner(<P) =
Ner(3>(2)(;y)). (4) /"1(0)nT is contained in |5>C2) | .

Let JL— ><B— *3l be a sheaf resolvent for f /Z with respect to 3? and rf^O an
integer with d^ — n(&)—7. We put S:=:£<Q>0 and

G:=r(S,

for abbreviation, see 2.7. Then E, F and G are in a natural way complexes in
K(POi(C)), and we have a canonical exact sequence

0 — >E — >F — >G — >0,

which splits in GCPO^C)). If we can show that the complex F ( 0 > 2 ) splits in
K(PO(C)) (for a suitable choice of £P), then the assertion of 3.2 follows from
the quotient theorem ([4] 4.3). For this purpose it suffices to prove the follow-
ing :

(a) The complex £(0 '3) splits in K(PO(C)).
(b) The complex G^1-2' splits in K(PO(C)).
(c) The coboundary maps ol : H*(G)-»H1+1(£) split in PO(C) for i=Q, 1.

The properties (b) and (c) follow (for a suitable choice of Q and M) from
the existence of privileged neighborhoods.

The property (a) is (for a suitable choice of I?) a consequence of the split-
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ting criteria [3], 2.4, 4.2, 4.3 (1). Here the fundamental problem is the verifica-
tion of the assumption (2) of loc. cit. 2.4. In order to do this, one first shows,
that the property (a) is independent of the choice of the resolvent &. This is
the assertion of the theorem of the homotopy invariance of the (co)tangent
complex, see [16] and [6] (III 4.15). The actual verification will be made then
only for very special, so called admissible resolvents. Here the theorem on the
"Nullhomotopie des Cech-Komplexes einer Auflosung" ([6] (II 5.3)) is an essential
ingredient.

Remark 3.3. Generalizing the methods used here, one should be able to
show that 3.2 remains valid, if one replaces the map /: X-+Y by an n-chain

yc»-D /CD
X^ > J^Cn-l) > ... > ^(2) > J£CD

of graded complex spaces over Z (with neJV+). Further 3.2 should be true also
under suitable concavity assumptions on T. I hope to come back to this at
another place.

§ 4. Consequences

If we apply 3.2 to a map of complex spaces and c=0, we get the following
result, which / obtained already in 1983.

Theorem 4.1. Let X and Y be complex spaces over a complex space Z,
f : X-+Y a proper Z-morphism and let L^Y be a finite subset. If the C-vector space

Defc/,L)/zCD) of isomorphism classes of deformations of (f, L) over the double point
is finite dimensional, the germ (f, L): (X, f~l(L})-*(Y, L) has a semiuniversal
deformation in the groupoid Defc/>L)/z.

Putting F=Z=Spec(C) resp. X=0 and Z=Spec(C) in 4.1, we obtain the
next two propositions.

Theorem 4.2 (Douady [10], Grauert [14], Forster-Knorr [12], Palamodov
[17]). Let X be a compact complex space. Then X has a semiuniversal deforma-
tion.

Theorem 4.3 (Donin [7], Grauert [13], Pourcin [21]). Let Y be a complex

space and L^Y a finite subset. If Defcr,L)(D) is finite dimensional, the germ
(Y, L) has a semiuniversal deformation.

The well known existence theorems for deformations of coherent sheaves
are contained in 3.2, too:

Theorem 4.4 (Siu-Trautmann [23]). Let X be a complex space and 3 a
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coherent Ox-module with compact support. Then £F has a semiuniversal deforma-
tion.

This follows from 3.2, applied to X=X\3~\t 7 = Z=Sp3c(C) and c=l.

Theorem 4,5 (Trautmann [24]). Let Y be a complex space, Q a coherent OY-
module and let L^Y be a finite subset such that §upp(£xt^Y(S, 5))ijL. Then the
germ (Q, L) has a semiuniversal deformation.

This also follows from 3.2, applied to X=0, 7=7[5], Z=Spec(C) and
c=l. —Using [2], one can deduce from 4.4 the following result:

Theorem 4.6 (Douady-Pourcin [9, 20]). Let f : X->S be a separated holomor-
phic map and 3 a coherent Ox-module, Then the functor Qovx/s of Grothendieck
is representable by a separated complex space over S.

In [19] it was shown, that the following theorem is a consequence of 4.4
and 4.6, and hence altogether also of 3.2.

Theorem 4.7B (Ponomarev [19], Donin [8]). Let X be a compact complex
space, G a complex Lie group and P-*X a G-principal bundle over X. Then P
has a semiuniversal deformation.

Remarks 4.8. (1) In [6] we also show a local version of 3.2, containing
as special cases as well the theorem of Retakh on versal deformations of analytic
map germs, which was announced in [22] and proved in detail in [11], as the
propositions 4.3, 4.5.

(2) Let S be a fixed analytic space germ. Then both theorem 3.2 and its
corollaries remain m. m. true, if we replace the category (Can) of analytic space
germs by the category (Gan/S) of space germs over S (compare also [4], 4.6
(2)). I will give the details of this generalization to the "relative case" at
another place,

(3) In a subsequent paper I will show that one can construct versal de-
formations of complex spaces (and maps) with a group action using a suitable
generalization of the methods employed in this paper. In this approach the
description of equivariant deformations given in [15] plays an essential part.

(4) A fully satisfactory treatment of analytic deformation theory seems
only be possible within the frame of the so-called anti commutative (graded) com-
plex spaces (see [6], (VI 7)). These objects, which appear here only in disguise
of the resolvents, are known in a somewhat more special form under the
name "complex superspaces" since a while. I intend to give the details in
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subsequent papers.
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