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Analytic Moduli Spaces as Orbit Spaces

By

Jirgen BINGENERY

Introduction

In this paper we formulate an abstract quotient theorem for convergent
maps of PO-spaces (4.3), being inspired by the work [6] of I.F. Donin. This
theorem, which is proved in detail in [5], gives a criterion for certain quotient
groupoids over the category of germs of analytic spaces to have a semiuniversal
deformation. With this result in hands, one can solve many local moduli pro-
blems in analytic geometry in a unified manner, see [3, 4] and [5]. Let us
finally remark that we use the notions and notations introduced in [2] without
any further comment.

§1. Formal Maps

1.1. In the following K denotes a fixed commutative {Q-algebra. For a
K-module F and finite family E;, i<, of I{-modules the K-multilinear maps
¢ :Ilic; Ei—F form a K-module Multx(E;, i€/; F). In case I={1, -, p} we
write Multg(E,, -+, E,; F) instead of Multg(E;, i€/ ; F).

For two K-modules E and F and pelN let Mult,(E, F)=Multg, ,(E, F)
denote the K-module Multg(E,, ---, E,; F) with E,:=F for 1</<p, and let
Hom,(E, F)=Homy, ,(E, F) be the image of the K-linear map Mult,(E, F)—>F~
sending ¢ to @4®; here 4>: E—~FE? is the diagonal map. The elements of
the K-module F[E] :=Fx[E] :=1l,ex Hom,(E, F) are called formal power series
on E with values in F. For a power series u=2),eyu, from F[E] we denote
by T (u):=u, the tangent map of u. Let F[E]. be the submodule of F[E]
consisting of all power series without constant term.

Suppose now that E is of the form E=FE;X --- XE, with AK-modules
E,, -+, E;. For an element v=(y,, ---, v;) of N* we put E, :=EyX --- XE}* for
abbreviation, and denote by Mult,(E, F)=Multg ,(E, F) the K-module consisting
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of all |v|-linear maps ¢ : E,—~F. Further let Hom,(E, F)=Homg ,(E, F) be the
image of the K-linear map Mult,(E, F)—F¥ sending ¢ to ¢4®; here 4% : E—E,
is the “multidiagonal” map. Then every formal power series u from F[E]
has a unique representation u=32),cyz%, wWith elements u, of Hom,(E, F).

1.2. By a punctured K-module we understand a pair (E, 0) consisting of a
K-module E and its origin. Let (E, 0) and (F, 0) be two punctured K-modules.
A formal map u:(E, 0)—(F, 0) is a formal power series from F[E],.

Endowed with the formal maps as morphisms (and the composition of
formal power series as composition of morphisms), the punctured K-modules
form a category (Forg) with products. For a punctured K-module (£, 0) we
denote by (E, 0)" the corresponding contravariant set valued functor on (Forg).
Then a formal map u» from (£, 0) to (F, 0) induces a morphism of functors
from (E, 0)" to (F, 0)" being denoted by .

1.3. A formal group over K is a punctured K-module G=(G, 0) endowed
with formal maps mg:GXG—G and jg: G—G such that G is a group valued
functor with respect to 7tg: GXG—G, the inversion mapping being .

Let G be a formal group over K and let (E, 0) be a punctured J/{-module.
An operation of G on (E,0) is a formal map w:GX(E, 0)—(E, 0) such that @
is an operation of the group valued functor G on the set valued functor (E, 0)".
Then the composition of w and (idg, 0): GG X(E, 0) is called the orbital map
of w.

Let (£, 0) and (F, 0) be two punctured K-modules, on which G operates.
A formal map u:(E, 0)—(F, 0) is said to be G-equivariant, if # is equivariant
with respect to the action of G. We say that G operates with fixed point on
(F, 0), if the canonical map 0—(F, 0) is G-equivariant.

§2. Convergent Maps of PO-Spaces

2.1. Let E be a C-vector space. A pseudo-norm on E is a mapping
I-Il : E-R,\U{+oo} with the following properties: (1) For any a from C and
any x from E such that |x|<co we have [ax||=|al|x]. @) [x+ylI=lxl+]y]
for any pair x, y of elements of E.

2.2. Let now K be a commutative C-algebra and let E, F be two K-modules.

We suppose that for every integer p=/N we are given a pseudo-norm |-|=]-]|,
resp. ||-]=]-], on Mult,(E, F)=Multg, ,(E, F) resp. Hom,(E, F)=Homg, »(E, F)
such that |-|,=|-||, for p=0,1. If t>0 is a real number and u=2,u, a

formal power series from F[E], we put
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[ul, = 2 |dp|t?
PEN

and
e i= 2 Ny le?;
DPEN

here fi, denotes the symmetric p-lirear map corresponding to u,. We say that
u is convergent with respect to ||-|| resp. strongly convergent with respect to |-|,
if there exists a t>0 such that |Jul|;<<oo resp. |u|,<co. Clearly |-], and ||-|.
are pseudo-norms on F[E] for every ¢>0.

2.3. Let G be another K-module and suppose moreover that for every in-
teger p N we are given a pseudo-norm |-|=|-|, on Mult,(F. G) and Mult,(E, G)
and a pseudo-norm ||-||=|-|, on Hom,(F, G) and Hom,(E, G) such that |-|,=
|-Il, for p=0, 1. Furthermore we assume that there exists a real number a=1
with the following property: If ¢ is an element of Mult,(F, G) such that |¢|
<oo and if u,€Homg(E, F) and ¢.=Mult,,(E, F) are elements such that |u.]
<co, |@,| <o, 1<i<p, then in case p=1 and ¢,=1 the estimates

2.3.1) fipo(us, ==, up)|Sa®* 8= Pl fuy| - usl,
(2.3.2) [o(@iX -+ Xpp) | Lttt | @] - | @yl

hold. The following (easy) proposition shows in particular, that in these cir-
cumstances the convergence notion introduced in 2.2 is stable under composition.

Lemma 2.4. Let the assumptions and notations be as in 2.3. Further let u
resp. v be a formal power series from F[E], resp. G[F] and let t, s>0 be real
numbers.  Then:

L) In case |ull..<s we have |vul,Z|v]s.

(2) In case lul|;<s we have |vul|,< v,

Example 2.5. Let E=(E, |-||) and F=(F, |-||) be two pseudo-normed A-
modules. For an element ¢ resp. u of Mult,(E, F) resp. Hom,(E, F) we put

o] :=sup{llo(xy, -+, xp)| 1 x,€F such that |x,|<1},
lull :=sup{lu(x)| : x€E such that |x]|<1}.

Obviously ¢—|¢| resp. w—u| is a pseudo-norm on Mult,(E, F) resp. Hom,(E, F).
If G=(G, ||-|) is a third pseudo-normed K-module, then these pseudo-norms
satisfy the estimates (2.3.1) and (2.3.2) with a=1.

2.6. Let I{=C and let E, F be two PO-spaces and 1 an element of ]0. 1[.
Applying the construction from 2.5 to the semi-normed vector spaces (E, |-||;)
and (F, ||-]|;) over C, we obtain a pseudo-norm |-|; resp. [-|; on Mult,(E, F)
resp. Hom,(E, F) for every pN. We now fix an element ¢ of ]0, 1]. Ther
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[]2:=|-|"*:=sup{]|-|,:4€[1—¢, 1[}

resp.
[-40:= 1% :=sup{ll-Il2: A€ [1—¢, 1[}

is a pseudo-norm on Mult,(F, F) resp. Hom,(E, F) again for every p. A formal
power series u=2,u, from F[E] is called stricily convergent (with respect to
g), if u is convergent with respect to |-||°. In this case u induces for every
element 2 of [1—e, 1[ in a natural way a convergent power series #;=2,(#,);
from Fj [E;]

2.7. Now we introduce a construction, which integrates into the frame
given by 2.2 and 2.3, but which is not a special case of 2.5.

Let E, F be two PO-spaces, pN. and let 4, 2’ be two elements of ]0, 1[
such that 2’<4. For a form ¢ from Mult,(E, F)=Multe, ,(E, F) resp. a poly-
nomial u from Hom,(E, F)=Homc, ,(E, F) let |¢|c1 1> resp. |ulc, 2y be the

supremum of the numbers |¢(xy, ---, xp)|2 resp. [|u(x)| s, where x; resp. x runs
through the set of elements of E such that ||x;} ;=<1 resp. |x[|;<1. Then |-|c; 2
resp. ||+llcx, 2> is a pseudo-norm on Mult,(E, F) resp. Hom,(E, F). If ¢ is a fixed
element of J0, 1], then

[-[ti=] e i=sup{(A—2)P - |22 : 4, A e[l—e, 1[, 2/<A}
resp.

=it :=l- 172 r=sup{(A—=2)7| - [z, 25 1 4, A'E[1—e¢, 1[, A'<4}

is a pseudo-norm on Mult,(E, F) resp. Hom,(E, F) again. For y from Mult,(E, F)
=Hom(E, F)=F we put |y|":=|ly[':=]y|°. One can show that these pseudo-
norms satisfy the estimates (2.3.1) and (2.3.2) with a=2. A power series u
from F[E] is called convergent of type (1;—1) (with respect to ¢), if u is con-
vergent with respect to the pseudo-norms |-||**. For example, a power series
which is strictly convergent in the sense of 2.6 is convergent of type (1;—1).

2.8. For fixed ¢ from ]0, 1], we denote by (Con®) the category consisting
of the punctured PO-spaces, the morphisms being those formal maps
u:(E, 0)—(F, 0), which are convergent of type (1;—1) with respect to e. If
e=1/2, we write (Con) instead of (Con®). A morphism u:(E, 0)—(F, 0) in (Con®)
will be called direct, if its tangent map T (u): E—F splits in PO.(C).

2.9. Let K be a commutative C-algebra, E,, ---, E,, F a sequence of K-
modules, and put E:=FE;X --- XE,. We suppose that for every v from N* we
are given a pseudo-norm |||, on Homg (E, F). If ¢ is a k-tuple from (R¥)*
and u=2),cnru, a formal power series from F[E], we put

lulle:= 25, Nz
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Of course u is called convergent with respect to the pseudo-norms |-|l,, if there
exists a ¢ such that [ull,<oo.

2.10. Let E,, ---, E,, F be a sequence of PO-spaces, F:=FE;X -+ XE, and
let §=(d,, ---, 6,) be an element of {+1}* and v a k-tuple from N* such that
|v|=1. Further let 4, 2’ be two elements of 0, 1[ with 2’<2, and let (4, ---, 4,)
denote the tuple given by A;:=1 resp. ;:=21" if d;=1 resp. d;=—1. For a
homogeneous polynomial u from Hom,(E, F)=Homc¢, ,(E, F) let Julls ¢z, 2> be the
supremum of the numbers [u(x)|;, where x=(xy, -+, x;) is an arbitrary ele-
ment of E=E,;X --- XE, such that j|x,[,,=1 for 1</<k. Then |-l 1> is a
pseudo-norm on Hom,(E, F). If ¢ is a fixed number from 70, 1], then

05 =115 * :==sup{(A—=2)""" - 5,2, 20y 1 4, A€ [1—¢, 1[, 2'<4}

is a pseudo-norm on Hom,(E, F) again. For v=0 let ||-|}:=|-l}°:=]"||* be the
pseudo-norm on Hom,(E, F)=F defined in 2.7. A formal power series u=
2enelty, from F[E] is called convergent of type (§;—1) (with respect to ¢), if
u is convergent with respect to the pseudo-norms ||-||} (in the sense of 2.9).
Note that u is then in particular convergent of type (1;—1) in the sense of 2.7.
If u is convergent of type (0;—1), then » induces for every pair 1, 1’ of ele-
ments of [1—e, 1[ with 2’<4 in a natural way a convergent power Series i; 2y
from Fi [(Ey) X - X(EWa,]

Remark 2.11. In an earlier version of this paper we worked with a weaker
notion of convergence for formal maps of PO-spaces. The notion used here
was suggested by S. Kosarew.

§3. PO-Lie Groups

3.1. Let G=(G, 0) be a formal group over C in the sense of 1.3 such that
G is a PO-space. G will be called a PO-Lie group, if the formal maps m¢ and
je¢ are convergent (with respect to e=1/2).

Let now G be a PO-Lie group, w: GX(E, 0)—(F, 0) a convergent operation
of G on a punctured PO-space (£, 0) and ¢ an element of ]0, 1/2]. We say
that @ is direct (with respect to ¢), if the corresponding orbital map G—(E, 0)
is a direct morphism in (Con®).

Example 3.2. Let » be a tuple from (R¥)” and U :=P(0;r)=SC™ the open
polycylinder of polyradius » with center 0 and G :=I"(U, Oc¢x)"*. Further let
m=mg: (G, O)X(G, 0) — (G, 0)

be the formal map with series expansion m=3, ,enp, given by m, (e, f):=
A/pNHD?(f)-e? if p=0, my ole, f):=e¢ and m, ,:=0 otherwise. Then G is a
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formal group over C with respect to mg. S. Kosarew has verified that mg and
je are convergent in the sense of 2.7. Hence G is even a PO-Lie group.

3.3. Let E be a PO-space and ¢, an element of [0, 1[. Then we denote by
(E, 0)%,: (Gan) —> (sets)

the functor on the category (Gan) of germs of (finite dimensional) analytic
spaces, sending a germ S=(S, 0) to the Os,,-module
(E, 0)7,(S) :=lim Hom (S, (E;, 0));
A>ty
here Hom (S, (E;, 0)) is the set of analytic map-germs f:S—FE, such that f(0)
=0. Let now F be a second PO-space and u:(E, 0)—(F, 0) a morphism in
(Con*~%). Then u obviously induces a morphism

ﬁto : (E: O):o - (Fy O):o

of functors. Since (F, 0)7,(Spec(C)) consists of exactly one element, the fibre of
it;, is a well defined subfunctor W of (E, 0)%,.

3.4. Let now G be a PO-Lie group and ¢, be a fixed element of 7J1/2, 1[.
Then Gj,:=(G, 0);, is obviously a group-valued functor on (Gan). If
w:GX(E, 0)—(E, 0) is a convergent operation of G on a punctured PO-space
(E, 0), then @&,, is an operation of the group-valued functor G, on the set-
valued functor (E, 0)7,

Let 5 : GX(F, 0)—(F, 0) be another convergent operation and let u:(E, 0)—
(F,0) be a G-equivariant convergent map. Then the functor morphism i, is
obviously G;-equivariant. If G operates with fixed point on (F,0), then the
fibre W, of i, is invariant under the operation of Gy,

§4. The Quotient Theorem

4.1. Let F:C—(sets) and G:C—(groups) be contravariant functors on a
category €, and suppose given an operation of G on F. Then the quotient
groupoid F/G5C is defined as follows. The objects of F/G are the elements a
of F(S) with SeC. If a’eF(S’) and a< F(S) are two objects, then Homp,¢(a’, a)
is the set of pairs (f, g) from Hom(S’, S)XG(S’) such that g-F(f)(a)=a’.
Obviously (F/G)(S)=F(S)/G(S) is the orbit space of F(S) with respect to the
operation of G(S).

4.2. Suppose now given a PO-Lie group G operating on two punctured PO-
spaces (E, 0) and (F, 0) such that G acts with fixed pont on (F, 0. Further
let u:(E, 0)—(F, 0) be a strictly convergent G-equivariant morphism in (Con)
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and ¢, an element of [1/2, 1[. Then the group valued functor G;, operates on
the fibre W, of 4,, and the corresponding quotient groupoid W,;/G;, over (Gan)
satisfies Schlessinger’s condition (S17), see [1]. The following theorem gives a
criterion for W[D/éto to have a semiuniversal deformation.

Theorem 4.3. Let the assumptions and notations be as in 4.2. Moreover sup-
pose that the following conditions hold:

(1) The operations GX(E, 0)%(E, 0) and GX(F, 0)—(F. 0) are convergent of
type (—1,1;—1), and E, F are (1—1t,)-good.

(2) w is direct with respect to 1—t,.

(3) u is direct with respect to 1—t,.

(4) The tangent space W /G o/ G )(D) is finite dimensional.”

Then the groupoid W;O/Gto has a semiuniversal deformation.

Sketch of proof. By (3), the image [ of T(u): E—F is a direct summand
of Fin PO,.,(C). Hence we can find a retraction v: F—/ onto [ in PO, (C).
For an element A of [#, 1[ let W, resp. M, denote the fibre of #,:(E;, 0)—
(F;, 0) resp. 9:d;:(E;, 0)—(I;, 0). Then W=(W 3)iciy s r€SP. M=(M}) 107010
is a direct system of germs of Banach analytic spaces resp. manifolds suct that
WcM and T(W,)=T(M;) holds for all 2. Moreover we have W, (S)=
lim >, Hom (S, W;) for any germ S from (Gan). By (4), there exists an index
A>t, such that the canonical map from T(W;) to W3 /G, o/ G )(D) is surjective.
We choose a finite dimensional smooth subgerm NZM; for which the map

T(N) —> (W5./G o)D)

is bijective. Then Y :=NNW, is a subgerm such that T(Y)=T(N). Moreover
Y is finite dimensional by [7], 7.5, Prop. 7.

Let A’ be an arbitrary index such that t,<<A’<<A. Then by (1) @, ;-, induces

an analytic map-germ from (G;., 0)XW, into W;.. Now one shows, using (2)
and the propositions 4.4, 4.5 stated below combined with the inverse mapping
theorem for analytic maps of Banach analytic manifolds, that the morphism

— @20y

(G, OXY —5 W,
is smooth. From this one can easily conclude that the canonical functor
o: Y—»WJ,/GZO is minimally smooth®. Hence p(idy)e(W,/G;)(Y) is a semiuni-
versal deformation of W,;/Gy,.

D Here D:=Spec(C[e]) is the double point.

2 For a germ Z of a (Banach) analytic space T(Z) denotes the tangent space in the
distinguished point.

DIf Z is a germ of an analytic space, Z denotes :he functor on (Gan) defined by Z.
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In the above proof, we made use of the following two propositions. Detailed
proofs are given in [5], (I 12).

Lemma 4.4. Let X be a finite dimensional complex space, let i: F—G be an
injective continuous linear map of Banach spaces and let f : X—F be a holomorphic
map. Then the subspaces f~*(0) and (z°f)~*(0) of X coincide.

Lemma 4.5. Let X—S be a map of germs of Banach analytic spaces of finite
relative dimension, and let Y S X be a subgerm of X which is S-anaflat. Then

if Xo=Y, holds for the fibres in the distinguished point 0= S, we already have
X=Y.

Remarks 4.6. (1) The proof of 4.3 presented here uses in an essential
way the theory of Banach analytic spaces in the sense of Douady. In a forth-
coming paper 1 will show that one can prove 4.3 using only power series tech-
niques. As a byproduct, such a “finite dimensional” proof also gives more
precise information on the structure of the base Y of the semiuniversal deforma-
tion of the quotient groupoid Wt;/éfo.

(2) One can also show a relative version of the quotient theorem 4.3.
Again, I will provide the details at another place.
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