PubL RIMS, Kyoto Univ, 23 U987), 559-564

Undecidability of Free Pseudo-Compiemented Semilattices

By

Pawel M. IDZIAK*

Abstract

Decision problem for the first order theory of free objects in equational classes of algebras was investigated for groups (Malcev [10]), semigroups (Quine [12]), commutative semigroups (Mostowski [11]), distributive lattices (Ershov [6]) and several varieties of rings (Lavrov [9]). Recently this question was solved for all varieties of Hilbert algebras and distributive pseudo-complemented lattices (see [7], [8]). In this paper we prove that the theory of all finitely generated free pseudo-complemented semilattices is undecidable.

By a *pseudo-complemented semilattice* (pcs for short) we mean an algebra $\mathfrak{A} =$ $\langle A; \wedge, \neg, 0 \rangle$ of type $\langle 2, 1, 0 \rangle$ such that $\langle A; \wedge, 0 \rangle$ is a meet semilattice with the smallest element 0 and the unary operation \neg is defined by

 $a \wedge x = 0$ iff $x \leq -a$.

The class *PCS* of all *pcs* form a variety whose only non-trivial subvariety *B* (of Boolean algebras) is definable, relatively to *PCS,* by the identity

 $\neg \neg x = x$.

An element *a* of a *pcs* is *regular* if $\neg \neg a = a$. It is known that regular elements are exactly of the form $\neg b$.

These facts and the basic arithmetic of *pcs* can be found in [2]. For the main concepts in universal algebra the reader is referred to [5].

Now we recall Balbes' [1] description of finitely generated free *pcs.*

Let $n = \{0, \dots, n-1\}$ be an arbitrary natural number. For $S \subset n$ let \mathfrak{B}_s denote the $\not\!\!{\rho}$ *cs* obtained from the lattice 2^s of all subsets of S by adjoining a new smallest element 0_s . By $\mathfrak{L}(n)$ we mean the direct product $\prod_{S \subset n} \mathfrak{B}_S$.

For every subset $A\cup \{i\}$ of *n* let us define two elements of $\mathcal{L}(n)$ by putting

Communicated by S. Takasu, December 24, 1986.

Department of Logic, Jagiellonian University, Grodzka 52, 31-044 Cracow, Poland.

560 PAWEL M. IDZIAK

(1)
$$
\alpha_i(S) = \begin{cases} S - \{i\} & \text{if } i \in S, \\ 0_S & \text{otherwise,} \end{cases} \quad \text{for all } S \subset n,
$$

and

(2)
$$
\beta_A = \neg(\underset{i \in A}{\wedge} \alpha_i \wedge \underset{j \notin A}{\wedge} \neg \alpha_j).
$$

From [1] we know that

(3)
$$
\beta_A(S) = \begin{cases} S & \text{if } S \neq A, \\ 0_S & \text{if } S = A. \end{cases}
$$

The following Theorem due to R. Balbes [1] describes finitely generated *free pcs'.*

Theorem 1. The *n-freely generated pseudo-complemented semilattice is isomorphic to a subalgebra* $\mathfrak{B}(n)$ *of* $\mathfrak{L}(n)$, (freely) generated by the set $\{\alpha_i : i \leq n\}$. *Every element* γ of $\mathfrak{B}(\alpha)$ can be represented in the form

$$
\gamma = \text{Var} \alpha_i \wedge \gamma^r,
$$

for some $C\subset n$ and some regular element γ^r of $\mathfrak{ps}(n)$.

Using this Theorem we can give the first order characterization of free generators in $\mathfrak{B}\mathfrak{g}(n)$. An element a of a pcs \mathfrak{A} is said to be preregular if a is not regular but every *b>a* is regular.

Corollary 2. The only preregular elements in free pseudo-complemented semilat*tice are its free generators,*

Proof. First we prove that all α_i are preregular. Of course they are not regular, as $PCS \neq B$. Now, let $\gamma = \bigwedge_{i \in C} \alpha_i \wedge \gamma^r$ be essentially larger than α_j . Then $\alpha_j \leq \alpha_i$ for all $i \in C$, which is impossible for $i \neq j$ as $\{\alpha_i : i \leq n\}$ freely generates $\mathfrak{Bs}(n)$. Thus $C \subset \{j\}$. If $C = \{j\}$ then $\gamma = \alpha_j \wedge \gamma^r$, which leads to the contradiction $\alpha_j < \gamma \leq \alpha_j$. Thus $C = \emptyset$, and consequently $\gamma = \gamma^r$ is regular.

Conversely, assume that $\gamma = \bigwedge_{i \in C} \alpha_i \wedge \gamma^r$ is a preregular element of $\mathfrak{ps}(n)$. Then C is non-empty. Moreover, C has not more than one element. Indeed, if *i*, *j* are two different elements of C, then $\gamma \leq \alpha_i$ as well as $\gamma \leq \alpha_j$. But neither α_i nor α_j is regular, which implies that $\alpha_i = r = \alpha_j$. Therefore C has exactly one element, as claimed, and $\gamma = \alpha_j / \gamma^r \leq \alpha_j$ for some $j < n$. However the strong inequality $\gamma < \alpha_j$ is impossible, as α_j is not regular. Finally $\gamma = \alpha_j$, and we can finish the proof.

The proof of our undecidability result is based on the method of interpretation due to A. Tarski [14]. However we will need some modified version

called by S. Burris and R. McKenzie [3] *interpretation by parameters and definable factor relations.* For details of this method (which will not be given here) the reader is referred to [3] or [13]. Now, we only recall that in a special case this method can be expressed as follows (see also [5]).

A class $\mathcal P$ of some partially ordered sets is said to be interpretable into a class $\mathcal A$ of some algebraic structures of type τ , if there are first order formulas:

$$
\delta(x), \quad \varepsilon(x, y), \quad \rho(x, y),
$$

of type τ , such that for every poset $\mathfrak{P}=\langle P,\leq\rangle$ from \mathcal{P} , there is a structure $\mathfrak{A} \in \mathcal{A}$ for which, if we let

(5)
\n
$$
A_{\delta} = \{a \in A : \mathfrak{A} \models \delta(a)\},
$$
\n
$$
\Theta = \{\langle a, b \rangle \in A_{\delta} \times A_{\delta} : \mathfrak{A} \models \varepsilon(a, b)\},
$$
\n
$$
R = \{\langle a, b \rangle \in A_{\delta} \times A_{\delta} : \mathfrak{A} \models \rho(a, b)\},
$$

then Θ is an equivalence relation on A_{δ} , such that the quotient-set A_{δ}/Θ together with the relation

$$
R/\theta\!=\!\Theta\!\cdot\!R\!\cdot\!\Theta
$$

form a poset isomorphic to \mathfrak{B} .

The power of the method of interpretation lies in the following Theorem, proof of which can be found in [3].

Theorem 3. If a class \mathcal{P} with hereditarily undecidable first order theory (i.e. *every subtheory of* $\text{Th}(\mathcal{L})$ *is undecidable) is interpretable in* \mathcal{A} *then* \mathcal{A} *has (hereditarily) undecidable first order theory as well.*

By a partition lattice π ^{*n*} we mean a lattice of all equivalence relations on arbitrary n -elements set. Ju. L. Ershov $[6]$ and later S. Burris and H.P. Sankappanavar [4] proved the following

Theorem 4. The class $\{\pi_n : n \geq 1\}$ of finite partition lattices has hereditarily *undecidable first order theory.*

Using above theorems we are able to prove the main result of this paper :

Theorem 5. *The first order theory of all finitely generated free pseudocomplemented semilattices is hereditarily undecidable.*

Proof. We will interpret $\{\pi_n : n \ge 1\}$ into the class $\{\Re(\pi) : n < \omega\}$ of all finitely generated pseudo-complemented semilattices. Actually we will show that π_n is isomorphic to some quotient of whole $\mathfrak{ps}(n)$, and that such quotients can be obtained in an uniform way.

562 PAWEL M. IDZIAK

From Corollary 2 we know that the formula

$$
\sigma(u) \equiv u \neq \neg \neg u \quad \& \quad \forall x (x \wedge u = u \Rightarrow x = \neg \neg x \text{ or } x = u),
$$

characterizes free generators in all nontrivial $\mathfrak{Ps}(n)$. Denote by D_n the set of these generators, i.e. $D_n = \{ \alpha_i : i \leq n \}$ in the convention of Theorem 1. Now we can see that for every fixed $\gamma \in \mathfrak{P}\mathfrak{s}(n)$,

$$
\tilde{\gamma} = \{ \langle \alpha, \beta \rangle \in D_n \times D_n : \neg \neg \alpha \wedge \gamma = \neg \neg \beta \wedge \gamma \}
$$

is an equivalence relation on the set D_n . However it can happen that $\tilde{r}_1 = \tilde{r}_2$ for some $\gamma_1 \neq \gamma_2$. Using the formula

$$
\varepsilon(x, y) \equiv \forall u \, \forall v \, \sigma(u) \, \& \, \sigma(v)
$$

$$
\Rightarrow (\neg \neg u \land x = \neg \neg v \land x \Leftrightarrow \neg \neg u \land y = \neg \neg v \land y)
$$

we can identify the elements of $P_s(n)$ which give the same equivalence relation on D_n . It is clear that ε determines, in the sense of (5), the equivalence relation Θ on $Ps(n)$ and that $Ps(n)/\Theta$ can be treated as a poset of some equivalences on D_n with order given by

$$
\rho(x, y) \equiv \forall u \forall v (\sigma(u) \& \sigma(v) \& \neg \neg u \wedge x = \neg \neg v \wedge x)
$$

$$
\Rightarrow \neg \neg u \wedge y = \neg \neg v \wedge y.
$$

i.e. $\gamma_1/\Theta \leq \gamma_2/\Theta$ iff $\mathfrak{ps}(n) \models \rho(\gamma_1, \gamma_2)$.

Now we show that every equivalence relation on D_n can be expressed in the form \tilde{r} for some $\gamma \in Ps(n)$. Let $\tilde{\chi}$ be an equivalence relation on D_n with the corresponding partition \Re of *n*. From (2) we know that the element $\gamma =$ $\lnot(\bigwedge_{A\subseteq\emptyset}\beta_A)$ belongs to $\mathfrak{Ps}(n)$, and by (3) we obtain

(6)
$$
\gamma(S) = \begin{cases} S & \text{if } S \in \mathcal{R}, \\ 0_{S} & \text{otherwise.} \end{cases}
$$

By (1) we have

$$
(\neg \neg \alpha_i)(S) = \begin{cases} S & \text{if } i \in S, \\ 0_S & \text{otherwise,} \end{cases}
$$

which together with (6) gives

$$
(\neg \neg \alpha_i \land \gamma)(S) = \begin{cases} S & \text{if } i \in S \in \mathcal{R}, \\ 0_S & \text{otherwise.} \end{cases}
$$

In particular $(\neg\neg\alpha_i\land\gamma)(S)=(\neg\neg\alpha_j\land\gamma)(S)$ for all $S\notin\mathcal{R}$, and $i, j\leq n$.

To see that $\tilde{\tau} = \Sigma$ let us write the following sequence of equivalent conditions :

FREE PSEUDO-COMPLEMENTED SEMILATTICES 563

$$
\langle \alpha_i, \alpha_j \rangle \in \tilde{r},
$$

\n
$$
(\neg \neg \alpha_i \land \gamma)(S) = (\neg \neg \alpha_j \land \gamma)(S), \text{ for all } S \in \mathcal{R},
$$

\n $i \in S \text{ iff } j \in S, \text{ for all } S \in \mathcal{R},$
\n $i \in S \text{ and } j \in S, \text{ for some } S \in \mathcal{R},$
\n
$$
\langle \alpha_i, \alpha_i \rangle \in \Sigma.
$$

From the above considerations we know that for every $n \ge 1$ the posets π_n and $Ps(n)/\Theta$ are isomorphic.

We have just shown that the formulas

$$
\delta(x) \equiv x = x ,
$$

$$
\varepsilon(x, y),
$$

$$
\rho(x, y)
$$

define the required interpretation, and therefore our Theorem follows from Theorems 3 and 4.

Acknowledgement

This paper was prepared while the author was staying at Faculty of Integrated Arts and Sciences of Hiroshima University. He would like to thank Professor Hiroakira Ono for his hospitality,

References

- [1] Balbes, R., On free pseudo-complemented and relatively pseudo-complemented semilattices, *Fund. Math.,* 78 (1973), 119-131.
- [2] Balbes, R. and Horn, A., Stone lattices, *Duke Math.* /., 38 (1970), 537-547.
- [3] Burris, S. and McKenzie, R., Decidability and Boolean Representation, *Mem. Amer. Math. Soc.,* 246 (1981).
- [4] Burris, S. and Sankappanavar, H.P., Lattice-theoretic decision problems in universal algebra, *Algebra Universalis,* 5 (1975), 163-177.
- [5] -----, -----, A Course in Universal Algebra, Springer Verlag, 1981.
- [6] Ershov, Ju. L., New examples of undecidable theories (Russ.), *Algebra i Logika,* 5(1966), 37-47.
- [7] Idziak, P.M., Undecidability of free pseudocomplemented distributive lattices, manuscript 1986.
- [8] , Undecidability of relatively free Hilbert algebras, manuscript 1986.
- [9] Lavrov, I.A., The undecidability of the elementary theories of certain rings (Russ.), *Algebra i Logika,* 1 (1962), 39-45.
- [10] Malcev, A.I., Axiomatizable classes of locally free algebras of certain types, (Russ.), *Sib. Mat. Zh.,* 3 (1962), 729-743.
- [11] Mostowski, A., On direct products of theories, /. *Symb. Logic,* 17 (1952), 1-31.
- [12] Quine, W.V., Concatenation as a basis for arithmetic, /. *Symb. Logic,* 11 (1946), 105-114.

564 PAWEL M. IDZIAK

- [13] Rabin, M. 0., Decidable Theories, *Handbook of Mathematical Logic,* J Barwise ed., North Holland, 1977, 595-629.
- [14] Tarski, A., Mostowski, A. and Robinson, R. M., *Undecidable Theories,* North-Holland, Amsterdam, 1953.