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Pseudo Runge-Kutta

By

Masaharu NAKASHIMA*

§ 0. Introduction

In this paper we shall study numerical methods for ordinary
differential equations of the initial value problem:

( y' — /(#9 y)(O.l) r J *J
(y (*o) =yo .

We shall assume that the function f(x9 y) satisfies the following
conditions :

(A) f ( x 9 y) is defined and continuous in the strip

(B) There exists a constant L such that for any x with a<x<b
and any two numbers yi and y2

Under the assumptions (A) and (B), we know that the Initial value
problem (0. 1) has a unique solution,, In addition to the first order
scalar equation (0. 1), it is possible to consider a system of equations
or an equivalent high order single equation,, In this paper we consider
only (0. 1) because the numerical formulas for such a system are
almost similar to those of the scalar equation (00 1).

Consider the sequence of points xn defined by xn=xQ + nh9 n = l, 29 *-°0

The parameter h9 which will always be regarded as a constant, Is
called the step length. Let yn be an approximation to the theoretical
solution j>O») at xn and we set /„=/(*„ jO-

The general r-stage Runge-Kutta method is defined by
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(0. 2) yn+l =yn+h@ (xn,yn; h),

JCn),

This method was first proposed by Runge [20] and subsequently
developed by Heun [12] and Kutta [13]. According to the choice
of the stage number r and the parameters ah bih w,:, we shall derive
various methods. In [1], [2], [3] and [4], Butcher has proved the
following results for Runge-Kutta method (0. 2) :

A(0=r (r = l ,2,3,4) ,
A (5) =4,
Pi (6) = 5,
A (7) =6,
A (8) -6,

A 0) =7,
A(10)=7,

A(H)=8,
A(0=r-2 (12<r),

where A(r) denotes the highest order that can be attained by the
r-stage method (0. 2) above.

As we can see, the r-stage Runge-Kutta method (0. 2) requires r
functional evaluations per step. We shall look for other Runge-Kutta
type methods which have the same order as (0. 2), but which requires
fewer functional evaluations than (0.2). <Such methods have been
discussed by Rosen [19], Geschino, Kuntzmann [7] and many others.
For instance, Byrne and Lambert [6] have defined the following two-
step Runge-Kutta method:

(0. 3) yn+l =yn + h: wQjkj + h
j=i j=i

where

*Ql =/(*»-!, JV-l),
j-i

koj =f(xn-i + ajh, yn-i + h 2 bjM ( j = 2, 35 - - -, r) ,
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AH =/(*», JO,

*u=/(*.+«A y. + h gX*u) (J=2, 3, •», r),

«< = S*«, (i=2,3,-,r).
y=i

In [6], [7] It is shown that the two-step Runge-Kutta method
(00 3) has order

Gostabile [8] has also proposed the following pseudo-Runge-Kutta
method :

(0.4) JWi=J^ + Ai>,.*,.,

This method has the same order as that of the two-step Runge-Kutta
method (0. 3) in the same stage0 Therefore, the two-step Runge-
Kutta method (0. 3) and the pseudo-Runge-Kutta method (0. 4)
require fewer functional evaluations than Runge-Kutta method (0. 2).
However computational experiments indicate that the local accuracy
of the two methods (0. 3) and (0. 4) is frequently Inferior to that of
the Runge-Kutta method (0.2).

To improve this defect, we [14], [15] have proposed another
pseudo-Runge-Kutta method. Our method is defined by

(0. 5) yn+l = vl j;M_i + v2 yn + h® (*B_b xm j;n_l9 jvn; A) ,
r

®(xu-i, xm yn-i, y^ h)=h^ wtki9
z=0

^0 =/ (*»-!, JVn-l) , ki =J (Xm yn) ,

j=Q

The method (0. 5) has the following order :

In comparing our method and other three methods (0. 2) , (0. 3) and
(0. 4) in the same order3 our method requires fewer functional
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evaluations than the other methods and has almost the same accuracy

as Runge-Kutta method (0. 2) . Therefore our method is more economi-

cal than the other three methods.

The methods discussed above are all explicit. The main advantage

of explicit methods is that they give numerical solutions explicitly at

each step. However, they are inadequate for the stiff problem [10].

A drawback of the classical Runge-Kutta method (0, 2) for the stiff

problem can be overcome by introducing stable methods.

J. C. Butcher [1], [3] was the first who considered an implicit

Runge-Kutta method, which is ^4-stable. The general r-stage implicit

Runge-Kutta method is defined by:

(0.6) yn+i=

k,=f(x.+a,h, yn+h bukj),
i=2

^ = 2^(1 = 2,3,4, --. ,r).

It is possible to consider some other implicit pseudo-Runge-Kutta
methods in a way similar to that of the implicit Runge-Kutta method
(00 6) . Our r-stage implicit pseudo-Runge-Kutta method is :

(0. 7) Jn+i=vijn-i+v2yn+h0(xn-l, *M,jV-i?jy«;A),
r

0 (*»-i, *w j;n_l5 yn; A) =Z Wiki9
z=0

£o =/(*„-!, J>»-i) , *! =/(*», J)O ,

It will be seen that it is equivalent to certain implicit Runge-Kutta
methods in some special cases. For example, if we take r=2, VI = WQ

= Wi=b2=b2o= ̂ 2i = 0, 02 = 1, w2 = Oo5, a2 = 0. 5, 622 = 0. 5 in (0B7), then
the method (0. 7) becomes the second order Gauss-type implicit

method, and if r = 3, v2=l, Vi = wQ = Q, w2~ ^3 = 0«5, a2 = 0.5 — V3/6,

fla=0. 5- V3/6, £2=620=0, ia=0. 25, 622-0. 25- V3/6, 63=63o = 0,

631 = 0 8 2 5 — V3/6 and 652 = 0. 25, then the method (0.7) becomes an
implicit Runge-Kutta method of order 4. In contrast with explicit
methods, implicit methods increase their attainable orders. In [3],
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Butcher proved for his method (0. 6) , which is ,4-stable, the following
result :

Whereas our method (0. 7) has

A(0=r + 3 (r = 2,3).

As we have mentioned a little about the stiff problem, it is important
to derive ^4-stable methods. In this paper we derive ^4-stable methods
for our method (0.7) when r = 2 and 3. In these cases, we get

A (2) =2,

A (3) =*,

where A 00 ig the order that can be attained by an r-stage ^.-stable
method.

We now outline the organization of this paper0 In section 1, we
discuss the attainable order with 2-, 3- and 4-stage methods (005)8

In section 2, we discuss the attainable order with 2 and 3 stage
implicit methods (0. 7) . In section 3, we analyze a stability of the
implicit method (0.7). Finally, in section 43 we give some numerical
examples, which show some useful properties of our method. We
have not discussed the selection of parameters appearing in the method
(0. 7) and other related results. These results will appear soon.

§ 1. Explicit Method

§1.1 Non-Bxlstence of Order 5 with r=2

To investigate the attainable order of pseudo-Runge-Kutta method
(0.5), we are required to expand the formula (0.5) as its Taylor
series about the point (xm jyn), where we assume thatjyOO — Vn> Details
can be found in [18], so shall be omitted.

We check whether it is possible for the method (00 5) to have
order 5 with 2-stage, by investigating order conditions in two cases
when w2 is equal to zero and otherwise.

Case 1.1: w2=£Q. We need the following order conditions.

(1.1) C-1.)^ + £^-1^=4- (j = l ,2, . . - ,5),
3 i=0 3

(1.2) ai=(-iy+l{b0+jb2Q} (./ = 2,3,4),
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with a0= — I, ai—Q.
The equation (1.2) implies that

So we have

(1.3) <z2=-l,0.

On the other hand, for a2= — 1,0 the equation (1. 1) has no solution.
Indeed, if we define

A=

/ y -1 a,]

1 , 2

— 3~ fl'

-IT ~1 fl2/

( »i\
wo and F! =

I
W2f

/T\
1
3

1 /
\~T

then (1.1) can be expressed as

In the case (1.3), we have

Rank (A) =2, Rank (A) =3.

Thus the equations (1.1) and (1.2) have no solution.
Case 1.2: w2 = Q.

Put

1 1 A
2

1 ,
T
1 J

( ^\
z»o 1 and F2 =1
O /

\ 4 /

/ ^ \y
i
3
i

\T/

Then we have

Rank (A) =2 and Rank (A) =3.

Thus the equations (1.1) and (1. 2) have no solution.
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§lo28 Non-Exlstence of Order 6 r = 3

By going through the same procedure as in the case when r = 2, we
check whether it is possible for the method (0. 5) to have order 6
with 3-stage. We consider two cases (A) : a2=£a3 and (B) a2 = a^

(A) : a2^a3.
So we consider order conditions in the following four cases0

Case 2. 1: w2±Q, w^Q,
We need the following order conditions :

(1.4) (~iyVl+Earlwi = 4~ (; = 1,2,. -,6),
J *=° J

(1.5) fli=(-D'+1{

(1.6) ai=(-iy+lbs+j{(-iy+lb» + iil-lbx} (7=2,3,4).

The equations (1.5) and (1.6) imply that

(1.7) a2=-l,Q and fl3=-l,0.

If we define

A

/ JL _i
2

-— 1 a2 a2

3 2 3

| -1 alal

1 1 4 4
\ "5"

\ 1 , »
' 6 fl2^3

/ 1 \

/ „ \

, ut=

1 "I \

W0

\ wJ

and V$ =

~2\
1
3
1
4
1
5

1 /
\~67

then the equation (1.4) can be expresses as

In the case (1.7), we have

Rank(D3(a25 03))=2 and Rank (A) =3.

Thus the equations (1.4), (1.5) and (1.6) have no solution,,
Case 2 0 2 :
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In this case, we need the condition (1. 4) with w3 = 0. Define

Ate) =

/ 1 , \
T i «i\

-— 1 al
1
4 2

1 4/y flz/
/ 1
/ 2

i
3
1
4
1
5 /

V5 =

I 1
3
1
4
1
5
1
6 J

, Ate) =

1 2\-y 02

I-. «i
_ 1 1 4

5 fl2

-i- -1 al
\ 6 ! fl2/

, £/«=

Bl\
a>o

w2

-I/

^4)5 and

Then we need the conditions det ( A (^2) ) = det ( A fe) ) = 0» Since

i-«2-3) -0,

we have

<z2= -1,0.

However, for a2= — 1,0 we have

Rank(A(fla))=2 and Rank ( A fe) ) = 3.

Thus the equation (1.4) has no solution.
Case 2B3: w2 = Q, w33=Q. In this case, we need the condition (L 4)

with w2 = 0. Then we have

det(A(fl8))=0, and det ((A(fl9))=0,

which imply that a3= — 1,0, thus we can prove the non-existence of
solutions of (1.4) in a way similar to that of Case 26 28

Case 2.4: w2 = w^ = 0. In this case, as we have seen in Case 1.2,
the equation (1.4) has no solution. Now let us go on to
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(B): a2=a3.

In this case, we need the order condition (L 4) with a2=a^ If we
define

C/5
WQ

_ I

then the equation (1.4) can be expressed as

5 = 0 and A(

Therefore we get a2= — l, 00 As we have seen In Case 20 2, the equa-

tion (1.4) has no solution.

§1.3. Non-Existence of Order 7 with r=4

Proceeding as before, we check whether it is possible for the method

(0. 5) to have order 7 with 4-stage0 We consider the two cases (A) :

a* =£fl,(i =£.;') and (B) :fl,-=fly(i=£/)-
(A): ai*aj (i*j).

Let us consider the order conditions in the following eight cases,

Case 3B 1 : w2^09 w^O and w±=£Qa In this case, we need the

following order conditions:

(1.8)
J i=Q J

(1.9) 0*=(

(1. 10) flH(

(1. 11) fli=(

The equations (1.9), (L 10) and (1.11) imply that

(L 12) 02= -1,0, fl3= -1,0 and a,= -l,Qe

Define
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0
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{
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— —1 U2U3U±\ ui -y-

--Q- 1 "2"3"4 «XO -Q-

— — 1 a2alal , C/6 = w2 and VQ -
4

-i -
i -•

Then the equation (1.8) can be expressed as

In the case (1. 12), we have

Rank (A) =2, Rank (A) =3,

where A=(A, F6).
Therefore, the equations (1.8), (1.9), (1.10) and (1.11) have no

solution.
Case 3.2: w2 = Q, w^O and ze>4=£0. In the case b&Wz + b&Wt^Q,

we need the same conditions as that of case 3. 1. And in the case

^32^3 + ^42^4 — 0, we need the conditions (1.8), (1.10) and (1.11)
with b&=b42 = Q9 which imply a3= —1,0 and a4= —1? 0. Thus we
can prove the non-existence of the solution of (1. 8) in a way similar
to that of Case 2. 2,

Case 3.3: ze^^O, w3 = 0 and w^Q, In this case, we need the
following condition, in addition to (1.8):

(1.13) flj=(-l)'+102+iU (f=2,3,4,5).

The equation (1. 13) implies that a2 = Q. Therefore, as we have
considered in Case 2.2, there are no solutions satisfying (1.8).

Case 3.4: w2 = 0, w3 = 0 and w^Q. In this case, we need the
same order conditions as that of Case 2. 2. Therefore we can prove
the non-existence of solutions of (1.8).

Case 3.5: ^2^0, w3^0 and ze>4 = 0. In this case, we need the
same conditions as that of the case r = 3 (see Section 1.2). Thus we
cannot get order 7.

Case 3. 6: z#2 = 0, le^O and ^4 = 0. This is equivalent to Case 2. 2e

Case 3.7: w23=Q9 w3 = Q and w4 = Q. This is equivalent to Case
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2,2,

Case 3,8: w2 = Q, w3 = 0 and w± = Qa In this case9 as we have
considered in Case 1.2, the equation (1.8) has no solution,, Now
let us go on to

(B): fl,-=fly (i*j).
Let us consider the order conditions in the six cases.

Case 3.9: b&b&w^Q. In this case, we need the conditions (1.8)
and (1.9) without assuming ai=^aj(i^j)B Therefore we can prove
the non-existence of solutions of (1.8) and (1.9) in a way similar
to that of Case 2, 2,

Case 3. 10: w4 = 0e This is equivalent to Case 30 60

Case 3 0 11: £43 = 0,, 632^3 + 642^4 ̂ 0, In this case9 we need the

condition (1. 13) without assuming 0. = 0,-(z =£;) > and we get <22 = 00

Therefore we can prove the non-existence of solutions of (L 8) in a
way similar to that of Case 20 28

Case 3,12:643 = 05,632^3 + 642^4 = 0. In this case9 if we assume a2 = a%
then we need the condition (1.11) with 642 = 643 = 03 which implies
<z4= — 1, Oo If we assume a2~a^ then we need the condition (1. 10)
with 632 = 0 which implies <23= — 1 9 0 9 and if we assume <23 = <249 then we
need the condition (1,9) which implies a2= —1.0. Therefore we can
prove the non-existence of solutions of (L 8) in a way similar to that
of Case 28 2.

Case 30 13: 632 = 0D In this case, if we assume a2=a^ then we
need the condition (1.11) with 642 = 643 = 03 j= 39 49 59 which implies
<24= —19 08 If we assume a2 = a^ then we need the condition (1. 10)
with 632 = 0 which implies a3= —19 00 If we assume <23 = <249 then we
need the condition (L 9) with which implies a2= —19 00 Therefore
we can prove the non-existence of solutions of (L 8) in a way similar
to that of Case 2a 20

Case 3. 14: a2 = a^ = a4a In this case, we can prove the non-existence
of solutions (1. 8) in a way similar to that of Case 2e 2a Consequently
we can conclude the following result,,

Theorem, The attainable order is 49 5 and 6 for the explicit pseudo-
Runge-Kutta method (08 5) of 29 3 and 4 stage respectively.
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§2. Implicit Method

In this section, we consider the r-stage implicit pseudo-Runge-
Kutta method (007). The functions kt (i = 2, 3, •••, r) are no longer
defined explicitly but by the set of r—1 implicit equations. We
assume that the solution of each of r—l implicit equations. We
assume that the solution of each function k{ may be expressed in the
form:

l) (i = 2, 3, »., r),

and

§2.1. Non-Existence of Order 6 with r=2

In [16], we have already proved the existence of order 5 with

2-stage. We now check whether there exists order 6 with 2-stage,

by investigating the order conditions in the two cases when w2 is

equal zero and otherwise.

Case I: w2=£Q. We need the following order conditions:

Let us define

A=

A=

i
2

~y
i
4

i
2
1
3

1
5

i

-1

1

-1

Vl

, U7=\ w01 and F7 =

.102,

J_

2
J_
3

J_
4 /

1 \
2

|

1
5

, A=

1
3
±

1
6
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A=(A, FT).

Then the equation (2. 1) can be expressed as

D7U7=V7, DaUz=0 and D9C/g=0.

And we have

(2.2) det(A) = -^fl»(«« + l) (5«S-fl,-2),

det (A) = - ^1 fa + 1 ) (6«i - a, - 3) .

Therefore, in order to have the solution of (20 1) we have

fl2=-l,0.

However, for a2= — l,Q we have

Rank (A) =2, and Rank (A) =3.

Thus the equation (2. 1) has no solution,

Case II: w2 = Q. In this case, we need the condition (2. 1) with
^2 = 0, as we have seen in Case 1. 19 the equation (2. 1) has no solution.

§2*2, Non-Exlstenee of Order 7 with r = 3

In [15], we have already proved the existence of order 6 with
3-stage. Proceeding as before, we check whether there exists order 7
with 3-stage, by investigating the order conditions on the two cases
when w3 is equal zero and otherwise.

Case I: ^3^0. In this case, we need the following order
conditions :

(2.3) (zz

(2.4) (~iy

J

with

+ai-1*./} (i=2, 3, •», 7, j=2, 3),
?»=(-DI'-1,?a = 0.

Define
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I L
1 2

/ i
1 3

1
4

1

\ 5

\ l

|
2 3

I 09 03

1 3 3
02 03

1 4 4
09 03

— 1 01 03 /
/

' DU

-1 -2 2a2 1a3 \ + ̂ ~i
\j «3

1
1 0 Q 2 Q 2

O O02 303 —:
4

= —1 —4 40| 401 -=-+-^ — £e>o
5 5

1 R R 4 R 4 ! _ »11 O »302 v)03 >-. "7̂ ~
0 D

1 Vl— 1 — 6 602 603 -=- + -=- — WQI

/~~3~

1
4
1
5

i
ry

1 02 ^11

~~ 1 02 al

1 4 4
02 03

-1 a! al

1 a| flS|

i

, £ / n =

M l

-' 10~

2 '
1
3
1
4
1
5

1 /

/ 1 \

-
' 12~

6/

ri
4
1
5
1
6

1
T/

U*=(Vi, WQ, W2, W% —1) , Ao=(Ao, f/io), A2=(-Dl2

Then the equations (2. 3) and (2e 4) can be expressed as

D10U=Q9 AiCAi = 0 and D^U=Q.

Therefore, in order to have the solutions of (2B 3) and (2. 4) we need
det(Ao)=0, det(Ai)=0 and det(512)=0. And we have

det ( Ao) = ~ ^2^3 (fl2 + 1 ) (fl3 + 1 ) (02 - 03) fl O* ^3) ,

det ( Ai) = ~ a\al (a2 + 1 ) (a* + 1 ) (a2 - a3) det (As) ,

det ( A2) = ~ ^fl§ te + 1 ) Os + 1 ) (02 - 03) & fe3 03) ,

where

(2. 5) gi (a2, fl3) = 1 Sflffli - 3(22<23 (fl2 + 03) — 6 (a2 + 03) 2

(2. 6) & (fla, 03) = 42a|a| - 7<22fl3 (a2 + <23) - 2 1 (01 + 01)



PSEUDO RUNGE-KUTTA PROCESSES 597

1 0 3

-0.4 4 0.8 0.8
As- 9

1 5(a2 + a3— 1) — 1— 5a2a3 — -y

12 6(al + a2a3 + a| fi , , n 6 8
--S- — <M2fl3(«2 + a3 — 1) +-=- -7-

7 - 7 7

Then, from (2. 5) and (2. 6) we have

(2.7)

with x = 02 + a3, _y = a2«3. And from (2.3) we have

,„ q. _35x-5Qy-27
(2-9) Ol- 10^ + 5^ + 3 '

Let us define

(2.10) T-fo^detCAa).

Then using (2. 8) and (2. 9), the equation (2. 10) can be expressed as

=

with

(2. 12) ft (AT) =594247500*6 + 500320380^5-639473520^4

From (2. 5) and (2. 8) we have

(2. 13) &(*) =41 160*5+ 175420^4- 169820^3-227800^2

+ 90800^-8160.

Now we investigate the algebraic character of (2. 12) and (2. 13) by
computing Sylvester's determinant D(gl(x)9 ft(#));

DetCft W, ft W) - -3111800697887125324908,

Therefore the equations (2. 12) and (2. 13) have no common roots0

Thus the common roots of the equations (2 0 5) 9 (2.6) and (2. 10) are

(2.14) a2=— 1 9 0 3 a3= — 1,0 and 02 = 03-

However in the case (2. 14),

Rank(Ao)=2, Rank(Ao)=3.
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Thus, the equations (2. 3) and (2. 4) have no solution,,

Case II: ^3 = 0. In this case, we need the order conditions (29 3)

with ^3 = 0. Therefore, as we have seen in §2. 1, the equation (2.3)

has no solution. Thus, we can conclude the following results.

Theorem. The attainable order is 5 and 6 for the implicit pseudo-
Runge-Kutta method (0. 7) of 2 and 3 stage respectively.

§ 3. Stability Analysis

In this section we attempt to derive -4-stable methods. We define
the stability of the numerical method (0. 7) in the following way.
Let us apply the method (0.7) to the test function y' = ly where X
is a complex constant with negative real, we have the following
difference equation:

(3. i) A0yn+l -
 AIyn - A*yn-i=o,

where A0, AI and A2 are the function of Xh, involving the coefficients
fl.-j b{, bu, vh Wi. The numerical method (0. 7) is called .4-stable if

(1) | n l< l i = l,2.
(2) the root |7*,-|=1 is simple.

where 7- are the characteristic roots of the difference equation (3. 1).
If the method satisfies the conditions (1) and (2) for any negative
real ^, it is said to be ^40-stable. If we impose the ^[-stability on the
method (0.7), we can obtain the highest orders of the ^4-stability
for each stage r, using some results due to Wanner, Hairer and
Norsett [23].

Proposition. In the method (0. 7) with A-stability imposed on, the
highest possible order of the A-stability is of order 2(r —1) for each stage
r.

Proof. The proof goes as follows (see [23, §6]):

Let

be a characteristic algebraic equation of multistep method, satisfying
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the following conditions;

(a) Q,(z,R) is irreducible, Q,o(0) ^09 |£L (0,1)^=0,

(b) deg(Q,r)</5 (r = l 5 2 3 " > 3 £ ) 8 Then G, Wanner, E, Hairer
and S. Po Norsett [239 Theorem 2] showed that if Q,fe #) is 4-stable
then the highest possible order is 2/. In our case5 as we will see
later In Section 4. 1 and 4.23 the characteristic equation of (0.7)
satisfies the conditions (a) and (b), thus we get the above proposition,,

§ 3*1. ^-stable Method of Order 2 with 2-Stage

We apply the method (0.7) with r = 2 to the test function jp' = ^.
This yields

(3.2)

where

AI = -——= [v2 + (w1 — b22v2
1 — 622/Z

2 IK) .

We see that the method (0B 7) is of order 2 if
2 1

(3.3) (-1)'-

and furthermore we add the following conditions (3. 4) and (3. 5) ,
under which the method (0. 7) becomes of order 3 if 5 = 0:

(3.4) (-D^+Z>X- = 4-+^
3 j=0 6

— 0. 5b2 —
(3. 5) — ̂ 22^1 + £21^2 = 0,

Here we note that the condition (3. 5) is necessary for J.0-stability0

From (3.3), (3.4) and (385)3 we have

(3.6) V1 = 5
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With these values plugged in (382), the characteristic polynomial of
(3. 2) becomes

(3. 7) (1 -0. 5*%,,+1- (6^-4-6(5)

(2-2. 5^ + 33) %„_! = (),

If we take £ = 1 and d= — ? the difference equation (3. 7) has charac-

teristic roots:

r a=(l+0.5A)/(l-0.5A).

It follows that the method (0. 7) of order 2 with 2-stage is A-

stable. With the values z = l and 8=—, the constants (3. 6) are given

by

*>i = 05 v2 = l, w0= -o--- T, Wl=—-— , ia=ia = o.5,
-

2 a2{a2+l) 2

§ 3.2. ^.-stable Method of Order 4 with 3-Stage

By the same procedure as in the 2-stage, we discuss the ^4-stability
of order 4 with 3-stage. Let us apply the method (0. 7) with r = 3
to the test function yr=ty. Then we obtain the difference equation:

(3.8)

where

On + Z0i) A + ^2A
2

#2 + fei + ^o) K + e22h
2

31+632(1 +W -^(1 +63)} ^3,

( ~~ 621633 + 623631) w2 + ( — 622631 4- 621632) ^3,

— (62^2 + 63^3),

(62o + 62633 — 62363) w2 + (630 + 62263 — 62632) w^
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First, we consider the case when the method is of order 40 The
conditions of order 4 with r = 3 are given by

(3.9) (-l)^ + Z«rX---i (i = 1,2, 3, 4)

(-1)1-1
K l=Q K

3

In addition (3.9), we consider the following conditions where (38 10)
and (3e 11) are the conditions of order 5,

(3.11) (_l)»-i
A, Z = 0

(3.12) — U + wo + S ( - ft,- + 4 S a^;,) ^ = -i— Z (4af + 2a?) z
5 i=2 J=0 5 i=2

From (3.9), (3.10), (3.11) and (3.12) we have

/•Q iQ .. __ _ 2(5flj— flg — 2) _

__
2

_10a2 — 7 — 12a3(a3+l) (a2 —
--

o = 0. Sz/i + a2u>2 + a3w3 — 0.5,

A,o= -

(«=2,3).

The most direct way for investigating ^4-stability conditions of the
method (0. 7) is usually the root-locus method, however we use the
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Schur criterion. The stability conditions for the method (0. 7) with
r = 3 are

(3.14) (A) \A2\<\Ao\,

(B) | A^+AA |< \A2A2-AQA0 \.

First, let us analyze the ^[-stability of the method, where we take ^
to be real in (3.8). From the conditions (3.13) and (3. 14)> the
following conditions are necessary

(3.15) (W>33 ~~ *23*32) Wl+(—

(3.16) (#22*33 — £23*32) wQ+( —

(3. 17) \v2 + e2l+wQK+e22

(3. 18) \vl+ell + wlh+el2h
2\<\vl+ (dl-e*-wdK+ (d2-e22)h

2\.

We can rewrite the conditions (3. 15) and (3. 16) in the following
clearer forms:

(3. 19) du

2̂1

where

1 = 4*22 — 02 (<*2

2 = — 4*32 + Q>* (03 + 1 ) 2

Solving (3. 19), we have

(3. 20)
w2

and

(3.21)

where

^={2a3(l-

We now investigate the stability conditions according as A is equal
to zero or otherwise.
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Case I: J^O.
From the .4-stability conditions (30 17) and (3. 18)9 we have

(3.22) e12 = Q, e22 = Q, |^|<1.

From (3.21) we have

(3.23) Aa=^a,
W2

(3.24) *tt=^«.

By substituting (3. 23) and (3. 24) into (3. 8) we obtain the following
results:

1 4 2(3.25) d2 = Q, dl=-—, *u+H>i = y, dl-e2l-wQ=-—e

We see that the condition (3, 25) contradicts the condition (3. 17) =
Thus the method (0.7) with r = 3 is unstable in the case J^00

Case II: J = 0.
We use the maximum modulus principle for the analysis of stability

conditions (A) and (B) in (3. 14), and we use the following lemmaa

whose proof is not hard and so left for the reader,,

Lemma* Suppose that

di<0, d2>Q in (3.8),

then we have

-r- is analytic for Re (X) <0.
AQ

Thus the stability condition (A) in (3. 14) is replaced by

(3026) \A2/A0\<1 for

and

(3027) A2/AQ is analytic for

Similarly the condition (B) in (3. 14) is replaced by

(3.28) | JoA+^24l<IIA|2-M2 |2 l for Rcy)=0,

(3.29) [A^+A^/dAol2- \A2\
2} is analytic for Re(*)=<).

We see that if the conditions (3. 26) and (30 27) are satisfied3 the
condition (3.29) is also satisfied. From (3026)3 we have
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(3. 30) (/l3-/?3)/+ (/I2-2/21/23-/

and from (30 28) we have

(3.31)

where

(3. 32)

, •

12 j

J 21 —J llj

— C/23&2 —/22gl3 +/12&3 —

/21&2 — /22fll

2= — (/23&1 +/21&3 —

The formula (3. 30) may be rewritten as

(3. 33)

with

si

If we use the conditions (389)5 (3. 15) and (3. 16), then we see that

(3.34) £3 = 0, ^ = 0.

We used REDUCE III to obtain (3.34), which requires rather
complicated computation. Consequently ^4-stability conditions for the
method (0.7) with (3.13), (3.19) and J = 0 are given by
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(3. 35) (/|3-/?3)/+ (/i2-2/21/23-

(/l2-2/21/23)/+/!3/^0 for

We find the suitable parameters a2, a% and &23 by using computer,
which satisfy (3. 35) „ These regions, where in particular we take
p(=b22b'& — 623632) =0. 83 and 03 = 0.74 respectively., are sketched in
Figures I and II. If we take a2 = Q.7, a3 = Q074 and 0 = 0.83, whose
points are in the stability region, then the constants in (00 7) are
given by:

_ 125 _ 644 50662 _ 98044 __ 5001 ? V2 ? Wo~ _
769 ? 2 769 ? o~ 1 137351 ? l~ 199171 3 2~ 91511'

_ 1562500 , __ 1235187911 , _ 3895148891
3 5 2 9 2024754115 2 442175000 9 20 247618000 J

h - 13318668547 , _ 25847383643 , __ 119079316067
21 ' 22 J 23

_
910951248 ' 22 19234612500 J 23 114523325000 ?

1019782373527 , __ 54331704350559 , _ 3381538061, _
31

_ __
3 386903125000 ? 30 3683317750000 3 31 247618000

4156771908011 , _ 2755200809427
32 3288676562500' ^33 2708321875000'

1 O r

0.5

p=O.83

J
0.5 1.0

Figure (1) : The region (a2, «a) which satisfy ^4-stable condition (4.32).



606 MASAHARU NAKASHIMA

1.0 r

0.5

3 =0.74
3

0.5 1.0

aa
Figure (2) : The region (a2, p) which satisfy ,4-stable condition (4. 32) .

§ 4. Numerical Examples

In this section, we present some numerical results for the equations
which have been often taken on in the literature of the numerical
analysis. We use the following initial-value problems :

= -0.0001, *(*) = -0.001 exp(-1000*)+*.

-0. 0001*) +20000 exp(-*)

'=-*+(0.9999)exp(-0.0001*),
y(x) =2 exp(-*) -exp(- 10000*)
*(*) = -exp(-*) +exp(-0. 0001*).

The eigenvalues of Jacobian matrix of problems I and II are
(-1000, 0) and (-10000, -1) respectively. In using the method
(0.7), it is necessary to solve a set of algebraic equations at each
step to calculate an implicit function k{. Of course, the evaluation of
k{ requires some type of iterative procedure. We will discuss in detail
those problems in another paper. We use the Newton-Raphson
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Iteration method for obtaining an approximate real solution of an
implicit function ki9 setting the initial approximation kf* on the
iterative processes by

and we use the quantity:

as control of the iteration number. The iteration is continued until
E^+i^ become smaller than £'*3 where E* is a pre-assigned tolerance.
The value yi necessary for the evaluation, when we use the method
(0, 7) of order 2, is computed by the implicit R — K method of order
4S and the value y± necessary for the method (09 7) of order 4 is
computed by an implicit R — K method of order 6. In solving an
implicit function of R — K method and the trapezoidal rule, we use
the Newton-Raphson iteration. From Tables we can see that the
advantage of our method over other methods lies In its accuracy,
Computations are done in double precision arithmetic on the FAGOM
M-230 of Kyushu University.

Problem I, h=l/21
3 5* = 0. IE—7, (M: number of iterations).

Absolute Error
(Im) Pseudo-Runge-Method

2-stage 3-stage

X

0.5
1.0

5.0

10.0

15.0

20.0

with (4.6)
a2 = 0.5, z=l, <5=l/6

yn— y(xn)

0. 144E-15
0.0
0.0
0.0
0.0
0.0

Zn — z(Xn)

0. 1165-14
0.2445-14
0.1175-12
0.2625-12
0.4065-12
0.2255-11

M

3

3
3

3

3

3

with (3.13)
az=0. 70, 03 = 0.74, p=Q. 83

y*—y(*n)

-0. 328E-8
-0.328E-8
-0.765E-12
-0.815E-10
-0.236^-12
-0.246E-11

Za-z(Xn)

0.3285-11
0.3285-11
0.1455-12
0.4075-12
0.5075-12
0.2375-11

M

4

4
4

4

4
4



608 MASAHARU NAKASHIMA

Trapezoidal Rule

X

0.5
1.0

5.0

10.0
15.0
20.0

yn-y(Xn) Zn-Z(x»}

-0.4035-8 0.8075-11
-0.1415-8 0.1415-11
-0.1505-8 0.3115-12
-0.2365-8 0.2495-12
-0.6005-8 0.4135-12
-0.3455-8 0.1225-12

M

5
5

5
5

6
5

(Im) Runge-Method

Order-4

*-X*.)

0.5 0.2095-9 -0.
1.0 0.1515-8 -0.
5.0 0.2205-9 -0.

10.0 0.1675-8 -0.
15.0 0.3365-9 -0.
20.0 0.2795-8 -0.

Order-6

—z(xn) M y*—y(xd Zn-z(Xn) M

2095-12 3 0.3115-10 -0.3065-13 5
1515-11 3 0.3255-8 0.3255-11 5
1635-12 3 0.6335-9 -0.5755-12 2
1555-11 2 -0.2075-8 0.2205-11 2
1675-12 4 0.6825-8 -0.6615-11 2
1695-11 2 0.3475-10 0.1115-11 5

Relative Error
(Im) Pseudo-Runge-Method

2-stage 3-stage

J.-JM
y(xn)

0.5

1.0
5.0

10.0
15.0
20.0

Zn-z(Xn) | jfc-X*.)
*(*„) X*»)

zn-z(xtt}
z(Xn)

0.2295-14 0.2025-2 0.6475-11
0.2425-14
0.2355-13
0.2625-13
0.2705-13
0.1125-12

(Im) Runge-Kutta Method
Trapezoidal Rule Order 4

yn-y(xj ztt-z
y(xn} z(:

(*.) yn-yM *.-*(*.) }
O X*.) z(Xn)

0.3525-14
0.2895-13
0.4075-13
0.3385-13
0.1185-12

Order-6

>n—y(xH) za-z(xn)
y(Xn} Z(xa}

0.5 0.4035-11 0.3415+0 0.1505-11 0.2215-9 0.3225-11
1.0 0.1415-11 0.1505-11
5.0 0.1555-11 0.3265-13

10.0 0.2495-11 0.1545-12
15.0 0.6195-11 0.1115-13
20.0 0.4595-11 0.8485-13

0.3225-11
0.1145-12
0.2205-12
0.4415-12
0.5595-13
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Computational time

Pseudo-methods

2-stage 3-stage

1.60(sec) 1.81 (sec) 1.87 (sec)

609

R-K(0.6)

Order-4

1.68 (sec)

Order-6

2. 18 (sec)

Problem II, A=l/27
3 5* = 0. IE- 7, (M: number of iterations) .

Absolute Error
(Im) Pseudo-Runge-Method

X

0.5
1.0
5.0

10.0
15.0
20.0

2-stage

with (3. 6)
02=0.55 z = 1.0, 3=1/6

yn-yM ZR-z(Xn) M

-0.2775-1 -0.1535-5 3
-0. 1045-2 -0. 1855-5 3
-0. 5605-9 -0. 1705-6 3
-0.4005-11 -0.2295-8 3
-0.2855-13 -0.2315-10 3
-0.2025-15 -0.2055-12 3

Trapezoidal Rule

x yn-y(x^) zn

0.5 0.2795-1 -0.
1.0 -0.7795-3 -0.
5.0 -0.2575-8 -0.

10.0 0.2585-8 -0.
15.0 0.2235-8 -0.

3-stage

with (3.
a2=0. 70, fla^O.

y.-yM

-0.7215-2
-0. 6295-4
-0.1495-10
-0.3435-13
-0.5695-14
-0.5715-15

-z(*.) M

1545-5 21
1875-5 21
1715-6 14
2305-8 14
2335-10 13

13)
74, p=Q. 83
zn—z(xn)

0.1165-9
0. 1415-9
0.1295-10
0.1765-12
0.3995-14
0.2275-14

M

5

5
5

5
5
5

20.0 -0.7325-8 -0.2105-12 11

(Im) Runge-Method

X

0.5
1.0

5.0

10.0
15.0
20.0

Order-4

yn—y(x^ ztt—z(x^ M

-0.3965-4 0.1555-11 4
-0.6845-7 0.1885-11 4
-0.1215-8 0.1735-12 4
-0.8185-11 0.3135-14 4
-0.4655-11 0.2085-15 4
-0.8605-9 0.7355-15 4

Order-6

y.-yM

-0.2135-8
0.2955-11
0.5225-13
0.3575-15

-0.2045-16
-0.1405-11

z«— zC*,)

0.3465-15
0.5555-15
0.8885-15
0.8325-15
0.8325-15
0.6665-15

M

5
5

5

5

5
5
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Relative Error
(Im) Pseudo-Runge-Method

2-stage 3-stage

X y.-yM
X*«)

0.5 0.230E-1
1.0 0. 143E-2
5.0 0.418E-7

10.0 0.444£-7
15.0 0.4695-7
20.0 0.494E-7

za—z(xn}
z(xa)

0.384E-5
0.292£-5
0. 171E-6
0.229E-8
0. 2315-10
0.2055-12

y*—y(xj
yM

0.5995-2
0. 8625-4
0.1125-8
0. 3805-9
0.9835-8
0. 1395-6

zn— z(xn)
z(xn)

0.2925-9
0.2225-9
0.1305-10
0.1765-12
0. 4005- 14
0.2285-14

(Im) Runge-Kutta Method
Trapezoidal Rule Order 4 Order-6

y.-y(*3
X*.)

0.5 0.2305-1
1.0 0. 1055-2
5.0 0. 1905-6

10. 0 0. 2825-4
15.0 0.3645-2
20.0 0.1775+1

zn-z(Xn)
z(xn)

0. 3925-5
0.2965-5
0. 172£-6
0.231E-8
0.233E-10
0.210E-11

y.-y(xn)
y(xn)

0. 329E-4
0.937E-7
0. 9085- 7
0.908E-7
0.7665-5
0.2105+0

Zn-z(Xn)

z(xj

0.3915-11
0.2975-11
0.1755-12
0.3135-14
0.2085-15
0.7365-15

jfc-X*.)
X*»)

0. 1775-8
0.4045-11
0.3915-11
0.3965-11
0.3365-10
0.3445-3

Zn-z(Xn)

ZM

0.8715-15
0.8745-15
0.8945-15
0.8335-15
0.8335-15
0.6675-15

Computational time

Pseudo-methods R-K (0. 6)
Trapezoid

2-stage 3-stage Order-2 Order-4

1.48 (sec) 1.77 (sec) 2.93(sec) 1.55 (sec) 2.78(sec)
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