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Pseudo Runge-Kutta Processes
By

Masaharu NAKASHIMA*

§0. Introduction

In this paper we shall study numerical methods for ordinary
differential equations of the initial value problem:

'=f(x, »)

©- {y (%0) =Y

We shall assume that the function f(x, y) satisfies the following
conditions:
(A) f(x,») is defined and continuous in the strip

Q={(x, »); a<x<b,|y|<oo}.

(B) There exists a constant L such that for any x with a<x<b)
and any two numbers y; and ¥,

Lf (2, 1) —f (%, 22) | <L| 1—02l.

Under the assumptions (A) and (B), we know that the initial value
problem (0. 1) has a unique solution. In addition to the first order
scalar equation (0. 1), it is possible to consider a system of equations
or an equivalent high order single equation. In this paper we consider
only (0. 1) because the numerical formulas for such a system are
almost similar to those of the scalar equation (0.1).

Consider the sequence of points x, defined by x,=xo+nh, n=1, 2, -+,
The parameter A, which will always be regarded as a constant, is
called the step length. Let y, be an approximation to the theoretical
solution y(x,) at x, and we set f,=f (%, 9.)-

The general r-stage Runge-Kutta method is defined by
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(0.2) Ini1=Yn+hO (%, 953 1),
D (%4, s h) = gwiki,
ky=f (Xny Ju),
k=1 (s +ah, 3o+ h zi bk,

i—-1
a;=3% by, (1=2,38, -, p)
=]

This method was first proposed by Runge [20] and subsequently
developed by Heun [12] and Kutta [13]. According to the choice
of the stage number r and the parameters a;, b;;, w;, we shall derive
various methods. In [1], [2], [3] and [4]. Butcher has proved the
following results for Runge-Kutta method (0.2):

[’1(") =r (T=l, 2) 3) 4)3

p1(5) =4s
£1(6) =3,
p1(7) =6,
£(8) =6,
[71(9) =77
n10) =7,
n(11) =8,

) =r—2 (12<p),
where p;(r) denotes the highest order that can be attained by the
r-stage method (0.2) above.

As we can see, the r-stage Runge-Kutta method (0.2) requires r
functional evaluations per step. We shall look for other Runge-Kutta
type methods which have the same order as (0. 2), but which requires
fewer functional evaluations than (0.2). .Such methods have been
discussed by Rosen [19], Ceschino, Kuntzmann [7] and many others.
For instance, Byrne and Lambert [6] have defined the following two-
step Runge-Kutta method:

0.3) Ins1=nth :4..—'1 wo;k;+h ,; wi;k
where

k()l =f(xn—1: yn—l) })
j-1
kOj =f(xn—l + ajh, V-1 + h IZ=:0 bilkOI) (J = 2, 3: "0t T) s
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kn=f (% I, .
ky=r Gt ah, 3uth Tbakn) (=2,3, 1),
aiziz:jibi,, (1=2,3, -,1).
In [6], [7] it is shown that the two-step Runge-Kutta method
(0. 3) has order
nr)=r+l1 (r=2,3,4).

Costabile [8] has also proposed the following pseudo-Runge-Kutta
method:

0. 4) Int1=Dnth ;0 wik;,

kO :f('xn—la .yn—l)i

kl =f(xn: yn) 5

ki ———-f(x,,—i-ai/z,_y,,—l—}l Z’o bijkj).
This method has the same order as that of the two-step Runge-Kutta
method (0.3) in the same stage. Therefore, the two-step Runge-
Kutta method (0.3) and the pseudo-Runge-Kutta method (0. 4)
require fewer functional evaluations than Runge-Kutta method (0. 2).
However computational experiments indicate that the local accuracy
of the two methods (0.3) and (0.4) is frequently inferior to that of
the Runge-Kutta method (0. 2).

To improve this defect, we [14], [15] have proposed another
pseudo-Runge-Kutta method. Our method is defined by

(0. 5) Iat1 =01 Y1 0295+ AP (Kpty Xuy Pty Vo 1),
O(tamsy 1y Jums 25 W) =h 3 wik,
ko=f (%n-1, Yu-1)s Fa=f (%uy Du),
ki (oo, 2 bi(nmend) +h 2 bk,
aizbi—l—ji:z:—:bi,-, 0<a; <1, 1=2,3, ---, 7).
The method (0.5) has the following order:
b)) =r+2 (r=2,3,4).

In comparing our method and other three methods (0.2), (0.3) and
(0.4) in the same order, our method requires fewer functional
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evaluations than the other methods and has almost the same accuracy
as Runge-Kutta method (0.2). Therefore our method is more economi-
cal than the other three methods.

The methods discussed above are all explicit. The main advantage
of explicit methods is that they give numerical solutions explicitly at
each step. However, they are inadequate for the stiff problem [10].
A drawback of the classical Runge-Kutta method (0.2) for the stiff
problem can be overcome by introducing stable methods.

J. C. Butcher [1], [3] was the first who considered an implicit
Runge-Kutta method, which is A-stable. The general r-stage implicit
Runge-Kutta method is defined by:

(0.6) Intr=Yn+hO (%, ya3 1),
D (%ny i 1) =i—i|i wik;,
ki=f(x,+ah, y,+h iZ;zbi,-kj),
4= by (=2,3,4, 7).
It is possible to consider some other implicit pseudo-Runge-Kutta

methods in a way similar to that of the implicit Runge-Kutta method
(0.6). Owur r-stage implicit pseudo-Runge-Kutta method is:

0.7 Int1 =01+ 02 Yy HhD (X1, Xy Y1, I3 h)
O sy 5y Jumss I B) =3 wik
ko=f (¥u-1, Yn-1)s Fr=f (%uy Ju),
k=f G, b (n—paet) +h 35 bk,
a=bit by (=23, 7).

It will be seen that it is equivalent to certain implicit Runge-Kutta
methods in some special cases. For example, if we take r=2, yy=w,
=w;=b;=byp=0by=0, v,=1, w;=0.5, a,=0.5, b;,=0.5 in (0.7), then
the method (0.7) becomes the second order Gauss-type implicit
method, and if r=3, =1, n,=wy=0, w,=w;=0.5, a2=0.5—J?T/6,
a3=0.5—V3/6, by=bp=0, by=0.25, bp=0.25—V3/6, by=by=0,
by=0.25—V3/6 and by=0.25, then the method (0.7) becomes an
implicit Runge-Kutta method of order 4. In contrast with explicit
methods, implicit methods increase their attainable orders. In [3],
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Butcher proved for his method (0. 6), which is A-stable, the following
result:

@) =2(@r—-1) (r=2,3,4, ).
Whereas our method (0.7) has
h@) =r+3 (r=2,3).
As we have mentioned a little about the stiff problem, it is important

to derive A-stable methods. In this paper we derive 4-stable methods
for our method (0.7) when r=2 and 3. In these cases, we get

$2(2) =2,

p2(3) =4,
where p,(r) is the order that can be attained by an r-stage A-stable
method.

We now outline the organization of this paper. In section 1, we
discuss the attainable order with 2-, 3- and 4-stage methods (0.5).
In section 2, we discuss the attainable order with 2 and 3 stage
implicit methods (0.7). In section 3, we analyze a stability of the
implicit method (0.7). Finally, in section 4, we give some numerical
examples, which show some useful properties of our method. We
have not discussed the selection of parameters appearing in the method
(0.7) and other related results. These results will appear soon.

§1. Explicit Method

§1.1 Non-Existence of Order 5 with r=2

To investigate the attainable order of pseudo-Runge-Kutta method
(0.5), we are required to expand the formula (0.5) as its Taylor
series about the point (x,, y,), where we assume that y (x,) =9,. Details
can be found in [18], so shall be omitted.

We check whether it is possible for the method (0. 5) to have
order 5 with 2-stage, by investigating order conditions in two cases
when w, is equal to zero and otherwise.

Case 1.1: w,#0. We need the following order conditions.

—1)/ 2
1.1 (—1.)”1—+Za{-1wz=i. (J=12,-95),
] i=0 J

(1-2) aé'.:('—l)jﬂ'{bo_*'jbm} (.]:2’ 39 4)9
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with a=—1, 4,=0.
The equation (‘1. 2) implies that
ay(a,+1)2=0.
So we have
(1. 3) a,=—1,0.

On the other hand, for ;= —1,0 the equation (1.1) has no solution.
Indeed, if we define

L, 1
1 ] 1
) " )
D= =+ 1 d| Ui=|w)and V=] & |,
1 @ 1
g L@ %

ﬁ1= (D, V1),

then (1.1) can be expressed as
D\U,="V1.

In the case (1.3), we have
Rank (D;) =2, Rank(D;) =3.

Thus the equations (1.1) and (l.2) have no solution.
Case 1.2: w,=0.

Put
1 1
L | L
) , 9
Dy= —% 1], U2=(wo and V,= é—
1 0 1
4 )
D2=(D2, VZ)-

Then we have

Rank (D,) =2 and Rank(D,) =3.

Thus the equations (1.1) and (l.2) have no solution.
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§1.2. Non-Existence of Order 6 with r=3

By going through the same procedure as in the case when r=2, we
check whether it is possible for the method (0.5) to have order 6
with 3-stage. We consider two cases (A): a,#a; and (B) a,=as.

(A) : a,#a,.

So we consider order conditions in the following four cases.

Case 2.1: w,#0, w;+0.

We need the following order conditions:

—1)/ 3.
Ly EDu Sl (=19 .6,
J = j
(1.5) aj=(—1)""{by+jby},
(1.6) ai= (=) +j{(—= 1) by +aj by} (j=2,3,4).
The equations (1.5) and (1.6) imply that
(1.7 a=—1,0 and a3=—1, 0.

If we define
% —1 ayas %
—-% 1 aiad o _é_
Ds(az, az) = —i— —1 dadd |, Us= Z: and V;= %
-+ 1 w; L
% —1 aad ‘%/

Dy= (D, (az a3), Va),

then the equation (l.4) can be expresses as
Ds(ay, az) Us=V,.

In the case (1.7), we have
Rank (D3(ay, a3)) =2 and Rank (D;) =3.

Thus the equations (1.4), (1.5) and (l.6) have no solution.
Case 2.2: w,#0, w;=0.
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In this case, we need the condition (l.4) with w;=0. Define

—é— -1 a — % 1 4

——;T 1 a2 % —1 4

D,(ay) = . , Ds(a;) = ) ’

T "—1 dg —3‘ 1 (124
1 1

"‘—5— -_ l a§ F —_ 1 ag

1 1

2 3

1 1 “

V4= 3 5 V5= 4. 9 U4= wo

1 1 W

4 5 —1

1 1

5 6

D4(a2) = (D4(az), Vs, and Es (a2) = (Ds(ay), Vs).
Then we need the conditions det(D,(ap)) =det(Ds(a,)) =0.  Since

det(Dy(ap) = —31_0a2 (ag+1) (5ad—a;—2) =0,
det (Ds (a)) = —gl—oaﬁ(az—l-l) (6% —a;—3) =0,

we have
a=—1,0,
However, for a,=—1,0 we have
Rank (D,(a;)) =2 and Rank(D,(a;)) =3.

Thus the equation (l.4) has no solution.
Case 2.3: w;=0, w;#0. In this case, we need the condition (l.4)
with w,=0. Then we have

det (D, (a)) =0, and det ((Ds(as)) =0,

which imply that a3= —1, 0, thus we can prove the non-existence of
solutions of (l.4) in a way similar to that of Case 2. 2.

Case 2.4: w,=w;=0. In this case, as we have seen in Case 1.2,
the equation (l.4) has no solution. Now let us go on to
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(B): az=as
In this case, we need the order condition (1. 4) with a,=a;. If we
define

(4]

W

U5= 0
wz+w3

-1

then the equation (l.4) can be expressed as
Dy(a,) Us=0 and Ds(a,) Us=0.

Therefore we get a,=—1,0. As we have seen in Case 2. 2, the equa-
tion (1.4) has no solution.

§1.3. Non-Existence of Order 7 with r=4

Proceeding as before, we check whether it is possible for the method
(0.5) to have order 7 with 4-stage. We consider the two cases (A):
a;#a;(i%j) and (B) 1a;=a;(@#)).

(A): a;#a; G#)).

Let us consider the order conditions in the following eight cases.

Case 3.1: w,#0, w;#0 and w,#0. In this case, we need the
following order conditions:

—1)4 4 .
(1.8) %4_;@—1%:% (j=1,2, -, 7),

(1.9 a3 = (—1)"* {by+jbx},
(1.10)  af=(—1)"*"bg+j{(—1)"bg+aj ba},
(L11)  ai=(=1)""%+j {(= D) bg+aibp+ai b} (j=2,3,4).
The equations (1.9), (1.10) and (1.11) imply that
(1.12) a=—1,0, a3=—1,0 and a,=—1, 0.
Define
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1

-;— —1 Q9030 / U1 ?

—% 1 aZdéa W %

D= Ti— —1 a&addd |, Us=| w, | and V= % .

1

—% 1 aialal ws 5

L _ 55 5 \ L

6 1 aza3a4l, \wﬁ/ \ 6

Then the equation (l.8) can be expressed as
DU;=V5.

In the case (1.12), we have
Rank (Ds) =2, Rank (D;) =3,

where Dg= (Ds, V5).

Therefore, the equations (1.8), (1.9), (1.10) and (I.11) have no
solution.

Case 3.2: w,=0, w3#0 and w,#0. In the case byw;+byuw,#0,
we need the same conditions as that of case 3.1. And in the case
bygws+biuws=0, we need the conditions (1.8), (1.10) and (l.11)
with byp=0b,=0, which imply a3=—1,0 and a,=—1,0. Thus we
can prove the non-existence of the solution of (1.8) in a way similar
to that of Case 2. 2.

Case 3.3: w;#0, w;=0 and w,#0. In this case, we need the
following condition, in addition to (l.8):

(1.13) gi=(—1)" {b+ibp} (i=2,3,4,5).

The equation (1.13) implies that a,=0. Therefore, as we have
considered in Case 2. 2, there are no solutions satisfying (1. 8).

Case 3.4: w;=0, w3=0 and w,#0. In this case, we need the
same order conditions as that of Case 2.2. Therefore we can prove
the non-existence of solutions of (I.8).

Case 3.5: w;#0, w3#0 and w,=0. In this case, we need the
same conditions as that of the case r=3 (see Section 1.2). Thus we
cannot get order 7.

Case 3.6: w,=0, w;+#0 and w,=0. This is equivalent to Case 2. 2.

Case 3.7: w,#0, ws=0 and w,=0. This is equivalent to Case
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2. 2.

Case 3.8: w,=0, w;=0 and w,=0. In this case, as we have
considered in Case 1.2, the equation (1.8) has no solution. Now
let us go on to

B): a;=a; (@#j).

Let us consider the order conditions in the six cases.

Case 3.9: bypbgw,#0. In this case, we need the conditions (l.8)
and (1.9) without assuming a;=a;(i+#j). Therefore we can prove
the non-existence of solutions of (1.8) and (1.9) in a way similar
to that of Case 2. 2.

Case 3.10: w,=0. This is equivalent to Case 3.6.

Case 3.11: b=0, byws+byw,7#0. In this case, we need the
condition (l.13) without assuming a;=a;(i#j), and we get a,=0.
Therefore we can prove the non-existence of solutions of (1.8) in a
way similar to that of Case 2. 2.

Case 3.12: bi3=0, byws+byuw,=0. In this case, if we assume a,=as,
then we need the condition (1.11) with b,=0b,=0, which implies

ay=—1,0. If we assume a,=a; then we need the condition (1.10)
with b3 =0 which implies a3=—1, 0, and if we assume a3;=a,, then we
need the condition (l.9) which implies a,=—1.0. Therefore we can

prove the non-existence of solutions of (1.8) in a way similar to that
of Case 2. 2.

Case 3.13: b3 =0. In this case, if we assume a;=a,; then we
need the condition (1.11) with b,=0,=0, j= 3,4, 5, which implies
a,=—1, 0. If we assume a,=a, then we need the condition (l.10)
with b3 =0 which implies a3=—1,0. If we assume a3=a,, then we
need the condition (1.9) with which implies a,=—1,0. Therefore
we can prove the non-existence of solutions of (1.8) in a way similar
to that of Case 2. 2.

Case 3. 14: ay=a3=a,.  In this case, we can prove the non-existence
of solutions (1.8) in a way similar to that of Case 2. 2. Consequently
we can conclude the following result.

Theorem. The attainable order is 4,5 and 6 for the explicit pseudo-
Runge-Kutta method (0.5) of 2,3 and 4 stage respectively.
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§2. Implicit Method

In this section, we consider the r-stage implicit pseudo-Runge-
Kutta method (0.7). The functions %; (i=2,3, ---,7) are no longer
defined explicitly but by the set of r—1 implicit equations. We
assume that the solution of each of r—1 implicit equations. We
assume that the solution of each function £; may be expressed in the
form:

»
ki=f (%, }’n)+§€jhi+0(ﬁ’+l) (i=2,3, -, 1),

and

In=) (%)

§2.1. Non-Existence of Order 6 with r=2

In [16], we have already proved the existence of order 5 with
2-stage. We now check whether there exists order 6 with 2-stage,
by investigating the order conditions in the two cases when w, is
equal zero and otherwise.

Case I: w,#0. We need the following order conditions:

— i 2 .
@1 E—Z_lﬂl—quz_oa;-lw,.::—. (=1,2, - 6).
Let us define
1 1
= —1 g 2
| 2
D7— —“-3— 1 a§ N U7= Wo and V7= —é—- )
w2
Lo !
1 1 1 , 1
7 1 az 2 ? 1 az —3—
1 1 1 1 %
- 1 & + — -1 a4 —
D= ? 3 , D,= 4 2 4 L U= Wo
1y gz 1 _1 s 1 Wy
Z 1 a3 ) 5 1 a; 5 .
._.._.]'_ 4 L i_ _ 5 l
5 % 5 1 % %
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D= (Dy, V).
Then the equation (2.1) can be expressed as
DUy =Vy, DgUs=0 and DyUs=0.,
And we have

(2.2) det (Ds) = —g%az(azJr ) (5 —a;—2),

det (Dy) = —g—lﬁaﬁ(az-l—l) (62 —a;—3).

Therefore, in order to have the solution of (2.1) we have
a=-—1,0.

However, for a,=—1,0 we have
Rank (D;) =2, and Rank(D,) =3.

Thus the equation (2.1) has no solution.

Case II: w,=0. In this case, we need the condition (2.1) with
w, =0, as we have seen in Case 1. 1, the equation (2. 1) has no solution.

§2.2. Non-Existence of Order 7 with r=3

In [15], we have already proved the existence of order 6 with
3-stage. Proceeding as before, we check whether there exists order 7
with 3-stage, by investigating the order conditions on the two cases
when w; is equal zero and otherwise.

Case I: wy;#0. In this case, we need the following order
conditions:

(;)jyl : J=1 —1_ ] — soo
(2.3) j +i§)a, w,—j (j=1,2, -, 7),
- Jj 3 1 .
e EPiZgwe=r (=84,
with

gi;=(— 1), +i {(—1) by 4 a5 by; +ai by} (t=2,3,-,7, j=2, 3,
gio= (—l)i_lv Qi1=0-

Define
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[ ,é_ 1
_% 1
Dyp= % 1
_% 1
% —1
,_% 1
T -1
Dy=| -3 1
% 1
-7 !

U= (01, wo, wy, ws, —1), ﬁlO: (Dioy Um), D1z= (Dlz, Up).

MASAHARU NAKASHIMA

as -1 -2 24, 2a4
a3 1 3 34 34
&, Dp=| —1 —4 44 4d
a3 1 5 ba; 5ai
a3 —1 —6 64 6a
a§‘\‘ ? bytwy + baws

a3 baotwz byt

4 —_ _
a3 |, Un=| bpwy+bypws |, U=

a3

a3

|

bastwy + basws

-1 ]

-I-%——wo
—%—I—wo
+%—w
—%—I—wo
+—;)—1——wo
» U=

PR

Then the equations (2.3) and (2.4) can be expressed as

D]_oU:O, D11U11=0 and EIZUZOu

Therefore, in order to have the solutions of (2. 3) and (2.4) we need
det(Dy) =0, det(Dy) =0 and det(Dy) =0. And we have

det (Do) = — g 2,05 (1) (@s-+1) (@~ a9 (@ 09,

det (Dy) = —a3d3(a;+1) (a3+1) (a;—as) det (Dy3),

det (Dy,) =

where

2.5)
(2.6)

~ L
630

a5a3(az+1) (a3 +1) (a:—a3) &(ay as),

+3(a2+a3) +12,

81(az, as) =15a%a% — 3a,a3 (ay+a3) —6 (ay+as) 2+ 14ayas +a, +az +3.
& (ay, a3) =42a2a%— T ay05 (ay+as) —21 (a2 +al) +4asa;
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7+Z)1
1 0 3 12
—0.4 4 0.8 0.8
D13= 2
1 5(ay+as—1) — 1 —5a,as 3
2 2
12 bletamstea g0 4 ta—1) +% —78~

— (az+as) +1)
Then, from (2.5) and (2.6) we have
@.7) 21 y*—T7xy+6y+x—3=0,

_21x2—x—18
2.8 I Tk 134

with x=a,+a; y=asa3. And from (2. 3) we have

_35x—50y—27
2.9) A= 10y F5x+3

Let us define
(2.10) T (x,y) =det(Dis).
Then using (2.8) and (2.9), the equation (2.10) can be expressed as

@ 11) T (%,9) =$’23®3,

with
(2.12) g (x) =594247500x°+ 500320380x° —639473520x*
—186267480x%+394247760x%—1548000x — 32500800.

From (2.5) and (2.8) we have

(2.13) & (x) =41160x°+175420x* —169820x% — 2278002
4-90800x —8160.

Now we investigate the algebraic character of (2.12) and (2.13) by
computing Sylvester’s determinant D (g (%), g(x));

Det (g (x), g(x)) =—3111800697887125324908...........

Therefore the equations (2.12) and (2.13) have no common roots.
Thus the common roots of the equations (2.5), (2.6) and (2. 10) are

2.14) a=—1,0, a3=—1,0 and a,=as.
However in the case (2. 14),

Rank (Dlg) = 2, Rank (D~10) =3.
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Thus, the equations (2.3) and (2.4) have no solution.

Case II: w;=0. In this case, we need the order conditions (2. 3)
with wy;=0. Therefore, as we have seen in §2. 1, the equation (2.3)
has no solution. Thus, we can conclude the following results.

Theorem. The attainable order is 5 and 6 for the implicit pseudo-
Runge-Kutta method (0.7) of 2 and 3 stage respectively.

§ 3. Stability Analysis

In this section we attempt to derive A-stable methods. We define
the stability of the numerical method (0.7) in the following way.
Let us apply the method (0.7) to the test function y’=2y where 2
is a complex constant with negative real, we have the following
difference equation:

3.1 Ao i1 — A1 Yn— 42 921=0,
where A4y, 4; and 4, are the function of A%, involving the coefficients
a;, b;, by, v;, w;, The numerical method (0.7) is called A-stable if

@ Ll i=1,2,

(2) the root |y;|=1 is simple.
where 7 are the characteristic roots of the difference equation (3.1).
If the method satisfies the conditions (1) and (2) for any negative
real 4, it is said to be A,-stable. If we impose the A-stability on the
method (0.7), we can obtain the highest orders of the A-stability

for each stage r, using some results due to Wanner, Hairer and

Norsett [23].

Proposition. In the method (0.7) with A-stability imposed on, the
highest possible order of the A-stability is of order 2(r—1) for each stage
r.

Proof. The proof goes as follows (see [23, §6]) :

Let
0z, R)=0Q.RQ)R*+Q,R)R Q)R 2+ --4+0 (),

be a characteristic algebraic equation of multistep method, satisfying
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the following conditions;

@) Q(z R) is irreducible, Q o(0)+0, g—%(o, 1) 0,

() deg(Q)<J, (r=1,2,---,k). Then G. Wanner, E. Hairer
and S. P. Norsett [23, Theorem 2] showed that if Q(z, R) is A-stable
then the highest possible order is 2/. In our case, as we will see
later in Section 4.1 and 4.2, the characteristic equation of (0.7)
satisfies the conditions (a) and (b), thus we get the above proposition.

§3.1. A-stable Method of Order 2 with 2-Stage

We apply the method (0.7) with r=2 to the test function y’=2y.
This yields

(3.2) I =A1ynt Az Y5,
where
A= —Ibzzii {v2+ (w1 —baga+ (1 +b2) wy) A+ (—bogw1 +baw,) (A3},
Ay=1 _Ibzz 2o+ @by — by F+ (= boo + b)), (=)
We see that the method (0.7) is of order 2 if
(3.3) (=D 2w, =L G=1,2)

and furthermore we add the following conditions (3.4) and (3.5),
under which the method (0.7) becomes of order 3 if 6=0:

3. 4) (—1)-B+ Fatw, =1+,
3 i=0 3
——0, 5bz—b20+02522:0u 50%,
(8.5) — by + by, =0,

- bzzlf}o +b20&)2 =0.

Here we note that the condition (3.5) is necessary for Ay-stability.
From (3.3), (3.4) and (3.5), we have
(3.6) n=35—6a,(a,+1)w,+69,

wo=2—a,(3a,+2) wy+ 30,

wy=4— (8ai+4a,+1)w,+30,

v,=1—u,

by=3{a;(az+ 1)} 2wy — (8a%+2a,) —30(a,+4d2),
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by =0.5(@+ad)w; (=0,1,2).
With these values plugged in (3.2), the characteristic polynomial of
(8.2) becomes

(3.7) (1=0. 527) pps1— {(6z—4-—65) +4<1 —z+%5>/f}y,,

— {(5—6z-+60+ (2—2.5z+30) 4} y,.1=0,
Zzaz(az+ l)wz
If we take z=1 and 0 =%, the difference equation (3.7) has charac-

teristic roots:
71=0,
r,= (1 4+0.54) /(1—0.5h).
It follows that the method (0.7) of order 2 with 2-stage is A-

stable. With the values z=1 and 5=i the constants (3.6) are given

6’
by
01_05 02_‘1, Wo 92 ag-l—l’ W= 2 az’ b21_622_0° 5,

bo— 1 __ T1d5+5a,
27 gy {ay+ 1) 2 '

§3.2. A-stable Method of Order 4 with 3-Stage

By the same procedure as in the 2-stage, we discuss the A-stability
of order 4 with 3-stage. Let us apply the method (0.7) with r=3
to the test function '=2y. Then we obtain the difference equation:

(3- 8) Ao}’n+1=A1}‘n +A2yn—1,
where

Av=1+dih+d2,

Ai=uv+ (en+w) h+eht+ e,

Ay=0,+ (e +wo) A+ eph?+ ek’

en= (1 +by) w;+ (1 +bs) ws,

e12= {bn —bss (1 +b5) +by(1+bs)} wy+ {byy +bay (1 +b2) — by (1 4-53) } s,
e13= (—bnbss+byba) wy+ (—bybyy +bnbs) ws,

en=— (bsw,+bsws),

e22= (b0t bobas — byabs) wy+ (bao+ bysbs —bobsy) wy,



PSEUDO RUNGE-KUTTA PROCESSES 601

e =(—babss +byby) wo - (—bybzo +bnbsy) w3,
dl = (bzz + 533) 5
dy="Dbysbs3— bysbs.

First, we consider the case when the method is of order 4. The
conditions of order 4 with r=3 are given by

3
(3.9) (—1)f7‘.’1+§0a;1-1w,-=% G=1,2,3,4)
k—lbi 3 k-1 1 k o
(=D *k“l‘lz:%az bilzrai (k:23]:293)5
11 3_L__3a?bi,-> 1
e ?!w°+i=zz< st R T

In addition (3.9), we consider the following conditions where (3. 10)
and (3.11) are the conditions of order 3.

_h s gy L
(3. 10) 2433 dhwi =,
b, 3 1 .
(3- 11) (—I)k—lf_l_?_% a?_lbil=“/?af'a (k=3=.]=29 3>9
3 3 3
(3.12) —%ul+wo+_22 (—b;+4 Zoa?bij)w,-=%—z(4a§—i—2a?)w,~.
i= Jj= =2

From (3.9), (3.10), (3.11) and (3.12) we have
2(5a2—a,—2)

3.13 = 2

G-13) e = D) (t—a) Baat 345w Qa7 D)

e 12—6a5(as+1) (2a5+ Dy

2 6a,(a,+1) (2a,+1)

o =loaz—‘7“‘12d3(a3+l) (az~a3)w3

! (2a,+1) ?

v=1—0,

wo=0. 501 + ayw; +azw; —0. 3,

w=1—(—vo+wotw,+ws),

b;=6a,(az+1)b,y+6as(as+1)bs— (342 +243),

bo=— (3a2+2ay) b,y — (3a2+2a3) bis+ (a®+ad),

ba=— Bat+4a,+1)byy— Bai+4as+1)bs+a; (a; +1)2
=2, 3).

The most direct way for investigating A-stability conditions of the
method (0.7) is usually the root-locus method, however we use the
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Schur criterion. The stability conditions for the method (0.7) with
r=3 are

(.14 (A)  |4:1<|4ol,
(B) Aol + A4 | < | Axdy— Aoy |.
First, let us analyze the A-stability of the method, where we take 2

to be real in (3.8). From the conditions (3.13) and (3.14), the
following conditions are necessary

(3. 15) (ba2bss —basbg) wy + (— byobas +basbao) wr+ (— byabao+baobsp) w3 = 0,
(3.16) (byzbss— bashan) wo+ (—banbas +bgsba) wa+ (—bapba +byubs,) ws=0,
(3. 17) lUg+€21+WQE+€2252[<|1+d15+d2/’22|,

(3.18) |U1+311+w1}z+€12h-2 [<lo+ (d1—6’21—wo)/z+ (dr—e2) h? [
(loo|<1).

We can rewrite the conditions (3.15) and (3.16) in the following
clearer forms:

(3.19) dubas+ diobs =dis,
d21b23 + dzzbsa = dzs,
where
din=2byp— (a3+ a3) Wa,
dz= —2b3+ (af+ad) ws,
diz= {(d3+a3) by — (af+a}) b3y} s,
dpn=4bp—a,(a,+1 )sz,
dpp= —4by+az(as+1)%w,,
dyu= {aa (a3+1) by —ay(a,+1) 2[732} W3.

Solving (3.19), we have

(3. 20) A{bzs—%zbzz}=0,

and

(3.21) A{bss—%bm}:o,
W2

where

A= {2a3(1 —a8) by +2a;(a5—1) by +a,a3(az+1) (a3+1) (a3—a5) wy} w,.

We now investigate the stability conditions according as 4 is equal
to zero or otherwise,
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Case I: 4+0.
From the A-stability conditions (3.17) and (3.18), we have

(3.22) e1=0, e5=0, |7, |<L.
From (3.21) we have

_Ws
(3.23) bzs——wzbzz 5

_Ws
(3.24) baa—-—wzbgz .

By substituting (3. 23) and (3.24) into (3. 8) we obtain the following
results:

(3. 25) d2=0, d]_:"'%, 611+w1=%, d1—€21—'w°= —?.

We see that the condition (8.25) contradicts the condition (3.17).

Thus the method (0.7) with r=3 is unstable in the case 4+0.

Case II: 4=0.

We use the maximum modulus principle for the analysis of stability
conditions (A) and (B) in (3.14), and we use the following lemma.
whose proof is not hard and so left for the reader.

Lemma. Suppose that
<0, d,>0 in (3.8),

then we have

-AI[— is analytic for Re(2)<0.
0

Thus the stability condition (A) in (3.14) is replaced by
(3.26) [A/As| <<l  for Re(d) =0,

and

(8.27) 43/ 4, is analytic for Re(2) =0.

Similarly the condition (B) in (3.14) is replaced by

(3.28) | Aody+ A4 | <| | 4o |2~ | 4,|?|  for Re(2) =0,

(3.29) {Aod:1+ 4,41} /{1 4012— | 4,13 is analytic for Re (1) =0.

We see that if the conditions (3.26) and (8.27) are satisfied, the
condition (3.29) is also satisfied. From (3.26), we have
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(3. 30) (fa—fiy'+ (fe—2fafs—Sft2fuf))’+f a—f1>0,
and from (3.28) we have

4 2 2
3. 31 Q1)+ +93+i $1)° 1S, <1,
3. 3D Dy b by b b

where

(3. 32) ﬁ]_ =,
Jrz=ea+wo+dy,,
f13 =ep+dp,+ dlwo’

f21 =1,
f22=d1,
Ju=d,,
&=,

g=en+w,+dy,

iz =dy + e+ dywy,

bh=fa—f1,

b=f%—2fnfut2fufis—fis

ps=fa—fh,

51=— ( fug— o+ 18— 1ag0),

52 =fn812— frgn + /1280 — g

G =Sngis+/ 1383,

9>= — (fngu +fn&s—fuge+fagn + ms—f12812)
93=fngu +fugn.

The formula (3.30) may be rewritten as
(3.33)  y{a) +zr' 2yt +2 >0,
with
Z1=Pf“9f,
22=2(p1p— q192) — 5%,
23=2 (p1ps—q:195) + b3 —q5— 25152,
24=2pspr — 2450, — 5.
If we use the conditions (8.9), (3.15) and (3.16), then we see that

(3.34) 23=0, 2,=0.

We used REDUCE III to obtain (3.34), which requires rather
complicated computation. Consequently A-stability conditions for the
method (0.7) with (3.13), (3.19) and 4=0 are given by
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(8. 35) (=Sl + (fo—2fufo—fi+2fuf)y*+fa—fh>0
Sfa+ (f§2_2f21f23))’2+f§3}’47&0 for y+0,
Pz + 2 >0.

We find the suitable parameters a,, as, and by by using computer,
which satisfy (3.35). These regions, where in particular we take
P(=bgybz—bybs) =0.83 and a3=0.74 respectively, are sketched in
Figures I and II. If we take a,=0.7, 4;=0.74 and p=0.83, whose
points are in the stability region, then the constants in (0,7) are
given by:

_ 125 _ 644 _ 50662 _ 98044 500

AT7690 2T 7690 YOT 11373510 1T 1991710 %2T T 91511°
1o, — 1562500, _ 1235187911 , _ 3895148891
370475411 * 442175000 > “® 247618000 °
p, — 13318668547 , _ 25847383643 , _ _ 119079316067
277910951248 ° "2 19234612500 ° 2 114523325000’
p,— 1010782378527 ~, _  54331704350559 , _ 3381538061
37 7386903125000 ° © 3683317750000 > " 247618000 °
b, — 4156771908011 ~, _ 2755200809427
% 73288676562500° 2708321875000

10

Y
ag
0.5
p=0.83
0.L5 l I l ’ 1.0

2

Figure (1) : The region (s, 43) which satisfy A-stable condition (4.32).
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10

%mnmmmm

0.5}

a=0"74
3

1 2 1 1 1 1 1 1 ]

0.5 10

%

Figure (2) : The region (a,, p) which satisfy A-stable condition (4.32).

§ 4. Numerical Examples

In this section, we present some numerical results for the equations
which have been often taken on in the literature of the numerical
analysis. We use the following initial-value problems:

I: {J’=—1000y,y(0)=1, y(x) =exp (—1000x)
z2'=p+1,z(0) =—0.0001, z(x)=—0.001 exp(—1000x) +x.
II: {y'=—10000y+2z—2exp(—0.00le)—I—QOOOOCxp(—x)
Z'=—2+(0.9999) exp (—0.0001x),
»(x) =2 exp(—x) —exp (—10000x)
z(x) = —exp(—x) +exp(—0.0001x).

The eigenvalues of Jacobian matrix of problems I and II are
(—1000, 0) and (—10000, —1) respectively. In using the method
(0.7), it is necessary to solve a set of algebraic equations at each
step to calculate an implicit function ;. Of course, the evaluation of
k; requires some type of iterative procedure. We will discuss in detail
those problems in another paper. We use the Newton-Raphson
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iteration method for obtaining an approximate real solution of an
implicit function k;, setting the initial approximation £ on the
iterative processes by

kO =f (%us 3n)s
and we use the quantity:

B0 =80 -,
as control of the iteration number. The iteration is continued until
E{P become smaller than E*, where E* is a pre-assigned tolerance.
The value y necessary for the evaluation, when we use the method
(0.7) of order 2, is computed by the implicit R—K method of order
4, and the value y; necessary for the method (0. 7) of order 4 is
computed by an implicit R—K method of order 6. In solving an
implicit function of R—K method and the trapezoidal rule, we use
the Newton-Raphson iteration. From Tables we can see that the
advantage of our method over other methods lies in its accuracy.

Computations are done in double precision arithmetic on the FACOM
M-230 of Kyushu University.

Problem I, k=1/2", E¥=0.1E—7, (M : number of iterations).
Absolute Error
(Im) Pseudo-Runge-Method

2-stage 3-stage
with (4. 6) with (3.13)
M a,=0.5, z=1, 0=1/6 a,=0.70, a3=0.74, p=0. 83
In—y(%a) 2,—2 (%) M In—(xa) 2p—2z(%a) M
0.5 0.144E—15 0.116E—14 3 —0.328E—8 0.328E—11 4
1.0 0.0 0.244E—14 3 —0.328E—-8 0.328E—11 4
5.0 0.0 0.117E—12 3 —0.765E—12 0. 145E—12 4
10.0 0.0 0.262E—12 3 —0.815E—10  0.407E—12 4
15.0 0.0 0.406E—12 3 —0.236E—12 0.507E—12 4
20.0 0.0 0.225E—11 3 —0.246E—11 0.237E—11 4
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Trapezoidal Rule

x In—) (%a) Za—2 (%s) M
0.5 —0.403E—8 0.807E—11 5
1.0 —0.141E-8 0. 141E-11 5
5.0 —0.150E—8 0.311E—12 5
10.0 —0.236E—8 0.249E—12 5
15.0 —0.600E—8 0.413E—12 6
20.0 —0.345E—8 0.122E—12 5
(Im) Runge-Method
Order-4 Order-6
%
Iu—y (xn) 2y~ 2 (%a) M In— (%) zy—2 (%) M
0.5 0.209E—-9 —0.209E—-12 3 0.311E—10 —0.306E—13 5
1.0 0.151E—8 —0.151E—11 3 0. 325E—8 0.325E—11 5
5.0 0.220E—9 —0.163E—12 3 0.633E—9 —0.575E—12 2
10.0 0.167E—8 —0.155E—11 2 —0.207E—8 0.220E—11 2
15.0 0.336E—9 —0.167E—12 4 0. 682E—38 —0.661E—11 2
20.0 0.279E—8 —0.169E—11 2 0.347E—10 0.111E—11 5
Relative Error
(Im) Pseudo-Runge-Method
2-stage 3-stage
X B 1€2)) za—2 (%) | 5= (%) 20— 2 (%)
7 (%) z(em) | (%) z ()
0.5 0.229E—14 0.202E—2 0.647E—11
1.0 0.242E—14 0. 352E—14
5.0 0.235E—13 0.289E—13
10.0 0.262E—13 0.407E—13
15.0 0.270E—13 0.338E—13
20.0 0.112E—12 0.118E—12
(Im) Runge-Kutta Method
Trapezoidal Rule Order 4 Order-6
x| zZo=z(xn) | (200 () | | za—z () | | 22—y (%) ’ zy—2(%n)
y(xa) z(x4) 9 (xa) z(%4) (xa) z(%a)
0.5 0.403E—11 0.341E4+0 0.150E—11 0.221E—9 0.322E—11
1.0 0. 141E—11 0. 150E—11 0.322E—11
5.0 0.155E—11 0. 326E—13 0.114E—12
10.0 0.249E—11 0.154E-12 0.220E—12
15.0 0.619E—11 0.111E—13 0.441E—12
20.0 0.459E—11 0. 848E—13 0.559E—13
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Computational time

Pseudo-methods R-K (0. 6)
Trapezoid
2-stage 3-stage Order-4 Order-6
1.60(sec) 1.81(sec) 1. 87 (sec) 1. 68 (sec) 2. 18(sec)

Problem II, h=1/27, E¥=0.1E—7, (M: number of iterations).

Absolute Error
(Im) Pseudo-Runge-Method

2-stage 3-stage
with (3. 6) with (3. 13)
. 4,=0.5, z=1.0, 6=1/6 2,=0.70, a3=0. 74, p=0. 83
o= (%n) Zy—2z (%) M 0= (%) 25—z (%) M
0.5 —0.277E—1 —0.153E—5 3 —0.721E—-2 0.116E—9 5
1.0 —0.104E-2 —0.185E—5 3 —0.629E—4 0.141E—-9 5
5.0 —0.560E—9 —0.170E—6 3 —0.149E—-10 0.129E—10 5
10.0 —0.400E—11 —0.229E—-8 3 —0.343E—13 0.176E—12 5
15.0 —0.285E—13 —0.231E—10 3 —0.569E—14 0.399E—14 5
20.0 —0.202E—15  —0.205E—12 3 —0.571E—15 0.227E—14 5
Trapezoidal Rule

x yﬂ—'.y(xn) z,.—z(x,,) M

0.5 0.279E—1 —0.154E—5 21

1.0 —0.779E—-3 —0.187E—5 21

5.0 —0.257E—8 —0.171E—6 14

10.0 0.258E—8 —0.230E—8 14

15.0 0.223E—8 —0.233E—-10 13

20.0 —0.732E—8 —0.210E-12 11

(Im) Runge-Method
Order-4 Order-6
x

yu__y(xu) z,,—-z(x,,) M J’»‘J’(xn) Zn_z(xn) M
0.5 —0.396E—4 0. 155E—11 4 —0.213E-8 0. 346E—15 5
1.0 —0.684E—7 0. 188E—11 4 0.295E—11 0. 555E—15 5
5.0 —0.121E—-8 0.173E—12 4 0.522E—13 0.888E—15 5
10.0 —0.818E—11 0.313E—14 4 0.357E—15 0.832E—15 5
15.0 —0.465E—11 0.208E—15 4 —0.204E—16 0.832E—15 5
20.0 —0.860E—9 0.735E—15 4 —0. 140E—11 0. 666E—15 5
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Relative Error
(Im) Pseudo-Runge-Method

2-stage 3-stage
x I_yn_}’ (xn) z,.—z(x,.) [ In—) (xn) ! Zy—2Z (xu)
TS z(x) | (%) U z(x)
0.5 0.230E—1 0.384E—5 0.599E—2 0.292E-9
1.0 0. 143E—2 0.292E—5 0.862E—4 0.222E-9
5.0 0.418E—17 0.171E—6 0.112E—8 0.130E—10
10.0 0.444E—17 0.229E—8 0. 380E—9 0.176E—12
15.0 0.469E—7 0.231E—10 0.983E—8 0.400E—14
20.0 0.494E—7 0.205E—12 0.139E—6 0.228E—14
(Im) Runge-Kutta Method
Trapezoidal Rule Order 4 Order-6
|22 | | za—z () | 20— (xa) | | Za—2(sm) | In—=2(xn) | | zZa—2(xa)
3G || 2G TS 2G| 3(xn) 2 ()
0.5 0.230E—1 0.392E—5 0.329E—4 0.391E—11 0.177E—8 0.871E—15
1.0 0.1056E—2 0.296E—5 0.937E—7 0.297E—11  0.404E—11 0.874E—15
5.0 0.190E—6 0.172E—6 0.908E—7 0.175E—12 0.391E—11 0.894E—15
10.0 0.282E—4 0.231E—8 0.908E—7 0.313E—14 0.396E—11 0.833E—15
15.0 0.364E—2 0.233E—10 0.766E—5 0.208E—15 0.336E—10 0.833E—15
20.0 0.177E+1 0.210E—11 0.210E+0 0.736E—15 0.344E—3 0.667E—15
Computational time
Pseudo-methods R-K(0.6)
Trapezoid
2-stage 3-stage Order-2 Order-4
1.48(sec) 1.77(sec) 2.93(sec) 1. 55(sec) 2. 78(sec)
Acknowledgments

This work was done during my stay at Research Institute for

Mathematical Sciences, Kyoto University. I wish to express my hearty

thanks to Professor S. Hitotumatu, Professor M.

Yamaguti of Kyoto

University and Professr T. Mitsui of Nagoya University for their

invaluable suggestions and advice.

Also I wish to thank Professor R.

Jeltsch of TH. Aachen (Fed.Rep.) for his stimulating discussion and
to the referee for his invaluable guidance and criticisms.



[1]
[21

£31
[4]

[5]
[6]
L71]
[8l

[91
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
£20]

(211

[22]
[23]

[24]

PseUDO RUNGE-KUTTA PROCESSES 611

References

Butcher, J. C., Coefficients for the study of Runge-Kutta integration processes, J.
Austral, Math. Soc., 3 (1963), 185-201.
—————, On the attainable order of Runge-Kutta methods, Math. Comp., 19 (1965),
408-417.
—————, Implicit Runge-Kutta Processes, Math. Comp., 18 (1964), 185-201.

, The non-existence of ten stage eight order explicit Runge-Kutta methods,
BIT., 25 (1985), 521-540.
Byrne, G. D., Parameters for Pseudo-Runge-Kutta methods, Comm. 4. C. M., 102
(1965), 408-417.
Byrne, G. D. and Lambert, R. J., Pseudo-Runge-Kutta methods involving two points,
J. Assoc. Compt. Mack., 114 (1966), 114-123.
Ceschino, F and Kuntzmann J., Numerical solution of Initial Value problems, Printice-
Hall, Englewood Cliffs, New Jersy.
Costabile, F., Metodi Pseudo-Runge-Kutta di seconda specie, Calcolo, 7 (1970), 305-
322.
————, Metodi Pseudo-Runge-Kutta ottimali, Calcolo., 10 (1973), 101-116.
Dahlquist, G., Stability and error bounds in the numerical integration of ordinary
differential equations, Trans. Roy. Inst. Technol. Stockholm, 130 (1959). Stockholm 1958.
Henrici, P., Discrete variable methods in ordinary differential equations, John Wiley
and Sons.
Heun, K., Neue Methods zur approximativen Integration der Differentialgleichungen
einer unabhangigen Veranderlichen, Z. Math, Pysik., 45 (1900), 23-38.
Kutta, W., Beitrag zur naherungsweisen Integration totater Differentialgleichungen, Z.
Math. Pyhs., 46 (1901), 435-453.
Nakashima, M., On a Pseudo-Runge-Kutta Method of order 6, Proc. Japan Acad., 58
(1982), 66-68.
—————, On Pseudo-Runge-Kutta Methods with 2 and 3 stages, Publ. RIMS, Kyoto
Univ., 18 (1982), 895-909.
———, Implicit Pseudo-Runge-Kutta Processes, Publ. RIMS, Kyoto Univ., 20 (1984),
39-56.

, Some implicit four and five order method with optimum processes, Publ.
RIMS, Kyoto Univ., 21 (1985), 255-277.
Mitsui, T., Runge-Kutta Type Integration Formulas Including the Evaluation of the
second Derivative Part 1 Publ. RIMS, Kyoto Univ., 18 (1982), 325-364.
Rosen, J. S., Multi-step Runge-Kutta methods, NASA Technical Noie, NASA TND-
4400 (1968).
Runge, C., Uber die numerische Auflésung von Differentialgleichungen, Math, Ann.,
46 (1895), 167-178.
Tanaka, M., Pseudo-Runge-Kutta methods and their application to the estimation of
truncation errors in 2nd and 3rd order Runge-Kutta methods, Joho Shori, 6 (1969),
406-417, in japanese.

, On the application of Pseudo-Runge-Kutta methods, Computer-Center Univ.
of Tokyo., 4 January-December (1971-1972).
Wanner, G., Hairer, E,. and Norsett, S. P., Order stars and stability theorems, BIT,
18 (1978), 475-489.
William, B. G., Pseudo-Runge-Kutta methods of fifth order, J. Assoc. Comput. Mach.,
17 (1970).






