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Hodge Spectral Sequence and Symmetry on
Compact Kihler Spaces

By

Takeo OHSAWA*

Introduction

For every complex manifold M, there exists a canonical spectral
sequence which abuts to the de Rham cohomology of A4, It consists
of the set of C~ differential forms on M, and the complex exterior
derivatives 0 and 9 of type (0,1) and (I,0), respectively, and its
E,—term is defined to be Ker 6/Imd. This will be referred to as the
Hodge spectral sequence on M, after the celebrated result of W.
Hodge [4].

Hodge’s theorem states that the Hodge spectral sequence degen-
erates at E; and that E{*(M)=Ef*(M) if M is a compact Kahler
manifold. Here Ef¢(M) denotes the (p,¢)-component of the E;-term.

The purpose of the present note is to study an analogue of Hodge
spectral sequences on compact complex spaces within the spirit of the
previous note [7], where we considered the spaces which admit only
isolated singularities.

Our main result is as follows.

Theorem 1 Let X be a compact Kihler space of pure dimension and
let Y be an analytic subset of X containing the singular locus of X. Then,
the Hodge spectral sequence on X\Y degenerates for the total degrees less than
codim Y—1 at the E,~term.  Moreover, E}*(X\Y)ZEF*(X\Y) for
p+g<codim Y—1.

In order to understand the symmetry EF?(X\Y)ZEF?(X\Y), we
shall also prove the following.
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Theorem 2 Let X and Y be as above, and let (E, h) be a flat Hermitian
vector bundle over X\Y. Then, H?1(X\Y, E) =H*?(X\Y, E*), for
p+g<codim Y—1. Here H"* denotes the cohomology of type (p,q) in
the sense of Dolbeault and E* denotes the dual bundle of E.

For the proof of the above mentioned results, an L?-version of
Andreotti-Grauert’s vanishing theorem on g-complete spaces is necessary
which is to be proved in §2 by using a new L’-estimate obtained in

[81.

The author expresses his hearty thanks to Professors H. Flenner
and S. Tsuyumine for stimulating discussions during the author’s
stay at Mathematisches Institut of the University of Géttingen.

§1. Preliminaries

Definition A (reduced) complex space X together with the follow-
ing data {Uj, ¢;};ea is called a Kahler space.

1) A4 is a set of indices.

2) {Uj}ica is an open covering of X.

3) ¢; is a G~ strictly plurisubharmonic function on U,
4) @;—¢; is pluriharmonic on U,;N U,.

Given a Kdihler space X, one attaches a Kéahler metric on the
complement of the singular locus by @dp;, which is globally well
defined by condition 4).

Let X be a compact Kihler space of pure dimension 7 with
singular locus Z, and let Y be an analytic subset of X containing Z.
We shall denote by ds? the prescribed Kéhler metric on X\Z.

Let {Y,}%_0 be a partition of Y into subsets satisfying the following
properties.

i) Y, are pure dimensional analytic subsets of Y.
i) Y,uCY..

iii) dim Y,=m—a.

iv) The reduced structures of Y, are regular.
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Such a partition (a stratification of Y) always exists, since the
singular loci of complex analytic spaces are analytic subsets.

As a complex manifold Y, has a holomorphic coordinate patch.
In other words, for each point y€Y, one can find a Stein open
neighbourhood U in Y, and a biholomorphic map from U onto a
domain in €™ *, Since every holomorphic function on U is holomor-
phically extendable to a neighbourhood of U in X, it follows that U
is a holomorphic neighbourhood retract in X. Therefore, Y, can be
covered by Stein open subsets, each of which has a Stein neighbour-
hood, say V, with a holomorphic embedding into a domain of some
complex number space CV such that the image of V'NY, is contained
in a linear subspace of dimension m—a. Identifying V as a subspace
of C", one sees that the restrictions of linear functions vanishing on
VNY,, say 21, -« ., Zn-m+as generate the ideal of holomorphic functions
vanishing on VNY, in the ring of holomorphic functions on V. One
associates to V' a possibly smaller Stein open set

Wi=lrer:" % la <L)
' P R 2

and define a plurisubharmonic function ¢w on W by

$w(x):==—In(—Inlz’ () |P).
Here we put 2:=(Z, .+ » Zwmsa) and |[z'(x)i|2==N§“1z,(x) g

Suppose that a point » in Y, belongs to the polar sets of two such
functions ¢y and ¢w (.. $w(p) =¢w:.(y) =—c0). Then, there exists a
neighbourhood 2=y and a constant ¢ such that

¢ lexp(—¢w) —exp(—¢w) |[<C  on 2\Y.

In fact, this follows from that z; are generators of the ideal sheaf of
rnY..

Now let £, be the ideal sheaf of Y, in the structure sheaf 0y of
X. Then, for each point y€Y, there exists a neighbourhood U, in
X and finitely many holomorphic functions fi,..., fu(m=m(p))
which generate the stalks of #, at every point of U, (cf. [3]). Then
we put W= {ery; 5 f,|2<%} and ¢y=—In (—In||f][}), where
IAIF=2 1 f5
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Let {W,} be a finite system of such Stein open subsets of X whose
union contains Y,, where we put Wi=Ws,,, and let ¢ be the associated
plurisubharmonic functions on W, defined as above. Such a system
{W:, ¢} shall be referred to as a polarized cover along Y,. Suppose
that yeW,NW,, Then, by the same reasoning as above, one sees
that there exists a neighbourhood 2>y and a constant C such that

1’ lexp (—¢) —exp(—¢p) [<C  on Q\Y..

Let {W; ¢ be a polarized cover along Y, and let {0, o} be a
C= partition of unity associated to the covering {W;, X\Y,} of X such
that p,>0. Namely, p, is a system of nonnegative C~ functions on
X such that supp o,€W,; and 3p,=1 on a neighbourhood of Y,
say W,, and p=1—3p,.

We put ¢.:=3 0. Then we have

©)) 00, =3 00,00+ 3 04,005 + 3 4000, + 3 0,00,
=X 00,00 — X (02 01) 0y + 3 065,00, — 320, (0 01)
+ 4000, — ¢4 (903 0)) + 2 0,00
= kzl 00 (0, — 0gpy) + sz" (0 — 3¢y) 0ps+ kZ; (G—¢) 30,
+ > 0,004,

on W,\Y.,.

We are going to estimate the eigenvalues of 90¢,.

Once for all, let ||, denote the length of the differential forms measu-
red by ds’+33¢;,. Then we have |d¢,|,<V2, since ¢ = —In(—In|| fi|[%
for some vector f; of holomorphic functions and

39, —nILAIE | alnll A nll AP
S I AT YA

> 064 0¢h.

Let K, CW,NW, be any compact subset. Then,
€)) Cit (ds? 4 80¢h,) <ds?+ 30¢h, < Cy, (ds?+ 30¢,)

on KH\Y,,, where Cj; is a constant depending on K. In particular

we have
“) |a¢k IZS‘/WM on Kkl\Ya-
Proof of (3): We put fi=(ay...,a,).
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Then

Z (a,uaau a,,aa,,) (a,uaau avaaﬂ) (Zd,uaa,u) (Z»: avéd»)
SRR R AREEAL
Let ¢l= _ln('—ln”.flllz) and fl (bl, eeoy ml) Then

(B  99¢g=

™
@) a,= _Z_lu,ujbi, 1<p<m,
for some holomorphic functions u,; on W,N W,

Substituting (6) into (5) and applying the Cauchy-Schwartz
inequality etc., we have

N 5 (b:0b;—b,0b:) (5136, — 5,067)
7 7 1<
™ e & = Y AR ALL

(Z Z umuﬂ,b 0b;) (Z Z Tyitdyib; ab,)

+ EIRARKIAL O,

on Ky\Y, for some constant Ci. Here Oy has bounded length with
respect to ds%

Note that (33 16:1%) (X I0/1) =3 16m—6m: P+ | 8ml% for any
complex numbers §; and 7;, | <i, j<m (Lagrange’s equality). Apply-
ing this equality to (7), we have

(2 2 Uyitt10,0;) (2 2, ,it10;0b)

(ln|lfk”2)2”fkn4

> (b:0b;—b;06;) (b;06,—b;0b;) + (X b;3b;) (> 6,0b,)
(nll £l full* ’

G

IA
o

on Kk,\7a, for some constant C.
Since we have chosen W, so that In|| f;|’<—In 2 on W,, we have

9 0550,, < 0’33¢, +0yu on Kkl\Yas

where C’ is a constant and Oy is bounded with respect to ds%. (3)
follows from (9) immediately.

From (1”), (2), (3) and (4), we obtain

(10) — 445+ 3. 9004, <00,
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for sufficiently large 4,>1.

Thus we know that Ads®+d0¢, is a metric on X\Y for any 4A>4,.
Furthermore, let A>... >2% be the eigenvalues of 9d¢, with respect
to the metric Ads’+9d¢,(A>A,). Then, from (10) one immediately
sees that, for any >0, there exists an 4>4, such that A{>—e¢ for
n—a<j on X\Y. Moreover, (10) implies that at least n—a eigenvalues
of 90¢, with respect to ds? tend to +oo as one approaches to a point
in Y, (see (5) and recall Courant’s mini-max principle). Hence, for
any point y€Y, and ¢>0, one can choose a neighbourhood 23y in
X so that 1 —e<2#<l+e for 1<j<n—a on £\Y.

Note that (4) implies 3¢,0¢,<<C (Ads*+d0¢,) for some G>O0.

For any positive number ¥ we put ¢u‘=u§0¢a and ds4 ;= Ads*

+d0¢,. Then, ds}, is a complete Kahler metric on X\Y whenever
A>u2 A,

Now we have the following.

Proposition 1.1 Let (X, ds?) be a compact Kéihler space of pure
dimension n and Y an analytic subset containing the singular locus of X.
Then, for any e>0, there exist a complete Kéhler meiric dsy on X\Y, a
proper C° map ¢:X\Y— (—o0,0] and a neighbourhood W’'DY such
that,

) [0¢15<e,

(%) |99¢ |y<2n,

(¥¥¥) The eigenvalues 4>...=>2, of 00 with respect to dst satisfy
l—e<;<l+e for 1<j<codim Y on W\Y,
—e<A; Sor j7>codim Y on X\Y.

Here | |y denotes the length with respect to the metric dsh.

Proof Let A0, u<<%, and put ¢=¢,, dsy=ds%,.

§2. Vanishing of the Local L?>-Cohomology

Let (M,ds®) be a Hermitian manifold of dimension 7, and let
(E, ) be a Hermitian holomorphic vector bundle over M. For any
C~ (I, )form G=iY.G.dz.N\dZ; with Ge=G on M, we define
real-valued functions I',,[G] by



HODGE SPECTRAL SEQUENCE AND SYMMETRY 619

b q n
Iy [G](x):=min {El 4, (%) +ﬂZ=1 45, (%) -z A (%) 5
A4 (x) (1<k<n) are the eigenvalues of G at x,
1<5<...<p<n and 1<H<... <j,<n}.

In terms of I',, we shall state a sufficient condition for an a
priori estimate for the operator d. The L?*-norm for E-valued forms
will be denoted by || |l

Let ® be the fundamental form of ds* and 4 the adjoint of the
multiplication u—wAu. We denote by 05 the (L?) adjoint of the
operator 0 wtih respect to the metrics ds?> and h. The operator
0%:=—%0% (+: the conjugate after the Hodge’s star) acts on E-valued
forms and we denote by d, the adjoint of 0* with respect to ds* and
h. Then we have [0,4]=i0*+T; and [0, 4] =—id} +T, where
[ , 1 denotes the Poisson bracket and 7;(j=1,2) contain no
differentiation (i.e. T; are function-linear).

Let <T;> denote the (L?-) operator norms of 7;. Then, from the
explicit expression of the operator 7147, in terms of dw and other
elementary operators like ¥, 4, etc. (cf. [5] appendix), we see that
there exists a positive number B, depending only on 7 such that
KT DA+ (T,)*<B, |dw |2 In what follows we fix such §,.

Proposition 2.1 Let F, be a C~ real-valued function on M and
hyi=hexp(—F)). Let O be the curvature form of h. Suppose that there
exists a C™ real-valued function F satisfving

(11) I [00(F+F)1>n|0|+B,|do|?+3|0F |*+e
Sfor some €>0. Then
1 3ulf, + 115511, el lul

Sor any compactly supported E-valued G (p, q)—form u on M.
For the proof, see [8], Corollary 1.7.

Definition A Hermitian vector bundle (E, %) is said to be flat,
if the operator (04 9,)° (04 9,) is identically zero.

By the above definition, (E, %) is flat if and only if 6=0.
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In §1 we have constructed a metric ds* and a function ¢ satisfying
several properties, from which we shall produce the functions F; and
F as above. In particular, for flat vector bundles we have the
following.

Proposition 2.2 Let (N, ds%) be a Kahler manifold of dimension n
and let (E, k) be a flat Hermitian vector bundle over N. Suppose that there
exist a positive integer v and a C* real-valued function ¢ on N such that

(i) |0g |2<C1/12.
(ii) |00¢ | <2n.
(iii) The eigenvalues 4>...>2, of 00¢ satisfy

1 1 .
—— —_ <i<
1 i <l4;<l+ in Sor 1<;<r
1 .
—47<2j fOT T<].

Then, for any A>2YBn* and c¢ER, the inequality (11) is satisfied by
M={xeN; ¢(x)<c}, ds*=(A(c—¢) 2 +1)dsk+24(c— ) *3pdg, F=4¢,
Fi=A4(c—¢)™" and e=1/8, for p+¢>2n—r.

Proof Let | |, denote the length of the forms with respect to
the metric ds%. Let wy and o be the fundamental forms of ds% and
ds?, respectively. Then, do=A4(c—¢) *dP N\ (2wy—iddp). We estimate
|dw|, as follows.

First, from the definition of ds? |d¢|,<<247Y(c—¢)*? and|wy|4
<2n(A(c—¢)~24+1) 7 Secondly, from (ii), |80 | ,<<2n (A (c—¢) *+1) %,

Therefore,

|do |4 < A(c—¢) 2 |d | (2 |0y |4+ 190 | )
<6nAY2(c—¢) (A~ P+

Hence,
|dw | ,<6nd"?(c—¢)2<6nd™V* if A<(c—¢)%,
and
|dw | ,<<6nA™V2(c—)V2<6nA™ V"  if A>(c—¢)2
Thus, 8, |dw|% <368,n%A7Y% so that
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(12) B, |do 3<% i A28,

To estimate the left hand side of the inequality, let xAM be any
point and let L be the subspace of the complex tangent space of M
at x spanned by the eigenvectors corresponding to 4 (x), ..., 4 (x).
Then, for any vector vEL, one has, for F=¢ and F,=A(—¢)7,

13) 1_%<<83(F+F1),v,z7> <1+_41*’
n n

|2 %
from (iii). Here [v]|, denotes the length of v with respect to ds°
Similarly, for any unit tangent vector w at x,

(14) COOF+F), w0, 0y> =
Combining (13) and (14), we have

(15) r,,,q(aa(F+Fl))>%, if prg>2n—r.,
From (1) we have

(16) 3 |3F1§1<}T

Combining (12), (15) and (16), we obtain the desired inequality
for the flat bundle (E,%).

Applying Proposition 2.2 to the Kihler manifold (W'\Y, ds%)
described in Proposition 1.1, we obtain the following.

Proposition 2.3 Let (X,ds?) be a compact Kéhler space of pure
dimension n and Y an analytic subset containing the singular locus of X.
Then, there exists a C= proper map ¢:X\Y—>(—o0,0] and cER (c;
arbitrarily small) such that, for any compactly supported C=(p,q)~form u
on W={xeX\Y; ¢(x)<c} with values in a flat vector bundle (E,h)
over X\Y, the estimate

[3ul, +113%, 211, > |,

holds for p+q>2n—codim Y with respect to the metrics

dsfr= (A(c—¢) 2+ 1)dst +24 (c—¢) 20pog
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and hy=hexp(—A (c—¢)™"), where A>2YBn* and ds% is some (i.e. not
arbitrary) complete Kéhler metric on X\Y.

Since the above (W,dsy) is a complete Hermitian manifold,
Proposition 2.3 implies that the Hermitian bundle (E|w, hw) is W?%-
elliptic in the sense of Andreotti-Vesentini [2], if p+¢>2n—codim Y.

Thus, in virtue of Andreotti-Vesentini’s theorem, we have the
following corollary to Proposition 2. 3.

Corollary 2.4 Under the above situation, let f be any E-valued
(p, @) ~form on W which is square integrable with respect to dsiy and hy
and 0f=0 in the sense of distribution. If p-+q>2n—codim Y, then there
exists an E-valued (p,q—1)—form g on W, square integrable with respect
to dsk and hw such that dg=f and ||glls, <2|| flls,

§3. L? Cohomology and Harmonic Forms

Let (M, ds%) be a Hermitian manifold of dimension 7, and let
(E, h) be a Hermitian vector bundle over M. We denote by L**(M, E);
the set of square integrable E-valued (p, ¢)-forms on M with respect
to ds and £, and put

HY (M, E), =={feL**(M, E)s; df=0}/
{gel?**(M, E);; Juel?Y(M, E),
such that g=au}.
Here the derivatives are taken in the distribution sense.

Let L43(M, E) be the set of locally square integrable E-valued

(p, q)-forms on M. We put
H*(M, E)=={feL{;!(M,E); of=0}/
{gelbi(M,E); Jue Ly (M, E)
such that du=g}.

Since the L?*-version of Dolbeault’s Lemma is valid (cf. [6] or [9]),
H?»?(M,E) is canonically isomorphic to the E-valued Dolbeault
cohomology of type (p,q). o

We put [J»:=005 + 050 and [1,:=8,0*+0%0,. Clearly, [J=x*""J;*.

We put #*1(E)y={fcl?*(M, E);; [sf=0}.

If the metric ds% is Kahlerian, one has [d,, 4]=—idf and [0, 4]
=10*. Hence [i(0+0,) (0+0,), A1 =0 « i[04, A] +i[ 04, A]10+ 0, « 1[0, 4]+
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i[d, 418,=[1,—Cls. If the bundle (E, ) is flat, then we have [J,=
Thus we obtain

Lemma 3.1 Let (M,dsy) be a Kihler manifold and (E,h) a flat
Hermitian vector bundle over M. Then, #*1(E),=H#" " ?(E),. Here
the isomorphism is given by froxf,

Identifying & as a G~ section of Hom (E, E*), we have 8,=h"todoh.
Therefore we obtain

Lemma 3.2 Under the situation of Lemma 3.1, #*1(E),=H*?
(E*)u. Here the isomorphism is given by fhf. (h*='h71),

The following is fundamental.

Proposition 3.3 Let (M, dsy) be a complete Hermitian manifold and
(E, k) a Hermitian vector bundle over M. Then

HPU(E) = {fel?*(M, E)s; of =0, o5 f=0}.
Proof. See Andreotti-Vesentini [2].

Thus, if the metric dsj is complete, then we have an orthogonal
decomposition :

L** (M, E)h=9f1"q(E)h@Rg'q(E)ORg'q(E)
Here RZ(E) (resp. R% (E)) denotes the range of 9 (resp. d7), and
RYU(E) (resp. RLI(E) (E)) its closure.

From the above decomposition we obtain
a7 H (M, E)y = (E),

if R¥?(E) is closed (for instance it is the case when H%{ (M, E), is
finite dimensional).
Combining Lemma 3.2 with (17), we have

Proposition 3.4 Let (M,dsy) be a complete Kihler manifold and
(E, k) a flat Hermitian vector bundle over M. Suppose that dim H%{ (M, E),
<°0 and dlm H(z) (M, E*)hn<00 Then H(z) (M E)h:H(Z) (M E*) B
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§4. Proof of Theorems

First we shall prove Theorem 2.

Let X, Y, (E, &), etc. be as in Proposition 2.3. We shall show
that the natural homomorphism z: H§(X\Y, E) >H% (X\Y, E); is
isomorphism if p+¢>2n—codim Y+1. Here H%? denotes the cohom-
ology with compact support and the L? cohomology H%j is with
respect to ds?.

Surjectivity: Let [u] € H%{ (X\Y, E);s, where usL?*(X\Y, E), and
du=0. Clearly, u|y is square integrable, for any choice of W (or ¢),
with respect to ds% and Ay. Hence, by Corollary 2.4, one can find
a ve Ly Y(W, E), square integrable with respect to dsf and Ay, such
that dv=u. Since ds% is quasi-isometric to dsy on a neighbourhood of
Y, it follows immediately that u is represented by a compactly sup-
ported form, which completes the proof of the surjectivity.

Injectivity: Let [w]leHF4(X\Y,E). If ([w]) =0, then there
exists an f€L**1(X\Y, E), such that df=w. Since the support of
w is compact, 0f=0 near Y. Hence, applying Corollary 2. 4, one can
find a neighbourhood W’'DY and an E-valued (p,¢—1)-form g on
W’\Y such that dg=jf on W’\Y, whence follows that [w]=0.

In virtue of Andreotti-Grauert’s finiteness theorem (cf.[1]), dim
H**(X\Y, E)<co for p+g<codim Y—1. Hence, by Serre-Malgrange’s
duality
(18) dim H{4(X\Y, E*) oo, for p+¢>2n—codim Y+1.

Similarly, we have
19 dim H§?(X\Y, E) oo, for p+¢>2n—codim Y +1.

In view of the above isomorphism, we obtain the finite dimension-
ality of H4$(X\Y, E); and H%{(X\Y, E*);« for p+¢>2n—codim Y +1.
Thus, by Proposition 3.4, we have H%I(X\Y, E).= HiE(X\Y, E*)}e
for p+g>2n—codim Y+1, so that H§*(X\Y, E) = Hy?*(X\Y, E*) for
p+g>2n—codim Y+1.

Hence, by the duality again we obtain

H*(X\Y, E)ZH**(X\Y, E*), for p+g<codim Y—I1,
which completes the proof of Theorem 2.

Proof of Theorem 1 EP*(X\Y)=E%*(X\Y) if every cohomology
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class in H**(X\Y) and H**¢(X\Y) is represented by a d-closed
form. This can be shown for p+¢g<codim Y—1 as follows.

First, taking the dual of the isomorphism 7: H}/(X\Y)—=HEI(X\Y)
we have HH(X\Y)=H?1(X\Y) for p+g<codim Y—1. (For the
trivial bundle, (E, &) is not referred to.)

Therefore, from (17) H?*(X\Y) Z#*? for p+g<codim Y—1.

Since by the equality [J=[] combined with Proposition 3. 3, every
form in #?? is d-closed, the assertion is proved.

That E24(X\Y)=ZE{?(X\Y) for p+g<codim Y—1 is a corollary
of Theorem 2.
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