Hodge Spectral Sequence and Symmetry on Compact Kahler Spaces

By

Takeo OHSAWA*

Introduction

For every complex manifold M , there exists a canonical spectral sequence which abuts to the de Rham cohomology of *M.* It consists of the set of C^{∞} differential forms on M , and the complex exterior derivatives $\bar{\partial}$ and ∂ of type $(0, 1)$ and $(1, 0)$, respectively, and its E_1 -term is defined to be Ker $\bar{\partial}/\text{Im}\bar{\partial}$. This will be referred to as the Hodge spectral sequence on M , after the celebrated result of W_c Hodge **[4].**

Hodge's theorem states that the Hodge spectral sequence degenerates at E_1 and that $E_1^{p,q}(M) \cong E_1^{q,p}(M)$ if M is a compact Kähler manifold. Here $E_1^{p,q}(M)$ denotes the (p, q) -component of the E_1 -term,

The purpose of the present note is to study an analogue of Hodge spectral sequences on compact complex spaces within the spirit of the previous note [7], where we considered the spaces which admit only isolated singularities.

Our main result is as follows.

Theorem 1 *Let X be a compact Kahler space of pure dimension and let Y be an analytic subset of X containing the singular locus of X0 Then^ the Hodge spectral sequence on X\Y degenerates for the total degrees less than* codim $Y-1$ *at the E*₁-term. Moreover, $E_1^{p,q}(X\ Y) \cong E_1^{q,p}(X\ Y)$ for $p+q \leq$ codim $Y-1$.

In order to understand the symmetry $E_1^{p,q}(X \backslash Y) \cong E_1^{q,p}(X \backslash Y)$, we shall also prove the following.

Received December 24, 1986.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606 Japan.

614 TAKEO OHSAWA

Theorem 2 *Let X and Y be as above, and let (E, h) be a flat Hermitian vector bundle over* $X \ Y$. $f^q(X \ Y, E) \cong H^{q,p}(X \ Y, E^*),$ for $p+q \ltq$ codim Y-1. Here $H^{p,q}$ denotes the cohomology of type (p,q) in *the sense of Dolbeault and E* denotes the dual bundle of E.*

For the proof of the above mentioned results, an L^2 -version of Andreotti-Grauert's vanishing theorem on q -complete spaces is necessary which is to be proved in $\S2$ by using a new L^2 -estimate obtained in [8].

The author expresses his hearty thanks to Professors H. Flenner and S. Tsuyumine for stimulating discussions during the author's stay at Mathematisches Institut of the University of Gottingen.

§ L Preliminaries

Definition A (reduced) complex space *X* together with the following data $\{U_j, \varphi_j\}_{j \in A}$ is called a Kähler space.

- 1) *A* is a set of indices.
- 2) ${U_i}_{i \in A}$ is an open covering of X.
- 3) φ_j is a C^* strictly plurisubharmonic function on U_j .
- 4) $\varphi_j \varphi_k$ is pluriharmonic on $U_j \cap U_k$.

Given a Kahler space *X,* one attaches a Kahler metric on the complement of the singular locus by $\partial \overline{\partial} \varphi_i$, which is globally well defined by condition 4).

Let *X* be a compact Kahler space of pure dimension *n* with singular locus Z , and let Y be an analytic subset of X containing Z . We shall denote by ds^2 the prescribed Kähler metric on $X\backslash Z$.

Let ${Y_a}_{a=0}^m$ be a partition of *Y* into subsets satisfying the following properties.

- i) \overline{Y}_α are pure dimensional analytic subsets of Y.
- ii) $Y_{\alpha+1}\subset \overline{Y}_{\alpha}$.
- iii) dim $\overline{Y}_a = m \alpha$.
- iv) The reduced structures of Y_α are regular.

Such a partition (a stratification of Y) always exists, since the singular loci of complex analytic spaces are analytic subsets.

As a complex manifold Y_α has a holomorphic coordinate patch. In other words, for each point $y \in Y_\alpha$ one can find a Stein open neighbourhood *U* in *Ya* and a biholomorphic map from *U* onto a domain in C^{m-a} . Since every holomorphic function on U is holomorphically extendable to a neighbourhood of *U* in *X,* it follows that *U* is a holomorphic neighbourhood retract in X . Therefore, Y_α can be covered by Stein open subsets, each of which has a Stein neighbourhood, say V , with a holomorphic embedding into a domain of some complex number space \mathbb{C}^N such that the image of $V \cap Y_\alpha$ is contained in a linear subspace of dimension $m - \alpha$. Identifying V as a subspace of *C^N ,* one sees that the restrictions of linear functions vanishing on $V \cap Y_\alpha$, say $z_1, \ldots, z_{N-m+\alpha}$, generate the ideal of holomorphic functions vanishing on $V \cap Y_\alpha$ in the ring of holomorphic functions on V. One associates to V a possibly smaller Stein open set

$$
W = \left\{ x \in V : \sum_{\nu=1}^{N-m+\alpha} |z_{\nu}(x)|^2 < \frac{1}{2} \right\}
$$

and define a plurisubharmonic function ψ_W on W by

$$
\psi_W(x) := -\ln(-\ln||z'(x)||^2).
$$

Here we put $z' := (z_1, \ldots, z_{N-m+\alpha})$ and $||z'(x)||^{2} := \sum_{\nu=1}^{N-m+\alpha} |z_{\nu}(x)|^{2}$.

Suppose that a point y in Y_α belongs to the polar sets of two such functions ψ_W and $\psi_{W'}$ (i.e. $\psi_W(y) = \psi_{W'}(y) = -\infty$). Then, there exists a neighbourhood $Q \ni y$ and a constant C such that

(1)
$$
|\exp(-\phi_w) - \exp(-\phi_w)| \langle C \text{ on } \Omega \setminus Y.
$$

In fact, this follows from that z_i are generators of the ideal sheaf of $V \cap Y_{\alpha}$

Now let \mathscr{J}_{α} be the ideal sheaf of \overline{Y}_{α} in the structure sheaf \mathscr{O}_X of *X*. Then, for each point $y \in \overline{Y}_\alpha$ there exists a neighbourhood U_y in X and finitely many holomorphic functions $f_1, \ldots, f_m(m=m(y))$ which generate the stalks of \mathscr{J}_{α} at every point of U_{γ} (cf. [3]). Then we put $W_j = \left\{x \in U_j; \sum_{i=1}^m |f_i|^2 \right\}$ and $\phi_j = -\ln(-\ln||f||^2)$, where $||f||^2 = \sum_{i=1}^m |f_i|^2$.

Let ${W_k}$ be a finite system of such Stein open subsets of X whose union contains \overline{Y}_a , where we put $W_k = W_{\nu_k}$, and let ϕ_k be the associated plurisubharmonic functions on *Wk* defined as above, Such a system $\{W_k, \varphi_k\}$ shall be referred to as a *polarized cover along* \overline{Y}_α . Suppose that $y \in W_k \cap W_1$, Then, by the same reasoning as above, one sees that there exists a neighbourhood $\Omega \ni y$ and a constant *C* such that

(1')
$$
|\exp(-\phi_k) - \exp(-\phi_1)| < C
$$
 on $\Omega \setminus \overline{Y}_{\alpha}$.

Let $\{W_k, \psi_k\}$ be a polarized cover along \overline{Y}_α and let $\{\rho_k, \rho\}$ be a C^{∞} partition of unity associated to the covering $\{W_k, X\}_{k=0}^{\overline{Y}}\}$ of X such that $\rho_k \geq 0$. Namely, ρ_k is a system of nonnegative C^{∞} functions on X such that supp $\rho_k \subset W_k$ and $\sum \rho_k \equiv 1$ on a neighbourhood of \overline{Y}_{α} , say W_{α} , and $\rho:=1-\sum \rho_{k}$.

We put $\phi_{\alpha} := \sum \rho_{k} \phi_{k}$. Then we have

(2)
$$
\begin{aligned}\n\partial \overline{\partial} \phi_{\alpha} &= \sum \partial \rho_{k} \overline{\partial} \phi_{k} + \sum \partial \psi_{k} \overline{\partial} \rho_{k} + \sum \rho_{k} \partial \overline{\partial} \rho_{k} + \sum \rho_{k} \partial \overline{\partial} \psi_{k} \\
&= \sum \partial \rho_{k} \overline{\partial} \psi_{k} - \sum (\partial \sum \rho_{l}) \overline{\partial} \psi_{k} + \sum \partial \psi_{k} \overline{\partial} \rho_{k} - \sum \partial \psi_{k} (\overline{\partial} \sum \rho_{l}) \\
&+ \sum \phi_{k} \partial \overline{\partial} \rho_{k} - \sum \phi_{k} (\partial \overline{\partial} \sum \rho_{l}) + \sum \rho_{k} \partial \overline{\partial} \psi_{k} \\
&= \sum_{k,l} \partial \rho_{k} (\overline{\partial} \psi_{k} - \overline{\partial} \psi_{l}) + \sum_{k,l} (\partial \phi_{k} - \partial \psi_{l}) \overline{\partial} \rho_{k} + \sum_{k,l} (\psi_{k} - \psi_{l}) \partial \overline{\partial} \rho_{k} + \sum \rho_{k} \partial \overline{\partial} \psi_{k},\n\end{aligned}
$$

on $W_\alpha \backslash \overline{Y}_\alpha$.

We are going to estimate the eigenvalues of $\partial \bar{\partial} \psi_{\alpha}$.

Once for all, let $||_k$ denote the length of the differential forms measured by $ds^2 + \partial \bar{\partial} \phi_k$. Then we have $|\partial \phi_k|_k \leq \sqrt{2}$, since $\phi_k = -\ln(-\ln||f_k||^2)$ for some vector f_k of holomorphic functions and

$$
\begin{aligned} \partial \bar{\partial} \phi_k=&-\frac{\partial \bar{\partial} \ln ||f_k||^2}{\ln ||f_k||^2}+\frac{\partial \ln ||f_k||^2\bar{\partial} \ln ||f_k||^2}{(\ln ||f_k||^2)^2}\\ &\geq \partial \phi_k\bar{\partial} \phi_k. \end{aligned}
$$

Let $K_{kl} \subset W_k \cap W_l$ be any compact subset. Then,

(3)
$$
C_{kl}^{-1} (ds^2 + \partial \bar{\partial} \psi_k) \leq ds^2 + \partial \bar{\partial} \psi_l \leq C_{kl} (ds^2 + \partial \bar{\partial} \psi_k)
$$

on $K_{kl}\backslash\overline{Y}_{\alpha}$, where C_{kl} is a constant depending on K_{kl} . In particular we have

$$
(4) \t\t\t |\partial \psi_{k}|_{l} \leq \sqrt{2C_{kl}} \t \text{ on } K_{kl} \setminus \overline{Y}_{\alpha}.
$$

Proof of (3): We put $f_k = (a_1, \ldots, a_{m_k})$.

Then

$$
(5) \qquad \partial\overline{\partial}\phi_{k} = \frac{\sum\limits_{\mu\leq v} \left(a_{\mu}\partial a_{\nu} - a_{\nu}\partial a_{\mu}\right) \overline{\left(a_{\mu}\partial a_{\nu} - a_{\nu}\partial a_{\mu}\right)}}{(-\ln||f_{k}||^{2})^{2}||f_{k}||^{4}} + \frac{\left(\sum\limits_{\mu} a_{\mu}\partial a_{\mu}\right)\left(\sum\limits_{\nu} a_{\nu}\overline{\partial} a_{\nu}\right)}{(\ln||f_{k}||^{2})^{2}||f_{k}||^{4}}
$$

Let $\phi_i = -\ln(-\ln||f_i||^2)$ and $f_i = (b_1, \ldots, b_{m_i})$. Then

(6)
$$
a_{\mu} = \sum_{j=1}^{m_l} u_{\mu j} b_{j}, \ 1 \leq \mu \leq m_k
$$

for some holomorphic functions $u_{\mu j}$ on $W_{\mu} \cap W_{\mu}$.

Substituting (6) into (5) and applying the Gauchy-Schwartz inequality etc., we have

(7)
$$
\frac{\sum\limits_{i < j} (b_i \partial b_j - b_j \partial b_i) \overline{(b_i \partial b_j - b_j \partial b_i)}}{(-\ln ||f_k||^2) ||f_k||^4} + \frac{\left(\sum\limits_{\mu} \sum\limits_{i,j} u_{\mu i} \overline{u_{\mu j}} \overline{b_j} \partial b_i\right) \left(\sum\limits_{\mu} \sum\limits_{i,j} \overline{u_{\mu i}} u_{\mu j} b_j \partial \overline{b_i}\right)}{(\ln ||f_k||^2)^2 ||f_k||^4} + O_{kl},
$$

on $K_{kl}\backslash Y_\alpha$ for some constant C'_{kl} . Here O_{kl} has bounded length with respect to ds^2 .

Note that $(\sum_{i=1}^{m} |\xi_i|^2) (\sum_{i=1}^{m} |\eta_i|^2) = \sum_{i=1}^{m} |\xi_i \eta_i - \xi_j \eta_i|^2 + |\sum_{i=1}^{m} \xi_i \eta_i|^2$, for any ing this equality to (7), we have

complex numbers
$$
\xi_i
$$
 and η_j , $1 \le i, j \le m$ (Lagrange's equality). Apply-
ing this equality to (7), we have

$$
\frac{\left(\sum_{\mu} \sum_{i,j} u_{\mu i} \bar{u}_{\mu j} \bar{b}_j \partial b_i\right) \left(\sum_{\mu} \sum_{i,j} \bar{u}_{\mu i} u_{\mu j} b_j \bar{\partial} \bar{b}_i\right)}{(\ln||f_k||^2)^2||f_k||^4}
$$

$$
\leq C \frac{\sum_{i,j} (b_i \partial b_j - b_j \partial b_i) \overline{(b_i \partial b_j - b_j \partial b_i)} + \overline{(\sum_{i} b_i \partial b_i) (\sum_{j} b_j \bar{\partial} \bar{b}_j)}}{(\ln||f_k||^2)^2||f_k||^4},
$$

on $K_{kl}\backslash\overline{Y}_{\alpha}$, for some constant *C*.

Since we have chosen W_k so that $\ln ||f_k||^2 < -\ln 2$ on W_k , we have

$$
(9) \t\t\t\t\t\partial\bar{\partial}\phi_k \leq C'\partial\bar{\partial}\phi_l + O'_{kl} \t\t\t\t\t\text{on} \t\t\t\tK_{kl}\backslash\overline{Y}_{\alpha},
$$

where C' is a constant and O'_{kl} is bounded with respect to ds^2 . *⁰* (3) follows from (9) immediately.

From $(1')$, (2) , (3) and (4) , we obtain

(10)
$$
-A_{\alpha}ds^2 + \frac{1}{2}\sum \rho_k \partial \bar{\partial} \phi_k \leq \partial \bar{\partial} \phi_{\alpha},
$$

for sufficiently large $A_{\alpha} \geq 1$.

Thus we know that $Ads^2 + \frac{\partial \bar{\partial} \phi_a}{\partial s}$ is a metric on $X \ Y$ for any $A > A_a$. Furthermore, let $\lambda_1^A \geq \ldots \geq \lambda_n^A$ be the eigenvalues of $\partial \overline{\partial} \psi_\alpha$ with respect to the metric $Ads^2 + \frac{\partial \bar{\partial} \phi_a}{A > A_a}$. Then, from (10) one immediately sees that, for any $\epsilon > 0$, there exists an $A > A_\alpha$ such that $\lambda_i^A> -\epsilon$ for $n - \alpha \lt i$ on X\Y. Moreover, (10) implies that at least $n - \alpha$ eigenvalues of $\partial \bar{\partial} \psi_{\alpha}$ with respect to ds^2 tend to $+\infty$ as one approaches to a point in Y_α (see (5) and recall Courant's mini-max principle). Hence, for any point $y \in Y_\alpha$ and $\varepsilon > 0$, one can choose a neighbourhood $Q \ni y$ in *X* so that $1 - \varepsilon \leq \lambda_i^A \leq 1 + \varepsilon$ for $1 \leq j \leq n - \alpha$ on $\Omega \setminus Y$.

Note that (4) implies $\partial \phi_{\alpha} \bar{\partial} \phi_{\alpha} \langle C (AdS^2 + \partial \bar{\partial} \phi_{\alpha})$ for some $C > 0$.

For any positive number *u* we put $\psi_u:=u\sum_{\alpha=0}^m\psi_\alpha$ and $ds_{A,u}^2:=Ads^2$ Then, $ds_{A,u}^2$ is a complete Kähler metric on $X\Y$ whenever $A>u\sum_{\alpha=0}^m A_\alpha.$

Now we have the following.

Proposition 1. 1 *Let (X, ds²) be a compact Kahler space of pure dimension n and Y an analytic subset containing the singular locus of X^e Then, for any* $\varepsilon > 0$, there exist a complete Kähler metric ds_Y^2 on $X \ Y$, a *proper* C^{∞} map ϕ : $X \ Y \rightarrow (-\infty, 0]$ and a neighbourhood $W' \supset Y$ such *that,*

$$
(*) \qquad |\partial \psi|_{Y}^{2} \leq \epsilon,
$$

\n
$$
(*) \qquad |\partial \bar{\partial} \psi|_{Y} \leq 2n,
$$

\n
$$
(*) \qquad The eigenvalues \lambda_{1} \geq ... \geq \lambda_{n} \text{ of } \partial \bar{\partial} \psi \text{ with respect to } ds_{Y}^{2} \text{ satisfy}
$$

\n
$$
1 - \epsilon \leq \lambda_{j} \leq 1 + \epsilon \qquad \text{for } 1 \leq j \leq \text{codim } Y \text{ on } W \setminus Y,
$$

\n
$$
- \epsilon \leq \lambda_{j} \qquad \text{for } j > \text{codim } Y \text{ on } X \setminus Y.
$$

Here $\vert \cdot \vert$ *x* denotes the length with respect to the metric ds_y.

Proof Let
$$
A \gg 0
$$
, $u \ll \frac{1}{A}$, and put $\phi = \phi_u$, $ds^2 = ds^2_{A,u}$.

§ 2. Vanishing of the Local L² -Cohomology

Let (Af, *ds²)* be a Hermitian manifold of dimension *n,* and let (*E*, *h*) be a Hermitian holomorphic vector bundle over *M*. For any C^* (1, 1) -form $G = i\sum G_{\alpha\beta}dz_{\alpha}\wedge d\bar{z}_{\beta}$ with $G_{\alpha\beta} = \bar{G}_{\beta\alpha}$ on M, we define real-valued functions $\Gamma_{p,q}[G]$ by

$$
\Gamma_{p,q}[G](x) := \min\left\{ \sum_{\alpha=1}^p \lambda_{i_\alpha}(x) + \sum_{\beta=1}^q \lambda_{i_\beta}(x) - \sum_{k=1}^n \lambda_k(x) \right\}
$$
\n
$$
\lambda_k(x) (1 \le k \le n) \text{ are the eigenvalues of } G \text{ at } x,
$$
\n
$$
1 \le i_1 < \ldots < i_p \le n \text{ and } 1 \le j_1 < \ldots < j_q \le n \right\}.
$$

In terms of $\Gamma_{p,q}$ we shall state a sufficient condition for an a priori estimate for the operator $\bar{\partial}$. The L^2 -norm for E -valued forms will be denoted by $|| \cdot ||_h$.

Let ω be the fundamental form of ds^2 and Λ the adjoint of the multiplication $u \mapsto \omega \wedge u$. We denote by $\bar{\partial}_h^*$ the (L^2-) adjoint of the operator *3* wtih respect to the metrics *ds²* and *h0* The operator $\partial^* := -\overline{*} \partial \overline{*} (\overline{*}:$ the conjugate after the Hodge's star) acts on E-valued forms and we denote by ∂_h the adjoint of ∂^* with respect to ds^2 and *h*. Then we have $[\bar{\partial}, \Lambda] = i\partial^* + T_1$ and $[\partial_h, \Lambda] = -i\bar{\partial}_h^* + T_2$, where [,] denotes the Poisson bracket and $T_i(j=1,2)$ contain no differentiation (i.e. T_i are function-linear).

Let $\langle T_i \rangle$ denote the (L^2-) operator norms of T_j . Then, from the explicit expression of the operator $T_1 + T_2$ in terms of dw and other elementary operators like $\overline{*}$, \overline{A} , etc. (cf. [5] appendix), we see that there exists a positive number β_n depending only on *n* such that $2 + \langle T_2 \rangle^2 \leq \beta_n |d\omega|^2$. In what follows we fix such β_n .

Proposition 2.1 Let F_1 be a C^{∞} real-valued function on M and $h_1:=h\exp(-F_1)$. Let Θ be the curvature form of h. Suppose that there *exists a C°° real-valued function F satisfying*

(11)
$$
\Gamma_{p,q}[\partial \overline{\partial} (F+F_1)] \geq n |\Theta| + \beta_n |d\omega|^2 + 3 |\partial F|^2 + \varepsilon
$$

for some $\varepsilon > 0$ *. Then*

$$
||\bar{\partial}u||^2_{\mathbf{h}_1}+||\bar{\partial}^*_{\mathbf{h}_1}u||^2_{\mathbf{h}_1}\!\geq\!\varepsilon||u||^2_{\mathbf{h}_1},
$$

for any compactly supported E-valued $C^{\infty}(p, q)$ *-form u on M*.

For the proof, see [8], Corollary 1.7.

Definition A Hermitian vector bundle (E, h) is said to be flat, if the operator $(\bar{\partial} + \partial_h) \circ (\bar{\partial} + \partial_h)$ is identically zero.

By the above definition, (E, h) is flat if and only if $\Theta \equiv 0$.

In §1 we have constructed a metric ds^2 and a function ϕ satisfying several properties, from which we shall produce the functions F_1 and *F* as above. In particular, for flat vector bundles we have the following,

Proposition 2.2 Let (N, ds_N^2) be a Kähler manifold of dimension n and let (E, h) be a flat Hermitian vector bundle over N. Suppose that there *exist a positive integer r and a* C^{∞} *real-valued function* ϕ *on N such that*

- $|\partial \phi|^2 < 1/12$. (i)
- (ii) $|\partial \overline{\partial} \phi|$ \leq 2n.

(iii) The eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$ of $\partial \overline{\partial} \phi$ satisfy

$$
1 - \frac{1}{4n} < \lambda_j < 1 + \frac{1}{4n} \quad \text{for } 1 \leq j \leq r
$$
\n
$$
-\frac{1}{4n} < \lambda_j \quad \text{for } r < j.
$$

Then, for any $A > 2^{16} \beta_n^2 n^4$ and $c \in \mathbb{R}$, the inequality (11) is satisfied by $M = \{x \in N; \ \phi'(x) < c\}, \ ds^2 = (A(c-\phi)^{-2}+1)ds_N^2 + 2A(c-\phi)^{-3}\partial\phi\bar{\partial}\phi, \ F = \phi,$ -1 and $\varepsilon = 1/8$, for $p+q > 2n-r$.

Proof Let $\vert \cdot \vert_A$ denote the length of the forms with respect to the metric ds^2 . Let ω_N and ω be the fundamental forms of ds^2_N and ds^2 , respectively. Then, $d\omega = A(c - \phi)^{-3} d\phi \wedge (2\omega_N - i\partial \overline{\partial} \phi)$. We estimate $|d\omega|_A$ as follows.

First, from the definition of ds^2 , $|d\psi|_A \leq 2A^{-1/2}(c-\psi)^{3/2}$ and $|\omega_N|_A$ $\langle 2n(A(c-\phi))^{-2}+1\rangle^{-1}$. Secondly, from (ii), $|\partial \bar{\partial} \phi|_A \langle 2n(A(c-\phi))^{-2}$ Therefore,

$$
|d\omega|_A \leq A (c - \phi)^{-3} |d\phi|_A (2 | \omega_N|_A + | \partial \overline{\partial} \phi|_A)
$$

<6nA^{1/2}(c - \phi)^{-3/2}(A (c - \phi)⁻²+1)⁻¹.

Hence,

$$
|d\omega|_A \leq 6nA^{1/2}(c-\psi)^{-3/2} \leq 6nA^{-1/4} \quad \text{if } A \leq (c-\psi)^2,
$$

and

$$
|d\omega|_A \leq 6nA^{-1/2}(c-\psi)^{1/2} \leq 6nA^{-1/4} \quad \text{if } A \geq (c-\psi)^2.
$$

Thus, $\beta_n |d\omega|^2_4 \leq 36 \beta_n n^2 A^{-1/2}$, so that

HODGE SPECTRAL SEQUENCE AND SYMMETRY 621

(12)
$$
\beta_n |d\omega|^2_A \leq \frac{1}{4}
$$
 if $A > 2^{16} \beta_n^2 n^4$.

To estimate the left hand side of the inequality, let $x \in M$ be any point and let *L* be the subspace of the complex tangent space of *M* at x spanned by the eigenvectors corresponding to $\lambda_1(x), \ldots, \lambda_r(x)$. Then, for any vector $v \in L$, one has, for $F = \phi$ and $F_1 = A(c - \phi)^{-1}$,

(13)
$$
1-\frac{1}{4n} \left\langle \frac{\langle \partial \overline{\partial} (F+F_1), v, \overline{v} \rangle}{|v|_A^2} \right\rangle \left\langle 1+\frac{1}{4n},
$$

from (iii). Here $|v|_A$ denotes the length of *v* with respect to ds^2 . Similarly, for any unit tangent vector w at x ,

(14)
$$
\langle \partial \overline{\partial} (F+F_1), w, \overline{w} \rangle > -\frac{1}{4n}
$$

Combining (13) and (14), we have

(15)
$$
\Gamma_{p,q}(\partial\overline{\partial}(F+F_1))>\frac{3}{4}, \text{ if } p+q>2n-r.
$$

From (i) we have

(16)
$$
3|\partial F|_A^2 < \frac{1}{4}
$$
.

Combining (12), (15) and (16), we obtain the desired inequality for the flat bundle (E, h) .

Applying Proposition 2.2 to the Kähler manifold $(W'\Y, ds^2)$ described in Proposition 1.1, we obtain the following.

Proposition 2.3 Let (X, ds^2) be a compact Kähler space of pure *dimension n and Y an analytic subset containing the singular locus of X^a Then, there exists a* C^{∞} proper map $\phi: X \backslash Y \rightarrow (-\infty, 0]$ and $c \in \mathbb{R}$ (c) *arbitrarily small*) such that, for any compactly supported $C^{\infty}(p, q)$ -form u *on* $W = \{x \in X \setminus Y; \ \phi(x) \leq c\}$ with values in a flat vector bundle (E, h) *over X\Y, the estimate*

$$
||\bar{\partial}u||^2_{h_W}+||\bar{\partial}^*_{h_W}u||^2_{h_W}\geq \frac{1}{4}||u||^2_{h_W}
$$

holds for $p+q>2n-coding$ *Y with respect to the metrics*

$$
ds_W^2 = (A(c - \phi)^{-2} + 1) ds_Y^2 + 2A(c - \phi)^{-3} \partial \phi \bar{\partial} \phi
$$

and $h_W = h \exp(-A(c-\phi)^{-1})$, where $A > 2^{16} \beta_m^2 n^4$ and ds_Y^2 is some (i.e. not *arbitrary) complete Kdhler metric on X\Y,*

Since the above (W, ds_W^2) is a complete Hermitian manifold, Proposition 2.3 implies that the Hermitian bundle $(E|_{w}, h_{w})$ is $W^{p,q}$ elliptic in the sense of Andreotti-Vesentini [2], if $p+q>2n$ – codim *Y*.

Thus, in virtue of Andreotti-Vesentini's theorem, we have the following corollary to Proposition 2. 3.

Corollary 2. 4 *Under the above situation, let f be any E-valued* (p, q) -form on W which is square integrable with respect to ds_W^2 and h_W and $\delta f = 0$ in the sense of distribution. If $p+q>2n-codim$ Y, then there *exists an E-valued* $(p, q-1)$ -form g on W, square integrable with respect *to* ds^2_w and h_w such that $\partial g = f$ and $\frac{||g||_{h_w}}{\partial w} \leq 2||f||_{h_w}$.

§ 3. *L²* Cohomology **and Harmonic** Forms

Let (M, ds_M^2) be a Hermitian manifold of dimension *n*, and let (*E*, *h*) be a Hermitian vector bundle over *M*. We denote by $L^{p,q}(M, E)$ *h* the set of square integrable E -valued (p, q) -forms on M with respect to ds_M^2 and h , and put

$$
H_{\{2\}}^{p,q}(M, E)_h := \{ f \in L^{p,q}(M, E)_h; \ \bar{\partial} f = 0 \} /
$$

\n
$$
\{ g \in L^{p,q}(M, E)_h; \ \exists u \in L^{p,q-1}(M, E)_h \}
$$

\nsuch that $g = \bar{\partial} u \}.$

Here the derivatives are taken in the distribution sense,

Let $L^{p,q}_{loc}(M, E)$ be the set of locally square integrable E-valued (p, q) -forms on M. We put

$$
H^{p,q}(M, E) := \{ f \in L_{loc}^{p,q}(M, E) ; \ \bar{\partial} f = 0 \} / \{ g \in L_{loc}^{p,q}(M, E) ; \ \exists u \in L_{loc}^{p,q-1}(M, E) such that \ \bar{\partial} u = g \} .
$$

Since the L^2 -version of Dolbeault's Lemma is valid (cf. [6] or [9]), $H^{p,q}(M, E)$ is canonically isomorphic to the E-valued Dolbeault cohomology of type (p, q) .

We put $\Box_i := \bar{\partial} \bar{\partial}_k^* + \bar{\partial}_k^* \bar{\partial}$ and $\Box_i := \partial_k \partial^* + \partial^* \partial_i$. Clearly, $\Box_i = \Box_i * \Box_i^*$. We put $\mathcal{H}^{p,q}(E)_{h} := \{ f \in L^{p,q}(M,E)_{h}; \Box_{h} f = 0 \}.$

If the metric ds_M^2 is Kählerian, one has $[\partial_h, A] = -i\overline{\partial}_h^*$ and $[\overline{\partial}, A]$ $=i\partial^*$. Hence $[i(\bar{\partial}+\partial_h)(\bar{\partial}+\partial_h),\Lambda]=\bar{\partial}\cdot i[\partial_h,\Lambda]+i[\partial_h,\Lambda]\bar{\partial}+\partial_h\cdot i[\bar{\partial},\Lambda]+$

 $i[\partial, \Lambda] \partial_k = \Box_k - \overline{\Box}_k$. If the bundle (E, h) is flat, then we have $\Box_k = \overline{\Box}_k$. Thus we obtain

Lemma 3.1 Let (M, ds_M^2) be a Kähler manifold and (E, h) a flat *Hermitian vector bundle over M. Then,* $\mathscr{H}^{p,q}(E)_{h} \cong \mathscr{H}^{n-q,n-p}(E)_{h}$. Here *the isomorphism is given by* $f \mapsto f$.

Identifying *h* as a C^{∞} section of Hom (E, \bar{E}^*) , we have $\partial_h = h^{-1} \circ \partial \circ h$. Therefore we obtain

Lemma 3.2 Under the situation of Lemma 3.1, $\mathcal{H}^{p,q}(E)_h \cong \mathcal{H}^{q,p}$ $(E^*)_{h^{**}}$. Here the isomorphism is given by $f \mapsto \overline{hf}$. $(h^{**} := {}^{t}h^{-1})$.

The following is fundamental,

Proposition 3.3 Let (M, ds_M) be a complete Hermitian manifold and (£, *k) a Hermitian vector bundle over M0 Then*

$$
\mathscr{H}^{p,q}(E)_h = \{ f \in L^{p,q}(M,E)_h \, ; \, \bar{\partial} f = 0, \, \bar{\partial}_h^* f = 0 \} \, .
$$

Proof. See Andreotti-Vesentini [2].

Thus, if the metric ds_M^2 is complete, then we have an orthogonal decomposition :

$$
L^{p,q}(M,E)_h = \mathscr{H}^{p,q}(E)_h \bigoplus \overline{R^{p,q}_{\delta}(E)} \bigoplus \overline{R^{p,q}_{\delta^*}(E)}.
$$

Here $R_{\tilde{\theta}}^{p,q}(E)$ (resp. $R_{\tilde{\theta}_{\tilde{\epsilon}}^{*}}^{p,q}(E)$) denotes the range of $\tilde{\partial}$ (resp. $\tilde{\partial}_{h}^{*}$), and $\overline{R^{p,q}_{\hat{\theta}}(E)}$ (resp. $\overline{R^{p,q}_{\hat{\theta}^*_\hat{\theta}}(E)}$) its closure.

From the above decomposition we obtain

$$
(17) \tH_{(2)}^{p,q}(M,E)_h \cong \mathscr{H}^{p,q}(E)_h,
$$

if $R_{\delta}^{p,q}(E)$ is closed (for instance it is the case when $H_{(2)}^{p,q}(M,E)$ ^{*h*} is finite dimensional) .

Combining Lemma 3.2 with (17) , we have

Proposition 3.4 Let (M, ds_M^2) be a complete Kähler manifold and (*E*, *h*) a flat Hermitian vector bundle over M. Suppose that $\dim H_{(2)}^{p,q}(M, E)$ ^{*h*} $\langle \infty \rangle$ and dim $H_{(2)}^{p,q}(M, E^*)_{h^a} \langle \infty$. Then $H_{(2)}^{p,q}(M, E)_{h} \cong H_{(2)}^{q,p}(M, E^*)_{h^{a,a}}$

§4 Proof of Theorems

First we shall prove Theorem 2.

Let X , Y , (E, h) , etc. be as in Proposition 2.3. We shall show that the natural homomorphism $\tau: H_0^{p,q}(X \backslash Y, E) \rightarrow H_{(2)}^{p,q}(X \backslash Y, E)$ ^{*h*} is isomorphism if $p+q > 2n - \text{codim } Y+1$. Here $H_0^{p,q}$ denotes the cohomology with compact support and the L^2 cohomology $H_{(2)}^{p,q}$ is with respect to *dsy.*

Surjectivity: Let $[u] \in H_{2}^{p,q}(X \ Y, E)_h$, where $u \in L^{p,q}(X \ Y, E)_h$ and $\partial u = 0$. Clearly, $u|_W$ is square integrable, for any choice of W (or c), with respect to ds_W^2 and h_W . Hence, by Corollary 2.4, one can find a $v \in L^{p,q-1}_{loc}(W,E)$, square integrable with respect to ds^2_W and h_W , such that $\bar{\partial}v = u$. Since ds_W^2 is quasi-isometric to ds_Y^2 on a neighbourhood of F, it follows immediately that *u* is represented by a compactly supported form, which completes the proof of the surjectivity.

Injectivity: Let $[w] \in H_0^{p,q}(X \backslash Y, E)$. If $\tau([w]) = 0$, then there exists an $f \in L^{p,q-1}(X \setminus Y, E)$ such that $\bar{\partial}f=w$. Since the support of w is compact, $\bar{\partial}f=0$ near Y. Hence, applying Corollary 2.4, one can find a neighbourhood $W' \supset Y$ and an E -valued $(p, q-1)$ -form g on $W'\ Y$ such that $\bar{\partial}g = f$ on $W'\ Y$, whence follows that $[w]=0$.

In virtue of Andreotti-Grauert's finiteness theorem (cf. [1]), dim $H^{p,q}(X \setminus Y, E)$ $< \infty$ for $p+q$ $<$ codim $Y-1$. Hence, by Serre-Malgrange's duality

(18) dim $H_0^{p,q}(X \ Y, E^*) < \infty$, for $p+q>2n$ -codim $Y+1$.

Similarly, we have

(19) dim $H_0^{q,p}(X \backslash Y, E) \leq \infty$, for $p+q>2n$ -codim $Y+1$.

In view of the above isomorphism, we obtain the finite dimension- 3 *ality* of $H^{p,q}_{(2)}(X\backslash Y, E)$ *_h* and $H^{p,q}_{(2)}(X\backslash Y, E^*)$ _{*h**} for $p+q>2n-\text{codim } Y+1$. Thus, by Proposition 3.4, we have $H_{(2)}^{p,q}(X\backslash Y, E)_{h} \cong H_{(2)}^{q,p}(X\backslash Y, E^*)_{h^*}$ for $p+q > 2n$ -codim $Y+1$, so that $H_0^{p,q}(X \setminus Y, E) \cong H_0^{q,p}(X \setminus Y, E^*)$ for $p + q > 2n - \text{codim } Y+1$.

Hence, by the duality again we obtain

 $H^{p,q}(X\ Y, E) \cong H^{q,p}(X\ Y, E^*)$, for $p+q <$ codim $Y-1$,

which completes the proof of Theorem 2.

Proof of Theorem 1 $E_1^{p,q}(X \ Y) = E_{\infty}^{p,q}(X \ Y)$ if every cohomology

class in $H^{p,q}(X \ Y)$ and $H^{p-1,q}(X \ Y)$ is represented by a *d*-closed form. This can be shown for $p+q \lt \text{codim } Y-1$ as follows.

First, taking the dual of the isomorphism $\tau: H_0^{p,q}(X \ Y) \to H_{(2)}^{p,q}(X \ Y)$ we have $H_{(2)}^{p,q}(X\ Y) \cong H^{p,q}(X\ Y)$ for $p+q<$ codim $Y-1$. (For the trivial bundle, (E, h) is not referred to.)

Therefore, from (17) $H^{p,q}(X \ Y) \cong \mathscr{H}^{p,q}$ for $p+q <$ codim $Y-1$.

Since by the equality $\square = \square$ combined with Proposition 3.3, every form in $\mathcal{H}^{p,q}$ is d-closed, the assertion is proved.

That $E_1^{p,q}(X \ Y) \cong E_1^{q,p}(X \ Y)$ for $p+q \text{---}$ codim $Y-1$ is a corollary of Theorem 2.

References

- [1] Andreotti, A. and Grauert, H., Theoreme de finitude pour la cohomologie des espace complexes, *Bull. Soc. Math. France,* 90 (1962), 193-259.
- [2] Andreotti, A. and Vesentini, E., Carleman estimates for the Laplace-Beltrami equation on complex manifolds, *Publ. Math. I.H.E.S.,* 25 (1965), 81-130.
- [3] Hormander, L., *An Introduction to Complex Analysis in Several Variables,* North-Holland Co. Ltd., 1973.
- [4] Hodge, W., *The theory and application of harmonic integrals,* Cambridge Univ. Press, London, 1952.
- [5] Ohsawa, T., Isomorphism theorems for cohomology groups on weakly 1-complete manifolds, *Publ. RIMS, Kyoto Univ.,* 18 (1982), 191-232.
- [6] *y* Cohomology vanishing theorems on weakly 1-complete manifolds, *Publ. RIMS, Kyoto Univ.* 19 (1983) 1181-1201.
- [7] *}* Hodge spectral sequence on compact Kahler spaces, *Publ. RIMS, Kyoto Univ.,* 23 (1987), 265-274.
- [8] Ohsawa, T. and Takegoshi, K., Hodge spectral sequence on pseudoconvex domains, *to appear in Math Zeit.*
- [9] Wells, R. O., *Differential analysis on complex manifolds*, Prentice Hall, Englewood Cliffs, N.J., 1973.