Hodge Spectral Sequence and Symmetry on Compact Kähler Spaces

By

Takeo OHSAWA*

Introduction

For every complex manifold M, there exists a canonical spectral sequence which abuts to the de Rham cohomology of M. It consists of the set of C^{∞} differential forms on M, and the complex exterior derivatives $\bar{\partial}$ and ∂ of type (0, 1) and (1, 0), respectively, and its E_1 -term is defined to be Ker $\bar{\partial}/\text{Im}\bar{\partial}$. This will be referred to as the Hodge spectral sequence on M, after the celebrated result of W. Hodge [4].

Hodge's theorem states that the Hodge spectral sequence degenerates at E_1 and that $E_1^{p,q}(M) \cong E_1^{q,p}(M)$ if M is a compact Kähler manifold. Here $E_1^{p,q}(M)$ denotes the (p,q)-component of the E_1 -term.

The purpose of the present note is to study an analogue of Hodge spectral sequences on compact complex spaces within the spirit of the previous note [7], where we considered the spaces which admit only isolated singularities.

Our main result is as follows.

Theorem 1 Let X be a compact Kähler space of pure dimension and let Y be an analytic subset of X containing the singular locus of X. Then, the Hodge spectral sequence on $X \setminus Y$ degenerates for the total degrees less than codim Y-1 at the E_1 -term. Moreover, $E_1^{p,q}(X \setminus Y) \cong E_1^{q,p}(X \setminus Y)$ for p+q < codim Y-1.

In order to understand the symmetry $E_1^{p,q}(X \setminus Y) \cong E_1^{q,p}(X \setminus Y)$, we shall also prove the following.

Received December 24, 1986.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606 Japan.

TAKEO OHSAWA

Theorem 2 Let X and Y be as above, and let (E, h) be a flat Hermitian vector bundle over $X \setminus Y$. Then, $H^{p,q}(X \setminus Y, E) \cong H^{q,p}(X \setminus Y, E^*)$, for p+q < codim Y-1. Here $H^{p,q}$ denotes the cohomology of type (p,q) in the sense of Dolbeault and E^* denotes the dual bundle of E.

For the proof of the above mentioned results, an L^2 -version of Andreotti-Grauert's vanishing theorem on q-complete spaces is necessary which is to be proved in §2 by using a new L^2 -estimate obtained in [8].

The author expresses his hearty thanks to Professors H. Flenner and S. Tsuyumine for stimulating discussions during the author's stay at Mathematisches Institut of the University of Göttingen.

§1. Preliminaries

Definition A (reduced) complex space X together with the following data $\{U_j, \varphi_j\}_{j \in A}$ is called a Kähler space.

- 1) A is a set of indices.
- 2) $\{U_j\}_{j\in A}$ is an open covering of X.
- 3) φ_j is a C^{∞} strictly plurisubharmonic function on U_j .
- 4) $\varphi_j \varphi_k$ is pluriharmonic on $U_j \cap U_k$.

Given a Kähler space X, one attaches a Kähler metric on the complement of the singular locus by $\partial \bar{\partial} \varphi_j$, which is globally well defined by condition 4).

Let X be a compact Kähler space of pure dimension n with singular locus Z, and let Y be an analytic subset of X containing Z. We shall denote by ds^2 the prescribed Kähler metric on $X \setminus Z$.

Let $\{Y_{\alpha}\}_{\alpha=0}^{m}$ be a partition of Y into subsets satisfying the following properties.

- i) \overline{Y}_{α} are pure dimensional analytic subsets of Y.
- ii) $Y_{\alpha+1} \subset \overline{Y}_{\alpha}$.
- iii) dim $\overline{Y}_{\alpha} = m \alpha$.
- iv) The reduced structures of Y_{α} are regular.

Such a partition (a stratification of Y) always exists, since the singular loci of complex analytic spaces are analytic subsets.

As a complex manifold Y_{α} has a holomorphic coordinate patch. In other words, for each point $y \in Y_{\alpha}$ one can find a Stein open neighbourhood U in Y_{α} and a biholomorphic map from U onto a domain in $\mathbb{C}^{m-\alpha}$. Since every holomorphic function on U is holomorphically extendable to a neighbourhood of U in X, it follows that Uis a holomorphic neighbourhood retract in X. Therefore, Y_{α} can be covered by Stein open subsets, each of which has a Stein neighbourhood, say V, with a holomorphic embedding into a domain of some complex number space \mathbb{C}^N such that the image of $V \cap Y_{\alpha}$ is contained in a linear subspace of dimension $m-\alpha$. Identifying V as a subspace of \mathbb{C}^N , one sees that the restrictions of linear functions vanishing on $V \cap Y_{\alpha}$, say $z_1, \ldots, z_{N-m+\alpha}$, generate the ideal of holomorphic functions vanishing on $V \cap Y_{\alpha}$ in the ring of holomorphic functions on V. One associates to V a possibly smaller Stein open set

$$W := \left\{ x \in V; \sum_{\nu=1}^{N-m+\alpha} |z_{\nu}(x)|^{2} < \frac{1}{2} \right\}$$

and define a plurisubharmonic function ϕ_W on W by

$$\psi_W(x) := -\ln(-\ln||z'(x)||^2).$$

Here we put $z' := (z_1, \ldots, z_{N-m+\alpha})$ and $||z'(x)||^2 := \sum_{\nu=1}^{N-m+\alpha} |z_{\nu}(x)|^2$.

Suppose that a point y in Y_{α} belongs to the polar sets of two such functions ϕ_{W} and $\phi_{W'}$ (i.e. $\phi_{W}(y) = \phi_{W'}(y) = -\infty$). Then, there exists a neighbourhood $\Omega \supseteq y$ and a constant C such that

(1)
$$|\exp(-\phi_W) - \exp(-\phi_{W'})| < C$$
 on $\Omega \setminus Y$.

In fact, this follows from that z_i are generators of the ideal sheaf of $V \cap Y_{\alpha}$.

Now let \mathscr{J}_{α} be the ideal sheaf of \overline{Y}_{α} in the structure sheaf \mathscr{O}_{X} of X. Then, for each point $y \in \overline{Y}_{\alpha}$ there exists a neighbourhood U_{y} in X and finitely many holomorphic functions $f_{1}, \ldots, f_{m}(m=m(y))$ which generate the stalks of \mathscr{J}_{α} at every point of U_{y} (cf. [3]). Then we put $W_{y}:=\left\{x \in U_{y}; \sum_{j=1}^{m} |f_{j}|^{2} < \frac{1}{2}\right\}$ and $\psi_{y}:=-\ln(-\ln||f||^{2})$, where $||f||^{2}:=\sum_{j=1}^{m} |f_{j}|^{2}$.

Let $\{W_k\}$ be a finite system of such Stein open subsets of X whose union contains \overline{Y}_{α} , where we put $W_k = W_{y_k}$, and let ϕ_k be the associated plurisubharmonic functions on W_k defined as above. Such a system $\{W_k, \phi_k\}$ shall be referred to as a *polarized cover along* \overline{Y}_{α} . Suppose that $y \in W_k \cap W_1$, Then, by the same reasoning as above, one sees that there exists a neighbourhood $\Omega \ni y$ and a constant C such that

(1')
$$|\exp(-\phi_k) - \exp(-\phi_l)| < C$$
 on $\Omega \setminus \overline{Y}_{\alpha}$.

Let $\{W_k, \phi_k\}$ be a polarized cover along \overline{Y}_{α} and let $\{\rho_k, \rho\}$ be a C^{∞} partition of unity associated to the covering $\{W_k, X \setminus \overline{Y}_{\alpha}\}$ of X such that $\rho_k \geq 0$. Namely, ρ_k is a system of nonnegative C^{∞} functions on X such that $\sup \rho_k \Subset W_k$ and $\sum \rho_k \equiv 1$ on a neighbourhood of \overline{Y}_{α} , say W_{α} , and $\rho := 1 - \sum \rho_k$.

We put $\phi_{\alpha} := \sum \rho_k \phi_k$. Then we have

(2)
$$\partial \bar{\partial} \psi_{\alpha} = \sum \partial \rho_{k} \bar{\partial} \psi_{k} + \sum \partial \psi_{k} \bar{\partial} \rho_{k} + \sum \phi_{k} \partial \bar{\partial} \rho_{k} + \sum \rho_{k} \partial \bar{\partial} \psi_{k}$$
$$= \sum \partial \rho_{k} \bar{\partial} \psi_{k} - \sum (\partial \sum \rho_{l}) \bar{\partial} \psi_{k} + \sum \partial \psi_{k} \bar{\partial} \rho_{k} - \sum \partial \psi_{k} (\bar{\partial} \sum \rho_{l})$$
$$+ \sum \psi_{k} \partial \bar{\partial} \rho_{k} - \sum \psi_{k} (\partial \bar{\partial} \sum \rho_{l}) + \sum \rho_{k} \partial \bar{\partial} \psi_{k}$$
$$= \sum_{\substack{k,l \\ k,l}} \partial \rho_{k} (\bar{\partial} \psi_{k} - \bar{\partial} \psi_{l}) + \sum_{\substack{k,l \\ k,l}} (\partial \psi_{k} - \partial \psi_{l}) \bar{\partial} \rho_{k} + \sum_{\substack{k,l \\ k,l}} (\psi_{k} - \psi_{l}) \partial \bar{\partial} \rho_{k}$$
$$+ \sum \rho_{k} \partial \bar{\partial} \psi_{k},$$

on $W_{\alpha} \setminus \overline{Y}_{\alpha}$.

We are going to estimate the eigenvalues of $\partial \bar{\partial} \psi_{\alpha}$.

Once for all, let $||_{k}$ denote the length of the differential forms measured by $ds^{2} + \partial \bar{\partial} \psi_{k}$. Then we have $|\partial \psi_{k}|_{k} \leq \sqrt{2}$, since $\psi_{k} = -\ln(-\ln||f_{k}||^{2})$ for some vector f_{k} of holomorphic functions and

$$\begin{split} \partial \bar{\partial} \psi_{k} = & \frac{-\partial \bar{\partial} \ln ||f_{k}||^{2}}{\ln ||f_{k}||^{2}} + \frac{\partial \ln ||f_{k}||^{2} \bar{\partial} \ln ||f_{k}||^{2}}{(\ln ||f_{k}||^{2})^{2}} \\ \geq & \partial \psi_{k} \bar{\partial} \psi_{k}. \end{split}$$

Let $K_{kl} \subset W_k \cap W_l$ be any compact subset. Then,

(3)
$$C_{kl}^{-1}(ds^2 + \partial \bar{\partial} \psi_k) \leq ds^2 + \partial \bar{\partial} \psi_l \leq C_{kl}(ds^2 + \partial \bar{\partial} \psi_k)$$

on $K_{kl} \setminus \overline{Y}_{\alpha}$, where C_{kl} is a constant depending on K_{kl} . In particular we have

(4)
$$|\partial \psi_k|_l \leq \sqrt{2C_{kl}}$$
 on $K_{kl} \setminus \overline{Y}_{\alpha}$

Proof of (3): We put $f_k = (a_1, ..., a_{m_k})$.

Then

(5)
$$\partial \bar{\partial} \psi_{\mathbf{k}} = \frac{\sum\limits_{\mu < \nu} \left(a_{\mu} \partial a_{\nu} - a_{\nu} \partial a_{\mu} \right) \overline{\left(a_{\mu} \partial a_{\nu} - a_{\nu} \partial a_{\mu} \right)}}{\left(-\ln ||f_{\mathbf{k}}||^2 \right)^2 ||f_{\mathbf{k}}||^4} + \frac{\left(\sum\limits_{\mu} \bar{a}_{\mu} \partial a_{\mu} \right) \left(\sum\limits_{\nu} a_{\nu} \bar{\partial} \bar{a}_{\nu} \right)}{\left(\ln ||f_{\mathbf{k}}||^2 \right)^2 ||f_{\mathbf{k}}||^4}.$$

Let $\phi_l = -\ln(-\ln||f_l||^2)$ and $f_l = (b_1, \dots, b_{m_l})$. Then

(6)
$$a_{\mu} = \sum_{j=1}^{m_l} u_{\mu j} b_j, \ 1 \le \mu \le m_k$$

for some holomorphic functions $u_{\mu j}$ on $W_k \cap W_l$.

Substituting (6) into (5) and applying the Cauchy-Schwartz inequality etc., we have

(7)
$$\partial \bar{\partial} \psi_{k} \geq C_{kl}' \frac{\sum\limits_{i < j} (b_{i} \partial b_{j} - b_{j} \partial b_{i}) \overline{(b_{i} \partial b_{j} - b_{j} \partial b_{i})}}{(-\ln||f_{k}||^{2}) ||f_{k}||^{4}} + \frac{\sum\limits_{\mu = i, j} \sum\limits_{\mu = i, j} u_{\mu i} \overline{u}_{\mu j} \overline{b}_{j} \partial b_{i}) \sum\limits_{\mu = i, j} \sum\limits_{\mu = i, j} \overline{u}_{\mu i} u_{\mu j} b_{j} \partial \overline{b}_{i})}{(\ln||f_{k}||^{2})^{2} ||f_{k}||^{4}} + O_{kl}$$

on $K_{kl} \setminus \overline{Y}_{\alpha}$ for some constant C'_{kl} . Here O_{kl} has bounded length with respect to ds^2 .

Note that $(\sum_{i=1}^{m} |\xi_i|^2) (\sum_{j=1}^{m} |\eta_j|^2) = \sum_{i < j} |\xi_i \eta_j - \xi_j \eta_i|^2 + |\sum_{i=1}^{m} \xi_i \overline{\eta}_i|^2$, for any complex numbers ξ_i and η_j , $1 \le i$, $j \le m$ (Lagrange's equality). Applying this equality to (7), we have

(8)
$$\frac{(\sum_{\mu} \sum_{i,j} u_{\mu i} \bar{u}_{\mu j} \bar{b}_{j} \partial b_{i}) (\sum_{\mu} \sum_{i,j} \bar{u}_{\mu i} u_{\mu j} b_{j} \bar{\partial} \bar{b}_{i})}{(\ln ||f_{k}||^{2})^{2} ||f_{k}||^{4}} \leq C \frac{\sum_{i,j} (b_{i} \partial b_{j} - b_{j} \partial b_{i}) (\overline{b_{i}} \partial b_{j} - b_{j} \partial b_{i})}{(\ln ||f_{k}||^{2})^{2} ||f_{k}||^{4}},$$

on $K_{kl} \setminus \overline{Y}_{\alpha}$, for some constant C.

Since we have chosen W_k so that $\ln ||f_k||^2 < -\ln 2$ on W_k , we have

(9)
$$\partial \bar{\partial} \psi_k \leq C' \partial \bar{\partial} \psi_l + O'_{kl}$$
 on $K_{kl} \setminus \overline{Y}_{\alpha}$

where C' is a constant and O'_{kl} is bounded with respect to ds^2 . (3) follows from (9) immediately.

From (1'), (2), (3) and (4), we obtain

(10)
$$-A_{\alpha}ds^{2} + \frac{1}{2}\sum \rho_{k}\partial\bar{\partial}\psi_{k} \leq \partial\bar{\partial}\psi_{\alpha},$$

for sufficiently large $A_{\alpha} \ge 1$.

Thus we know that $Ads^2 + \partial \bar{\partial} \psi_{\alpha}$ is a metric on $X \setminus Y$ for any $A > A_{\alpha}$. Furthermore, let $\lambda_1^A \ge \ldots \ge \lambda_n^A$ be the eigenvalues of $\partial \bar{\partial} \psi_{\alpha}$ with respect to the metric $Ads^2 + \partial \bar{\partial} \psi_{\alpha} (A > A_{\alpha})$. Then, from (10) one immediately sees that, for any $\varepsilon > 0$, there exists an $A > A_{\alpha}$ such that $\lambda_j^A > -\varepsilon$ for $n - \alpha < j$ on $X \setminus Y$. Moreover, (10) implies that at least $n - \alpha$ eigenvalues of $\partial \bar{\partial} \psi_{\alpha}$ with respect to ds^2 tend to $+\infty$ as one approaches to a point in Y_{α} (see (5) and recall Courant's mini-max principle). Hence, for any point $y \in Y_{\alpha}$ and $\varepsilon > 0$, one can choose a neighbourhood $\Omega \supseteq y$ in X so that $1 - \varepsilon < \lambda_j^A < 1 + \varepsilon$ for $1 \le j \le n - \alpha$ on $\Omega \setminus Y$.

Note that (4) implies $\partial \phi_{\alpha} \bar{\partial} \phi_{\alpha} < C(Ads^2 + \partial \bar{\partial} \phi_{\alpha})$ for some C > 0.

For any positive number u we put $\psi_u := u \sum_{\alpha=0}^m \psi_\alpha$ and $ds_{A,u}^2 := A ds^2 + \partial \bar{\partial} \psi_u$. Then, $ds_{A,u}^2$ is a complete Kähler metric on $X \setminus Y$ whenever $A > u \sum_{\alpha=0}^m A_\alpha$.

Now we have the following.

Proposition 1.1 Let (X, ds^2) be a compact Kähler space of pure dimension n and Y an analytic subset containing the singular locus of X. Then, for any $\varepsilon > 0$, there exist a complete Kähler metric ds_Y^2 on $X \setminus Y$, a proper C^{∞} map $\psi: X \setminus Y \rightarrow (-\infty, 0]$ and a neighbourhood $W' \supset Y$ such that,

Here $| |_{Y}$ denotes the length with respect to the metric ds_{Y}^2 .

Proof Let
$$A \gg 0$$
, $u \ll \frac{1}{A}$, and put $\psi = \phi_u$, $ds_Y^2 = ds_{A,u}^2$.

§ 2. Vanishing of the Local L^2 -Cohomology

Let (M, ds^2) be a Hermitian manifold of dimension *n*, and let (E, h) be a Hermitian holomorphic vector bundle over *M*. For any C^{∞} (1, 1)-form $G=i\sum G_{\alpha\beta}dz_{\alpha}\wedge d\bar{z}_{\beta}$ with $G_{\alpha\beta}=\bar{G}_{\beta\bar{\alpha}}$ on *M*, we define real-valued functions $\Gamma_{p,q}[G]$ by

618

$$\begin{split} \Gamma_{p,q}[G](x) &:= \min \{ \sum_{\alpha=1}^{p} \lambda_{i_{\alpha}}(x) + \sum_{\beta=1}^{q} \lambda_{j_{\beta}}(x) - \sum_{k=1}^{n} \lambda_{k}(x) ; \\ \lambda_{k}(x) & (1 \leq k \leq n) \text{ are the eigenvalues of } G \text{ at } x_{j_{\alpha}} \\ 1 \leq i_{1} < \ldots < i_{p} \leq n \text{ and } 1 \leq j_{1} < \ldots < j_{q} \leq n \}. \end{split}$$

In terms of $\Gamma_{p,q}$ we shall state a sufficient condition for an à priori estimate for the operator $\bar{\partial}$. The L^2 -norm for E-valued forms will be denoted by $|| \quad ||_{b}$.

Let ω be the fundamental form of ds^2 and Λ the adjoint of the multiplication $u \mapsto \omega \wedge u$. We denote by $\bar{\partial}_h^*$ the (L^2-) adjoint of the operator $\bar{\partial}$ with respect to the metrics ds^2 and h. The operator $\partial^* := -\bar{*}\partial\bar{*}(\bar{*}:$ the conjugate after the Hodge's star) acts on *E*-valued forms and we denote by ∂_h the adjoint of ∂^* with respect to ds^2 and h. Then we have $[\bar{\partial}, \Lambda] = i\partial^* + T_1$ and $[\partial_h, \Lambda] = -i\bar{\partial}_h^* + T_2$, where [,] denotes the Poisson bracket and $T_j(j=1,2)$ contain no differentiation (i.e. T_j are function-linear).

Let $\langle T_i \rangle$ denote the (L^{2}) operator norms of T_j . Then, from the explicit expression of the operator $T_1 + T_2$ in terms of $d\omega$ and other elementary operators like $\bar{*}$, Λ , etc. (cf. [5] appendix), we see that there exists a positive number β_n depending only on n such that $3\langle T_1 \rangle^2 + \langle T_2 \rangle^2 \leq \beta_n |d\omega|^2$. In what follows we fix such β_n .

Proposition 2.1 Let F_1 be a C^{∞} real-valued function on M and $h_1:=h\exp(-F_1)$. Let Θ be the curvature form of h. Suppose that there exists a C^{∞} real-valued function F satisfying

(11) $\Gamma_{p,q}[\partial\bar{\partial}(F+F_1)] \ge n |\Theta| + \beta_n |d\omega|^2 + 3 |\partial F|^2 + \varepsilon$

for some $\varepsilon > 0$. Then

$$||\bar{\partial}u||_{h_1}^2 + ||\bar{\partial}_{h_1}^*u||_{h_1}^2 \ge \varepsilon ||u||_{h_1}^2,$$

for any compactly supported E-valued $C^{\infty}(p,q)$ -form u on M.

For the proof, see [8], Corollary 1.7.

Definition A Hermitian vector bundle (E, h) is said to be flat, if the operator $(\bar{\partial} + \partial_h) \circ (\bar{\partial} + \partial_h)$ is identically zero.

By the above definition, (E, h) is flat if and only if $\Theta \equiv 0$.

In §1 we have constructed a metric ds^2 and a function ψ satisfying several properties, from which we shall produce the functions F_1 and F as above. In particular, for flat vector bundles we have the following.

Proposition 2.2 Let (N, ds_N^2) be a Kähler manifold of dimension n and let (E, h) be a flat Hermitian vector bundle over N. Suppose that there exist a positive integer r and a C^{∞} real-valued function ψ on N such that

- (i) $|\partial \psi|^2 < 1/12.$
- (ii) $|\partial \bar{\partial} \psi| < 2n.$

(iii) The eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$ of $\partial \bar{\partial} \psi$ satisfy

$$1 - \frac{1}{4n} < \lambda_j < 1 + \frac{1}{4n} \quad for \ 1 \le j \le r$$
$$- \frac{1}{4n} < \lambda_j \quad for \ r < j.$$

Then, for any $A > 2^{16} \beta_n^2 n^4$ and $c \in \mathbb{R}$, the inequality (11) is satisfied by $M = \{x \in N; \ \psi(x) < c\}, \ ds^2 = (A(c-\psi)^{-2}+1) ds_N^2 + 2A(c-\psi)^{-3} \partial \psi \bar{\partial} \psi, \ F = \psi, F_1 = A(c-\psi)^{-1} \text{ and } \varepsilon = 1/8, \text{ for } p+q > 2n-r.$

Proof Let $| |_A$ denote the length of the forms with respect to the metric ds^2 . Let ω_N and ω be the fundamental forms of ds_N^2 and ds^2 , respectively. Then, $d\omega = A(c-\psi)^{-3}d\psi \wedge (2\omega_N - i\partial\bar{\partial}\psi)$. We estimate $|d\omega|_A$ as follows.

First, from the definition of ds^2 , $|d\psi|_A < 2A^{-1/2}(c-\psi)^{3/2}$ and $|\omega_N|_A < 2n(A(c-\psi)^{-2}+1)^{-1}$. Secondly, from (ii), $|\partial \bar{\partial} \psi|_A < 2n(A(c-\psi)^{-2}+1)^{-1}$. Therefore,

$$|d\omega|_{A} \leq A (c-\psi)^{-3} |d\psi|_{A} (2 |\omega_{N}|_{A} + |\partial \bar{\partial} \psi|_{A}) < 6nA^{1/2} (c-\psi)^{-3/2} (A (c-\psi)^{-2} + 1)^{-1}.$$

Hence,

$$|d\omega|_A < 6nA^{1/2}(c-\phi)^{-3/2} < 6nA^{-1/4}$$
 if $A < (c-\phi)^2$,

and

$$|d\omega|_A < 6nA^{-1/2}(c-\phi)^{1/2} \le 6nA^{-1/4}$$
 if $A \ge (c-\phi)^2$.

Thus, $\beta_n |d\omega|_A^2 \leq 36\beta_n n^2 A^{-1/2}$, so that

620

HODGE SPECTRAL SEQUENCE AND SYMMETRY

(12)
$$\beta_n |d\omega|_A^2 < \frac{1}{4} \quad \text{if } A > 2^{16} \beta_n^2 n^4.$$

To estimate the left hand side of the inequality, let $x \in M$ be any point and let L be the subspace of the complex tangent space of Mat x spanned by the eigenvectors corresponding to $\lambda_1(x), \ldots, \lambda_r(x)$. Then, for any vector $v \in L$, one has, for $F = \psi$ and $F_1 = A(c - \psi)^{-1}$,

(13)
$$1 - \frac{1}{4n} < \frac{\langle \partial \bar{\partial} (F + F_1), v, \bar{v} \rangle}{|v|_A^2} < 1 + \frac{1}{4n},$$

from (iii). Here $|v|_A$ denotes the length of v with respect to ds^2 . Similarly, for any unit tangent vector w at x,

(14)
$$\langle \partial \bar{\partial} (F+F_1), w, \bar{w} \rangle > -\frac{1}{4n}$$

Combining (13) and (14), we have

(15)
$$\Gamma_{p,q}(\partial\bar{\partial}(F+F_1)) > \frac{3}{4}, \quad \text{if } p+q>2n-r.$$

From (i) we have

Combining (12), (15) and (16), we obtain the desired inequality for the flat bundle (E, h).

Applying Proposition 2.2 to the Kähler manifold $(W' \setminus Y, ds_Y^2)$ described in Proposition 1.1, we obtain the following.

Proposition 2.3 Let (X, ds^2) be a compact Kähler space of pure dimension n and Y an analytic subset containing the singular locus of X. Then, there exists a C^{∞} proper map $\phi: X \setminus Y \rightarrow (-\infty, 0]$ and $c \in \mathbb{R}$ (c; arbitrarily small) such that, for any compactly supported $C^{\infty}(p,q)$ -form u on $W:=\{x \in X \setminus Y; \phi(x) < c\}$ with values in a flat vector bundle (E, h)over $X \setminus Y$, the estimate

$$||\bar{\partial}u||_{h_W}^2 + ||\bar{\partial}_{h_W}^*u||_{h_W}^2 \ge \frac{1}{4} ||u||_{h_W}^2$$

holds for p+q>2n-codim Y with respect to the metrics

$$ds_{W}^{2} = (A(c-\phi)^{-2}+1)ds_{Y}^{2}+2A(c-\phi)^{-3}\partial\phi\bar{\partial}\phi$$

and $h_W = h \exp(-A (c-\psi)^{-1})$, where $A > 2^{16} \beta_n^2 n^4$ and ds_Y^2 is some (i.e. not arbitrary) complete Kähler metric on $X \setminus Y$.

Since the above (W, ds_W^2) is a complete Hermitian manifold, Proposition 2.3 implies that the Hermitian bundle $(E|_W, h_W)$ is $W^{p,q}$ elliptic in the sense of Andreotti-Vesentini [2], if p+q>2n-codim Y.

Thus, in virtue of Andreotti-Vesentini's theorem, we have the following corollary to Proposition 2.3.

Corollary 2.4 Under the above situation, let f be any E-valued (p,q)-form on W which is square integrable with respect to ds_W^2 and h_W and $\bar{\partial}f=0$ in the sense of distribution. If p+q>2n-codim Y, then there exists an E-valued (p,q-1)-form g on W, square integrable with respect to ds_W^2 and h_W such that $\bar{\partial}g=f$ and $||g||_{h_W}\leq 2||f||_{h_W}$.

§ 3. L² Cohomology and Harmonic Forms

Let (M, ds_M^2) be a Hermitian manifold of dimension *n*, and let (E, h) be a Hermitian vector bundle over *M*. We denote by $L^{p,q}(M, E)_h$ the set of square integrable *E*-valued (p, q)-forms on *M* with respect to ds_M^2 and *h*, and put

$$H^{p,q}_{(2)}(M, E)_{h} := \{ f \in L^{p,q}(M, E)_{h}; \ \bar{\partial}f = 0 \} / \\ \{ g \in L^{p,q}(M, E)_{h}; \ \exists u \in L^{p,q-1}(M, E)_{h} \\ \text{such that } g = \bar{\partial}u \}.$$

Here the derivatives are taken in the distribution sense.

Let $L_{loc}^{p,q}(M, E)$ be the set of locally square integrable *E*-valued (p,q)-forms on *M*. We put

$$H^{p,q}(M, E) := \{ f \in L^{p,q}_{loc}(M, E) ; \bar{\partial} f = 0 \} / \\ \{ g \in L^{p,q}_{loc}(M, E) ; \exists u \in L^{p,q-1}_{loc}(M, E) \\ \text{such that } \bar{\partial} u = g \}.$$

Since the L^2 -version of Dolbeault's Lemma is valid (cf. [6] or [9]), $H^{p,q}(M, E)$ is canonically isomorphic to the *E*-valued Dolbeault cohomology of type (p, q).

We put $\Box_{\hbar} := \bar{\partial} \bar{\partial}_{\hbar}^{*} + \bar{\partial}_{\hbar}^{*} \bar{\partial}$ and $\Box_{\hbar} := \partial_{\hbar} \partial^{*} + \partial^{*} \partial_{\hbar}$. Clearly, $\overline{\Box}_{\hbar} = *^{-1} \Box_{\hbar}^{*}$. We put $\mathscr{H}^{p,q}(E)_{\hbar} := \{ f \in L^{p,q}(M, E)_{\hbar}; \Box_{\hbar} f = 0 \}.$

If the metric ds_M^2 is Kählerian, one has $[\partial_h, \Lambda] = -i\bar{\partial}_h^*$ and $[\bar{\partial}, \Lambda] = -i\partial_h^*$. Hence $[i(\bar{\partial} + \partial_h)(\bar{\partial} + \partial_h), \Lambda] = \bar{\partial} \cdot i[\partial_h, \Lambda] + i[\partial_h, \Lambda]\bar{\partial} + \partial_h \cdot i[\bar{\partial}, \Lambda] + i[\bar{\partial}, \Lambda]$

622

 $i[\bar{\partial}, \Lambda]\partial_h = \Box_h - \overline{\Box}_h$. If the bundle (E, h) is flat, then we have $\Box_h = \overline{\Box}_h$. Thus we obtain

Lemma 3.1 Let (M, ds_M^2) be a Kähler manifold and (E, h) a flat Hermitian vector bundle over M. Then, $\mathscr{H}^{p,q}(E)_h \cong \mathscr{H}^{n-q,n-p}(E)_h$. Here the isomorphism is given by $f \mapsto *f$.

Identifying h as a C^{∞} section of Hom (E, \overline{E}^*) , we have $\partial_h = h^{-1} \circ \partial \circ h$. Therefore we obtain

Lemma 3.2 Under the situation of Lemma 3.1, $\mathscr{H}^{p,q}(E)_h \cong \mathscr{H}^{q,p}(E^*)_{h^*}$. (E*)_{h*}. Here the isomorphism is given by $f \mapsto \overline{hf}$. $(h^*:={}^th^{-1})$.

The following is fundamental.

Proposition 3.3 Let (M, ds_M^2) be a complete Hermitian manifold and (E, h) a Hermitian vector bundle over M. Then

$$\mathscr{H}^{p,q}(E)_h = \{ f \in L^{p,q}(M, E)_h; \ \bar{\partial}f = 0, \ \bar{\partial}_h^* f = 0 \}.$$

Proof. See Andreotti-Vesentini [2].

Thus, if the metric ds_M^2 is complete, then we have an orthogonal decomposition:

$$L^{\mathfrak{p},q}(M,E)_{h} = \mathscr{H}^{\mathfrak{p},q}(E)_{h} \oplus \overline{R^{\mathfrak{p},q}_{\hat{a}}(E)} \oplus \overline{R^{\mathfrak{p},q}_{\hat{a}^{*}}(E)}.$$

Here $R^{b,q}_{\hat{\vartheta}}(E)$ (resp. $R^{b,q}_{\hat{\vartheta}^{k}_{h}}(E)$) denotes the range of $\bar{\vartheta}$ (resp. $\bar{\vartheta}^{k}_{h}$), and $\overline{R^{b,q}_{\hat{\vartheta}}(E)}$ (resp. $\overline{R^{b,q}_{\hat{\vartheta}^{k}_{h}}(E)}$) its closure.

From the above decomposition we obtain

(17)
$$H^{p,q}_{(2)}(M,E)_h \cong \mathscr{H}^{p,q}(E)_h,$$

if $R^{p,q}_{\delta}(E)$ is closed (for instance it is the case when $H^{p,q}_{(2)}(M, E)_{h}$ is finite dimensional).

Combining Lemma 3.2 with (17), we have

Proposition 3.4 Let (M, ds_M^2) be a complete Kähler manifold and (E, h) a flat Hermitian vector bundle over M. Suppose that dim $H_{(2)}^{p,q}(M, E)_h < \infty$ and dim $H_{(2)}^{p,q}(M, E^*)_{h^\circ} < \infty$. Then $H_{(2)}^{p,q}(M, E)_h \cong H_{(2)}^{q,p}(M, E^*)_{h^\circ}$.

§4. Proof of Theorems

First we shall prove Theorem 2.

Let X, Y, (E, h), etc. be as in Proposition 2.3. We shall show that the natural homomorphism $\tau: H_0^{p,q}(X \setminus Y, E) \to H_{(2)}^{p,q}(X \setminus Y, E)_h$ is isomorphism if p+q > 2n - codim Y+1. Here $H_0^{p,q}$ denotes the cohomology with compact support and the L^2 cohomology $H_{(2)}^{p,q}$ is with respect to ds_Y^2 .

Surjectivity: Let $[u] \in H_{(2)}^{p,q}(X \setminus Y, E)_h$, where $u \in L^{p,q}(X \setminus Y, E)_h$ and $\bar{\partial}u = 0$. Clearly, $u|_W$ is square integrable, for any choice of W(or c), with respect to ds^2_W and h_W . Hence, by Corollary 2.4, one can find a $v \in L_{loc}^{p,q-1}(W, E)$, square integrable with respect to ds^2_W and h_W , such that $\bar{\partial}v = u$. Since ds^2_W is quasi-isometric to ds^2_Y on a neighbourhood of Y, it follows immediately that u is represented by a compactly supported form, which completes the proof of the surjectivity.

Injectivity: Let $[w] \in H_0^{p,q}(X \setminus Y, E)$. If $\tau([w]) = 0$, then there exists an $f \in L^{p,q-1}(X \setminus Y, E)_h$ such that $\bar{\partial}f = w$. Since the support of w is compact, $\bar{\partial}f = 0$ near Y. Hence, applying Corollary 2. 4, one can find a neighbourhood $W' \supset Y$ and an E-valued (p, q-1)-form g on $W' \setminus Y$ such that $\bar{\partial}g = f$ on $W' \setminus Y$, whence follows that [w] = 0.

In virtue of Andreotti-Grauert's finiteness theorem (cf. [1]), dim $H^{p,q}(X \setminus Y, E) < \infty$ for p+q < codim Y-1. Hence, by Serre-Malgrange's duality

(18) dim $H_0^{p,q}(X \setminus Y, E^*) < \infty$, for $p+q > 2n - \operatorname{codim} Y+1$.

Similarly, we have

(19) dim $H^{q,p}_0(X \setminus Y, E) < \infty$, for $p+q > 2n - \operatorname{codim} Y+1$.

In view of the above isomorphism, we obtain the finite dimensionality of $H_{(2)}^{p,q}(X \setminus Y, E)_h$ and $H_{(2)}^{p,q}(X \setminus Y, E^*)_{h^*}$ for $p+q>2n-\operatorname{codim} Y+1$. Thus, by Proposition 3.4, we have $H_{(2)}^{p,q}(X \setminus Y, E)_h \cong H_{(2)}^{q,p}(X \setminus Y, E^*)_{h^*}$ for $p+q>2n-\operatorname{codim} Y+1$, so that $H_0^{p,q}(X \setminus Y, E) \cong H_0^{q,p}(X \setminus Y, E^*)$ for $p+q>2n-\operatorname{codim} Y+1$.

Hence, by the duality again we obtain

 $H^{p,q}(X \setminus Y, E) \cong H^{q,p}(X \setminus Y, E^*)$, for p+q < codim Y-1,

which completes the proof of Theorem 2.

Proof of Theorem 1 $E_1^{p,q}(X \setminus Y) = E_{\infty}^{p,q}(X \setminus Y)$ if every cohomology

class in $H^{p,q}(X \setminus Y)$ and $H^{p-1,q}(X \setminus Y)$ is represented by a *d*-closed form. This can be shown for p+q < codim Y-1 as follows.

First, taking the dual of the isomorphism τ : $H_0^{p,q}(X \setminus Y) \to H_{(2)}^{p,q}(X \setminus Y)$ we have $H_{(2)}^{p,q}(X \setminus Y) \cong H^{p,q}(X \setminus Y)$ for p+q < codim Y-1. (For the trivial bundle, (E, h) is not referred to.)

Therefore, from (17) $H^{p,q}(X \setminus Y) \cong \mathscr{H}^{p,q}$ for $p+q < \operatorname{codim} Y-1$.

Since by the equality $\Box = \overline{\Box}$ combined with Proposition 3.3, every form in $\mathscr{H}^{p,q}$ is d-closed, the assertion is proved.

That $E_1^{p,q}(X \setminus Y) \cong E_1^{q,p}(X \setminus Y)$ for p+q < codim Y-1 is a corollary of Theorem 2.

References

- Andreotti, A. and Grauert, H., Théorème de finitude pour la cohomologie des espace complexes, Bull. Soc. Math. France, 90 (1962), 193-259.
- [2] Andreotti, A. and Vesentini, E., Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. I.H.E.S., 25 (1965), 81-130.
- [3] Hormander, L., An Introduction to Complex Analysis in Several Variables, North-Holland Co. Ltd., 1973.
- [4] Hodge, W., The theory and application of harmonic integrals, Cambridge Univ. Press, London, 1952.
- [5] Ohsawa, T., Isomorphism theorems for cohomology groups on weakly 1-complete manifolds, Publ. RIMS, Kyoto Univ., 18 (1982), 191-232.
- [6] _____, Cohomology vanishing theorems on weakly 1-complete manifolds, Publ. RIMS, Kyoto Univ. 19 (1983) 1181-1201.
- [7] —, Hodge spectral sequence on compact Kähler spaces, Publ. RIMS, Kyoto Univ., 23 (1987), 265-274.
- [8] Ohsawa, T. and Takegoshi, K., Hodge spectral sequence on pseudoconvex domains, to appear in Math Zeit.
- [9] Wells, R. O., Differential analysis on complex manifolds, Prentice Hall, Englewood Cliffs, N.J., 1973.