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Introduction

This paper originated from a question of G. M. Greuel and U.
Karras whether any compact complex space X admits a locally trivial
semiuniversal deformation

X—Z——>(S, 0).
Here “locally trivial” and “locally trivial semiuniversal” means the
following: % is called locally trivial over S, if for every x&X the
deformation germ

(‘%ﬂ’ x)'—é(Ss 0)
is isomorphic to the trivial deformation (X, x) X (S, 0) of (X, x).
The deformation is said to be locally trivial semiuniversal if it has the
usual versality property with respect to locally trivial deformations,
ie. if

X—"Z'— (S8, 0)
is any locally trivial deformation of X then there is a cartesian
diagram
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and moreover the tangent map of @ in 0 is uniquely determined;

In this paper we shall give a positive answer to this question. The

basic idea is to reduce it to the following purely local problem. Let
e: (Z,00—(5,0), ¢:(¥, 0)—=(S, 0)
be holomorphic map germs with special fibers (X, 0) resp. (Y, 0)
and
S (X, 0)—>(, 0)

be a holomorphic map. A subspace (§’, 0) (S, 0) will be called a
maximal extension locus for &, if the following two properties are
satisfied:

(1) There exists a holomorphic map of (§’, 0)-spaces
§: (Zs,0)—(¥s,0)
extending &
2 If a: (T, 0)——(S, 0) is a holomorphic map and if there
exists a T-morphism
(‘%‘Ts 0)-'_>(@/Ta 0)

extending &, then a factorizes over (S, 0).

In general, such an extension locus will not exist. For instance, let
Z =S be the union of two smooth curves C;, C, meeting at 0 with
multiplicity >2, and let # be the union of these two curves meeting

transversally at 0

Gy

/Cl 'O G

0 C,
=S5 %

There is a canonical map a:% ——§ and also &:X= {0} —a1(0).
This map can be extended over C; and over C; separately as an



LocALLY TRIVIAL DEFORMATIONS 629

S-map but not over the union §=C,UC; as the reader may easily
verify. What we can prove is the following

(0.1) Theorem. Assume that ¢ above is flat and that the canonical
homomor phism

3@"@ (2%, @@)00@) Ox,0— -%maylo(gly.o, Ox.0)
@,0

is surjective. Then there exists a maximal extension locus for &

For applications, the most important case is when # =XXS§ and
&=idy. Here the surjectivity condition of (0.1) is automatically
satisfied and so we obtain in particular

(0.2) Corollary. If (Z,0)——(S,0) is a deformation of (X, 0) then
there exists a maximal subspace (S',0)C(S,0) for which (Zs, 0)—s
(S’,0) is the trivial deformation, i.e. if a:(T,0)——>(S,0) is a morphism
then

(Z1,0)— (T, 0)

is the trivial deformation of (X, 0) if a factorizes over (S’, 0).

A subspace as in (0.2) will be called the ¢rivial locus of the deforma-
tion (Z,0)——(S,0).

We remark that (0.2) is easy to prove in the case where (X, 0)
has an isolated singularity or, more generally, admits a finite dimen-
sional versal deformation (Z*, 0)—— (8%, 0). Here the trivial locus
of the deformation (&£, 0)——(S,0) is just «™*(0), if (&, 0) is obtained
from the versal deformation by base change a: (S, 0)—— (§*, 0). But
for the general case of (0.2) or (0.1) we must employ Banach analytic
methods.

It is easy to see that (0.2) answers the question of Greuel and
Karras.

(0.3) Corollary. Any compact complex space X admits a locally trivial
semiuniversal deformation.
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Progf. By [Dou,], [F-K], [Gra], [Pa] there is a semiuniversal
deformation Z—(S, 0) of X. For any point xEX there exists the
trivial locus (S, 0) € (S, 0) for the deformation germ (&, x)— (S, 0).
The space §’:= N S, defines again a subgerm of (S, 0), and it is

xe€X
easy to check that Z's—(S’, 0) is the locally trivial semiuniversal

deformation of X.-

We do not know whether these results also hold in the algebraic
case. E.g., if in (0. 1) ¢, ¢ and &, are algebraic maps, it is natural
to ask whether the maximal extension locus of & is also given by
algebraic equations. In characteristic p>>0 we even do not know
whether the Schlessinger conditions are satisfied.

We remark that in this paper we also obtain similar results for
deformations of other types of analytic objects as e.g. for deforma-
tions of holomorphic mappings or for coherent modules. In order to
have a unified treatment of these cases we introduce the concept of
data of structure preserving maps between complex space germs, see
(1. 2), and show that the examples (deformations of spaces, modules
and holomorphic maps) fit into this terminology, c.f. (1. 3)-(l. 5).

The basic tool in the proof of our main results are the Banach analy-
tic methods developed by A. Douady in [Dou;], [Dou,] and also the
polycylinder spaces and morphism spaces introduced by G. Pourcin
[Pou;]. In §2 we review the basic material and prove some simple
facts used in the sequel. In §3 we formulate a Banach analytic
condition (A3) on the data of structure preserving maps and show
how this condition implies the existence of a subspace (§’,0) (S, 0) as
in (0.1). The verification of this condition (A3) in the case of
holomorphic mappings is contained in §4. The most difficult part
there is the proof of the so-called smoothness condition in (A3). In
§5 we give some applications to the case of holomorphic mappings
and to modules, In particular, these results imply (0.1), (0.2),
(0.3). The first appendix (§6) contains the notion of a Banach
fiber space and we prove there some technical results which are used
in this paper and for which there seems to be no reference. Moreover
in the second appendix (§7) we give a cohomological description of
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extensions of holomorphic maps which is needed for the examples in
§lL.

We are going to introduce some notations at first.

Notations. Let f: X—Y be a morphism of complex spaces and 4
resp. A be an Ox resp. Oy-module together with a homomorphism

SEN)—A.
Then we call (#, &) an f-module. The morphisms of f~modules are
defined in an obvious way. As it is shown in [F1] §3, the category
of f~modules has enough injectives, and so for a complex (¥#~, £")

of f~modules one can define the Ext-functors in the usual way. These
groups will be denoted by

EthéX.Y)((f.s g‘)a (‘/%9 JV)).
If =4, ¥ =% are modules, then the group Extlyy ((/4, £),
A, H)) is just

HOIn(X.Y)((‘%/, "?)s (‘jls JV)),

which is the set of all morphisms of f-modules.

We can associate to these Ext-groups the &z¢-sheaves
éa‘z"d;X.Y)((‘%f.? g.)a (‘/”3 '/V))
on Y which are defined by the presheaves

YD VP‘——>EXtif (‘9{3 "?) |Vs (‘ﬂa ‘/V) IV)-

"1<V>,V)(
If we take the cotangent complexes X :=Ly,;, ¥ =Ly, where Y—Z

is a morphism of complex spaces, then the Ext’ resp. &z¢' are also
denoted by

T f/Z; M, N) resp. T (f/Z;My, N).

These invariants are the tangent functors for holomorphic mappings
as introduced in [F1].

Let x resp. » be a point of X resp. Y. Then as usual the stalk
of the sheaf

éa’[iX,Y)((‘%/.s g.)) (V%a '/V))
on Y is denoted by
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éaxfix.y)((f., g.): (V%: JV))J’
whereas

ée’t‘.(X,Y)((‘%/‘s 3'), ('/%a ‘/V) @@=
lim deelnn (O |U, £, (AU, H)),
zeU

and the limit is taken over all open neighborhoods U of x in X. In
the case X" =Ly/;, & =Ly;; we write shortly

TNS/Zs My N) ey

§1. Data of Structure Preserving Maps

(1.1) Let (5,0) be a germ of a complex space and suppose that
Z—S resp. #—>S§ are holomorphic maps with special fibres X
resp. Y. Furthermore we fix a distinguished point 0 in X and Y
together with a morphism &: (X, 0)—(Y,0). For any complex space
T—S let X resp. % be the fibre product TXsZ resp. TXs%, and
denote by

Moer (Z'r, #1)

the sheaf on Zr of T-morphisms from £, to %, i.e. for an open set
Uc %, we have

Moty (Zp, ¥ 1) (U)={p:U——%|f is a T-morphism}.

We shall assume that for every complex space 7T over S, there is
given a subsheaf of sets
My CIMOT (X1, @ 1)
such that the following properties are satisfied.
A0 &My (X)),
(A1) (Compatibility with fibre products): If oM, (U) and T'—T
is an S-morphism of complex spaces, then
T,XT QDE%T/(T’XTU).
(A 2) (Extension property). There is a relatively compact neigh-
bourhood U of O=X with the following property : Let 7'CT be a

small extension of Artinian complex space germs over (S5,0), i.e.
Ker (070> 01,) is a 1-dimensional C-vectorspace. Suppose that

o ('%‘Ts 0>—)(@Ts O)
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is a germ in M, inducing & on the special fibre and that T'Xr¢
is defined over U, i.e. comes from a section ¢'EMy (U). Then ¢’
can be extended to a section ¢ =M, (U), i. e. there is a commutative
diagram

Z2|\U = @7
] J

-%'T/}U? @/T’ B

(1.2) Definition. A collection M, T=UN/S, satisfying (A0)-(A2)

is called a datum of structure preserving maps.
In order to clarify what we have in mind, we list a few examples.

(1.3) Example. Let (%,0), (#,0), (Z,0) be space germs over
the germ (§,0) and (Z,0)—>(Z,0), (#,0)—>(Z,0) be S-morphisms.
Suppose that & is S-flat and &: (X, 0) > (Y, 0) is a Z-morphism. Then

W =MOTE (£'7, ¥ )
is a datum of structure preserving maps. Here MorF (...) denotes the

subsheaf of MMorr(...) consisting of all Z-morphisms.

Proof. The properties (A0) and (Al) are trivial. In order to
show (A2) let 7,77, ¢, 0"=T" X1, " be as in (A2). It follows from
§7 that the obstruction for extending ¢’ to a ¢ lies in

Ext} (L& (L'giz=0,0v), 0x),
which for a Stein-neighbourhood is just I'(U, &) where
& = Eutly (LEF (L'@/.ﬂzgo@ Ov), Ox).

On the other hand, the obstruction for extending ¢’ to ¢ is in the
stalk &o. Since for a privileged neighbourhood U of 0 (for instance
in the sense of [B-K] (I 3. 9)) the restriction map

', €)—¢&,
is injective, see loc. cit (II 3.10), (A2) follows,—
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(1.4) Example. Let
5: ('%l, 0)__—>(@’ O)
be a morphism of complex space germs over the germ (§,0) with

fibres XC % resp. YC % over 0S. Moreover we fix a coherent 0 4
resp. @g-module F resp. ¢ and a homomorphism

©00:&5 (G o) —>F

where the index “0” indicates the restriction to the special fibre. We
shall always assume that % is S-flat (but ¢ may be arbitrary). Now
we consider the infinitesimal extensions

Z'=(Z|, 0.[FD, ¥ =¥, 04[%D
and define for any morphism 7—S the sheaf
MrCMorr (X7, ¥'7)

of all morphisms which preserve the grading and induce the given
map &r on £rC % 7. Obviously the collection M, satisfies (A0) with
(6o, o) and (Al). Moreover, the sheaf M is canonically isomorphic
to the sheaf of homomorphisms of modules

M7 (U) =Homy (¢ [ U)*(F 1), Fr|U)
for UC &7 open.

It is well known that, in the situation of (A2), the obstruction for

extending a homomorphism
E‘;v (gT') ’_>.g’—T/
to a homomorphism &3 (% ;) —>% lies in

Exty (L& (9 20, 0y), F0).

So with a similar argument as in the proof of (l.3), one sees that
(A2) is satisfied and ()7 is a datum of structure preserving maps.

(1.5) Example. Let

(%o, 0L (&, 0)
(Z,0)— (S, 0)
(@4, 0)— (21, 0)
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be a diagram of morphisms of complex space germs over (S,0) and
let (Xo,0), (X3,0), (Yy,0), (Y4,0), (Z,0), fou, & be the respective fibres
over 0S. We assume that there are given morphisms ¢&;:(X;, 0)
—(Y;,0), i=0,1 such that

(Xo, 0)—2> (X, 0)
eoj lel (Z,0)
(¥o, 0)—= (Y3, 0)

commutes. We put

£==£‘0X5£1, Q?/::@ng@]_
and consider the subsheaf

MrCMorZ (X7, ¥ 1)

consisting locally in %' of all 7-morphisms {={, X&,: £1—% 1 where
i & ir—>% i is a Zr—morphism such that { maps the graph of fr
into the graph of gr. Equivalently, a local section of I around a
point of graph(fr) may be regarded as a commuting diagram (of
germs)

Ir
Zoo—% 17 ~.
Col J/C]_ 3’7‘ °

% or——Y 17
ér

Then (Mz)r is a datum of structure preserving maps with (&, &) in the
special fibre, if the following conditions are satisfied

Q) Zo, %, are S—flat,

(i) the support of the sheaf Exck (LES (L"%,@lgo%@ v)s Ox)) s
[finite over Xi.

Proof. Condition (AO0) is satisfied with (&, &) and (Al) is trivial.
We have to verify (A2), Let T"——T be as in (A2) and suppose
that there is a structure preserving map

(Co, Cl): .%lozv X.@'T,‘%‘IT'-_—)@OT’ XgT/@]_TI inducing (Eo, 51)
in the special fibre. Furthermore, we denote by {; the composition

» . .
.%‘iT,——>@,-T,-—r—"Z7/,- for =0,1. Then, according to §7, the obstruc-
tion for extending (L, {;) to a structure preserving map
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oy 1) 1 Zor X, Err——Y o0 X2, Y 11
lies in the group
El:zExt{%Thng,) ((L&G* (Lyyz), LG* (L;yl/zz) ), (Ox, 0)(1) ).
For abbreviation we set
E=IL* (Ly,e), =0, 1
& =ILL5* (Liya)
and get a short exact sequence

0——LfE (&) —> & —> & 5—0.

Defining

Il®

é

l

0x, 20,

i

&, i=0,1

[I®

Ci=0x=0, €
we get again a short exact sequence
0—LfF (€7 & & ;—0.

Obviously we have

E'=Extlx,x,((€, 1), (Ox, Ox)).

Similarly as before, we want to show that for suitable neighbourhoods
U and V of 0€X, resp. 0X; with fo(U)CV, the canonical map

@) Extly.y, (€3, €1), (Ux, Ox))—
Eattnyxp (65, €7), (Oxy Ox)) oo

is injective. By [FI1] (3.5), [B-K] (I 12.12) and the data above,
we have an exact sequence of sheaves on X

vo e dom (&, Ox)——fou (6 (&3, Ox))—
éa‘zll((ga, fi)a (@Xos @Xl))—ééa‘ztl(égi, @Xl)—_%
fO* (gz[z(é?é, @Xo))—"" °

From assumption (ii) follows that Coker (3) is a coherent @x-module.

Hence, if we take V privileged for Coker (d) and (€5, 0X1), then
(*) is injective.—
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(1.6) Let now Z—S, # =S and &:(X,0)—(Y,0) be as at the
beginning of this section and let

MrCMoe (X1, ¥ 1), T&An/S

be a datum of structure preserving maps. We consider the following
functor on germs of complex spaces over (S,0):

F:An/(S, 0) —3ets

where
F((T,0)) = {1}, if there is a local section
0:(Zr,0)—>%; in M, which induces &
on the special fibre

and

F((T,0)) =@ otherwise.

If F is representable by the (S,0)-germ (S§’,0) then we call (§7,0)
the maximal extension locus of &,. Observe that such an (S§’,0) is
automatically a subspace of (S, 0).

In general, a maximal extension subspace need not exists as was
shown by the example mentioned in the introduction. In Section 3 we
shall give a criterion for the representability of the functor F. In the
proof we will construct arbitrary small compact neighbourhoods K of
0 X and closed subgerms (Sx, 0) C (S,0) with the following properties:

(A.7) () Let a:(T,0)—(S,0) be a morphism and suppose that
eEMr(K) is a morphism extending &, which is defined in a neighbourhood
of K——>X——% ;. Then a factorizes via (Sg,0).

2) Let (T7,0)—>(T,0) C (Sk,0) be closed complex subspaces and
assume that ¢’ €Mr, (K) is a morphism extendzng &. Then there is a
goEﬂRT(K), such that T' X1 ¢ and ¢’ coincide on

We shortly call such a neighbourhood K a good neighbourhood of 0.

If LCK are good neighbourhoods then, by the properties (1), (2) above,
Sx is a subspace of ;.

(1.8) Proposition. Assume that there is a basis of good neighbourhoods
of 0€X. Then the functor F above is representable by a closed subgerm
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(87,0)C(S,0). Moreover, (S’,0)=(Sx,0) for every sufficiently small good
neighbourhood K of 0.

Proof. Let U be a neighbourhood as in (A2). We show that for
good neighbourhoods LCKCU we have (Si,0)=(Sk, 0). For this
it is sufficient to prove that for every artinian subspace (7),0)
contained in (Sz,0), there is a morphism ¢&M,(U). By induction
we may assume that there exists a complex subspace 7"CT such that
T'——T is a small extension and that there is already a morphism

o'eMer. (U).

Using property (1.7) (2), we can extend ¢’ to a morphism &M, (Ij),

i.e. 7"X ;¢ and ¢’ coincide on L. Now (A2) implies that ¢’ can also
be extended to a oM, (U).-

§2. Polycylinder Spaces and Morphism Spaces

In this section we review some more or less known facts about the
polycylinder and morphism spaces introduced by Pourcin in [Pou].

Let K=K;X... XK,CC" be a polycylider, i.e. each K;CC is com-
pact and convex with Iz'ir#:sb. We denote by B(K) the Banach algebra

of continuous C-valued functions on K which are holomorphic on K.

If & is a coherent sheaf in a neighbourhood of K, then & is
called K-privileged (see [Dou;] Chap. 7) if there is a resolution

0 Ohr— ... OW——F | K—>0

such that the sequence
B(K, 0%)

of Banach spaces is direct exact. In this situation B(K,#) denotes
the cokernel of

B(K, 0x)—>B(K, 09).

It is well known that this splitting property as well as the construction
of B(K, #) do not depend on the chosen resolution, cf. [Dou,].

In the following we shall need the polycylinder spaces as intro-
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duced by Pourcin [Pou;]. Let #x be the sheaf of all continuous
functions on K which are holomorphic in the interior, i.e.
& x(U) = {f:U—~C |f continuous, f|KNU holomorphic}.
Then %k is a sheaf for which Theorem A and Theorem B hold, i. e.
I'(K, #x) =B(K),
H' (K, #x)=0, for all i>>0.
For any local analytic subspace X of C" which is closed in some
neighbourhood of K and K-privileged for 0 x, there is a ringed space
(X, B x,)
where Xx:=XNK and & x, is the quotient of #x by the defining
ideal of X. Similarly as above we have
I' (Xx, QXK) =B(K, 0x),
H'(Xx, #x,) =0, for all i>0.

We remark that there is even a natural structure of a functored space
on X, see [Pou;] for details.

We also need a relative version of these polycylinder spaces: Let
§ be a Banach analytic space and

X —>SXC"

an S-anaflat subspace which is closed in some neighbourhood of §X K.
If & (s) cC" denotes the fibre of & over s&S, then by a result of
Douady the set of points s such that Oy, is K-privileged is an open
subset of S. Assuming that Oy is K-privileged for all s&.S, then
one can construct a locally trivial bundle of Banach spaces B(X, Og)
over S whose fibre over s&S§ is just B(X, Oy), see [Dou;] Chap. 8,
No. 3. Moreover one can equip

with the structure of a functored space and in particular with a
structure sheaf %4, such that Z'x—§ is a morphism with fibres

Z (s)x. In the following we call Z'x a polycylinder space over S. For
any morphism 7—§ of Banach analytic spaces

Z k.1
denotes the polycylinder space (T'XsZ) N (TXK). For the details
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the reader is referred to [Pou;] Chap. 4.

A second important tool are the morphism spaces which we are
going to describe now. If §, &, £k are as before and # —S§ is a space
of finite presentation over §, then we consider the following functor

Mors(Z'x, #): Ban/S—3ets
on the category of Banach analytic spaces over S, given by
Mors(Z'x, %) (T):=Morr(Z' k.7, ¥ 1),

where Mory (£ k.1, % 7) is the set of all T-morphisms from Z'kr into
% r of functored spaces.

(2.1) Theorem (Pourcin). The functor Mors(Z'x, %) is representable
by a Banach analytic space Ms(Zx, %) over S.

The underlying set of the fibre of Ms(Z'x, #) in a point sES
consists of all morphisms g of Zx(s) into # (s). The point in
Ms(Zx, %) associated to g and s will be denoted by (s,g) in the
following. If S is reduced to a point we simply write Mor(...),
M(...) instead of Mors(...), Ms(...).

Now assume that Z is another space of finite presentation over
$ and that there are S-morphisms

X, @
~
‘

Then we denote by MorZ(...) the set of all Z-morphisms.

(2.2) Proposition. The functor
T——MorF (Z'x,1, ¥ 1),
defined on Ban/S is representable by a Banach analytic subspace
ME( Xk, ) CMs(ZEx, ¥ ).

Proof. Composing with the map # —2% gives a morphism
Ms(Zx, ¥)—Ms(Z'x, Z),
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and the given S-map %£x—% induces a section S—>Ms(Zx, Z).
Obviously, the space
M?(Q”K, @)::SXMS(IK.g)MS('%Ka @)

represents the functor above.-

It will be important for us in the later sections to have a rather
explicite description of the relative tangent space of

M:=MZ (%, ¥).

For our purposes it is sufficient to restrict ourselves to the case where
$ is finite dimensional and where

HcUCxxC?

is a closed complex subspace of the Stein open set U in & X C? given
by the equations f=(fy,..., fo): U—->C%
If & is a coherent sheaf on # having a presentation

g

04— 04— & —0,

then we can associate to & the Banach fibre space (in the sense of
§6)
V(M: €)—Ker (M XsB(K, 04)——>MxsB(K, 03))
with &:=0*(ig), where
D%y u—%Y

is the universal morphism. It is easy to check that V(M;é&) is
independent of the representation and functorial in . We claim

(2.3) Proposition. The relative tangent space T (M/S) is canonically
isomorphic to the Banach fibre space
V(M;:2%,2).
Proof. If % =% xXC? then MZB(K, 04)* and so T(M/S) is
isomorphic to the trivial Banach bundle over M
MXsB(K, 0%).

Similarly, for any open subset UCZ X C? the space M¥F (Lx, U) is
the open subset of B(K, 0%) consisting of all (s, Ay,...,5h,) such
that (o5 A1y eeoy fp) (Zx(s))CU. If now # CU is given by the
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equations fy, ..., fq, then Ms(Z'x, %) is the preimage of the zero
section under the morphism

Ms(%x, U)——B(K, 0%)

(S by oeny hp)—(s, fiohy oo, fooh) if h=(hy, ..., ky).
Hence the tangent space of M=Ms(Zk, %) is the kernel of the
bundle map

T(F)

MXsB(K, 0%)—MxsB(K, 0%)

and it is easily seen that 7'(F) is just given by the matrix of partial
derivatives

1<i<q, 1<j<p.

_9f;
0z;’
Using the presentation
0y—0 w@oUQ%J/s“—’Q}qm—")O
ei——>1Qdu, (f3)

of 2%,, the assertion follows.-
We also note

(2.4) Proposition. Let g:%,—>%, be a Z-morphism (¥ ; as above)

and consider the map induced by g
Fg:M]_——)Mz, M,'::M'SQ’('%‘K, @,’), l=1, 2.
hb—-—)goh
Then the tangent map T (I'g/S) of I'y is induced by the canonical map
dg:g* (D, e) — 2% /2

Observe that for coherent sheaves &; on %, i=1,2, admitting global
finite presentations, any homomorphism

a: gt () — &,

induces a I';-map

V(My; &) —V (My; €5)

l l

M1 _I.,'g‘—> Mz
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of Banach fibre spaces. With the identification of (2. 3), proposition
(2.4) says that

TI'y/S) =dg.
The proof of (2. 4) is straightforward and left to the reader as an

exercise.

Later we also need the derivative of the composition mapping
between the morphism spaces with respect to the first variable. So let

Z,CcSxCh,
Z,CSXC™
be closed analytic subspaces in some neighbourhoods of the polycylin-
der spaces SXK; resp. SXK, (where K; resp. K, is privileged for
Z1(s) resp. Zy(s), s€S) and let f:Z,—>%, be a S-morphism. We
take the product embedding
3"1“—96‘ X C”l, n]_::ni—l_nz

so that f is induced by the canonical projection S§XC™—$§xC™
If we set K;=K; XK, and assume that 0%(5) is Kj-privileged for all
s&S, there is a morphism, also denoted by f

Z1e,——Z 2k,
of functored spaces and so there is an S-morphism
fF: M2—>M1, Mi::Mg('%‘iKi, @).

Let 0:: & ik .u,——%Y be the universal map for i=1,2 and & a coherent
0 g-module admitting a global finite presentation. The commutative
diagram

fu,
—_—
x 1Ky, M, Z 2Ky, M,

idxfrl izpz
&1k, i 7
induces a canonical ;/"-morphism
J(&): V(M &)—V(My; &)
of Banach fibre spaces. We claim

(2.5) Proposition. f(2%,4) is the tangent map of I
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Proof. It is sufficient to consider the case
Y =% XxC.
In this situation M;=B(K;, O g‘i) and we have

A B(Ky O z) ——B(&, O4)
h——hof,

Since the map is linear, the tangent map just equals [’ and this
shows (2.5).-

§3. The Representability Theorem

Let Z,%,X,Y,& be as in (1.1) and M;CMor (X7, %7) a
datum of structure preserving maps, see (1.2). We fix an embedding
i: X——C" and an S-embedding & ——>8 X C" which induces i on the
special fibre.

For every O x-privileged polycylinder KCC" we set

Zx=Z%NEXK), Zxr=%ZrN(TXK)

if T is a complex space over §. Shrinking S suitably around 0, we
may assume that K is @ 4z -privileged for all s&S. According to
§2, Zx and Z'kr are polycylinder spaces, and we consider the
morphism space

Ms(Zx, ¥ )
which represents the functor
Ban/S>T+—Morr (X x,1, ¥ 7).
We shall suppose that the following condition holds:

(A 3) There is a neighbourhood basis of @ x-privileged polycylin-
ders K around 0&C" and a Banach analytic subspace

MK‘——éMs(.%'K, @)
for each K, containing &, with the following properties:
(i) (Smoothness) The canonical map
T(Mg/S)— Mk

is smooth in a neighbourhood of &,.
(i) If :(T,0)——(Mx, &) is an S-morphism and @: & x,r——% ¢
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the associated morphism, then the restriction of @ to the interior of
K is a structure preserving map, i.e. is in My (XN IO{),

(i) If €M (XNK) is a morphism defined in a neighbourhood
of XNKC %', extending & and if

o (1,00 —(Ms(Z'x, ), &)

is the correspoding S-map, then ¢ factorizes over (Mx, &o).
We shall show

(3.1) Proposition. If (My)r is a datum of structure preserving maps
satisfying (A3), then for each polycylinder K as in (A3) there is a closed
subspace (Sx, 0)—— (S, 0) such that Mx maps into Sx and

Mr——>Sg

is smooth in a neighbourhood of &

Proof. By (A3) (1) T(Mx/S)—>Mg is smooth in a neighbourhood
of &. Applying the subimmersivity criterion of Douady (see [Dou,]
Théoréme 1), (Mg, &) is smooth over a subgerm (S, 0) of (S,0).-

(3.2) Corollary. Let (Mr)r be a datum of structure preserving maps
satisfying (A3). Then for each polycylinder KCC™ as in (A3), the
conditions (1.7) (1), (2) are fulfilled.

Proof. Property (1.7) (1) easily follows from the universal property
of Ms(Zx, %) and (A3) (iii), (3.1). In order to verify (1.7)(2),
let (T7,0)——(7,0) be an Sx-embedding and ¢'€My(XNK) a
structure preserving map which is defined in some neighbourhood of
XNKC %7 and extends &. Consider the following commutative
diagram

(T,0) == (M, &)
| ek
(1,00 — Sk 0).

Here @’ is the map associated to ¢’. By the smoothness of z there
exists a lifting @ of @’ as indicated by the dotted arrow. Obviously
(A3) (ii) gives property (1.7)(2).-
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Putting things together we therefore obtain from (1. 8):

(3.3) Theorem. If (Zr)r is a datum of structure preserving maps
satisfying (A3), then the functor F in (1.6) is representable, i.e. there
exists a maximal extension locus for &,.

§4. Smoothness for Deformations of Holomorphic Mappings

As in (1.5), let (Z,0)—(S,0) be a fixed morphism of germs of
complex spaces and consider morphisms

(%o, 0) 1= (&1, 0)—(Z,0),
(@, 0)— (%1, 00— (Z, 0).

We assume that there is a commutative diagram
5

(X5 0) — (X3,0)

b s C@o

(Y03 0) ? (Yla 0)
of the special fibres over 0&S and consider the datum of structure
preserving maps

Mz CMorr (L1, 1)

as defined in (1.5). In this section we shall always assume that the
following conditions are satisfied

“.1) G) o, &, are S-flat,

(ii) the sheaf dec (L& <L;go,@1§%‘]0yo), 0 x)
is finite over X;

(iii) the canonical map

TN g/Z;0g, 0 ) (0,0)®@@1.0 0 Xl,o——>5'0 (&/Z; O xy O x) w0

is surjective,

Here, by abuse of notation, J°(g/Z; 0 x;, U x,) 0.0 stands for

T°(8/Z;€0x (O x5 15 (0 Xl) ) ©.0-

We remark that (4.1) (ii) implies in particular that the cokernel of
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the canonical map

%mxo (& (951’0/2) » Ox) __>'9£’”?'X0 (fo&r (Qxlfl/z) » Oxp)

is finite over X; (compare the second exact sequence of the proof of
(1. 5)).
4.2) We fix S-embeddings
Z—SxC", i=0,1
and we embed %, with the product map
go‘——hg X Cno, no::ﬂ(,)‘{‘?’li.
Moreover we put ni=n;, n:=ny+n and regard Z:=2%,Xs%; always
as a subspace of §XC" via the product embedding. In particular,
we get embeddings of the special fibres
X —C", Xe—C", X—C".
For privileged chosen polycylinders K;CC™ and after shrinking S, the
spaces
Fox=% N (SXKO), K()::K(/)XK{CC”O
gg‘lxzzvgg‘l N (SX[{l), ]{1::Kiccn1
Z =% N (SXK), K=K xK,CC"
are polycylinder spaces over § as considered in §2. For any space
T—S over §, we denote by Z'x,r or T XsZx the polycylinder space

ZrN (T'XK) over T, similarly for the %, The aim of this section is
to prove the following assertion.

(4.3) Theorem. If (4.1) (@()-(ii) are satisfied, then the datum
(Mr) 1, defined in (1.5), fulfills (A3).

First we prove
(4.4) Lemma. Assume that (4.1) (i) holds. Then, for suitably chosen
polyeylinders K, there are Banachanalytic subspaces M= My of Ms(Zx, )

such that conditions (A3) (i), (iii) are true.

Proof. We shall construct M as a subspace of the product
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MyXsMy, M;:=ME(Zix,¥;),
which is contained in Ms(&k, %).
The composition with f resp. g gives S-morphisms
I'y: Mi—MEZ (Zox, %), h—goh
AT Mi—ME (X, Y1), h—ohof
and we define M =My to be the kernel of the double arrow

r
M, XsM1f=i>Mg(%'ox, %y)

Set-theoretically, M consists of all triples (s, ;) where s€S§ is a
point and

C=CoX8) : & ok () X X1k () =¥ o(s) X ¥1(s)
is a Z (s)-morphism which maps the graph of f(s) to the graph of
g(@s), i.e.
HOLCISLION
In the following, the point (0, &, &) in M will always be denoted
by & The pullback of the universal morphism

MixSc%',‘K—‘_)@;, 7,=O, 1
gives us a Z-morphism
D MXsZ x—%,, 1=0,1,

such that go®@,=®0 (idy Xsfx), and M, @, @, have the following
universal property: For every Banachanalytic space 7 over § and a

commutative diagram

of Zr-morphisms, there is a unique S-map 4: T—>M such that
h*(9,) =C;, i=0,1. This immediately implies the conditions (A3) (ii),

(iii) .~

For the verification of the most difficult part (A3) (i) we need

some preparations.
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{4.5) Definition. Let &; i=0,1, be a coherent sheaf on %,
admitting a global finite presentation. Then, according to §2, we
define

Vi(M; &)=MXy V(M &), i=0,1

and call V,(M; &) the Banach fibre space over M associated to & ;. We
note that for a good choice of polycylinders, these Banach fibre spaces
are direct in & with fibre

Vi(M: &) (&) ZB(K;, Homy (65 (£:(0)), Ox)).

(4.6) Remark. Put #:=¢,. Then there is a canonical morphism
Tk V1<M;y)ﬁV0(M§g*(?))
of Banach fibre spaces over M.

Proof. We fix a finite presentation

;)
0y —2 0% —>F—0

with a (¢ Xp)-matrix (#;). Putting
h(u)::ho@m v=0, 1, hel'(¥,, @@»)

it is sufficient to verify that the diagram

tady
MxsB(K, 0%4) —— MxsB(K, 0%)
idef}‘gll lide %

MxsB (Ko, 0%) MXsB (Ko, 0%)

—_—
Eg* ) 0,
commutes. But this follows at once from the formula

goDy= @0 (idy X5 fx) .~

(4.7) Definition., Let &, be as in (4.5) and let ¢:g%(&)—> &
be a homomorphism. Then we denote by

V(M; & &1)
the Banach fibre space over M which is the kernel of the map
ox—7x: Vo(M; € 0) XuVi(M; &) ——Vo(M;g*(61)).

Here ¢x is the morphism induced by ¢ (see §2).
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This construction is important because of

(4.8) Lemma. The relative tangent space T (M/S) is canonically
isomorphic to
V(M; Q% ya, Q}yl/s-)-

Proof. From (2.3) we obtain a canonical isomorphism
M3 T (M./S) = V(MDY ).
If we set My=M¥% (%o, %1), then there is an isomorphism
M X3, T (M3/8) = Vo(M;g* (24 2)),

which can be seen as follows: It .Q‘},,l,g has a presentation

(¢

)
) 1
04— 08— DY g0

then M Xy, T (M,/S) is the kernel of the morphism

;)
MXsB (Ko, @ 1;»O)——’MXs.B (Ko, @ ?g-o)
where
ﬁii =hjiog0@y= (g* (h;;)) .
r
Now, since M is the kernel of the double arrow M, Xle—}~——;r=>M2,

the tangent space T'(M/S) is the kernel of the map
T(Mo/S) X s X 36, T(My/S) 2 M X 1, T(My/5).

T.l"g—-TfF

But under the isomorphisms above this map can be identified with
ox—7x according to (2.4) and (2.5).-

For the verification of condition (A3) (i) we shall prove

(4.9) Proposition. Let &, i=0,1, be a coherent sheaf on %,
admitting a global finite resolution, and ¢: g*(&1)—> &y a homomorphism
such that the following conditions hold with & ;=&} (& ;(0))

(i) The cokernel % of the map

g[?:=¢v:éﬁmxo(¢;o, 0x,) —ﬂaﬁ”‘xo(fak(gl)s Ox,)

is finite over X,.
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(i) The canonical map

Homaoa) ((Eo, €1), (Ogy, 04))) <°-°>®%1,o 0 x.0
‘_>-9£"‘<X0,X1>((650, &, (0 xp Ux)) 00
is surjective.

Then, for suitably privileged polycylinders K, the Banach fibre space
V(M; &, &1) is a locally trivial Banach bundle over M.

(4.10) Corollary. Under the assumptions of (4.1), and for suitable
polycylinders K;, condition (A3) (1) is satisfied for M= Mkg.

Proof of (4.10). We apply (4.9) to the case & ;=24 /4, i=0, 1.
Then (i) and (ii) are satisfied because of (4.1) (i), @ii). This
yields the desired result.-

Let now &, be as in (4.9) and
Ex=V,(M; &) X3 Vi (M; &),
Ey=Vo(M;g*(&1)).
The proof of (4.9) immediately follows from (6.4) and

(4.11) Lemma. There is a morphism ax:Ec—>E, of Banach fibre
spaces over M with the properties
(i) E, is a Banach bundle over M,
(ii) the composition Bxoax is zero where Bxi=px —7rx, (see (4.7)),
(iii) the sequence of fibres over &
a g @ Br®
Eo(8) —E (§) —E,(8)

is a direct exact sequence of Banach spaces.

Proof. We consider the following diagram with exact rows and
columns

0

Homgrp oy (€0, @%, (Ogy 0g))
!
0—>gsloma, (&0, 0 9;) Sgsdlomy (&0, 0 5) X Homgy (61, 0g)
L domy (81, 0 g)—0

$gi=8q @ [

g*-%'n% (gc¢1, 0 @0) g*%m@o (g6, O @/0)-

SN
i
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Here i resp. p denotes the canonical injection resp. projection, and
¢ is the map dual to ¢. Similarly, there is also a diagram

0
_ 4
'%’“(XO,Xl)((éa(b éal), (@Xoa @Xl))
!
0= fosSHomz, (&, Ox,) i’f0=x<3£mxo((9509 Ox,) X‘%””Xl(é?ly Ox))
3 l l;a = i>-95”‘.561(6571, Ox,)
* *

JoxHomx (f§ &1, Ox)) _;‘" Sowdlomz (f§ &1, Ox)).

The induced map %MWl(éal, 0 ¢,)0—>Coker (¢x)o is a map of Og 0=
modules and the kernel & is generated by a finite number of germs
01, ...,0, which may be assumed te come from sections tj,...,7
in Hom,g)((E0, €1), (Og, 0g,)). We call the homomorphism given
by (T1y...,7g)

a;: 0y ——Homg a)((E0, 1), (Vg O4))).
Moreover, there is a homomorphism

ay: Oby——omg (&0, 0 4,)
which maps surjectively onto the kernel of ¢. We set
Ey:=MXsB (Ko, 0%,) XsB(Ky, 0%))
and denote by
ax:E—FE;

the morphism induced by (a, @;). Obviously, this map factorizes
over V(M; &, &1) and so (ii) is satisfied. Since (i) is fulfilled by
definition, it remains to verify (iii). For this, we consider the
following diagram

0B (K, 0%)——B (Ko, 0%) XB(Ky, 0%) —B(K;, 0%)—0

] o e

0—>B (Ko, 6¢) —B (K, §¢) XB(Ki, V) —B(K, 1)—0

g e |

0—>B(Ko, f§ (EDV)—> BEof$(EDY) — 0.
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Observe that the middle column is just the fibre sequence E,(§)—E; (€)
—E,(§). By (6.5) it suffices to prove:

(1) @k, awx, ¢x are direct,
(2) the induced map

Ker (a;x) —Ker (¢x) /Im (aox)

is direct and surjective,
(3) the induced map

Coker (a;x) ——Coker (¢x)

is direct and injective.

If we assume that Ko, K; are appropriate privileged, then (1) is true.
For the verification of (2) and (3) we have to look at first at the
following diagram of germs in the distinguished points (which are
suppressed here)

0— 4, — 0% X 0% —> 0% ——0

0
aol

0
0— Ey —— &4

PE—
A
|
=

|
0— (f(ED)V L (f (E))Y—0 .
We notice that the second column is exact in the middle term. This
is seen in the following way: Fix d€ (&¢ X &Y) .0 with (¢ —7) (@) =0.
Using condition (4.9) (ii) we may assume that & is induced by an
element @ in -%”"(oyo.@p((‘go, &), (@@0, @@1))@0)- By the construc-
tion of a= (ay, @;) we get that o is in the image of (gx(ao), ;). This
implies @=Im(a). Now we obtain the exact sequences
Ker (dﬁ) o—>KCI‘ (SZ) /Im (d’o) o—“‘>0,
0——Coker (&) ——>Coker (¢),,
and so Ker (§) /Im (&), is finite over 0 x o (also Coker (§)o by assump-
tion). Hence we have
Ker (¢x) /Im (aox) = B (K, Ker (¢)/Im())
=B (K, fos (Ker(¢)/Im(a))),

and similarly

Coker (¢x) =B (K, fox (£)),
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see [F1], II, (6.4). So, if K; is chosen privileged for the sheaf
morphisms

Ker (&) —fox (Ker (¢) /Im(a0)),
Coker (@) —fos (%)
we can achieve that (2) and (3) are satisfied. This proves (4. 11).-

§5. Applications

Let
(%5, 0)~"= (#3,0) <
(Z,0)—(S, 0)
(¥, 0)—— (%1, 0)
and
fo
(Xo, 0)— (Xl, 0) ~.
‘| Ja ,0)

(Y, 0)—— (¥3, 0)

be as in (1.5). We consider the functor
F: An/(S, 0) —3ets

given by F((T,0)):= {1}, if there exists a commutative diagram

fr
(Zor, 0) —> (X 11, 0)

J ;

¥
(@ o7, 0) —= (@11, 0)

of Zr-morphisms such that ({, &) induces (&, &) in the special
fibre, and F((T,0)):=0 otherwise.

If (Z7)r is the datum of structure preserving maps as described
in (1.5), then F is just the functor defined in (l.6). Using the
representability theorem (3.3) and the smoothness theorem (4.3) we
obtain

(5.1) Theorem. Assume that the following conditions are satisfied
) %o, &, are S-flat,
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@) the sheaf 8k (LES (Lo, Z o0y Ovp), 0x)
is finite over X,
(3) the canonical map

TN Z; Ogy 0g,) <o.0)®0g1_00 27 (@/Z5 Oxy Ox) o
1S surjective.

Then the funcior F is represeniable by a closed subgerm (S’,0) of (S,0).

By applying (5.1) to the special case f=idg, g=idg, we obtain
theorem (0.1) mentioned in the introduction. We are going to show
how to obtain a similar result for modules: Consider the situation

described in (1.4), i, e.
§: (Z,0)0—(%,0)
is a (8, 0)-morphism of germs of complex spaces with special fibres
X resp. Y over 0S8, and F resp. ¥ are coherent @4 resp. 04—
modules together with a homomorphism
©o - E(Go)—>F,

of O x-modules. Here the index “0” denotes the restriction to the
special fibre. We get from (5.1)

(5.2) Theorem. Assume that the following condition are satisfied

(1) & is S-flat,

(2) the canonical map induced by ¢,

Homy (G 3 9 )00, 0 x.o—>Homx (§5 (F0), Fo)o
s surjective.

Then there is a subspace (S’, 0)—— (S, 0) and a homomorphism
¢: £5(Gs)—>Fs, extending ¢o, with the following universal property:
If a: (T, 0)—(S, 0) is a morphism such that ¢, admits an exiension
¢ EX(G ) >F 1, then a factorizes over (S7,0).

Proof. First of all we remark that we may assume % to be flat
over S. Indeed, there exists a commutative diagram of S-spaces

(Z,0)——(S, 0) X (C", 0)

| |

(@: 0)——> (S, 0) X (Cma 0)
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and we can replace (£,0) resp. (#,0) by (§,0) X (C*0) resp.
(5,0) X (€™ 0). It is sufficient to verify the conditions in (5.1)
for the diagram

z ——>f Z2[F]

XK= —>§ .
/
Y —— ¥[¥9]

Since f and g are finite morphisms, (5. 1) (2) is fulfilled. For the veri-
fication of (5.1) (3), we notice that one has canonical isomorphisms
TG/ Z; Ou, Oaran) o0 =Homy (G, G )0,
T(@/Z; O x, O xt9) 0.0 = Homx (55 (Do), Fo)o,
as the reader may easily check. So (5.1)(3) follows from our
assumption (2).-

The most important applications of the results above are to locally
trivial deformations. First we consider deformations of holomorphic

mappings.

(5.3) Theorem. Let
(%o, 0)— (&1, 00— (X Z, 0)
be a deformation of the map germ fo/Z over (S,0) such that T"(Xo/Xi,
0 Xo)g is a finite O Xl,o—moa’ule. Then there is a maximal subspace
(87, 0)—— (S, 0) such that fs,/S' X Z is the product deformation ids X fo,
i. e. there exists a commutative diagram

fsr
(‘%‘05’9 0) _— ('%‘15’3 0)

l |

(S’ X Xo, 0) —— (S’ X X, 0)

idg,x fy
of 8"XZ-morphisms, and S’ is universal with this property, i. e. if a:
(T,0)—(S,0) is a morphism with fr=idrX fo then a factorizes over
(8%, 0).

Proof. We apply (5.1) to the case
Wo:=8SXXy, ¥,:=8XXy, Z:=8XZ, g:=idsXfo.
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The finiteness assumption implies that (5.1) (2) is satisfied. Observe
that L@}o/%:@s@CL;}O,XI. Apparently, also (5.1)(8) is fulfilled and
(5. 3) follows.-

(5.4) Remark. (1) By applying (5.3) to the special case f=id,
Zo=%,, we obtain the analogous result for deformations of spaces,
see (0.2).

(2) The same conclusion also holds for deformations of modules:
If %, is a coherent module on (X,0) and & is a deformation of
Fo over (§5,0), 1. e. # is a S-flat coherent module on (§XX,0),
then there is a maximal subspace (S8’,0) C(S,0) such that

F|S' X X=g*(F,)
where ¢: §’XX—X is the canonical projection, and §’ is universal

with this property. The proof is established just by applying (5. 3)
to the situation

(SX X, 0L ((SX X [F1, 00— (SX X, 0).

In particular (5.3) can be used to construct locally trivial versal
deformations. For the case of deformations of compact complex spaces
this was already done in (0.3). A similar result holds for deforma-
tions of modules.

(5.5) Theorem. Let F, be a coherent module with compact support
on the complex space X. Then there exists a locally trivial semiuniversal
deformation of F,.

Proof. By the theorem of Siu-Trautmann [S-T7], see also [B-K]
(V 4.11), there exists a semiuniversal deformation F* of &, over
some base space (§*, 0). Using the same method as in the proof of
(0.3) and in addition (5.4)(2) we get a universal subgerm (S, 0)
—— (5%, 0) such that #:=%*|S’X X is locally trivial in all points of
{0} xX. This & has the desired property.-

We remark that an analogous result also holds for other situa-
tions where semiuniversal deformations exist, so e.g. for

-deformations of holomorphic mappings, cf. [FI] (8.5),
-deformations of l1-convex spaces, cf. [B-KJ] (V 5.2).
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We leave the straightforward formulations and verifications to the
reader.

We will give two further applications of the existence of the maximal
extension locus. The first one was shown by Pourcin and is an

important tool for the construction of the relative Douady space in
[POUz].

(5.6) Theorem. Let (Z,0)——(S,0) be a map of complex space
germs and F—"—% be a map of coherent O yz—modules such that ¥ is S-flat
and @/Msop is the zero map. Then the functor

F: Un/(S, 0) —Zetsd
{1} if ¢r=0
0 otherwise

is representable by a closed subspace (S',0) S (S, 0).

F(T,0)=

Proof. Without restriction of generality we may assume that %
is S-flat. Let the index “0” denote restriction to the special fibre X
and consider the extension problem for the map fo of Z [#]-spaces

X[go]'—'_').%‘S/[gSI]
fo

Z[7] .
X — X /

Here fo is the morphism given by the injection O x—>0xX %,
and, similarly, —>Z[F] resp. Z[4]1>Z[F] are defined by the
projection O gXF >0 4 resp. 1 Xp: OpgXF—->0,Xx¥%. By (5.1)
there exists the maximal extension locus S'CS for f;. Observe that
the conditions of (5. 1) are trivially satisfied. Obviously §’ represents
the functor F above.-

(5.7) Theorem. ([Fr]) Let (%,0)—>(S,0) be a morphism of
complex space germs and F a coherent O g—module. Then there is a subspace
(87,0) in (S,0) with the following properties.

1) Fs is S'-flat.

@) If (T, 0) is a space germ over (S, 0) and Fr is T-flat then
(T, 0)— (S, 0) factors through S’.
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Proof. Again we may assume that & is §-flat. We consider a
presentation

032 02— F—0
and a map ¢o: 0 F——> 03 such that

% %0 v
02 0%} ON—F, 0

is exact. By standard commutative algebra, &, is T-flat iff ¢ can
be lifted to a map

¢: 0F— 0%,
which maps into the kernel of ¢r. Let /4 denote the cokernel of the
transposed map ‘¢. Then ¢ induces a map

tSZt):(Ph (R 107‘2) : ‘/VO__)@;?
which can also be considered as a map
N0 5, () 0, ().

By the remark above, for a space (7, 0) €Un/(S, 0), p can be extended
to a map

7,
NE— O,

iff #, is T-flat. Hence we must show that the maximal extension
locus of p exists. For this we will verify the conditions in (5. 2), i. e.

Hom(l, p) : éns (N2 o——>omx (N E 0 x)o
must be surjective. Let
=gy s &) N— 0%
be given. By construction, g, ..., g, are generators of Homy (N0, O x)o
and so there are a;;€ 0 4, with
gf=Zi aij ° Pis
if a;; is the residue class of a;; in 0 x,. Obviously, the endomorphism
of & given by the matrix (a;;) then maps onto g.-

(5.8) Remark. In the situation of (3.3), let (S’,0) S(S,0) be
the maximal extension locus of & and &: Z¢—>% s be a structure
preserving map extending &. Then the openess of wversality principle
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holds, i. e. if s&8’ is sufficiently near 0 then (S',s) is the maximal
extension locus for £(s). This follows easily from the proof of (3.3).
From this we get that this openess principle also holds in (0. 1)-(0. 3)
and (5.1)-(5.7).-

§6. Appendix: Banach Fibre Spaces over Banach analytic Spaces

(6.1) Definition. Let & be a Banach analytic space over the
Banach analytic space § and suppose that & is equipped with an

addition, scalar multiplication and zero section

& Xs& 258,

mult.

Cx & 258,

S —,

which satisfy the usual axioms for vector spaces relative S. Then &
is called a Banach fibre space over § if in addition & is locally in §
isomorphic to the kernel of a linear S-morphism

p: EXS—FXS

of trivial Banach bundles over S.

Observe that the fibres of & —§ are in general not Banach spaces.
E.g., if § is a point and f: E—~F is a linear map of Banach spaces
then Ker(f) is a Banach fibre space, and Ker (f) is a Banach space
in the usual sense iff f is direct.

In the following, a Banach fibre space which is locally in § isomor-
phic to a product E XS with a Banach space E, will always be
called a (locally trivial) Banach bundle. Morphisms of Banach fibre
spaces and bundles will always be considered to be linear.

Now let € —S§ be a Banach fibre space and s5oES. We shall say
that & is direct in s, if the fibre & (s) is a Banach space. If & is
given as the kernel of a linear map ¢ as above, then & is direct in
so iff @(so) is a direct morphism, and this is equivalent to the
smoothness of the fibre & (s,).

(6.2) Lemma. Let & be a Banach fibre space which is direct in
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5ES and put E:=6 (s0). Then, after shrinking S as a neighborhood of
So, there is a morphism

[ EXS—Fx%xS§
of trivial Banach bundles such that & =XKer(f).

Proof. Suppose that & =Ker(g), where
g E'XS—F'XS§
is a morphism of trivial Banach bundles. By our assumption there is
a decomposition
E'=EXB, F'=FXB

of Banach spaces such that for g= (g, g&,ids) one has g (e b, s0) =0,
(e, b, 50) =b. Applying a bundle automorphism of E’XS, we may
assume that g(e, b,5)=b. Now with f(es5):=g10,0,s5) Ker(g)=
Ker(f) and the lemma is proven.

(6.3) Extension lemma., Let & =Ker (EXS;F X 8) be a Banach
Sfibre space over S and ¢: € —G XS a morphism of Banach fibre spaces
where G is a Banach space. Then, locally in S, there is a morphism

$: EXS—GXS
of Banach bundles over S, extending ¢.

Proof. Since G is smooth there is a S-morphism
h: U—G XS,

defined in a neighborhood of (0, s) €E xS which extends ¢. Then
the relative tangent map of 4 restricted to § (via the zero section)

=T (h) |S: T(U/S) |ISEEXS—>GXS

obviously extends ¢ linearly.-

(6.4) Proposition. Let
&8¢,
be a sequence of Banach fibre spaces over S with the following properties

(i) &y is a Banach bundle over S,
(ii) &, and &, are direct in s,
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(sg) &(sp)
(i) dp=0,and &o(s)—> &1 (50)—=> & 5(s5)

is a direct exact sequence of Banach spaces.

Then Ker(¢) is a Banach bundle over S.

Proof. If &, and &, are Banach bundles then this proposition is
well known, see [Dou], p. 21, Prop. 3. In the general case, let &,
resp. &, be the kernel of the Banach bundle morphism

F: ¢-— &1,
resp.
G: éaé—'* @@; H
By (6.2) we may assume that F(s) and G(s)) are the zero map.

Using (6.3), there is (locally around s,&S) a morphism ¥ which
makes the diagram

éal_ng

C1—5— &2

commutative. Here ¢ and j are the given inclusions. We consider
the following diagram

’ ” ’
— o
éao ip gl(p,q") éa]_ ngz.

Obviously we have Ker(¢) =Ker (F, ¥). So, by the lemma of Douady
just mentioned, it suffices to show that the sequence

(i9) (sp) (Fsp). T sp)

)
& o(50) & 1(s0) & 1(50) X & 3(s0)
is direct exact. Since &(s)=&4(s) for k=1,2,and F (s,) is the

zero map, this follows immediately from our assumption.-

(6.5) Proposition. Lez
0 E; E; E; 0

be a sequence of complexes of Banach spaces with the following properties,
(i) For each i€ Z the sequence 0—E{—E;—E;i—0 is direct exact,
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(ii) Ej and Ej are direct,i.e. all coboundary maps of these complexes
are direct,
(iii) the connecting morphisms

H'(E3)—H™ (E)
are direct for all 1€ Z.
Then E, is direct too.

For the proof, see [B-K] (I, 4.12).

§7. Appendix: Extensions of Holomorphic Mappings

In this section we shall give a brief account on the relationship
between extensions of holomorphic mappings and certain Ext-groups.
This correspondence-which was used several times in this paper-seems
to be more or less well known, but unfortunately we could not find
any precise reference even in the context of algebraic geometry. For
a related situation see [IlI] vol. 1 (III 2.2). We shall state the
result in a rather general way and sketch the proof only in the local
case as far as it has been used in this paper.

We consider a commutative diagram of complex spaces

f
go ‘%‘1
N ,
\\‘ 3‘0 7 gl //I
4] \‘ J/Cé a l o]
y ¥
@o __—‘>g @/1 —_— ﬁﬂg

where Z';=——%'; is an extension by the coherent 0% -module ;.
A pair of morphisms
L &— ¥, i=0,1,
will be called an extension of ({5, (1) if the ; are Z-morphisms
satisfying
&=, GIZi=C.

What we need is

(7. 1) Proposition. (1) There is a natural obstruction
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ob (&, &)
Jor extending (Co,&1) to a pair (o, &) as above. This obstruction lies in
K:=Extig;#) ((L&* (Lyy2), Li* (Lyy2)), (Mo, M1)).

(2) The set of all pairs (o, &) extending (Lo, 1) is a formal
principal homogeneous space under the action of the group

Extlgf o)) ((LG* (Laya) , LG* (Liy2)), (Mo, My)).

Progf. Since we have only used (1) we shall leave the simple
proof of (2) to the reader. Moreover we shall show (1) only in the
case where &; is Stein and where there are locally closed embeddings

Y—C°x%, ¥, —C"X%
such that g is induced by the canonical projection
CoX 2 =COXC'x Z—>C" x &
with my=ng+n;. Obviously the {; can be lifted to holomorphic Z-
maps
Lo & —C X Z

such that the diagram

.%‘0 — .%‘1
k
COXF—C"'X%

commutes. Let #® be the first infinitesimal neighborhood of #; in

C"xZ and #,C(0 , |¥)) be the ideal of ¥, Since L:(Z)C ¥,

we obtain {;(Z;) C¥%® and so {; determines a pair of homomorphisms
a;: G* (I /I —M;, i=0,],

which can be regarded as an element

(@, @) EK"=Extigfap (LL* (L° .0 ), LL* (L o ), (Mo, M1))
Y/C "XZ Yq/C X%

(compare also [FI] (2.21)(6)). We define ob({;, ;) to be the image
of (@, @) in K under the canonical map K’—K. The reader may
easily verify that this element depends neither on the chosen embed-

dings of % nor on the liftings C..
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Obviously, if there is an extension (,&) of (&, &:) then ob (&, &)

is zero, since we can take {;:=C{; and so even (ao, @;) vanishes.

Conversely suppose that ob({y, ;) vanishes. Then there is a
pair
(o B) S K" =Extlag o (LL™ Ly )y LG (L)), (A, )

inducing (@, o;) in K’. Observe that there is a natural exact sequence
K'—K'—K,

By modifying (50, El) by (B, 8;) we may assume that already (ao, ay)
is zero. But then & resp. & maps %o resp. &; into %, resp. %,
and so we have an extension of ({y,{;) as required.

We remark that for the proof of the general case one must use
resolvents of complex spaces, see [Fl] or [B-K] (I §8).
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