Publ. RIMS, Kyoto Univ.
23 (1987), 791—811

An Aspect of Differentiable Measures on B*

By

Hiroaki SHIMOMURA*

Introduction

In this paper we shall study differentiable probability measures u# on
the usual Borel o-field B(R") on R~ which is the countable direct-product
on the real line B. First in Section 1 we prepare some basic tools for our
later discussions and discuss general properties of these measures. In
Section 2 we consider measures of product-type, #= [I7-1¢. and investigate
the set D, of all differentiable shifts of x#. And using these results, we
characterize measures g such that D.2/% If un(n=1,2-:+) is the same
measure, then ¢ is said to be a stationary product measure. In Section 3
we take up stationary product measures. It will turn out that D, is an
Orlicz sequence space. Lastly in Section 4 we consider a relation of
differentiability and quasi-invariance of y.

§1. Preliminary Discussions

Let # be a probability measure on the measure space (R~ B(R™)).
For a=(a.)ER™ if lim;~o t {u(E + ta)— u(E)}=0.u(E) exists for all EE€
B(R™), then  is said to be differentiable in the a-direction, or « is said to
be a differentiable shift for ¢. The set of all differentiable shifts will be
denoted by D,.. It is remarkable that the above pointwise limit can be
taken the place of the total variation norm of signed measures. (See, [5])

It is not hard to see that #‘;#(E +ta)=0.,(E+ ta) for all tER, d.p=0 if

and only if a=0, D, is a linear subspace of B”, Oaa+stt= @0att+ B0spt for all
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a, b€D, and a, BER, and 0d,¢ is absolutely continuous with respect to ..
Put for a€Dj lall= [ |40 ()| du(z)=| et

D.. Let pa x—(xn)ER“H (x1, **, xn)ER" and qn: 2=(xz2)ER*> x.€R,
and put ux(E)=p(g.""(E)) for all Borel sets E of R. Then for any a=(a»)
E D, dutt(gn Y (E))=1im =0 t Hun(E + tan)— n(E)}=anlims-o ¢t {uE+1¢)
—ua(E)}. Thus p. is differentiable and we have |a.=[duall|axl.

Then |||« is a norm on

L} .

Theorem 1.1. (D, ||-|l.) is a Banach space of cotype 2 and the normed
topology is stromger than the product topology on R™.

Proof. The last assertion is a direct consequence of the above ine-
quality. Let {a®}» be a Cauchy sequence in (D, |+|.). Then a*® con-
verges to € R in the product topology and {d.» ¢} is a Cauchy sequence
in the total variation norm of signed measures. It follows from Theorem
3.1 in [5] that aE D, and [|0aw ¢t — daptllter— 0(F——0). Since (D, ||*l.) is
isomorphic to a subspace of L}, it is of cotype 2. Q.ED.

Lemma 1.1. Let (X, 1) be a topological linear space such that X is a
subset of R®, the vector topology t is stromger than the product topology on
R and t is metrizable with d such that (X, d) is a complete metric space.
Then if it holds X< D, or D.S X for some p, the injection is continuous
in either case.

Proof. 1t is a consequence of closed graph theorem and Theorem 1.1.
Q.E.D.

Put @=/?(1<p< ) or ¢ and e,=(0, -, 0,\f0- -); canonical base of @.
And let ¢ be a @-differentiable measure. (That is, D.2®.) Then by the

doost (I)‘d#(I) =

above lemma, there exists some constant K such that f l
Klalo. Hence putting a’"#(x) pa(x), we have f{ "”( y— N
anp,,(x)l dp(x)— 0(N— ) for all a=(a.)E . Especially, X7

an A on(x)du(x) converges to d.u(B) for all BEB(R>). First we consider
the case p=1.

Theorem 1.2. Let u be a probability measure on B(R”) such that D.DO
{x=(x2)ER>|x,=0 except finite numbers of W's}=Ry>. Then D,2['<—
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| ol <o

Proof. 1f D.21, then by the inequality above we have ﬂpn(l')ld/l(l')

=Klex|ln=K. Conversely if this condition is satisfied, {Z7-1an0n(x)}~ is a
Cauchy sequence in L for all a=(a.)E/'. So we have a€ D, in virtue of
Theorem 1.1. Q.E.D.

Now let 1< p<oo, p~'+¢*=1 and consider an /?-or co-differentiable
measures # Then an /9 or /'-valued set function T.: BEB(R®)-

( Lpn(x)du(x))n is defined.

Lemma 1.2. For any >0, there exists some >0 such that p(E)<4
implies | Tu(E)|< e.

Proof. Put d(A, B)=up(A©OB) for all A, BEB(R~). Identifying A
with B if ®(A©B)=0, we have a complete metric space (8(R~), d). From

the absolute continuity of indefinite integral, 7(B)=( j{; or(z)dix), -+,

Apn(x)d;z(x), 0,0, ) is continuous on (B(R™), d). Since lim . T»(B)=

T.(B), so a continuous point By of T exists in virtue of Baire’s theorem.
Thus for any &>0 there exists some >0 such that #(BO&B,)<d implies
ITAB)— Tu{Bo)l<27'e. Now let u(E)<3. Put Bi=EUBy and B.=
BN E¢. Then we have u(Bi—By)=6, u(B:—Bo)<46 and E=BNB:".
Hence | Tu(E)|=|Tu(B)O Tu( B =T B)O Tl Bo)l + | Tu(Bo) — Tu(B:)|
<e. Q.E.D.

Theorem 1.3. Let ¢ be an I*- or co-differentiable measure. Then T,
is an 1% or I'-valued vector measure on (R>, B(R™)), and it is absolutely
continuous with (1.

Proof follows directly from the above lemma. Q.E.D.

Let ¢ be an /?—(1<p< o) differentiable measure. /9(1<g<o0) has
Radon-Nikodim property. So if 7. has bounded variation, sup
{2 sexl| Tu(B)|w: m partition of R* into a finite number of pairwise disjoint
Borel subsets}<co, then there exists a function F in L'(R™, B(R>), u, /)

such that Tu(B)= '/; F(x)du(x) for all BEB(R). From the definition of
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T,, we have F(x)=X%-1 on(x)en for p-a.e.x. Hence FEL‘<=>f(Z‘.Z°=:
|on(x)|?)9du(x) <o, Settling these arguments,

Theorem 1.4. Let D.DOR,™ and 1<p<co. Then D.=2I” and the
! -valued vector measuve T, has bounded variation if and only if f (27:1

o

q\1l/q
) du(x)< oo,

Proof. It is nothing to prove “if part”. Conversely if the last ine-

quality holds, then ﬁZZ":lanpn(x)ldu(x)éIIallzp /(27=1|pn(x)|")”"dﬂ(x), and

I Tu(B) = A (S5l on(2)| ) 9di(x) for all BEB(R™). So D.21° holds
and 7. has a bounded variation. Q.ED.

Remark 1. In general the bounded variation condition is not satisfied.
For example canonical Gaussian measure G on (R~ B(R~)), being the
product of 1-dimensional Gaussian measure dg(¢)=(2x) "%exp(—27"¢*d!t,

is (*differentiable. (See [5] or later arguments.) However f(Z?f:x

on(2))*dG(X) = [(S5rz4?)*dG(z) =0,

§2. Measures of Product Type

In this section we consider measures ¢ of product type consisting of 1-
dimensional probability measures . on (R, B(R)). Then u is R™-
differentiable if and only if all the u. are differentiable on B. Further by
Theorem 7.1 in [5], it is equivalent that each u. has a density f(#) with the
Lebesgue measure df on R and that £’(¢) (in distribution sense) belongs to
L% (R). Consequently we may assume that f»(¢) is an absolutely continu-
ous function with the derivative /»'(¢)€ L% (R). From now on we always
assume that g is of such type, du(x)=®nfa(xn)dz» and D.DO Ry™, and we put
éa(t)=12'(¢)/f»(t). Now consider a conditional expectation Exp(F|B.)(x)
of FEL.(R™) relative to the sub-o-field B»=p,""(B(R")). If a=(an)ED,,

Ot () Vi y-wBxp( 2008, )(2)= litn - s anfs (2n) fn) i L

Hence {X¥-1a.$.(x.)} forms a Cauchy sequence in L} and |al.= ﬁZ‘.Z"::
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andn(zn)ldp(z).

Theorem 2.1. For du(x)=Qnfalxn)dxn and D.DOR.™, besides the
conclusion of Theorem 1.1, D, contains R™ densely and the canonical base

W
en=(0,,0,1,0, ) (n=1, 2, --*) forms an unconditional base of (Dy,|||.).

Proof. 1t may be only to prove the unconditionality. Let {e.(w)} be a
Bernoulli sequence. They are independent identically distributed random
variables on a probability space (£, P) such that P(e.(w)=+1)=2""

Now ¢.(xn) (n=1,2, ---) are independent and f¢n($n)dﬂ(l‘):0. Thus for
any a=(a.)ER>, {2%-1 andn(xa)} is a martingale and it follows that
ﬁZneN1an¢n(xn)|dﬂ(x)§ﬁzneNzan¢n(xn)|dﬂ(x) for finite subsets M, S N: of

natural numbers. Hence for all o€ 2 and a=(a.)ER",

27 [ 24 anen(@)dalzn)ldi(x) S [I2msand(za)ldid)

<2 [|2¥ranen(@) $ulzn)ldic()
The unconditional constant of the base is less than 2. Q.E.D.
Corollary. (a.)ED.=(exw)a.)ED. for all wE L.
Proposition 2.1. For du(x)=Qnfa(x)dxn and DD Ry,
a=(a,,)ED;;(E#Sl};vpfli‘.’,)’:lanrﬁn(xn)ldu(x)<oo .

Proof. (=) It is obvious by the preceding arguments.
(=) Using Ottaviani’s inequality for independent random
variables, after some calculations we can derive that

/slplplZﬁV:lanm(xn)ldu(x)é125\pllpﬁ2ﬁ=1an¢n(xn)ldp(x)<OO )

Hence {Z7-1a.$:(xx)}w is a uniformly integral martingale. It follows from
martingale theory that they form a Cauchy sequence in L.(R~), and so we
have a€D,. Q.ED.

These arguments are collected as a following theorem.

Theorem 2.2. For di(x)=Qnfa(xs)dxn and D.DR”, the following
are all equivalent.
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(1) a=(@z)ED,.
(2) (ZN-1anda(zn)}n forms a Cauchy sequence in L.

(3) YBEB(R™), 27=1an£¢n(xn)du(x) converges.
(4) YBEB(R™), suplSian [ $ulzn)dulz)l<co.

(5) sxpﬂ2¥=1an¢n(xn)ldﬂ(x)<w .
Proof. 1t is clear from what we have discussed. Q.E.D.

Theorem 2.3. For du(x)=Q@nfo(x2)dxn and DO R, the following
are all equivalent.

(1) CoCDy
(2) ("C Dy
(3) sup [[S¥ardaln)ldisz)=S < oo

Proof. (1)=(3). By Lemma 1.1 there exists some constant S >0 such
that ﬁ2¥=1an¢n(xn)|d;z(x)§5 Max{|a.lln=1, --, N} for all N and (a.)E

R". Thus (3) is obtained by putting a,.=1 (z=1, -+, N).
(3)=(2). Consider a point (£x)€R" such that |t:|<1 (»=1, -+, N). Then
(¢) is a convex combination of points (&.(w))E R" running @ on 2. Thus,

ﬂ2g=ltn¢n(xn)ldﬂ(l') = l\gggxﬂELen(w)¢n(xn)|du(x)

<2 [ guan)ldu() <25

It follows from (5) of Theorem 2.2 that /*CD,. “(2)=(1)” is obvious.
QED.

Theorem 2.4. For du(x)=Qnfa(xn)dxn and D.DO R, D#211¢=>31’1‘p
[ ®lar<c,

Proof. As %Zﬂ(l')=¢n(xn), this is a restatement of Theorem 1.2.

Q. E. D
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Remark 2. Put M= sgp/:: |/’ (t)|dt. Then |f2(d)— fr(a)|l<

’/ablfn,(t)ldth. Since limg-« /=(R)=0 for all n, |fx(@)|<M for all » and

aER.

To investigate the structure of D, in more detail, we wish to discuss it
in probabilistic terms.

Lemma 2.1. Let (2, P) be a probability space and X(w) be in LKR).
1
Then ﬁ_/o‘ {1—cos(uX(w))}u‘zdudP(w)éBLIX(w)idP(w), where B=31§p

I'/o.tsin ulu dul.

Proof. Take any € such that 0<e<1. Integrating by parts we have
1
[ [ 1= cos(uX (@)} u*dudP(w)=~ [ (1~ cos(X(w))}dP(w)+e™ [ (1

(w

X(@)

—cos(eX(cu))}dP(a))-l-[J{jgx(w) sin w/u du}X(w)a’P(w). Using 1—cos a<

|a|, we apply bounded convergence theorem to the second term in the above

equality as €—» +0. Then '/;fol{l—cos(uX(cu))}u‘za’ua’P(w)é

B [ 1X(w)ldP(w). QED.
Lemma 2.2. Let X(w)ELKRQ) and put for =R,

Nx(@)= f / "1~ cos(euX ()} u-2dudP(w) |

(I [[1X(@)|dP(w)=0, then Nx=0. So we assume that [ |X(w)|dP(w)+0)
Then
(1) Nx(a) is differentiable for a+0 and Nx'(¢)>0 for a>0.
(2) Nx(ta)<(4t*+|t|)Nx(a) for all t and a.
Proof. Integrating by substitution, we can rewrite as Nx(a)=a _[2 l a{l

—cos{uX(w))}u?dudP(w). It follows that Nx’(a)=ﬁ)_£a{l—cos

(uX ()} e 2dudP(w)+ a/“‘]!;{l —cos(aX(w))}dP(w)>0 for a>0. It iseasy

to see from the above form of Nx that Nx(te)<|t|Nx(a) for [t|<1. Now let
|£|>1 and choose #=0, 1, - -, - - such that 2"<|#|<2""'. Since 1—cos(2*a)
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<2**(1—cos a) for all @ and £=0,1, --, -+, it follows that Nx(ta)=<

Nx(2n+ld>§4'zanx(a/)élltsz(d). QED
By (2) of the above lemma we can define a function Mx(e) on R Mx(a)
o 1

= [“Nx(ta)do(D)= [ [ (1-exp(—2" a?u? X¥())}u*dudP(w).

Lemma 2.3. Under the same assumption on X(w) as in Lemma 2.2,
(1) #Nx(a)< Mx(2)< Nx(a) for a€ R, where k= [ (42*+]t)dg(t) and ¥

=g(|¢|=1).

(2) Mx(0)=0, limg-=Mx(a)=c0 and Mx is a strictly increasing function on
[0, o).

(3) For a+0, Mx"(a) exists and Mx”(a)>0.

(4) Myx satisfies (4:)-condition at 0,

(Az); ;iIBJQMx’(a)/Mx(a’)<OO .
Proof. Integrating both sides of (2) of Lemma 2.2 with dg(¢), Mx(a)<
ENx(¢) for a«€R. On the other hand, Mx(a)= / “Nilta)do(t) 2

[... Nx(ta)dg(£)2 ¥ Nx(a). Since
Mx(@)=a [ [(1-exp(—27u> X*(w)}u *dudP(w), it follows that
limMx(a)=c0, Mx ()= [ [“(1—exp(— 2" w* X (0)}u *dudP(w)
+a [ (1-exp(—2"' @ X*(w))}dP(w)> 0 for a>0 and

Mx”(a)=/!;exp(—2“a2X2(w))Xz(a))dP(a))>0, for a#0. Lastly for a>0,

aer’(ar)=Mx(oz)+’/!;{1—exp(—2“0:2X2(cu))}dP(w)§2Mx(af). Hence the
(d4z)-condition at 0 is satisfied. QELD.

Remark 3. An Orlicz function M is a continuous non-decreasing and
convex function defined on ¢ =0 such that M(0)=0 and lim;-M(t)=o00. If
M(¢)=0 for some t>0, M is said to be a degenerate Orlicz function. By
Lemma 2.3, Mx is a non-degenerate Orlicz function satisfying (4)-condition
at 0. This condition is equivalent with that for every positive number @
>0, mt—-+0M(Qt)/M(t)< o, (See, [1])
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Theorem 2.5. Let {X.(w)} be a sequence of independent random
variables on (2, P) such that X.€ L' (2) and LXn(a))dP(w)=0, (n=1, --,
-+). Then the following are all equivalent.

(1) 271 Xn(w) converges in LK) .

(@) S [ [ (1= cos(uXu())}u*dudP(@)= 3 Nes(1) <o

3) 3=, [g l "1 —exp(— 242X 0)) ) u-2dudP(0) = S5 My (1) < o0 .

Proof. Equivalence of (2) and (3) is obvious by Lemma 2.3.
Before the rest of the proofs we wish to state some remarks. Let {e.(@")}
be a Bernoulli sequence on a probability space (2, P). Then

[ [ 1—cos(Znen(w) Xn(w))}dP(@)dP (@)
sz {1—exp(iZren(w) Xa(w))} dP(w)dP' ()
= [ 1~ TLrcos(Xn(w))dP(w)
=1 H"[aws(X"(“’))dP (@)=Zn{l— [)COS(Xn(W))dP<W)} .

Conversely if ]._-/‘;COS(Xn((D))dP((l))Ean<2-1 for all » and

1= [ [ cos(Znen(@) Xn(w))dP(w)dP' () <27, then using Ko< —log u/
(1—u)<K, for|1—u|£27! (Ki and K: are suitable positive constants), we
have Snans — Ky T log(l—an)=— K logllu(1- a) S KK (1= [ [
cos(Dnen(w’) Xn(w))dP(w)dP (w’)}. Next put H(t)=£l(1—cos t&)aé=1
—sin #/t. Then H=0 and H(t)=27", if |¢t|=2. Lastly we notice that
_[)|X(a))la’P(cu)=fom P(|IX(w)|=t)dt holds for all R-valued measurable

functions.

Proof of (1)=(2). Put M=sgp[}[2, |22 0= 16n(0) Xn(w)|dP(w)dP (o)

and take 7 such that 0<7=(2M)!. Then for all 0=y <1, A[} {1—cos
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(ru 21 en(w) Xn(w))}dP(w)dP (0 ) S Mur<2~' and /;){l—cos
(ruXn(w))}dP(w)< Mur <27 for all #. Hence we have 28— iNx.(r)=227-1
[ [ 1= costeuxa(@D}u*dudP(0) S K K, [ [ 1= cos(rusta

en(0) Xn(0))u*dudP(0)dP (o) S K" K Br [ [ | Senw)

Xn(w)|dP(w)dP(w) < K. ' KiBMr, where B is the constant in Lemma 2.1.
Since Nx.(1)<2%*Nyx,(7) for £ such that 27*<r, it follows that Xln-1Nx.(1)
< oo,

Proof of ()=(1). [ PXP(IZ#1en(@) Xu(w)| 2 R)dR

=27 [ [ HERSHen) Xn(w)dP(w)dP(@)dR

=2 [ [ [ (1-cos2R " 62 ten(@) Xn(w))}dP(w)dP (') dRdE
<25, [ [ [ (1—cos(@ueXa(@))u* dudP(w)de

<20, [ Nao(28)dE SO N (D) SBT3 Neo(1)

It follows that sup [ [ZHo Xa(@)ldP(@)S2{1+ 855 Ne(1)} <c0. As we
have seen in the proof of Proposition 2.1, LH2)-convergence of {Z7-:
Xn(w)} is equivalent to sup /lEﬁ:an(w)ldP(cu)<OO for independent ran-
dom variables X.(w) with mean 0. Thus we have (2)=(1). Q.ED.

From Theorem 2.2 and Theorem 2.5 we have.

Theorem 2.6. For du(x)=Q@nfz(xn)dxr and D.DO RS, the following are
all equivalent.

(1) a=(an)ED,.
(2) For Nu(@)= [, [ (1~ cos(aupn(zn)}u *dudi(x)(n=1, ),
2=1Nw(an) <o .

(3) For Maa)= [ [ (1—exp(—2" a*u*du(an))lu~*dudu(z) (n=1, ),

Z?:an(dn)< o |
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Remark 4. In[1], modular sequence spaces are stated as follows. Let
{M,} be a sequence of Orlicz functions. The space /iuy, is the Banach space
of all sequences a=(a») with 25-1M.(0*|ax|) <o for some p>0, equipped
with the norm |a|=inf{o|XZ5-1M(07'|a.|)<1}. The space iy is called a
modular sequence space. If every M, is the same Orlicz function M, then
limn=In is called an Orlicz sequence space. Theorem 2.6 shows that D,
for ¢ of product type is a modular sequence space. Moreover if ¢ is a
stationary product with f, du(x)=&n.f(x»)dx, then D, is an Orlicz
sequence space Iw,, d=1"/f.

Theorem 2.7. For du(x)=Q®ufo(xz)dzs and D.DO R, the following
are all equivalent.

(1) D.21/*.
(2) There exists (8n)E [* such that

sup [ [ $aaexp(— 8¢ (zn)us®) dudid )= M <co.

(3) There exists (8.)E Dy such that the same inequality as in (2) holds.
Proof. (2)=(3).
1 1
Put F(t)=’/o' {1—exp(~u2t)}u'2du/t'£ exp(—u?t)du for 0=t < oo,

1 1
Then ]; {1—exp(—u?t)}u*du and t£ exp(—u*t)du regarded as functions

of t are both O(J/t) at t=o and O(¢) at t=0. Hence some constant %
exists such that F(¢)<k, and 251 Mn(v268,)

=Z‘.Z°=1fmll{l—exp(——6n2u2¢n2(xn))}u‘2dudy(x)

= k2:=1/ m-/0-1 6n2¢nz(xn)exp( - 6n2u2¢n2(xn))dudﬂ(l') < kMZ:=18n2< o0,

This shows (8.)E D..
(3)=(1). Let a=(an)E!% Then Mi(a)=

/ ,,/0-1{1 —exp(—27'a2ul b (xn)) exp(— 8.2 ul b (xn)) u 2dudy(x)
X f mll{l —exp(—27'ar*u* $n*(xn))H1 —exp(— S’ u* $n*(xn))} u *dudi(x)

<270 [, [ bean)exp(— u2u () dudi(x) +
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1
+,/‘~£ {1 —exp(— 82U b (xn)} u 2dud(x) <27 Mar*+ Ma(/26x) .
So we have Da-iMn(an) 27 "M D5o1an’+ Daci Mn(V28,) < 00.
(1)=(3) This assertion follows from the next lemma.

Lemma 2.4. Let {XA(w)}CLKRQ) be a sequence of independent ran-
dom variables on (2, P) and suppose that Xn-1Mx.(ar)< o for all a=(an)
€%  Then there exists (0.)E [* such that

sup L fo anZ(CU)eXp(— 8221 XX (w)) dudP(w) < oo .

Proof. For Mx,= M, the modular sequence space /i, includes /% It
follows from closed grafh theorem that the injection />— /iuy, is continu-
ous. So there exists some constant R >0 such that 25-1M.(y2a.)<R for
[(@z)l:z<1. From here we shall proceed in a similar manner with in
Lemma 3.2 in [2]. Put En:.={(u, )0 u <1, |uXa(0)|< t}, Fr:={(u, w)|0

<us1,|uXu()|<1) and t=inf(t>0| [ X:Aw)dudP(w)>2R). If the
above set is empty, we put #t,=oc0. Note that for all £>0, f L

XoXw)dudP(0)<oo, [ ' Xi(0)dudP(0)22R and ff ' XoH(w)dudP(w)

<2R. Let sn=t""if t»<0, and s,=0 if tr=00. Then for all N, 2¥_is.’
=1. In fact suppose that it would be false for some N. Thensince1—e™*
=2(1—e )t for 0=t=1,

R Mn(V25n(s1%+ - - +55%)712)
1
=29f=1[2/0‘ {1—exp(—s.2(s:2+ -+ s8) w2 XX w))} v 2dudP(w) .
Thus we have
R=2(1—e )X hisa (5% + - - +sNz)“f[r XoXw)dudP(w)=2(1—e )R,

which is a contradiction. Now we have (s.)E/% Therefore if we define

D=~ {(u.0)0S u =1, [uXu(w)| 24} and 7= ] [7 u"2dudP(w), then 5,8,
<(1—-e)! 3?=1j;_[{1—exp(—s,,zuzan(w))}u‘zdua’P(w)<00. Finally,

_/;/OIX,.Z((:))exp(— Sn1? X2*(0)) dudP(w) é/v/;n.tnX,,z(w)dudP(a))
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4ot f [) w2 dudP(0) < 2R +1. QE.D.

Remark 5. For D.21? it is sufficient that sup f $n*(xn)dp(x) < 0

which follows directly from Theorem 2.7. However this is not the neces-
sary condition. We will see in the following example that even if none of
#(x2) belongs to LA R™), we may have D.2 /%

Example 1. Take two functions ¢.(¢) (=1, 2) on R such that
[ atrr= [Tlan)lde=1, Car(g)NCar(g) =9 and [ lo/(D)lan(t)dt <o,

_/::lgz’(t)lz/gz(t)dt =co, Then a measure v, defined by dvi(x)=&»g:(x2)dxn

is /2-differentiable by the above remark, and hence for each a=(a.)E [? sup

ﬂzrﬁ’:lansbl(xn)ldul(x)EM(a)<00, by Proposition 2.1, where ¢:(¢)=g.(¢)/

g.(¢) (i=1,2). Now take (c.)E(*such that 0< ¢,<1 (n=1, ---) and put ax,
=1—Cn, an2z=cn. Then a function f» defined by fa(t)=an1:(¢)+ an,2:(1)
we have ¢.(t)=f2'(¢)/f2(t)=¢:(t)+ ¢o(t), which follows from Car (g:)Car

(9)=9. Hence [dn(zndi(@)=ans | $(tVdt+ans [ ¢t)'dt—0o for all
n. On the other hand we have D.2/% For this we shall show that sup

ﬁ2ﬁ=1an¢n(rn){dﬂ(x)<oo for all (an)E!2. Now

fiStapualduz) = [ S anduzlilo): fu(en)de  dox

= 21 ) Q1,01 Q2,02 " * AN in RN|2g=laﬂ¢ﬂ(xn)lgil(‘rl). “gilan)dx:- - daw
=1,
ISk<N

S 2 ant v | Sn1anbn(20)|9:4(21) - gin(n) ds - - daw
+ ‘2 al,l'l"aN,iNfN{Zl’n=2|a""¢7l('rﬂ)]}gll(x1)"gl'N(xN)dxl"de

< 2 @ ava(M(a)+ Zi=alan)=M(a)+ 271 anlan..

éM(a)+2:1°=l{an|Cn<oo .
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§ 3. Stationary Product Measures

In this section we shall consider stationary product measures with f,
du(x)=@nf(xn)dxs, where f is a density function and f€L%(R). By
Theorem 2.4 stationary product measures are /'-differentiable. Put f'/f=

% and My(a)= [ [ {1—exp(—2"'a"u*¢*(1)hu *duf(t)dt. Then Dy={a=

(an)|Zn-1Mo(an)< oo} is an Orlicz sequence space /w, and the norm |||, is
equivalent to the Orlicz norm, [(@n)lim.=inf{o>0125%-1Me(0  an)=1}.
(Note that “for some p>0” and “for all >0 is equivalent for the conver-
gence of 25 iMs(0 'an), since My(2a)<4My(a) on B.) Now Dn-1My(anr)
< oo implies 2n-1{1 —exp(—27'a2u?¢*(t))} < o for du-a.e.u and for f(¢)dt-
a.et. This assures that (.)€ /* and hence D.S/%. Let M be an Orlicz
function and /» be the Orlicz sequence space,

In={a=(an)|Z5-1M (07 "|@s|) < co for some p>0}
I(a)llw=inf{o>0|Z5-1M (0 ) <1} .

It is easy to deduce that M is degenerate if and only if /»=1[" and that if
M is non degenerate, then M is strictly increasing. It follows that if /xS
D, for some stationary product measure g, then M must be strictly increas-
ing.

Theorem 3.1. For a stationary product measure p with [, Du2 Il
therve exist 60>0 and K >0 such that M(a)=KMs(a) on [0, &].

Proof. (==)1If 25-1M (07 Y an|)< oo for some o >0, then o~ }|a.| < & for
sufficiently large =, since M is strictly increasing in virtue of the assump-
tion. Thus we have Xp-1My(po " an)< 0.

(==) By the closed graph theorem the injection /uy—— lu, is continuous.
It follows that there exists R >0 such that X 1M(|a.])<1 implies D=,
My(ar)<R. Take pn(n=1,2, ) such that M(p.)=#""'. Then {o.} is
strictly decreasing, lim»0,=0 and Ms(0»)<%n'R. Consider « on (0, o:]=
(0, 8] and take % such that or1<@=<pr. Then M(a)>M(or1)=(k+1)!
Zk(k+1)"'R'My(0x) Z(2R) ' My(a). Q. E. D.

Theorem 3.2. There exists some constant A such that

|[Ca—expliapesatls A [ [ 1 —exp(~2" @ N)u*dus (1)dt
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for all a€ER.

1
Proof. £ {1—exp(—2"tu®)}u 2du regarded as a function of &[0, )

is O(/t) at t=c0 and O(t) at t=0. While |1+if—exp(it)| is O(¢)
at t=co and O(#?) at t=0. It follows that there exists a constant A >0

1
such that [1+z't—exp(it)|§A/0’ {1—exp(—27't2u®)}u"2du for all tE[0, o).
Replacing ¢ by a#(¢) and integrating both sides of the above inequ-
oo © 1
ality, we have /_.w|1+z'a¢(t)—exp(iaqb(t))!f(t)a’téA_[w/O- {1—exp

(—27'a? X () u®)}u2duf(t)dt. As /:m¢(t)f(t)dt=0, we have reached the
desired result. Q.E.D.

Corollary. For a stationary product measure with f,
D.2y=—there exists A>0 such that

| f “(1—exp(iag(t)}f(1)dt| S AM(a) for all aER,

Proof. Using Theorem 3.1 and Theorem 3.2, there exists some con-

stant A such that | f_ :{1—exp(ia¢(t))} F(t)dt|< AM(e) for sufficiently small

a. Note that M is strictly increasing and lime--M(a)=c0, while | /: w{l

—exp(iap(t))}f(¢)dt|<2. Thus replacing A by a suitable constant if
necessary, we may consider the above inequality holds for all eER.
Q.E.D.

Theorem 3.3. If an Orlicz function M satisfies
(%) /OIM(au)u"Za’uéBM(Ca/) for all aE R, with some constants, B, C >0,
Then the condition of Corollary of Theorem 3.2 is also a sufficient condition
for Du2lu. (Observe that M(a)=|al’(1<p=<2) satisfies (*).)
o 1 1
Proof Nu(@)= [ [ (1~ cos(au()hu *duf (t)dt £ A [ M(aw)u*du
<AB M(Ca). Q.E.D.

Now we shall consider /?-differentiability. If p>2, this is impossible
for such g, and if p=2, a result is already obtained in [5] as the following
theorem. (Using Theorem 2.7 we have another proof of this theorem.)

Theorem 3.4. For a stationary product measurve p with f,
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D.2 12(=>[ d(¢)*f()dt <oo .

For 1<p=2, [:{l—exp(ia¢(t))}f(t)dt=O(Iafl”) is necessary and

sufficient for D.2/” by the above theorems. The following theorem is a
weak version of this assertion but it is somewhat useful.

Theorem 3.5. For a stationary product measure ¢ with f and for 1<
<2,

(1) Da20P=0<"q<p, [ lp(O)If(t)dt <o

@ [T1ge)PF(1)dt <com=>DuDI but Dut1 .

Proof. (1) By the assumption, there exist K >0 and R,>0 such that
My(R)=KR® for R2R,. Now put dm(¢)=f(t)dt. Then for R=R,,

m(18(D]2 RS Ve (e —1)7 [ (1 —exp(—27 R*¢*(1)) dm(1) S Ve (fe
—1)7 [ [ —exp(=27 R4 geN)u dudm(t) = Ve (Ve —1) My(R ™) =
Je(Je—1KR™. 1t follows that [ |$(DI"/(Ddi <R+ [ m(4(1)|=
R”")dRéRo"-i-«/E(fe——l)"KA; R™?9dR<oo. (2) Since 1—exp(—27't?%)
<K|t|” with a suitable constant K, we have My(a)= [ [ {1—exp

(—2 ' @u g OV duf()dr S Klal [~ (0P f(0)dt [ u . Thus 17

€D, by Theorem 3.1. If we would have D.=1[*, then we proceed in the
same way as in the proof of Theorem 3.1 and conclude that there exist A
>0 and d0>0 such that

Ad”< f i £ 1 —exp(— 27" u? 65 ) u~2duf (1)dt , for 0<a<ds.

o 1
Hence Aé’[mﬁ {1—exp(—27'a?u?d*(t))} | Pu"2duf(t)dt. However,
since {1—exp(—27"'u’¢*(¢))}alPu2< Ku? 2 ¢(t)|?, we can apply Lebes-

gue bounded convergence theorem to get

lim [ ["(1—exp(—2" ¢ () al-Pu*duf (£)dt =0,

a-0

which is a contradiction. Q.E.D.
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Later we shall give examples of stationary product measures #» such
that D.,=[? for 1<p<2. However,
Theorem 3.6. For stationary product measures v, we always have D+
"
Proof. If we would have /'=D, for some g, then there exists some

constant K >0 such that K|a|< M,(a) for suff.ciently small |a|. It follows
o lal
take Klalélalj: _[; {1—exp(—27"u?¢*(t)}u2duf(t)dt and K< lim q-+0
[m.[h-—exp(——2“u2¢2(t))}u‘2duf(t)dt=O. It is a contradiction. Q.E.D.
If the product type measure z is not stationary, then “/'=D,” may
occur, as seen in the following example.

Example 2. Take a sequence {a»} such that 0< a,<1 (=1, ---) 2%,
(1—ax)<0, and put Br=a»"'(1—a.). Let fa(¢) be an even function on R
such that a@» on [0, 27'], —@xB8,'(t —27")+a» on [27,27'+ B.] and 0 on [27!

+ 2, ). Then _/_.:fn(t)a’t=1 and j::lfn’(t)ldt-——Zan. Hence u defined by

di(x) =R nfx(xn)dxs is {'-differentiable. On the other hand if a=(a.)ED,,
then || zse — ¢ll:0: <2 for sufficiently small s >0. It follows that for sa=b=

(bn), H?‘.’:l[:\/fn(t)\/fn(t%—bn)dt >0, which is equivalent to 27:1/::|s/fn(t)
—Vfa(t + ba) Pdt <o X5-1|ba| <0, Thus we have D.=/".

Remark 6. Let Cu be the set of all continuous shifts, i.e. C.={a=R"|
lim;-of e — 12l:0:=0}. Then the proof of the second half is valid for a€ C..
Thus in this case we have C.=D,=1['. (We have D.E C, in general.)

Example 3. (D.,=1?,1<p<2)
Put s=1—p"1(0<s<27'©1< p<2.) and define f»(¢)=orexp(—|¢|%), where o»
is the normalizing constant. Then

$p(t)=1'(t) [folt)=—s|t]*'sgn(t) and
F(@)= [ (1—expliad () fl)dl

=26p_[{1 —cos(salt|* D}exp(—|t|%)dt

+20p[m{1—cos(saltls‘l)}exp(—ltIs)a’t .
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Some calculations derive that the first term and the second term of the right
hand is O(|al?) and O(a?) at @=0 respectively. So Fy(a)=0(|al’) at a=0.
It follows from Theorem 3.3 that we have D.,=/* for dw(x)=
Qnfo(xn)dxn.

For our later discussions we investigate the set Tw={a=(an)|ta= 1},
where >~ means equivalence relation for absolute continuity. Put g»(&)=

/_‘:exp(eriét)«/fp(t)th&’(/;‘;)(E). Then it is well known (See, [2].) that
a&e Tﬂp@)E;":x/::{l—eXp(ZﬂianE)}|gp(5)‘zd5<°°- Since gp(&)=0(&[7"**)

at |£|=co and /:{1——exp(z'aE)}Igp(E)lsz:O(Iala‘”'l) at a=0 (Detailed

calculations are omitted here.), it follows that 7T.,=/{*2"'2/?=D,,.
(Since 3—2p™"p for 1<p<2.) If s=27' then we proceed in the same way

as before. But in this case /::{1—exp(iaqu(t))}fz(t)a’t and [:{1—exp

(iaé)H g E)PdE are O(a*loglal) at @=0. Thus we have Tu,=D,,={a=
(an)l2;=lan2(l+|10g|an”)< 00}

§4. Relation to Quasi-Invariance

Let ¢ be a probability measure on B(R™). If for a subset ®C R* we
have 7.2 @, then p is said to be @-quasi-invariant. We wish to discuss the
relation between Ty, D. and C.. Note that we always have C.2D, and
C.2T.S'={a<€ Tutacs T, for all t=R}. (For example, see [3].)

Theorem 4.1. Let (X, ) be a topological linear space such that X is a
subset of R®, the vector topology t is stronger than the product topology on
R™ and t is metrizable with d such that (X, d) is a complete metric space.
If XN Ty is dense in (X,d) and Cu2X, then T.2X.

Proof. Define a metric on Cu such that 6(a, b)=supos:zill tta — te6]| 01
Then (Cy, 8) is a complete metric linear topological space whose topology
is stronger than the product topology on R*. (For example, see [3].)
Thus using closed graph theorem, the injection X+ C,. is continuous.
Now take any a=X. Then by the assumption a sequence {a.}C XN T,
exists such that lims,-» d(a, @,)=0, hence lima-w|tta— ftanl0:=0. Conse-
quently, for EEB(R®), u(E)=0= " n, ttas( E)=0=1,(E)=0. Similarly,
#(E)=0 implies that p_.(E)=0.
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Corollary 1. Let u be Ro™-quasi-invariant and (X, t) satisfy the same
assumption of Theorvem 4.1. If X contains Ro™ densely, then C.2 X implies
T.2X.

Corollary 2. If T. is a dense subset of (Cy, 6), then T.'=C,.

Proof. Put X=C, in Theorem 4.1. Then we have 7.2 C, and there-
fore T,=C,. Since C. is a linear space, so is T, and therefore 7,.'=T,.=
Co. Q. E. D.

Now let B" be a minimal o-field with which all the coordinate functions
ZIn+1, Tn+z, --- are measurable and put B°=7-1B". If Ro™-quasi-invariant
measure u takes only the values 1 or 0 on B%, g is said to be Bo”-ergodic.

Theorem 4.2. If pis Ro™-ergodic, then T.2C,. and therefore T.'=C,.

Proof. For pa=~y, it is necessary and sufficient that z=u. on B=.
(See, [2].) Now let = C, and BE8B™. Since #(B+ ta) is continuous for ¢
and takes only the values 0 or 1, so it is a constant. Thus we have x(B)
=u(B+a). Q.ED.

In general even if ¢ is Ro™-quasi-invariant, differentiability does not
imply quasi-invariance and vice-versa.

Example 4. Let f(#) be an even function on R such that 3(¢ —1)*/2 on
[0,1] and 0 on [1, ). Put S;t€eR—¢t(1,1, -+, 1, --)=te< [~ and define a

measure v on B(R>) such that U(E):f E)f(t)a’t for EEB(R*). We

S-1¢
convolute v with dG(x)=®.(27) " 2exp(—27'x+*)dxn, and thus v+G=y is
obtained. Since D¢=1? and D.,3e, so Du.2/*+ Re. Put S={x€R"|p(x)

=limn~}z—(x1+--+zn); exists.). Then S is a linear space and u«(S)=1,

which implies T.UC.CS. Observe that for BEB(R”) and EE€B(R"),

WBOY (B)= [[G(B—te)f()dt and

k(B ()= [ G(B-a—te)f(t)dt, if pla)=0.
(Namely, [ Ge, p] is a canonical decomposition of # as stated in [4].) From
this some calculations derive that ||z — pallo: =[G — Galleo, if p(@)=0. Now
let e=7T,. Then ua(p“(E))=ﬁ e f(#)dt must be equivalent with

u(p~(E)). Hence we have p(a)=0. Moreover using the above two ine-
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quality for ¢ and p., we can derive that Ge is equivalent with Gre+a for
almost all ¢ for the measure f(¢)dt. (See, [4].) It follows from Tc=Csc=
/* that e= /? and thus /2= T,. (Reverse including relation directly follows
from Tc=1/%) Next let a€C.. Then for b=a—p(a)e, 0= lim (ol z
— teolltor =1im;-o]| G— Gollz0:.  So we have bE % a<= [*+ Re and thus [+ Re
=Cu=Dp.

Remark 7. If Ry™-differentiable measure # is of product type, then RB,”
is a dense subset of D.. (See, Theorem 2.1.) However this does not hold in
general. In fact the measure obtained in Example 4 is Ro"-differentiable
and Ro*-quasi-invariant. However D.=/*+ Re whose topology coincides
with the product topology of /? and R does not contain R,” densely.

Remark 8. Theorem 4.2 assures that D.S T, but D.= T, does not
hold in general, as we have seen in Example 3 to the case 1<p<2. Now
we shall supply following examples to the case p=1 and p=2.

Example 5. (T.=/', D,+1")

Let Ko(u)= [ Wexp(~ut)(t2~1)“’2a’t(u >0) be modified Bessel function.
Since limy-+oKo(u)=0, K; is not bounded. Put f(u)=4r"'K*(2r|ul).
Then [~ f(w)du=1, g(v)= F(F)(0)={x(1+v))"* and [ exp

(svt)lg(v)Pdv=exp(—|¢t|). It follows that a measure v defined as the
stationary product with f is /'-quasi-invariant. (See, [2].) Now put fx(¢)

=£(¢t) if /(t)<n, and fn(¢)=wn if /(¢)>n. Then /:Ifn’(t)ldt<oo for all »

and lima|f—fxll.:=0. Thus taking a subsequence {z:} such that Xa-.[f
— fasl1< oo, v is equivalent with « defined as du(x)=Q®xfnxs)dxr. (See,
[2].) So we have D.DRy” and T.=T.,=/'. However if it would T,=/'
hold, then by Remark 2 after Theorem 2.4 f».(¢)(£=1, ---) must be uniform-
ly bounded. Thus the same holds for f, but it contradicts to the unbound-
ness of K.

Example 6. (7.=/% D.*[?%

Let (a.)€!' such that 0<a,<1 (#=1,--) and (B.) be a positive
sequence such that lim,a@,8.=o0. We take a non negative differentiable
function g.(#) for each » satisfying '[ :gn(t)a’t=1. [ :Ign’(t)Ia’t<oo and

92(0)=P8.. Now let fo(t)=(27) "2exp(—27#%) and put fa(t)=01—an)fo(t)
+ angn(t) (n=1, ). Then |fa—foll.:=anllfo— gall.:=2as, so G which is the
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stationary product with fo is equivalent with z defined as dp(x)=
Qngn(xn)drs. Hence Tu=Tc=1{% On the other hand f»(0)=a@,8.,—~c (%
—c0), so {f(¢)} is not uniformly bounded. It implies D.D/".

Concerning the above example, we shall list a following fact whose
proof follows directly from Remark 5 and Theorem 3.2 in [2].

Theorem 4.3. If a product type measure v is [>-quasi-invariant, then
there exists a product type measure v such that v=yp and D,2I[%
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