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An Aspect of DIfferentlable Measures on

By

Hiroaki SHIMOMURA*

Introduction

In this paper we shall study differentiable probability measures JJL on
the usual Borel tf-field 23(J?°°) on R°° which is the countable direct-product
on the real line R. First in Section 1 we prepare some basic tools for our
later discussions and discuss general properties of these measures. In
Section 2 we consider measures of product-type, v=Iin=iVn and investigate
the set Dp of all differentiable shifts of IJL. And using these results, we
characterize measures ^ such that D^l2. If fjLn(n = l,2~'} is the same
measure, then p. is said to be a stationary product measure. In Section 3
we take up stationary product measures. It will turn out that D^ is an
Orlicz sequence space. Lastly in Section 4 we consider a relation of
differentiability and quasi- invariance of IJL.

§ 1. Preliminary Discussions

Let IJL be a probability measure on the measure space (U°°, S3(JT°)).
For a = (an)^Rco if lim^o rl{v(E + ta)-v(E)} = dav(E) exists for all Ee
33(J?°°), then IJL is said to be differentiable in the ^-direction, or a is said to
be a differentiable shift for p.. The set of all differentiable shifts will be
denoted by D^. It is remarkable that the above pointwise limit can be
taken the place of the total variation norm of signed measures. (See, [5])

It is not hard to see that - - / L i ( E + ta) = dav(E+ta) for all t^R, dav=Q if

and only if a=Q, D^ is a linear subspace of If00, daa+ftb^=ada^-\- $dbp for all
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a, b^Dn and a, 0& R, and dai* is absolutely continuous with respect to p..

Put for a^Dfi ||fl|U= / > (x) <j//(:c) = ,/ - Then ||e|U is a norm on

D*. Let />»: a: =(j;n)e /?"»-> (xi, —,xn)^Rn and ^: ^
and put p.n(E) = iJL(qn~

l(E}} for all Borel sets E of If. Then for any a = (an)

— Hn(E)}. Thus /** is differentiate and we have ||a||/i

Theorem 1.1. (A., HP is a Banach space of cotype 2 and the normed
topology is stronger than the product topology on R°°.

Proof. The last assertion is a direct consequence of the above ine-
quality. Let {a(k)}k be a Cauchy sequence in (D?, I'D- Then a(k} con-
verges to a^R00 in the product topology and {da^p}k is a Cauchy sequence
in the total variation norm of signed measures. It follows from Theorem
3.1 in [5] that a<=D» and ||3««*»^-3a^||tot - »0(& - >oo). Since (A*, IHU) is
isomorphic to a subspace of L\, it is of cotype 2. Q.E.D.

Lemma 1.1. Let (X, T) be a topological linear space such that X is a
subset of R°°, the vector topology T is stronger than the product topology on
J?°° and T is metrizable with d such that (X, d) is a complete metric space.
Then if it holds X^D? or D^X for some ft, the injection is continuous
in either case.

Proof. It is a consequence of closed graph theorem and Theorem 1.1.
Q.E.D.

Put 0 = lp(l^p<oo) or Co and en = (Q, — , 0, i; 0- •); canonical base of 0.
And let v be a <Z> -differentiate measure. (That is, Df.^0.) Then by the

above lemma, there exists some constant K such that / , (x) dp.(x)^

K\a\*. Hence putting J"^(x) = pn(x), we have / — ̂ -(o:) — 2n=i

anpn(x) df*(x) - >Q(N - >oo) for all a = (an)^0. Especially, S~=i

an I pn(x)dp.(x) converges to daj^(B} for all Be33(J?°°). First we consider
J B

the case p=l.

Theorem 1.2. Let p. be a probability measure on S3(J?°°) such that D^
{x = (xn)^R00\xn=0 except finite numbers of ris} = R^. Then D»12ll<==$
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Proof. If Ai2 71, then by the inequality above we have l\pn(x}\dp.(x}

n\\^=K. Conversely if this condition is satisfied, {Hn=ianpn(x)}N is a
Cauchy sequence in Lji for all a = (an)^l1. So we have a^D^ in virtue of
Theorem 1.1. Q.E.D.

Now let K/><oo f p~l + q~l = l and consider an /p-or co-differentiable

measures p.. Then an lq- or /^valued set function TV

( I Pn(x)dfjt(x))n is defined.

Lemma 1.2. For any e>0, there exists some S>0 such that

implies ||

Proof. Put d(A,B) = v(AQB) for all A,B^%(ir). Identifying^
with S if ^G4©B) = 0, we have a complete metric space (%$(R°°), J). From

the absolute continuity of indefinite integral, Tn(B) = ( I p\(x)d^(x), • • • ,
J B

I pn(x)dfjt(x), 0, 0 , • • • ) is continuous on (^8(R°°). d). Since limwTw(jB) =
JB

Tp(B\ so a continuous point 50 of T exists in virtue of Baire's theorem.
Thus for any <s>0 there exists some 5>0 such that jLt(BQBo)^S implies

\\T,(B)-T,(B0)\\<2-16. Now let v(E)^ S. Put B^EUBo and B2 =

BofW. Then we have fjL(Bi-B0)^d, v(B2-B0)^S and E = Bi(^B2
c.

Hence || T,(E}\\ = || 7V(Bi)0 T^ft)!! ̂  II ̂ (500 7^(B0)|| 4- 1| T,(B0) - T,(B2)\\
< £. Q.E.D.

Theorem 1.3. Let (J. be an lp- or Cv-differentiable measure. Then T»

is an lq- or ll-valued vector measure on (If00, SK/Z00)), and it is absolutely

continuous with IJL.

Proof follows directly from the above lemma. Q.E.D.

Let V be an lp- (1<P< °°) differentiable measure. /9(K^<oo) has

Radon-Nikodim property. So if T^ has bounded variation, sup

{SfleTrllT/iCB)!!**: TT partition of R°° into a finite number of pairwise disjoint
Borel subsets} <oo5 then there exists a function F in L^R™, S(JT), & lq)

such that Tn(B)= fp(x)dfjt(x) for all B^^(E°°). From the definition ofJB
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71/*, we have F(x) = ̂ n=i pn(x)en for ju-a.e.x. Hence FeL*<=^ /(2~=i

\pn(x)\q}llqdp.(x}<^. Settling these arguments,

Theorem 1.4. Let D^Ro°° and Kp<<x>. Then D^lp and the

lq -valued vector measure T^ has bounded variation if and only if I ( 2"=i

Proof. It is nothing to prove "if part". Conversely if the last ine-

quality holds, then j\^n=ianpn(x) djj.(x}^la\ip j(^=i\pn(x)\q)llqdjjL(x), and

\\T,(B)\\l^f(^=,\pn(x}\q}llqd^(x) for all Be=S3(ir). So D^lp holds
JB

and Tn has a bounded variation. Q.E.D.

Remark 1. In general the bounded variation condition is not satisfied.
For example canonical Gaussian measure G on (R°°, 33(Jf°°)), being the
product of 1-dimensional Gaussian measure dg(t) = (27r)~ll2exp( — 2~lt2)dt,

is /2-differentiable. (See [5] or later arguments.) However /(2«=i

§ 20 Measures of Product Type

In this section we consider measures JJL of product type consisting of 1-
dimensional probability measures nn on (R, 99(1?)). Then IJL is Ro°°-
differentiable if and only if all the fjtn are differentiate on R. Further by
Theorem 7.1 in [5], it is equivalent that each ftn has a density fn(t) with the
Lebesgue measure dt on R and that fn'(t) (in distribution sense) belongs to
L}tt(R). Consequently we may assume that fn(t) is an absolutely continu-
ous function with the derivative fn'(t}^Lldt(R). From now on we always
assume that p is of such type, dp(x) = ®nfn(x^)dxn and D^Ro00, and we put
$n(t)=fn'(t)/fn(t). Now consider a conditional expectation Exp(F|23n)Or)
of FeLWJZ") relative to the sub-afield ffl«=^n"1(8(«11)). If a = (

in Li.

Hence {%}%=ian</>n(xn)} forms a Cauchy sequence in Li and IMU= /|2n=i
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Theorem 2.1. For dfi(x) = (g)nfn(xn)dxn and Z^DiZb00, besides the
conclusion of Theorem 1.1, D^ contains Ro°° densely and the canonical base

en = (Q, • • • , 0, 1, 0, • • • ) (w = l, 2, • • • ) forms an unconditional base of (D?, IHU).

Proof. It may be only to prove the unconditionality. Let {en(o})} be a
Bernoulli sequence. They are independent identically distributed random
variables on a probability space (Q,P) such that P(e/z(o>)=±l) = 2~1.

Now (pn(xn) (n = l, 2, • • • ) are independent and j<t>n(xn)dfjt(x)=Q. Thus for

any a = (an}^Rco, {2«=i an</>n(xn)} is a martingale and it follows that

J\^neNian<f>n(Xn)\dfJt(x)^J\^2neN2Cln^n(Xn)\d^(x) fOT finite Subsets NI £ Nz of

natural numbers. Hence for all a)^Q and a^(

The unconditional constant of the base is less than 2. Q.E.D.

Corollary. (an)^D^^==^(£n(o})an)^D^ for all

Proposition 2X For djLt(x) = ®nfn(xn)dxn and

Proof. (=>) It is obvious by the preceding arguments.
(<=) Using Ottaviani's inequality for independent random

variables, after some calculations we can derive that

Hence {11%=ian</>n(xn)}N is a uniformly integral martingale. It follows from
martingale theory that they form a Cauchy sequence in LJXJB00), and so we
have a<^Dv. Q.E.D.

These arguments are collected as a following theorem.

Theorem 2,2. For dfjL(x) = ®«fn(xn)dxn and D^Ro°°, the following
are all equivalent.
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/I \ / \ , T"\

(2) {Hn=ian^n(xn)}N forms a Cauchy sequence in L\.

(3) v
JBeS(if°°), Hn=ian f'</>n(xn)dfjt(x) converges.JB

(4)

(5) s

Proof. It is clear from what we have discussed. Q.E.D.

Theorem 2.3. For dn(x)=®nfn(xn)dxn and D^RiT, the following
are all equivalent.

(1)

(2)

(3)

Proof. (1)=>(3). By Lemma 1.1 there exists some constant S>0 such

that J\^=ian<f>n(xn)\dfJt(x')^SMax.{\an\\n=l, - - , N } for all N and (an)e

J1?^. Thus (3) is obtained by putting <2, = 1 («=1, • •, A^).

(3)=»(2). Consider a point (/»)eJZ* such that |f,,|£l (»=1, • -, TV). Then
(tn) is a convex combination of points (en((e)))^RN running w on Q. Thus,

faNn =
J

It follows from (5) of Theorem 2.2 that TcA- "(2)=>(1)" is obvious.
Q.E.D.

Theorem 2.4. For diJ.(x} = ®nfn(xn)dxn and

/>•<a/ —OO

Proof. As ^nf2(x) = <pn(xn), this is a restatement of Theorem 1.2.

Q. E. D.
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Remark 2. Put M = sup f \ f n ' ( t } \ d t . Then \ f n ( b } - f n ( a } \ ^
n J -co

f*b

I \fn(t)\dt^M. Since lim/?-*co fn(R) = 0 for all n, \fn(a)\^M for all n and

To Investigate the structure of D? in more detail, we wish to discuss it
in probabilistic terms.

Lemma 2.1. Let (42, P) be a probability space and X(co) be in Llt{Q}.

Then f (\l-CQs(uX(a))}}u-2dudP(a))^B f \X(o))\dP(a>), where B= sup
JQ JQ JQ t

rt
I I sin u/u du\.
JQ

Proof. Take any e such that 0< e< 1. Integrating by parts we have

f [1{l-cos(uX(a)»}u-2dudP(co)=- f{l-cos(X(a})}}dP(cu)-^£-1 f {IJaJe: Ja JQ
f f rx(o)) \

-cos(eX(fl>))}dP(o>)+ / / sin u/u du\X({o)dP(co). Using 1-cos a^
JSi (JeX(a>) )

\a\, we apply bounded convergence theorem to the second term in the above

equality as £ - » + 0 . Then f f '{I - cos(uX(a)))} u~2dudP(a)} ^
J Q JQ

B f \X(a))\dP(w). Q.E.D.
JQ

Lemma 2.2. Let X(co)^Ll
I{Q} and put for

Nx(a)= f fl{I-cos(auX(co)}}u-2

JaJo

(If f\X(o))\dP(o)) = Q, thenNx = Q. So we assume that f \X(a>)\dP(Q))*Q.)
JQ JQ

Then

(1) Nx(a) is differentiate for a=t=Q and Nx'(a)>Q for a>Q.
(2) Nx(ta)£(4t2 + \t\)Nx(a) for all t and a.

Proof. Integrating by substitution, we can rewrite as Nx(a) — a {I
JnJo

-cos(uX(a}))}u~2dudP(a)). It fol lows that Nx'(a}= f ("{l-cos
JQ JQ

(uX(w))}u~2dudP(a)) + a--1 f {l-cos(aX(co))}dP(aj)>0 for a>Q. It is easy

to see from the above form of NX that Nx(ta)^\t Nx(a) for Ul^ l . Now let
U|>1 and choose w = 0,1, ••, •• such that 2n<\t\^2n+\ Since l-cos(2*or)
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a) for all a and £ = 0,1, ••, •-, it follows that Nx(ta)<
Nx(2

n+la} ^ 4 • 22nNx(a) <M2Nx(a). Q.E.D.

By (2) of the above lemma we can define a function Mx(ci) on R Mx(d)

= (~ Nx(ta)dg(t)= ( fl{l-exp(-2-la2u2X2(w))}u'2dudP(w).
J-oo JnJv

Lemma 2.3. Under the same assumption on X(a)} as in Lemma 2. 2,

(1) k/Nx(a)^Mx(a)^kNx(a) for a^R, where k= f°(4/2 + U|)^(0 and W
J-oo

(2) Af;r(0)=0, \\ma-.*,Mx(a)=co and Mx is a strictly increasing function on
[0, oo).
(3) For a=£0, Mx"(a) exists and Mx"(a)>0.
(4) MX satisfies (/^-condition at 0,

); \\maMx'(a)lMx(a)«x> .

Proof. Integrating both sides of (2) of Lemma 2.2 with dg(t\ Mx(a)<

kNx(a) for aejR. On the other hand, Mx(a)= I Nx(ta)dg(t}^
J-oo

f^Nx(ta)dg(t}^k'Nx(a). Since

Mx(a) = afJJ{l-exp(-2-lu2X2(a)))}u-2dudP(co\ it follows that

0 for ff>0 and

3, for a3=0. Lastly for

a). Hence the

(/^-condition at 0 is satisfied. Q.E.D.

Remark 3. An Orlicz function M is a continuous non-decreasing and
convex function defined on ^0 such that M(0) = 0 and \\mt^M(t)=^>. If
M(t)=Q for some £>0, M is said to be a degenerate Orlicz function. By
Lemma 2.3, MX is a non-degenerate Orlicz function satisfying (^-condition
at 0. This condition is equivalent with that for every positive number Q

'. (See, [1].)
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Theorem 2,5, Let [Xn((o)} be a sequence of independent random

variables on (Q, P) such that Xn^LP
l(Q} and I Xn(o))dP(a}) = Q, (w = l, • •,JQ

- •)• Then the following are all equivalent.

(1) *2in=iXn(co) converges in

(2) 2~=i f f\I
Jo Jo

(3) 2"=i f f{l-
JaJo

Proof. Equivalence of (2) and (3) is obvious by Lemma 2.3.
Before the rest of the proofs we wish to state some remarks. Let {en((*)r}}
be a Bernoulli sequence on a probability space (12', P'X Then

f f {l-cos(I}nen(co')Xn(a>))}dP(aj)dP'(a)f)
jQJSt'

= f f {l-exp(/2»e»(<w')X.(a>))}rfP(
JQJQ'

= f (l~IlnCOs(Xn(aj~))}dP(w)
Ja

= l-n« /"cos(X»(a>))dP(a»)^Z!»{l- fJQ Ja

Conversely if 1— / cos(Xw(cy))d/P(cy)^a7z<2~1 for all w and

1- f f cos(Sn£n(^)^n(cy))JP(cy)^PX^)<2-1, then using Ai^-logw/yuyfl'
(1 — u)^Ki for |1 — w|^2-1 (/fi and /G are suitable positive constants), we

have %nan^-K2-l^nlog(I-an)=-K2-
1logIin(l-an)^KlK2~1{I- f f

JQJQ'

cos(1}nen(co')Xn(co))dP(a))dPf(a)')}. Next put H(t) = fo\l-cost£)ag = l

-sint/t. Then H^Q and H(t}^2~\ if U|^2. Lastly we notice that

f \X(o))\dP(a))= r P(\X(a)}\^t}dt holds for all J?-valued measurable
Jn Jo

functions.

Proof of (1)=>(2). Put M-sup f f \HLien(co')Xn(u)\dP(a})dP'(co')
N JaJ®'

and take r such that 0<r^(2M)~1 . Then for all O ^ w ^ l , f f {l-cos
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(r«2?-i £*(a>')X,(a>))}dP(a>)dP'(a>")£Mur£2-* and /"{I -cos
J a

(ruXn(w))}dP(a))<MuT<2-1 for all n. Hence we have 2£=iAfo,(r) = 2£-i

f [l{l-cos(ruXn(a>))}u-2dudP(a))^K2-lKi f f fl{l-cas(nt'2X=i
JaJo JajQ' Jo

£n(w')Xn((o))}u-2dudP(co)dP'((o')^K2-
lKlBr f f | 2SUe»(<w')

J a Jo1

Xn(aj)\dP(cu)dP(ai')^K2'
lKiBMt, where B is the constant in Lemma 2.1.

Since Nxn(l)^22kNXn(r) for * such that 2-*^r, it follows that 2"-iMfll(l)
<00.

Proof of (2)=*(1).

^2f° f f
J\ jQJto'

=2 f1 f°° f f [l-cos(2R-l?2%=l£n(a>')Xn(a)))}dP(w)dP'(a)')dRd£
Jo Jl JQJQ'

It follows that supf^^iXn(co)\dP(o})^2{l-i-8^=iNxn(l)}<^. As we

have seen in the proof of Proposition 2.1, LX^-convergence of {2«=i

Xn(a)}} is equivalent to sup /|2Jf=iXn(oj)|dP(<y)<oo for independent ran-

dom variables Xn(o>) with mean 0. Thus we have (2)=Kl). Q.E.D.

From Theorem 2.2 and Theorem 2.5 we have.

Theorem 2.6. For djjL(x}=®nfn(xn)dxn and D^R™, the following are
all equivalent.

(1) a = (an)

(2) For Nn(a)= f [\l-
J R^Jo

(3) For Mn(a)= f f\l-exv(-2-1tfu2<t>n2(xn))}u-zdudv(x) (n=l, • • • ) ,
J njQ
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Remark 4. In [1], modular sequence spaces are stated as follows. Let
{Mn} be a sequence of Orlicz functions. The space l{Mn} is the Banach space
of all sequences a = (an) with ^n=iMn(p~l\an\)<

00 for some p>0, equipped
with the norm \\a\\ = mf{p\^n=iMn(p~l an\)^l}. The space l{Mn} is called a
modular sequence space. If every Mn is the same Orlicz function M, then
/{Mn}=/M is called an Orlicz sequence space. Theorem 2.6 shows that D?
for y. of product type is a modular sequence space. Moreover if p. is a
stationary product with /, dfjL(x) = ®nf(xn)dxn, then D? is an Orlicz

sequence space /M*, 0=/'//.

Theorem 2.1'. For djj.(x} = ®nfn(xn)dxn and D^Ro", the following
are all equivalent.

(1) £>„ = /*.

(2) There exists (£n)e/2 such that

SUP f r<t>n\Xn)eXv(-Sn2<t>n2(Xn)U2)dudn(x) = M<™.
n J R°°Jo

(3) There exists (dn}^Dn such that the same inequality as in (2) holds.

Proof. (2)=>(3).

Put F(t) = f {l-exv(-u2t)}u~2du/t rexp(-u2t)du for 0^/<oo.JQ Jo

r1 r1
Then / {1 — exp( — u2t)}u~2du and tl exp( — u2t)du regarded as functions

Jo Jo

of t are both O(vT) at ^ = 00 and 0(0 at £ = 0. Hence some constant k

exists such that F(t)^k, and 2"=iAfn(V25n)

/R-Jo

co f f 1 2 2 222 oo 2

jR^Jo

This shows (
(3)^(1). Let fl = (fln)e/2. Then Afn(fln) =

/ / {
yjfVo

n2(;c^^

x
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+ ( f1{l
J R Jo

So we have Sn=iMw(
(1)=K3) This assertion follows from the next lemma.

Lemma 2.4. Let {Xn(co)}dLli^Q} be a sequence of independent ran-
dom variables on (Q, P) and suppose that ^^=iMxn(an}<GO for all a = (an)
^/2. Then there exists (8n)^l2 such that

sup [ rXn2(a))exv(-3n2u2Xn2(a)))dudP(co)<oo ,
n JsiJQ

Proof. For Mxn=Mn, the modular sequence space /{*„> includes I2. It
follows from closed grafh theorem that the injection I2 - > l{Mn} is continu-
ous. So there exists some constant R>0 such that ^n=iMn(^2an)^R for
||(<2n)||z2^1. From here we shall proceed in a similar manner with in
Lemma 3.2 in [2]. Put En,t = {(u, co)\0^ u£l, \uXn(co)\< t}9 Fn,t = {(u, a>)\0

£u£l,\uXn(a>)\£t} and tn = inf{t>0\ ff Xn
2(co)dudP(a))>2R}. If the

JJEn,t

above set is empty, we put tn
 = 00. Note that for all £>0, //

JjEn,t

Xn\u)dudP((o)«x> , ff Xn
2((o)dudP(a))^2R and (( Xn\®)dudP(a))

JjFntn JJEntn

<2R. Let sn=tn~l if tn«x>, and s,=0 if /n = oo. Then for all N, S£=isn
2

^ 1. In fact suppose that it would be false for some N. Then since \ — e~t

~^(I-e-l)t for O ^ f ^ l ,

JaJo

Thus we have

^2)-1 ff Xn2(co)dudP(a)} ^ 2(1 - e~l}R ,
JjFn,tn

which is a contradiction. Now we have (sn)^l2. Therefore if we define

Dn = {(u.co)\Q<u^I,\uXn(co)\>tn} and 3n
2= ff u-2dudP(a)\ then 2~=iSn2

JjDn

^(l-e'iri'2n=1fgfo
l{l-exp(-sn

2u2Xn2((a))}u-2dudP(w)<^. Finally,

)^ ff Xn
2(w}dudP(w)

JJEn,tn
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+ dn~2ff u-2dudP(a))^2R + l. Q.E.D.
JJDn

Remark 5. For D^l2, it is sufficient that sup <f>n2(xn)d{j.(x)<oo
n J

which follows directly from Theorem 2.7. However this is not the neces-
sary condition. We will see in the following example that even if none of

<f>n(xn) belongs to L2(Jr°), we may have D^l2.

Example 1. Take two functions g i ( t ) (/ = !, 2) on If such that

/

oo
\g2(t)\2/g2(t)dt = oo. Then a measure v\ defined by dv\(x)oo

is /2-differentiable by the above remark, and hence for each a = (an)^ I2 sup

j\^n=ian^i(xn)\difi(x) = M(a)<oo1 by Proposition 2.1, where </>i(t) = gl'(t)/

<7*(0 0"=1, 2). Now take (cn)^l2 such that 0< cn<l (n = l, • • • ) and put an,\

= I — cn, an,2
=Cn. Then a function fn defined by fn(t) = ant\g\(t) + ant2g2(t)

we have <f>n(t)=fn'(t)/fn(t) = </>i(t) + </>2(t), which follows from Car (^OPlCar

/

/•» /-oo
$>n (xn)dfjL(x) = an,i I 4>i(t) dt + an,2 I </>2\t)2dt = o° for allJ — oo J — oo

W

for all (an)^l2. Now

n. On the other hand we have D^l2. For this we shall show that su

ik=l,2

)== J R,\2}X=ian<f>n(

r -dxN

i* -dxN

i* =1,2
\<h<N

z*=l,2
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§ 3. Stationary Product Measures

In this section we shall consider stationary product measures with /,
} = ®nf(xn}dxn, where / is a density function and f^Ll

dt(R). By
Theorem 2.4 stationary product measures are / ̂ differentiate. Put f lf=

(f> and M*(a)= /"" f \l~exp(-2-la2u2(f>2(t))}u-2duf(t)dt. Then Df, = {a =
J-oojQ

(an)\^ln=iM0(an)<00} is an Orlicz sequence space /M* and the norm ||-||,, is
equivalent to the Orlicz norm, \\(an)\\iM.=mf{p>Q\33l!=iMt(p~1an)^l}.
(Note that "for some p>0" and "for all p>0" is equivalent for the conver-

gence of 7£n=iMt(p-lan\ since Mt(2d)^±M*(d) on R.) Now S£=iAf,U«)
<oo implies 2£=i{l-exp(-2~WttV2(0)}<°° for du-a.e.u and for f(t}dt-
a.e.t. This assures that (an)^l2 and hence D^l2. Let M be an Orlicz
function and IM be the Orlicz sequence space,

lM = {a = (an)\Hn=iM(p-l\an\)<oo for some p>0}

It is easy to deduce that M is degenerate if and only if IM = I°° and that if
M is non degenerate, then M is strictly increasing. It follows that if IM^
D^ for some stationary product measure A*, then M must be strictly increas-
ing.

Theorem 3.1. For a stationary product measure p. with /, D^IM<==$

there exist c?o>0 and K>0 such that M(a)^KM*(a) on [0, 50].

Proof. (=>) If S"=iM(p~1kn|)<oo for some p>0, then p~l\an\<Sofor
sufficiently large n, since M is strictly increasing in virtue of the assump-
tion. Thus we have ^n=iM^(p~1an)<°°.
(==>) By the closed graph theorem the injection 1M -

 > /*, is continuous.
It follows that there exists R>Q such that Hn=iM(\an\)^l implies S?=i
Mt(an}^R. Take pn(n = l, 2, • •) such that M(pn)=n~l. Then W is
strictly decreasing, limnpn = Q and M0(pn)^n~lR. Consider a on (0, p\} =
(0, &] and take k such that pk+i<a^pk. Then M(^)>M(pA+i)-(^ + l)~1

^M^ + l)-1^-1M,(p.)^(2/?)-1M0(a). Q. E. D.

Theorem 3.2. There exists some constant A such that

I r{l-exp(ia<f>(t»}f(t)dt\^A r r{I-exv(-2-lazu2</>2(t))}u-2duf(t)dt
\J-ao J-cojQ
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for all a^.R.
/•i

Proof. I {I — exp( — 2~1tu2)}u~2du regarded as a function of t^[Q, °o)

is 0(vT) at ^ = 00 and O(t) at / = 0. While |l + #-exp(/0| is 0(0
at £ = oo and O(t2) at / = 0. It follows that there exists a constant A>0

such that \l + it-exv(it)\£A fl{l-exv(-2-lt2u2)}u-2du for all *e[0,oo).
0/0

Replacing t by #0(0 and integrating both sides of the above inequ-

ality, we have f \l + ia<f>(t)-exv(ia<f>(t))\f(t)dt<A f Al-exp
J—CO J— 00./0

(-2~la2<t>\t}u2)}u-2duf(t}dt. As f"° 4>(t)f( t)dt=Q, we have reached the
„/ — oo

desired result. Q.E.D.

Corollary. For a stationary product measure with f,
D^ 2 1M > ^re msfe /I > 0 s^c/x ^te^

(0)}/(O^I^AM(#)/or all a^R.

Proof. Using Theorem 3.1 and Theorem 3.2, there exists some con-

/

CO
{l-exv(ia<fi(t))}f(t)dt\^AM(a) for sufficiently small

/

CO

(1
00

— exp(z'tf0(0)}/(00ft| = 2. Thus replacing A by a suitable constant if
necessary, we may consider the above inequality holds for all a^R.

Q.E.D.

Theorem 303, If an Orlicz function M satisfies
r\

(*) / M(au}u~2du^BM(Ca) for all a^R, with some constants, B, C>0,

Then the condition of Corollary of Theorem 3.2 is also a sufficient condition
for D^IM. (Observe that M(a) = \a\p(Kp^2) satisfies (*).)

Proof. N*(a)= /"" fl{l-CGs(au^(t))}u~2duf(t)dt<A ^ M(au}u~'2- du
J-ooJo JQ

M(Ca). Q.E.D.

Now we shall consider /^-differentiability. If p>2, this is impossible
for such ft, and if p=2, a result is already obtained in [5] as the following
theorem. (Using Theorem 2.7 we have another proof of this theorem.)

Theorem 3*4. For a stationary product measure p. with /,
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For Kp^2, r{l-exp(ia<f>(t))}f(t)dt = O(\a\p) is necessary and
J-oo

sufficient for D^lp by the above theorems. The following theorem is a
weak version of this assertion but it is somewhat useful.

Theorem 3.5. For a stationary product measure v with f and for 1 <

P<2,

(1) D^lp=*Q<vq<p,
J-

(2) r\<t>(t)\pf(t)dt<^=^D^lp but
J-m

Proof. (1) By the assumption, there exist K>Q and /?o>0 such that
M<,(R-l)^KR~p for R^R0. Now put dm(t)=f(t)dt. Then for R^Ro,

. It follows that /"" \<fi(t)\qf(t)dt^R0
c'

J-oo

-\YlK. (' R-t"qdR«x>. (2) Since l-exp(-2-'/2)
y/?o9

/
oo /•!

/ {1 — exp
oo ./O

\<t>(t}\p f(t}dt T u"-2du. Thus I"

^Z)^ by Theorem 3.1. If we would have Z) /u=/p, then we proceed in the
same way as in the proof of Theorem 3.1 and conclude that there exist A
>0 and &>0 such that

Aap< r fl{I-exv(-2-la2u2</>2(t))}u-2duf(t)dt , for Q£a£do.
J-oo JO

Hence A£ f~ f\l-exv(-2-1a2u2</>2(t))}\a\-f>u-2duf(t)dt. However,
J-ooJO

since {l-exp(-2-V«2#2(0)}kl"*«"I^jK'M*~2|0(OI/>, we can apply Lebes-
gue bounded convergence theorem to get

lim f r{l-eKf>(-2-1a2u2^2(t))}\a\~pu~2duf(t}dt=Q ,
a ̂ 0 J-oo Jo

which is a contradiction. Q.E.D.
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Later we shall give examples of stationary product measures t±p such
that D»P=lp for Kp<2. However,

Theorem 3060 For stationary product measures p., we always have D^
I1.

Proof. If we would have ll=D^ for some /^, then there exists some
constant K>0 such that K\a\^M<p(a) for sufficiently small \a\. It follows

take K\a\<\a\r r\I-exv(-2-lu2<t>2(t))}u-2duf(t)dt and / f ^ l i m ^ + oJ-<X>JQ

r fa{l-exp(-2~lu2<t>2(t))}u~2duf(t)dt = Q. It is a contradiction. Q.E.D.
J-ooJO

If the product type measure p. is not stationary, then "/1=ZV may
occur, as seen in the following example.

Example 20 Take a sequence {an} such that 0<an<l (n=l, • • • ) 2"=i
(1 — an)<°°y and put t$n — an~

l(\. — an\ Let /n(0 be an even function on R
such that an on [0, 2"1], -a^«"1(^-2"1) + ^ on [2'1, 2~1 + 0n] and 0 on [2'1

„, oo). Then PV>.(0<# = 1 and f°°\fn(t)\dt = 2an. Hence ^ defined by
»/— 00 J — CO

x) = ®nfn(xn)dxn is /^differentiate. On the other hand if a = (an}^D^,
then l^sfl — A«||*ot<2 for sufficiently small s>0. It follows that for sa = b =

(bn), En=i r<lfn(t)Jfn(t + bn)dt>Q, which is equivalent to SJ=i f~\Jfn(t)
J-oo J-oo

- Jfn(t + £„)|2^<oo<^2"=i|6n|<oo. Thus we have D^ = /1.

Remark 6. Let C/u be the set of all continuous shifts, i.e. Cv = {a^R°°\
lim^oll^a — v\\tot = Q}. Then the proof of the second half is valid for a^C^.
Thus in this case we have C^=D^=ll. (We have D^C/u in general.)

Example 3. (D^ =lp
jl<p<2)

Put s-l-/)~1(0<s<2~1<^l</)<2.) and define fp(t) = apexv(-\t\s), where op

is the normalizing constant. Then

(d)= r(l-
J-ao

FP(d)=
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Some calculations derive that the first term and the second term of the right
hand is 0(\a\p) and O(a2) at a=0 respectively. So FP(a) = 0(\a\p] at or=0.
It follows from Theorem 3.3 that we have D^p=lp for djup(x) =

For our later discussions we investigate the set TfJi = {a=(an)\Va — ^}>
where — means equivalence relation for absolute continuity. Put gp(£) =

Then it is well known (See, [2].) that

(£)\2d£<oo. Since gp(t~)=O(\£\~(l+s})

at i£H°° and / {1 — exp(ia£)}\gp(J~)\2di; = O(\a\3~2p~l) at a=0 (Detailed
J — oo

calculations are omitted here.), it follows that TfjLp=l*~2p~l^lp=DfJLp.
(Since 3 — 2p~lyp for 1<^?<2.) If s = 2~1, then we proceed in the same way

/

oo /"oo

{l — exp(iafa(t))}f2(t)dt and / {1 — exp00 J — OO

are O(a2log \a\) at a=0. Thus we have T^2=Dli2 = {a —

§ 4. Relation to Quasi-In variance

Let VL be a probability measure on 23(J?°°). If for a subset (PCjR00 we
have T^ 2 (P, then ^ is said to be <Z>-quasi-invariant. We wish to discuss the
relation between T^ D» and C^. Note that we always have C^D^ and
C^ T^^iatE Ti,|tee TV for all ^e J?}. (For example, see [3].)

Theorem 4B18 Let (X, r) fe <2 topological linear space such that X is a
subset of jR°°, the vector topology T is stronger than the product topology on
R°° and T is metrizable with d such that (X, d) is a complete metric space.
If Xr\T» is dense in (X, d} and C^X, then T^X.

Proof. Define a metric on C/« such that d(a, b)=supost*i\\f*ta — fitb\\tot.
Then (CV, d) is a complete metric linear topological space whose topology
is stronger than the product topology on J?°°. (For example, see [3].)
Thus using closed graph theorem, the injection X^C^ is continuous.
Now take any a^X. Then by the assumption a sequence {flJcATn T»
exists such that lim*-.*, d(a, an) = Q, hence liiru-ooll/^ — ̂ aj^ = 0. Conse-

quently, for £eS(J?°°), v(E) = Q=* v n, Van(E) = Q=$va(E) = Q. Similarly,

jLt(E}=0 implies that v-a(E)=Q.
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Corollary 1. Let p. be Ro" -quasi-invariant and (X, r) satisfy the same
assumption of Theorem 4.1. If X contains RQ°° densely, then C^X implies
T^X.

Corollary 20 If T» is a dense subset of (C/,, 5), then T»0=C».

Proof. Put X= C^ in Theorem 4.1. Then we have T^C? and there-
fore Tv=Cv Since C? is a linear space, so is T^ and therefore T^= T? =
C,. Q. E. D.

Now let S" be a minimal tf-field with which all the coordinate functions
Xn+i, xn+2j m" are measurable and put 38°° = C\n=i*Bn . If Uo^-quasi- invariant
measure p. takes only the values 1 or 0 on S°°, f* is said to be jRo°°-ergodic.

Theorem 4,2. If JJL is Ro°° -ergodic, then T^C^ and therefore TV^C/*.

Proof. For jja — v, it is necessary and sufficient that ^=p.a on S300.
(See, [2].) Now let a^Cn and 5eS3°°. Since p(B + ta) is continuous for /
and takes only the values 0 or 1, so it is a constant. Thus we have f*(B)

Q.E.D.

In general even if p. is J?o°°-quasi-invariant, differentiability does not
imply quasi-invariance and vice-versa.

Example 4e Let f ( t ) be an even function on R such that 3(t — I)2/ 2 on
[0,1] and 0 on [1, oo). Put S; t^R - >*(!,!, • - , ! , • -) = fee/" and define a

measure v on S3(JS°°) such that y(£)= /" f ( t ) d t for E^B(R~}. We
o/S-l ( £ )

convolute y with rfG(x):=(x)n(2^)~1/2exp( — 2~lxn
2}dxn, and thus V*G = IJL is

obtained. Since ^G = /2 and A,3e, so D^l2 + Re. Put S-i

= limn — (xiH ---- hx«); exists.}. Then S is a linear space and //(S) = l,

which implies T^UC^cS. Observe that for BeS(U") and

= fG(B-te)f(t}dt and
JE

)= fc(B-a-te)f(t)dt , if p(a)=Q .
JE

(Namely, [Gte, p] is a canonical decomposition of p. as stated in [4].) From
this some calculations derive that \\JJL — ̂ 11^ = 11 G — Ga\\tot, if p(a) = Q. Now

let a^Tf*. Then ^a(p~l(E)}= I f ( t ) d t must be equivalent with
JE-p(a)

fjt(p~l(E)). Hence we have p(a) = 0. Moreover using the above two ine-
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quality for /J. and //a, we can derive that Gte is equivalent with Gte+a for
almost all t for the measure f(t)dt. (See, [4].) It follows from TG— Cc =
I2 that a^l2 and thus 12= T?. (Reverse including relation directly follows
from TG = l2.) Next let a^C^. Then for b = a — p(a)e, G= lim «-o||/^
— fAtb\\tot=limt-o\\G — Gtb\\tot. So we have ie/2, a^l2 + Re and thus l2 + Re

Cx/* LJ p..

Remark 7. If J?o°°-differentiable measure v is of product type, then RQ°°
is a dense subset of D^. (See, Theorem 2.1.) However this does not hold in
general. In fact the measure obtained in Example 4 is Jfo°°-differentiable
and J?o°°-quasi-invariant. However Dv = l2jt-Re whose topology coincides
with the product topology of I2 and R does not contain Ro°° densely.

Remark 8. Theorem 4.2 assures that D^ T?, but Dn=Tp does not
hold in general, as we have seen in Example 3 to the case Kp<2. Now
we shall supply following examples to the case p=l and p=2.

Example 5. (T^=l\D^T)

Let K0(u) = fi°°exp(-ut)(t2-l)-ll2dt(u>0) be modified Bessel function.

Since \imu-*+oKo(u) = °o, KQ is not bounded. Put f(u)=4x~1Ko2(27c\u\).

Then f~ f(u)du = l, g(v)= 3 ( J f } ( v } = {n(l + v2)}-112 and f°° exp
J —00 J— 00

(ivt)\g(v)\2dv=exp( — \t\). It follows that a measure v defined as the
stationary product with / is /^quasi-invariant. (See, [2].) Now put fn(t)

=/(0 i f f ( t ) £ n , and/n(0 = w i f f ( t ) > n . Then fe°\fn(t)\dt<co for all «
7-00

and limnll/—/»||LI=O. Thus taking a subsequence {nk} such that 2"=i||/
•"/nJU^00, y is equivalent with ^ defined as dp.(x) = ®kfnk(xh)dxk. (See,
[2].) So we have D^Ro00 and Ttt=Tv=ll. However if it would Tf*=l1

hold, then by Remark 2 after Theorem 2.4 fnk(t)(k=l, •••) must be uniform-
ly bounded. Thus the same holds for /, but it contradicts to the unbound-
ness of KQ.

ExampieG. (T^/2, £>„=#=/2)
Let (an)^ll such that 0<an<l (w = l, •••) and (fin) be a positive

sequence such that Iimnanl3n = co. We take a non negative differentiate

/

DO /"00

gn(t)dt = l. I \gn'(t)\dt<vo andoo ./—oo

gn(Q) = /3n. Now let /0(0 = (2^)-1/2exp(-2-1/2) and put /»(0 = (l-o.)/o(0
n(0 (»=1, "•)• Then ||/«—/olUi = ffB||/o —5(i|i»^2aB, so G which is the
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stationary product with /0 is equivalent with p. defined as dp(x) =

®ngn(xn)dxn. Hence Tv=TG = l2. On the other hand /^(O)^^/?^^00 (n

-^°°), so {fn(t}} is not uniformly bounded. It implies Z5//ID/1.

Concerning the above example, we shall list a following fact whose
proof follows directly from Remark 5 and Theorem 3.2 in [2].

Theorem 4030 If a product type measure p. is I2-quasi-invariant, then

there exists a product type measure v such that V — JJL and D^l2.
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