Publ. RIMS, Kyoto Univ. 23 (1987), 791–811

An Aspect of Differentiable Measures on \mathbb{R}^{∞}

By

Hiroaki SHIMOMURA*

Introduction

In this paper we shall study differentiable probability measures μ on the usual Borel σ -field $\mathfrak{B}(\mathbb{R}^{\infty})$ on \mathbb{R}^{∞} which is the countable direct-product on the real line \mathbb{R} . First in Section 1 we prepare some basic tools for our later discussions and discuss general properties of these measures. In Section 2 we consider measures of product-type, $\mu = \prod_{n=1}^{\infty} \mu_n$ and investigate the set D_{μ} of all differentiable shifts of μ . And using these results, we characterize measures μ such that $D_{\mu} \supseteq l^2$. If μ_n ($n=1, 2\cdots$) is the same measure, then μ is said to be a stationary product measure. In Section 3 we take up stationary product measures. It will turn out that D_{μ} is an Orlicz sequence space. Lastly in Section 4 we consider a relation of differentiability and quasi-invariance of μ .

§1. Preliminary Discussions

Let μ be a probability measure on the measure space $(\mathbb{R}^{\infty}, \mathfrak{B}(\mathbb{R}^{\infty}))$. For $a=(a_n) \in \mathbb{R}^{\infty}$ if $\lim_{t\to 0} t^{-1}\{\mu(E+ta)-\mu(E)\}\equiv \partial_a\mu(E)$ exists for all $E\in \mathfrak{B}(\mathbb{R}^{\infty})$, then μ is said to be differentiable in the *a*-direction, or *a* is said to be a differentiable shift for μ . The set of all differentiable shifts will be denoted by D_{μ} . It is remarkable that the above pointwise limit can be taken the place of the total variation norm of signed measures. (See, [5]) It is not hard to see that $\frac{d}{dt}\mu(E+ta)=\partial_a\mu(E+ta)$ for all $t\in\mathbb{R}$, $\partial_a\mu=0$ if and only if a=0, D_{μ} is a linear subspace of \mathbb{R}^{∞} , $\partial_{aa+\beta b}\mu=a\partial_a\mu+\beta\partial_b\mu$ for all

Communicated by S. Matsuura, February 23, 1987. Revised June 1, 1987.

^{*} Department of Mathematics, Fukui University, Fukui 910, Japan.

a, $b \in D_{\mu}$ and a, $\beta \in \mathbf{R}$, and $\partial_{a}\mu$ is absolutely continuous with respect to μ . Put for $a \in D_{\mu} ||a||_{\mu} \equiv \int \left| \frac{d\partial_{a}\mu}{d\mu}(x) \right| d\mu(x) = \left\| \frac{d\partial_{a}\mu}{d\mu} \right\|_{L_{\mu}}$. Then $||\cdot||_{\mu}$ is a norm on D_{μ} . Let $p_{n}: x = (x_{n}) \in \mathbf{R}^{\infty} \mapsto (x_{1}, \dots, x_{n}) \in \mathbf{R}^{n}$ and $q_{n}: x = (x_{n}) \in \mathbf{R}^{\infty} \mapsto x_{n} \in \mathbf{R}$, and put $\mu_{n}(E) = \mu(q_{n}^{-1}(E))$ for all Borel sets E of \mathbf{R} . Then for any $a = (a_{n})$ $\in D_{\mu} \partial_{a}\mu(q_{n}^{-1}(E)) = \lim_{t \to 0} t^{-1} \{\mu_{n}(E + ta_{n}) - \mu_{n}(E)\} = a_{n} \lim_{t \to 0} t^{-1} \{\mu_{n}(E + t) - \mu_{n}(E)\}$. Thus μ_{n} is differentiable and we have $||a||_{\mu} \ge ||\partial\mu_{n}|||a_{n}|$.

Theorem 1.1. $(D_{\mu}, \|\cdot\|_{\mu})$ is a Banach space of cotype 2 and the normed topology is stronger than the product topology on \mathbb{R}^{∞} .

Proof. The last assertion is a direct consequence of the above inequality. Let $\{a^{(k)}\}_k$ be a Cauchy sequence in $(D_{\mu}, \|\cdot\|_{\mu})$. Then $a^{(k)}$ converges to $a \in \mathbb{R}^{\infty}$ in the product topology and $\{\partial_{a^{(k)}}\mu\}_k$ is a Cauchy sequence in the total variation norm of signed measures. It follows from Theorem 3.1 in [5] that $a \in D_{\mu}$ and $\|\partial_{a^{(k)}}\mu - \partial_{a}\mu\|_{tot} \longrightarrow 0(k \longrightarrow \infty)$. Since $(D_{\mu}, \|\cdot\|_{\mu})$ is isomorphic to a subspace of L^1_{μ} , it is of cotype 2. Q.E.D.

Lemma 1.1. Let (X, τ) be a topological linear space such that X is a subset of \mathbb{R}^{∞} , the vector topology τ is stronger than the product topology on \mathbb{R}^{∞} and τ is metrizable with d such that (X, d) is a complete metric space. Then if it holds $X \subseteq D_{\mu}$ or $D_{\mu} \subseteq X$ for some μ , the injection is continuous in either case.

Proof. It is a consequence of closed graph theorem and Theorem 1.1. Q.E.D.

Theorem 1.2. Let μ be a probability measure on $\mathfrak{B}(\mathbb{R}^{\infty})$ such that $D_{\mu} \supset \{x = (x_n) \in \mathbb{R}^{\infty} | x_n = 0 \text{ except finite numbers of } n's.\} \equiv \mathbb{R}_0^{\infty}$. Then $D_{\mu} \supseteq l^1 \iff$

$$\sup_{n} \int \left| \frac{d\partial_{e_{n}} \mu}{d\mu}(x) \right| d\mu(x) < \infty.$$

Proof. If $D_{\mu} \supseteq l^{1}$, then by the inequality above we have $\int |\rho_{n}(x)| d\mu(x) \le K \|e_{n}\|_{l^{1}} = K$. Conversely if this condition is satisfied, $\{\sum_{n=1}^{N} a_{n}\rho_{n}(x)\}_{N}$ is a Cauchy sequence in L^{1}_{μ} for all $a = (a_{n}) \in l^{1}$. So we have $a \in D_{\mu}$ in virtue of Theorem 1.1. Q.E.D.

Now let $1 \le p \le \infty$, $p^{-1} + q^{-1} = 1$ and consider an l^p -or c_0 -differentiable measures μ . Then an l^q - or l^1 -valued set function $T_{\mu}: B \in \mathfrak{B}(\mathbb{R}^{\infty}) \to (\int_n \rho_n(x) d\mu(x))_n$ is defined.

Lemma 1.2. For any $\epsilon > 0$, there exists some $\delta > 0$ such that $\mu(E) \leq \delta$ implies $||T_{\mu}(E)|| < \epsilon$.

Proof. Put $d(A, B) = \mu(A \ominus B)$ for all $A, B \in \mathfrak{B}(\mathbb{R}^{\infty})$. Identifying Awith B if $\mu(A \ominus B) = 0$, we have a complete metric space $(\mathfrak{B}(\mathbb{R}^{\infty}), d)$. From the absolute continuity of indefinite integral, $T_n(B) \equiv (\int_B \rho_1(x) d\mu(x), \cdots, \int_B \rho_n(x) d\mu(x), 0, 0, \cdots)$ is continuous on $(\mathfrak{B}(\mathbb{R}^{\infty}), d)$. Since $\lim_n T_n(B) = T_\mu(B)$, so a continuous point B_0 of T exists in virtue of Baire's theorem. Thus for any $\varepsilon > 0$ there exists some $\delta > 0$ such that $\mu(B \ominus B_0) \leq \delta$ implies $\|T_\mu(B) - T_\mu(B_0)\| < 2^{-1}\varepsilon$. Now let $\mu(E) \leq \delta$. Put $B_1 = E \cup B_0$ and $B_2 = B_0 \cap E^c$. Then we have $\mu(B_1 - B_0) \leq \delta$, $\mu(B_2 - B_0) \leq \delta$ and $E = B_1 \cap B_2^c$. Hence $\|T_\mu(E)\| = \|T_\mu(B_1) \ominus T_\mu(B_2)\| \leq \|T_\mu(B_1) \ominus T_\mu(B_0)\| + \|T_\mu(B_0) - T_\mu(B_2)\| < \varepsilon$. Q.E.D.

Theorem 1.3. Let μ be an l^p - or c_0 -differentiable measure. Then T_{μ} is an l^q - or l^1 -valued vector measure on $(\mathbb{R}^{\infty}, \mathfrak{B}(\mathbb{R}^{\infty}))$, and it is absolutely continuous with μ .

Proof follows directly from the above lemma. Q.E.D.

Let μ be an $l^p - (1 differentiable measure. <math>l^q(1 < q < \infty)$ has Radon-Nikodim property. So if T_{μ} has bounded variation, sup $\{\sum_{B \in \pi} || T_{\mu}(B) ||_{l^q}: \pi$ partition of \mathbb{R}^{∞} into a finite number of pairwise disjoint Borel subsets $\} < \infty$, then there exists a function F in $L^1(\mathbb{R}^{\infty}, \mathfrak{B}(\mathbb{R}^{\infty}), \mu, l^q)$ such that $T_{\mu}(B) = \int_B F(x) d\mu(x)$ for all $B \in \mathfrak{B}(\mathbb{R}^{\infty})$. From the definition of T_{μ} , we have $F(x) = \sum_{n=1}^{\infty} \rho_n(x) e_n$ for μ -a.e.x. Hence $F \in L^1 \longleftrightarrow \int (\sum_{n=1}^{\infty} |\rho_n(x)|^q)^{1/q} d\mu(x) < \infty$. Settling these arguments,

Theorem 1.4. Let $D_{\mu} \supset \mathbf{R}_0^{\infty}$ and $1 . Then <math>D_{\mu} \supseteq l^p$ and the l^q -valued vector measure T_{μ} has bounded variation if and only if $\int \left(\sum_{n=1}^{\infty} \left| \frac{d\partial_{e_n} \mu}{d\mu}(x) \right|^q \right)^{1/q} d\mu(x) < \infty$.

Proof. It is nothing to prove "if part". Conversely if the last inequality holds, then $\int |\sum_{n=1}^{\infty} a_n \rho_n(x)| d\mu(x) \leq ||a||_{l^p} \int (\sum_{n=1}^{\infty} |\rho_n(x)|^q)^{1/q} d\mu(x)$, and $||T_{\mu}(B)||_{l^q} \leq \int_B (\sum_{n=1}^{\infty} |\rho_n(x)|^q)^{1/q} d\mu(x)$ for all $B \in \mathfrak{B}(\mathbb{R}^{\infty})$. So $D_{\mu} \geq l^p$ holds and T_{μ} has a bounded variation. Q.E.D.

Remark 1. In general the bounded variation condition is not satisfied. For example canonical Gaussian measure G on $(\mathbb{R}^{\infty}, \mathfrak{B}(\mathbb{R}^{\infty}))$, being the product of 1-dimensional Gaussian measure $dg(t) = (2\pi)^{-1/2} \exp(-2^{-1}t^2) dt$, is l^2 -differentiable. (See [5] or later arguments.) However $\int (\sum_{n=1}^{\infty} \rho_n(x)^2)^{1/2} dG(x) = \int (\sum_{n=1}^{\infty} x_n^2)^{1/2} dG(x) = \infty$.

§ 2. Measures of Product Type

In this section we consider measures μ of product type consisting of 1dimensional probability measures μ_n on $(\boldsymbol{R}, \mathfrak{B}(\boldsymbol{R}))$. Then μ is $\boldsymbol{R}_0^{\infty}$ differentiable if and only if all the μ_n are differentiable on \boldsymbol{R} . Further by Theorem 7.1 in [5], it is equivalent that each μ_n has a density $f_n(t)$ with the Lebesgue measure dt on \boldsymbol{R} and that $f_n'(t)$ (in distribution sense) belongs to $L_{dt}^1(\boldsymbol{R})$. Consequently we may assume that $f_n(t)$ is an absolutely continuous function with the derivative $f_n'(t) \in L_{dt}^1(\boldsymbol{R})$. From now on we always assume that μ is of such type, $d\mu(x) = \bigotimes_n f_n(x_n) dx_n$ and $D_{\mu} \supset \boldsymbol{R}_0^{\infty}$, and we put $\phi_n(t) = f_n'(t)/f_n(t)$. Now consider a conditional expectation $\operatorname{Exp}(F|\mathfrak{B}_n)(x)$ of $F \in L_{\mu}^1(\boldsymbol{R}^{\infty})$ relative to the sub- σ -field $\mathfrak{B}_n = p_n^{-1}(\mathfrak{B}(\boldsymbol{R}^n))$. If $a = (a_n) \in D_{\mu}$, $\frac{d\partial_a \mu}{d\mu}(x) = \lim_{N \to \infty} \operatorname{Exp}\left(\frac{d\partial_a \mu}{d\mu} \middle| \mathfrak{B}_N\right)(x) = \lim_{N \to \infty} \sum_{n=1}^N a_n f_n'(x_n)/f_n(x_n)$ in L_{μ}^1 . Hence $\{\sum_{n=1}^N a_n \phi_n(x_n)\}$ forms a Cauchy sequence in L_{μ}^1 and $\|a\|_{\mu} = \int |\sum_{n=1}^{\infty} m_n(x_n)|^2 dx_n = \int |x_n|^2 dx_n + \int |x_n|^2 dx_n|^2 dx_n + \int |x_n|^2 dx_n|^2 d$ $a_n\phi_n(x_n)|d\mu(x).$

Theorem 2.1. For $d\mu(x) = \bigotimes_n f_n(x_n) dx_n$ and $D_\mu \supset \mathbb{R}_0^{\infty}$, besides the conclusion of Theorem 1.1, D_μ contains \mathbb{R}_0^{∞} densely and the canonical base $e_n = (0, \dots, 0, \stackrel{n}{1}, 0, \dots)$ $(n=1, 2, \dots)$ forms an unconditional base of $(D_\mu, \|\cdot\|_\mu)$.

Proof. It may be only to prove the unconditionality. Let $\{\varepsilon_n(\omega)\}$ be a Bernoulli sequence. They are independent identically distributed random variables on a probability space (Ω, P) such that $P(\varepsilon_n(\omega) = \pm 1) = 2^{-1}$. Now $\phi_n(x_n)$ $(n=1, 2, \cdots)$ are independent and $\int \phi_n(x_n) d\mu(x) = 0$. Thus for any $a = (a_n) \in \mathbb{R}^{\infty}$, $\{\sum_{n=1}^{N} a_n \phi_n(x_n)\}$ is a martingale and it follows that $\int |\sum_{n \in N_1} a_n \phi_n(x_n)| d\mu(x) \leq \int |\sum_{n \in N_2} a_n \phi_n(x_n)| d\mu(x)$ for finite subsets $N_1 \subseteq N_2$ of natural numbers. Hence for all $\omega \in \Omega$ and $a = (a_n) \in \mathbb{R}^{\infty}$,

$$2^{-1} \int |\sum_{n=1}^{N} a_n \varepsilon_n(\omega) \phi_n(x_n)| d\mu(x) \leq \int |\sum_{n=1}^{N} a_n \phi_n(x_n)| d\mu(x)$$
$$\leq 2 \int |\sum_{n=1}^{N} a_n \varepsilon_n(\omega) \phi_n(x_n)| d\mu(x) .$$

The unconditional constant of the base is less than 2. Q.E.D.

Corollary. $(a_n) \in D_{\mu} \iff (\varepsilon_n(\omega)a_n) \in D_{\mu}$ for all $\omega \in \Omega$.

Proposition 2.1. For $d\mu(x) = \bigotimes_n f_n(x_n) dx_n$ and $D_{\mu} \supset \mathbb{R}_0^{\infty}$,

$$a=(a_n)\in D_{\mu}\iff \sup_{N}\int |\sum_{n=1}^{N}a_n\phi_n(x_n)|d\mu(x)<\infty$$
.

Proof. (\Longrightarrow) It is obvious by the preceding arguments.

(\iff) Using Ottaviani's inequality for independent random variables, after some calculations we can derive that

$$\int \sup_{\mathcal{N}} |\sum_{n=1}^{N} a_n \phi_n(x_n)| d\mu(x) \leq 12 \sup_{\mathcal{N}} \int |\sum_{n=1}^{N} a_n \phi_n(x_n)| d\mu(x) < \infty .$$

Hence $\{\sum_{n=1}^{N} a_n \phi_n(x_n)\}_N$ is a uniformly integral martingale. It follows from martingale theory that they form a Cauchy sequence in $L^1_{\mu}(\mathbb{R}^{\infty})$, and so we have $a \in D_{\mu}$. Q.E.D.

These arguments are collected as a following theorem.

Theorem 2.2. For $d\mu(x) = \bigotimes_n f_n(x_n) dx_n$ and $D_{\mu} \supset \mathbb{R}_0^{\infty}$, the following are all equivalent.

- (1) $a=(a_n)\in D_{\mu}$.
- (2) $\{\sum_{n=1}^{N} a_n \phi_n(x_n)\}_N$ forms a Cauchy sequence in L^1_{μ} .
- (3) $\forall B \in \mathfrak{B}(\mathbf{R}^{\infty})$, $\sum_{n=1}^{\infty} a_n \int_{\mathbf{R}} \phi_n(x_n) d\mu(x)$ converges.
- (4) $\forall B \in \mathfrak{B}(\mathbf{R}^{\infty})$, $\sup_{N} |\sum_{n=1}^{N} a_n \int_{B} \phi_n(x_n) d\mu(x)| < \infty$.
- (5) $\sup_{N} \int |\sum_{n=1}^{N} a_n \phi_n(x_n)| d\mu(x) < \infty$.

Proof. It is clear from what we have discussed. Q.E.D.

Theorem 2.3. For $d\mu(x) = \bigotimes_n f_n(x_n) dx_n$ and $D_\mu \supset \mathbf{R}_0^{\infty}$, the following are all equivalent.

- (1) $c_0 \subset D_{\mu}$
- (2) $l^{\infty} \subset D_{\mu}$
- (3) $\sup_{N} \int |\sum_{n=1}^{N} \phi_n(x_n)| d\mu(x) = S < \infty .$

Proof. (1) \Rightarrow (3). By Lemma 1.1 there exists some constant S > 0 such that $\int |\sum_{n=1}^{N} a_n \phi_n(x_n)| d\mu(x) \leq S \max\{|a_n||n=1, \dots, N\}$ for all N and $(a_n) \in \mathbb{R}^N$. Thus (3) is obtained by putting $a_n=1$ $(n=1, \dots, N)$. (3) \Rightarrow (2). Consider a point $(t_n) \in \mathbb{R}^N$ such that $|t_n| \leq 1$ $(n=1, \dots, N)$. Then (t_n) is a convex combination of points $(\varepsilon_n(\omega)) \in \mathbb{R}^N$ running ω on Ω . Thus,

$$\begin{split} \int & |\sum_{n=1}^{N} t_n \phi_n(x_n)| d\mu(x) \leq \max_{\omega \in \mathcal{Q}} \int |\sum_{n=1}^{N} \varepsilon_n(\omega) \phi_n(x_n)| d\mu(x) \\ \leq & 2 \int |\sum_{n=1}^{N} \phi_n(x_n)| d\mu(x) \leq 2S \; . \end{split}$$

It follows from (5) of Theorem 2.2 that $l^{\infty} \subset D_{\mu}$. "(2) \Rightarrow (1)" is obvious.

Theorem 2.4. For $d\mu(x) = \bigotimes_n f_n(x_n) dx_n$ and $D_\mu \supset \mathbb{R}_0^{\infty}$, $D_\mu \supseteq l^1 \iff \sup_n \int_{-\infty}^{\infty} |f_n'(t)| dt < \infty$.

Proof. As $\frac{d\partial_{e_n}\mu}{d\mu}(x) = \phi_n(x_n)$, this is a restatement of Theorem 1.2.

Remark 2. Put $M = \sup_{n} \int_{-\infty}^{\infty} |f_{n}'(t)| dt$. Then $|f_{n}(b) - f_{n}(a)| \leq \int_{a}^{b} |f_{n}'(t)| dt \leq M$. Since $\lim_{R \to \infty} f_{n}(R) = 0$ for all $n, |f_{n}(a)| \leq M$ for all n and $a \in \mathbb{R}$.

To investigate the structure of D_{μ} in more detail, we wish to discuss it in probabilistic terms.

Lemma 2.1. Let (Ω, P) be a probability space and $X(\omega)$ be in $L_P^1(\Omega)$. Then $\int_{\Omega} \int_0^1 \{1 - \cos(uX(\omega))\} u^{-2} du dP(\omega) \le B \int_{\Omega} |X(\omega)| dP(\omega)$, where $B = \sup_t |I_0|^t \sin u/u du|$.

Proof. Take any ε such that $0 < \varepsilon < 1$. Integrating by parts we have $\int_{a} \int_{\varepsilon}^{1} \{1 - \cos(uX(\omega))\} u^{-2} du dP(\omega) = -\int_{a} \{1 - \cos(X(\omega))\} dP(\omega) + \varepsilon^{-1} \int_{a} \{1 - \cos(\varepsilon X(\omega))\} dP(\omega) + \int_{a} \{\int_{\varepsilon X(\omega)}^{X(\omega)} \sin u/u \ du\} X(\omega) dP(\omega)$. Using $1 - \cos \alpha \le |\alpha|$, we apply bounded convergence theorem to the second term in the above equality as $\varepsilon \to +0$. Then $\int_{a} \int_{0}^{1} \{1 - \cos(uX(\omega))\} u^{-2} du dP(\omega) \le B \int_{a} |X(\omega)| dP(\omega)$. Q.E.D.

Lemma 2.2. Let $X(\omega) \in L^1_P(\Omega)$ and put for $\alpha \in \mathbb{R}$, $N_X(\alpha) = \int_{\Omega} \int_0^1 \{1 - \cos(\alpha u X(\omega))\} u^{-2} du dP(\omega)$.

(If $\int_{\alpha} |X(\omega)| dP(\omega) = 0$, then $N_x \equiv 0$. So we assume that $\int_{\alpha} |X(\omega)| dP(\omega) \neq 0$.) Then

(1) $N_x(\alpha)$ is differentiable for $\alpha \neq 0$ and $N_{x'}(\alpha) > 0$ for $\alpha > 0$. (2) $N_x(t\alpha) \leq (4t^2 + |t|)N_x(\alpha)$ for all t and α .

Proof. Integrating by substitution, we can rewrite as $N_x(\alpha) = \alpha \int_{\alpha} \int_0^{\alpha} \{1 - \cos(uX(\omega))\} u^{-2} du dP(\omega)$. It follows that $N_x'(\alpha) = \int_{\alpha} \int_0^{\alpha} \{1 - \cos(uX(\omega))\} u^{-2} du dP(\omega) + \alpha^{-1} \int_{\alpha} \{1 - \cos(\alpha X(\omega))\} dP(\omega) > 0 \text{ for } \alpha > 0$. It is easy to see from the above form of N_x that $N_x(t\alpha) \leq |t| N_x(\alpha)$ for $|t| \leq 1$. Now let |t| > 1 and choose $n = 0, 1, \dots, \dots$ such that $2^n < |t| \leq 2^{n+1}$. Since $1 - \cos(2^k \alpha)$

 $\leq 2^{2k}(1-\cos \alpha) \text{ for all } \alpha \text{ and } k=0, 1, \cdots, \cdots, \text{ it follows that } N_X(t\alpha) \leq N_X(2^{n+1}\alpha) \leq 4 \cdot 2^{2n}N_X(\alpha) \leq 4t^2N_X(\alpha).$ Q.E.D.

By (2) of the above lemma we can define a function $M_X(\alpha)$ on \mathbb{R} $M_X(\alpha)$ = $\int_{-\infty}^{\infty} N_X(t\alpha) dg(t) = \int_{\alpha} \int_0^1 \{1 - \exp(-2^{-1}\alpha^2 u^2 X^2(\omega))\} u^{-2} du dP(\omega).$

Lemma 2.3. Under the same assumption on $X(\omega)$ as in Lemma 2.2, (1) $k'N_X(\alpha) \leq M_X(\alpha) \leq kN_X(\alpha)$ for $\alpha \in \mathbb{R}$, where $k = \int_{-\infty}^{\infty} (4t^2 + |t|)dg(t)$ and $k' = g(|t| \geq 1)$. (2) $M_X(0) = 0$, $\lim_{\alpha \to \infty} M_X(\alpha) = \infty$ and M_X is a strictly increasing function on $[0, \infty)$.

(3) For $\alpha \neq 0$, $M_X''(\alpha)$ exists and $M_X''(\alpha) > 0$.

(4) M_X satisfies (Δ_2)-condition at 0,

 $(\Delta_2); \lim_{\alpha \to \pm 0} \alpha M_X'(\alpha) / M_X(\alpha) < \infty$.

Proof. Integrating both sides of (2) of Lemma 2.2 with $dg(t), M_X(\alpha) \le kN_X(\alpha)$ for $\alpha \in \mathbf{R}$. On the other hand, $M_X(\alpha) = \int_{-\infty}^{\infty} N_X(t\alpha) dg(t) \ge \int_{|t|>1} N_X(t\alpha) dg(t) \ge k'N_X(\alpha)$. Since

$$M_{X}(\alpha) = \alpha \int_{\Omega} \int_{0}^{\alpha} \{1 - \exp(-2^{-1}u^{2}X^{2}(\omega))\} u^{-2} du dP(\omega), \text{ it follows that}$$
$$\lim_{\alpha \to \infty} M_{X}(\alpha) = \infty, M_{X}'(\alpha) = \int_{\Omega} \int_{0}^{\alpha} \{1 - \exp(-2^{-1}u^{2}X^{2}(\omega))\} u^{-2} du dP(\omega)$$
$$+ \alpha^{-1} \int_{\Omega} \{1 - \exp(-2^{-1}\alpha^{2}X^{2}(\omega))\} dP(\omega) > 0 \text{ for } \alpha > 0 \text{ and}$$

$$\begin{split} M_{X''}(\alpha) &= \int_{\alpha} \exp(-2^{-1}\alpha^{2}X^{2}(\omega))X^{2}(\omega)dP(\omega) > 0, \text{ for } \alpha \neq 0. \text{ Lastly for } \alpha > 0, \\ \alpha M_{X'}(\alpha) &= M_{X}(\alpha) + \int_{\alpha} \{1 - \exp(-2^{-1}\alpha^{2}X^{2}(\omega))\}dP(\omega) \leq 2M_{X}(\alpha). \text{ Hence the } \\ (\mathcal{A}_{2})\text{-condition at 0 is satisfied.} & Q.E.D. \end{split}$$

Remark 3. An Orlicz function M is a continuous non-decreasing and convex function defined on $t \ge 0$ such that M(0)=0 and $\lim_{t\to\infty} M(t)=\infty$. If M(t)=0 for some t>0, M is said to be a degenerate Orlicz function. By Lemma 2.3, M_X is a non-degenerate Orlicz function satisfying (Δ_2) -condition at 0. This condition is equivalent with that for every positive number Q>0, $\overline{\lim_{t\to+0} M(Qt)/M(t)} < \infty$. (See, [1].) **Theorem 2.5.** Let $\{X_n(\omega)\}$ be a sequence of independent random variables on (Ω, P) such that $X_n \in L_P^{-1}(\Omega)$ and $\int_{\Omega} X_n(\omega) dP(\omega) = 0$, $(n=1, \cdots, \cdots)$. Then the following are all equivalent.

(1) $\sum_{n=1}^{\infty} X_n(\omega)$ converges in $L^1_P(\Omega)$.

(2)
$$\sum_{n=1}^{\infty} \int_{\omega} \int_{0}^{1} \{1 - \cos(uX_n(\omega))\} u^{-2} du dP(\omega) = \sum_{n=1}^{\infty} N_{X_n}(1) < \infty$$
.

(3)
$$\sum_{n=1}^{\infty} \int_{\Omega} \int_{0}^{1} \{1 - \exp(-2^{-1}u^{2}X_{n}^{2}(\omega))\} u^{-2} du dP(\omega) = \sum_{n=1}^{\infty} M_{X_{n}}(1) < \infty$$
.

Proof. Equivalence of (2) and (3) is obvious by Lemma 2.3. Before the rest of the proofs we wish to state some remarks. Let $\{\varepsilon_n(\omega')\}$ be a Bernoulli sequence on a probability space (Ω', P') . Then

$$\begin{split} &\int_{\mathcal{Q}} \int_{\mathcal{Q}'} \{1 - \cos(\sum_{n} \varepsilon_{n}(\omega') X_{n}(\omega))\} dP(\omega) dP'(\omega') \\ &= \int_{\mathcal{Q}} \int_{\mathcal{Q}'} \{1 - \exp(i\sum_{n} \varepsilon_{n}(\omega') X_{n}(\omega))\} dP(\omega) dP'(\omega') \\ &= \int_{\mathcal{Q}} \{1 - \prod_{n} \cos(X_{n}(\omega))\} dP(\omega) \\ &= 1 - \prod_{n} \int_{\mathcal{Q}} \cos(X_{n}(\omega)) dP(\omega) \leq \sum_{n} \{1 - \int_{\mathcal{Q}} \cos(X_{n}(\omega)) dP(\omega)\} \,. \end{split}$$

Conversely if $1 - \int_{a} \cos(X_{n}(\omega)) dP(\omega) \equiv a_{n} < 2^{-1}$ for all *n* and

 $1 - \int_{\varrho} \int_{\varrho'} \cos(\sum_{n \in n} (\omega') X_{n}(\omega)) dP(\omega) dP'(\omega') < 2^{-1}, \text{ then using } K_{2} \leq -\log u/(1-u) \leq K_{1} \text{ for } |1-u| \leq 2^{-1} (K_{1} \text{ and } K_{2} \text{ are suitable positive constants}), we have <math>\sum_{n a_{n}} \leq -K_{2}^{-1} \sum_{n} \log(1-a_{n}) = -K_{2}^{-1} \log \prod_{n} (1-a_{n}) \leq K_{1} K_{2}^{-1} \{1 - \int_{\varrho} \int_{\varrho'} \int_{\varrho'} \cos(\sum_{n \in n} (\omega') X_{n}(\omega)) dP(\omega) dP'(\omega')\}.$ Next put $H(t) = \int_{0}^{1} (1 - \cos t\xi) a\xi = 1$ $-\sin t/t.$ Then $H \geq 0$ and $H(t) \geq 2^{-1}$, if $|t| \geq 2$. Lastly we notice that $\int_{\varrho} |X(\omega)| dP(\omega) = \int_{0}^{\infty} P(|X(\omega)| \geq t) dt$ holds for all \mathbb{R} -valued measurable functions.

Proof of (1) \Rightarrow (2). Put $M = \sup_{N} \int_{\Omega} \int_{\Omega'} |\sum_{n=1}^{N} \varepsilon_n(\omega') X_n(\omega)| dP(\omega) dP'(\omega')$ and take τ such that $0 < \tau \leq (2M)^{-1}$. Then for all $0 \leq u \leq 1$, $\int_{\Omega} \int_{\Omega'} \{1 - \cos u\}$ $(\tau u \sum_{n=1}^{N} \varepsilon_n(\omega') X_n(\omega)) dP(\omega) dP'(\omega') \leq Mu\tau \leq 2^{-1} \text{ and } \int_{\mathcal{G}} \{1 - \cos(\tau u X_n(\omega))\} dP(\omega) \leq Mu\tau \leq 2^{-1} \text{ for all } n. \text{ Hence we have } \sum_{n=1}^{N} N_{X_n}(\tau) = \sum_{n=1}^{N} \int_{\mathcal{G}} \int_{0}^{1} \{1 - \cos(\tau u X_n(\omega))\} u^{-2} du dP(\omega) \leq K_2^{-1} K_1 \int_{\mathcal{G}} \int_{\mathcal{G}'} \int_{0}^{1} \{1 - \cos(\tau u \sum_{n=1}^{N} \varepsilon_n(\omega') X_n(\omega))\} u^{-2} du dP(\omega) dP'(\omega') \leq K_2^{-1} K_1 B\tau \int_{\mathcal{G}} \int_{\mathcal{G}'} |\sum_{n=1}^{N} \varepsilon_n(\omega') X_n(\omega)| dP(\omega) dP(\omega') \leq K_2^{-1} K_1 B\pi\tau, \text{ where } B \text{ is the constant in Lemma 2.1.}$ Since $N_{X_n}(1) \leq 2^{2k} N_{X_n}(\tau)$ for k such that $2^{-k} \leq \tau$, it follows that $\sum_{n=1}^{\infty} N_{X_n}(1) < \infty$.

Proof of (2)
$$\Rightarrow$$
(1). $\int_{1}^{\infty} P \times P'(|\sum_{n=1}^{N} \varepsilon_{n}(\omega')X_{n}(\omega)| \ge R)dR$
 $\le 2\int_{1}^{\infty} \int_{\Omega} \int_{\Omega'} H(2R^{-1}\sum_{n=1}^{N} \varepsilon_{n}(\omega')X_{n}(\omega))dP(\omega)dP'(\omega')dR$
 $= 2\int_{0}^{1} \int_{1}^{\infty} \int_{\Omega} \int_{\Omega'} \{1 - \cos(2R^{-1}\xi\sum_{n=1}^{N} \varepsilon_{n}(\omega')X_{n}(\omega))\}dP(\omega)dP'(\omega')dRd\xi$
 $\le 2\sum_{n=1}^{N} \int_{0}^{1} \int_{0}^{1} \int_{\Omega} \{1 - \cos(2u\xi X_{n}(\omega))\}u^{-2}dudP(\omega)d\xi$
 $\le 2\sum_{n=1}^{N} \int_{0}^{1} N_{X_{n}}(2\xi)d\xi \le 2\sum_{n=1}^{N} N_{X_{n}}(2) \le 8\sum_{n=1}^{\infty} N_{X_{n}}(1).$

It follows that $\sup_{N} \int_{\Omega} |\sum_{n=1}^{N} X_{n}(\omega)| dP(\omega) \leq 2\{1 + 8\sum_{n=1}^{\infty} N_{X_{n}}(1)\} < \infty$. As we have seen in the proof of Proposition 2.1, $L_{P}^{1}(\Omega)$ -convergence of $\{\sum_{n=1}^{N} X_{n}(\omega)\}$ is equivalent to $\sup_{N} \int |\sum_{n=1}^{N} X_{n}(\omega)| dP(\omega) < \infty$ for independent random variables $X_{n}(\omega)$ with mean 0. Thus we have $(2) \Rightarrow (1)$. Q.E.D.

From Theorem 2.2 and Theorem 2.5 we have.

Theorem 2.6. For $d\mu(x) = \bigotimes_n f_n(x_n) dx_n$ and $D_\mu \supset \mathbf{R}_0^\infty$, the following are all equivalent.

(1)
$$a = (a_n) \in D_{\mu}$$
.
(2) For $N_n(\alpha) \equiv \int_{\mathbf{R}^m} \int_0^1 \{1 - \cos(\alpha u \phi_n(x_n))\} u^{-2} du d\mu(x) (n = 1, \cdots),$
 $\sum_{n=1}^{\infty} N_n(a_n) < \infty$.
(3) For $M_n(\alpha) \equiv \int_{\mathbf{R}^m} \int_0^1 \{1 - \exp(-2^{-1} \alpha^2 u^2 \phi_n^2(x_n))\} u^{-2} du d\mu(x) (n = 1, \cdots),$
 $\sum_{n=1}^{\infty} M_n(a_n) < \infty$.

Remark 4. In [1], modular sequence spaces are stated as follows. Let $\{M_n\}$ be a sequence of Orlicz functions. The space $l_{\{M_n\}}$ is the Banach space of all sequences $a = (a_n)$ with $\sum_{n=1}^{\infty} M_n(\rho^{-1}|a_n|) < \infty$ for some $\rho > 0$, equipped with the norm $||a|| = \inf\{\rho | \sum_{n=1}^{\infty} M_n(\rho^{-1}|a_n|) \le 1\}$. The space $l_{\{M_n\}}$ is called a modular sequence space. If every M_n is the same Orlicz function M, then $l_{\{M_n\}} = l_M$ is called an Orlicz sequence space. Theorem 2.6 shows that D_{μ} for μ of product type is a modular sequence space. Moreover if μ is a stationary product with f, $d\mu(x) = \bigotimes_n f(x_n) dx_n$, then D_{μ} is an Orlicz sequence space $l_{M_{\Theta}}, \phi = f'/f$.

Theorem 2.7. For $d\mu(x) = \bigotimes_n f_n(x_n) dx_n$ and $D_\mu \supset \mathbb{R}_0^{\infty}$, the following are all equivalent.

- (1) $D_{\mu} \supseteq l^2$.
- (2) There exists $(\delta_n) \in l^2$ such that

$$\sup_{n}\int_{\mathbf{R}^{n}}\int_{0}^{1}\phi_{n}^{2}(x_{n})\exp(-\delta_{n}^{2}\phi_{n}^{2}(x_{n})u^{2})dud\mu(x)\equiv M<\infty$$

(3) There exists $(\delta_n) \in D_{\mu}$ such that the same inequality as in (2) holds.

Proof. (2)
$$\Rightarrow$$
(3).
Put $F(t) = \int_0^1 \{1 - \exp(-u^2 t)\} u^{-2} du/t \int_0^1 \exp(-u^2 t) du$ for $0 \le t < \infty$.

Then $\int_0^1 \{1 - \exp(-u^2 t)\} u^{-2} du$ and $t \int_0^1 \exp(-u^2 t) du$ regarded as functions of t are both $O(\sqrt{t})$ at $t = \infty$ and O(t) at t = 0. Hence some constant k exists such that $F(t) \le k$, and $\sum_{n=1}^{\infty} M_n(\sqrt{2}\delta_n)$

$$= \sum_{n=1}^{\infty} \int_{\mathbf{R}^{*}} \int_{0}^{1} \{1 - \exp(-\delta_{n}^{2}u^{2}\phi_{n}^{2}(x_{n}))\} u^{-2} du d\mu(x)$$

$$\leq k \sum_{n=1}^{\infty} \int_{\mathbf{R}^{*}} \int_{0}^{1} \delta_{n}^{2} \phi_{n}^{2}(x_{n}) \exp(-\delta_{n}^{2}u^{2}\phi_{n}^{2}(x_{n})) du d\mu(x) \leq k M \sum_{n=1}^{\infty} \delta_{n}^{2} < \infty.$$
This shows $(\delta_{n}) \in D_{\mu}.$
 $(3) \Rightarrow (1).$ Let $a = (a_{n}) \in l^{2}.$ Then $M_{n}(a_{n}) =$

$$\int_{\mathbf{R}^{*}} \int_{0}^{1} \{1 - \exp(-2^{-1}a_{n}^{2}u^{2}\phi_{n}^{2}(x_{n}))\} \exp(-\delta_{n}^{2}u^{2}\phi_{n}^{2}(x_{n})) u^{-2} du d\mu(x)$$

$$\times \int_{\mathbf{R}^{*}} \int_{0}^{1} \{1 - \exp(-2^{-1}a_{n}^{2}u^{2}\phi_{n}^{2}(x_{n}))\} \{1 - \exp(-\delta_{n}^{2}u^{2}\phi_{n}^{2}(x_{n}))\} u^{-2} du d\mu(x)$$

$$\leq 2^{-1}a_{n}^{2} \int_{\mathbf{R}^{*}} \int_{0}^{1} \phi_{n}^{2}(x_{n}) \exp(-\delta_{n}^{2}u^{2}\phi_{n}^{2}(x_{n})) du d\mu(x) +$$

$$+ \int_{\mathbf{R}^{\infty}} \int_{0}^{1} \{1 - \exp(-\delta_{n}^{2} u^{2} \phi_{n}^{2}(x_{n}))\} u^{-2} du d\mu(x) \leq 2^{-1} M a_{n}^{2} + M_{n}(\sqrt{2} \delta_{n}) .$$

So we have $\sum_{n=1}^{\infty} M_n(a_n) \leq 2^{-1} M \sum_{n=1}^{\infty} a_n^2 + \sum_{n=1}^{\infty} M_n(\sqrt{2}\delta_n) < \infty$. (1) \Rightarrow (3) This assertion follows from the next lemma.

Lemma 2.4. Let $\{X_n(\omega)\} \subset L^1(\Omega)$ be a sequence of independent random variables on (Ω, P) and suppose that $\sum_{n=1}^{\infty} M_{X_n}(a_n) < \infty$ for all $a = (a_n)$ $\in l^2$. Then there exists $(\delta_n) \in l^2$ such that

$$\sup_{n}\int_{\Omega}\int_{0}^{1}X_{n}^{2}(\omega)\exp(-\delta_{n}^{2}u^{2}X_{n}^{2}(\omega))dudP(\omega)<\infty$$

Proof. For $M_{X_n} = M_n$, the modular sequence space $l_{(M_n)}$ includes l^2 . It follows from closed grafh theorem that the injection $l^2 \longrightarrow l_{(M_n)}$ is continuous. So there exists some constant R > 0 such that $\sum_{n=1}^{\infty} M_n(\sqrt{2}a_n) \le R$ for $\|(a_n)\|_{l^2} \le 1$. From here we shall proceed in a similar manner with in Lemma 3.2 in [2]. Put $E_{n,t} = \{(u, \omega) | 0 \le u \le 1, |uX_n(\omega)| < t\}, F_{n,t} = \{(u, \omega) | 0 \le u \le 1, |uX_n(\omega)| < t\}$ and $t_n = \inf\{t > 0| \iint_{E_{n,t}} X_n^2(\omega) dudP(\omega) > 2R\}$. If the above set is empty, we put $t_n = \infty$. Note that for all t > 0, $\iint_{E_{n,t}} X_n^2(\omega) dudP(\omega) \le 2R$ and $\iint_{E_{n,t_n}} X_n^2(\omega) dudP(\omega) \le 2R$. Let $s_n = t_n^{-1}$ if $t_n < \infty$, and $s_n = 0$ if $t_n = \infty$. Then for all N, $\sum_{n=1}^N s_n^2 \le 1$. In fact suppose that it would be false for some N. Then since $1 - e^{-t} \ge (1 - e^{-1})t$ for $0 \le t \le 1$,

$$R \ge \sum_{n=1}^{N} M_n(\sqrt{2}s_n(s_1^2 + \dots + s_N^2)^{-1/2})$$

= $\sum_{n=1}^{N} \int_{\Omega} \int_0^1 \{1 - \exp(-s_n^2(s_1^2 + \dots + s_N^2)^{-1}u^2X_n^2(\omega))\} u^{-2} du dP(\omega)$

Thus we have

$$R \ge (1-e^{-1}) \sum_{n=1}^{N} s_n^2 (s_1^2 + \dots + s_N^2)^{-1} \iint_{F_{n,t_n}} X_n^2(\omega) du dP(\omega) \ge 2(1-e^{-1})R,$$

which is a contradiction. Now we have $(s_n) \in l^2$. Therefore if we define $D_n = \{(u,\omega) | 0 \le u \le 1, |uX_n(\omega)| \ge t_n\}$ and $\delta_n^2 = \iint_{D_n} u^{-2} dudP(\omega)$, then $\sum_{n=1}^{\infty} \delta_n^2 \le (1-e^{-1})^{-1} \sum_{n=1}^{\infty} \int_{\Omega} \int_0^1 \{1-\exp(-s_n^2 u^2 X_n^2(\omega))\} u^{-2} dudP(\omega) < \infty$. Finally, $\int_{\Omega} \int_0^1 X_n^2(\omega) \exp(-\delta_n^2 u^2 X_n^2(\omega)) dudP(\omega) \le \iint_{E_{n,t_n}} X_n^2(\omega) dudP(\omega)$

$$+ \delta_n^{-2} \iint_{D_n} u^{-2} du dP(\omega) \leq 2R + 1.$$
Q.E.D.

Remark 5. For $D_{\mu} \supseteq l^2$, it is sufficient that $\sup_n \int \phi_n^2(x_n) d\mu(x) < \infty$ which follows directly from Theorem 2.7. However this is not the necessary condition. We will see in the following example that even if none of $\phi_n(x_n)$ belongs to $L^2_{\mu}(\mathbb{R}^{\infty})$, we may have $D_{\mu} \supseteq l^2$.

Example 1. Take two functions $g_i(t)$ (i=1, 2) on \mathbb{R} such that $\int_{-\infty}^{\infty} g_i(t) dt = \int_{-\infty}^{\infty} |g_i'(t)| dt = 1, \operatorname{Car}(g_1) \cap \operatorname{Car}(g_2) = \phi \text{ and } \int_{-\infty}^{\infty} |g_1'(t)|^2 / g_1(t) dt < \infty,$ $\int_{-\infty}^{\infty} |g_2'(t)|^2 / g_2(t) dt = \infty.$ Then a measure ν_1 defined by $d\nu_1(x) = \bigotimes_n g_1(x_n) dx_n$ is l^2 -differentiable by the above remark, and hence for each $a = (a_n) \in l^2$ sup $\int |\sum_{n=1}^{N} a_n \psi_1(x_n)| d\nu_1(x) \equiv M(a) < \infty, \text{ by Proposition 2.1, where } \psi_i(t) = g_i'(t)/2$ $g_i(t)$ (i=1,2). Now take $(c_n) \in l^2$ such that $0 < c_n < 1$ $(n=1,\cdots)$ and put $\alpha_{n,1}$ $=1-c_n, a_{n,2}=c_n$. Then a function f_n defined by $f_n(t)=a_{n,1}g_1(t)+a_{n,2}g_2(t)$ we have $\phi_n(t) \equiv f_n'(t)/f_n(t) = \psi_1(t) + \psi_2(t)$, which follows from Car $(g_1) \cap$ Car $(g_2) = \phi$. Hence $\int \phi_n^2(x_n) d\mu(x) = \alpha_{n,1} \int_{-\infty}^{\infty} \phi_1(t)^2 dt + \alpha_{n,2} \int_{-\infty}^{\infty} \phi_2(t)^2 dt = \infty$ for all *n*. On the other hand we have $D_{\mu} \supseteq l^2$. For this we shall show that sup $\int |\sum_{n=1}^{N} a_n \phi_n(x_n)| d\mu(x) < \infty \text{ for all } (a_n) \in l^2. \text{ Now}$ $\int |\sum_{n=1}^{N} a_n \phi_n(x_n)| d\mu(x) = \int_{\mathbf{R}^N} |\sum_{n=1}^{N} a_n \phi_n(x_n)| f_1(x_1) \cdots f_N(x_N) dx_1 \cdots dx_N$ $=\sum_{\substack{i_{k}=1,2\\i_{k}\neq i_{k}\neq i_{k}}} \alpha_{1,i_{1}}\alpha_{2,i_{2}}\cdots\alpha_{N,i_{N}}\int_{R^{N}} |\sum_{n=1}^{N}a_{n}\phi_{n}(x_{n})|g_{i_{1}}(x_{1})\cdots g_{i_{N}}(x_{N})dx_{1}\cdots dx_{N}$ $\leq \sum_{\substack{i_k=1,2\\i_k\neq N}} \alpha_{1,i_1} \cdots \alpha_{N,i_N} \int_{\mathbf{R}^N} |\sum_{i_n=1} \alpha_n \phi_n(x_n)| g_{i_1}(x_1) \cdots g_{i_N}(x_N) dx_1 \cdots dx_N$ $+ \sum_{\substack{i_{k}=1,2\\i_{k}=1,2\\\dots}} \alpha_{1,i_{1}} \cdot \cdot \alpha_{N,i_{N}} \int_{\mathbf{R}^{N}} \{\sum_{i_{n}=2} |a_{n}| |\phi_{n}(x_{n})| \} g_{i_{1}}(x_{1}) \cdot \cdot g_{i_{N}}(x_{N}) dx_{1} \cdot \cdot dx_{N}$ $\leq \sum_{\substack{i_{k}=1,2\\i_{k}\in N}} \alpha_{1,i_{1}} \cdots \alpha_{N,i_{N}}(M(a) + \sum_{i_{n}=2} |a_{n}|) = M(a) + \sum_{n=1}^{N} |a_{n}| \alpha_{n,2}$ $\leq M(a) + \sum_{n=1}^{\infty} |a_n| c_n < \infty$.

803

§ 3. Stationary Product Measures

In this section we shall consider stationary product measures with f, $d\mu(x) = \bigotimes_n f(x_n) dx_n$, where f is a density function and $f' \in L^1_{dt}(\mathbf{R})$. By Theorem 2.4 stationary product measures are l^1 -differentiable. Put $f'/f = \phi$ and $M_{\phi}(\alpha) = \int_{-\infty}^{\infty} \int_{0}^{1} \{1 - \exp(-2^{-1}\alpha^2 u^2 \phi^2(t))\} u^{-2} duf(t) dt$. Then $D_{\mu} = \{a = (a_n) | \sum_{n=1}^{\infty} M_{\phi}(a_n) < \infty\}$ is an Orlicz sequence space $l_{M_{\phi}}$ and the norm $\|\cdot\|_{\mu}$ is equivalent to the Orlicz norm, $\|(a_n)\|_{l_{M_{\phi}}} = \inf\{\rho > 0| \sum_{n=1}^{\infty} M_{\phi}(\rho^{-1}a_n) \leq 1\}$. (Note that "for some $\rho > 0$ " and "for all $\rho > 0$ " is equivalent for the convergence of $\sum_{n=1}^{\infty} M_{\phi}(\rho^{-1}a_n)$, since $M_{\phi}(2\alpha) \leq 4M_{\phi}(\alpha)$ on \mathbf{R} .) Now $\sum_{n=1}^{\infty} M_{\phi}(a_n)$ $<\infty$ implies $\sum_{n=1}^{\infty} \{1 - \exp(-2^{-1}a_n^2 u^2 \phi^2(t))\} < \infty$ for du-a.e.u and for f(t) dta.e.t. This assures that $(a_n) \in l^2$ and hence $D_{\mu} \subseteq l^2$. Let M be an Orlicz function and l_M be the Orlicz sequence space,

$$l_{M} = \{a = (a_{n}) | \sum_{n=1}^{\infty} M(\rho^{-1} | a_{n} |) < \infty \text{ for some } \rho > 0\}$$
$$\|(a_{n})\|_{l_{M}} = \inf\{\rho > 0 | \sum_{n=1}^{\infty} M(\rho^{-1} | a_{n} |) \le 1\}.$$

It is easy to deduce that M is degenerate if and only if $l_M = l^{\infty}$ and that if M is non degenerate, then M is strictly increasing. It follows that if $l_M \subseteq D_{\mu}$ for some stationary product measure μ , then M must be strictly increasing.

Theorem 3.1. For a stationary product measure μ with $f, D_{\mu} \supseteq l_{M} \iff$ there exist $\delta_{0} > 0$ and K > 0 such that $M(\alpha) \ge KM_{\phi}(\alpha)$ on $[0, \delta_{0}]$.

Proof. (\Longrightarrow) If $\sum_{n=1}^{\infty} M(\rho^{-1}|a_n|) < \infty$ for some $\rho > 0$, then $\rho^{-1}|a_n| \le \delta_0$ for sufficiently large *n*, since *M* is strictly increasing in virtue of the assumption. Thus we have $\sum_{n=1}^{\infty} M_{\phi}(\rho^{-1}a_n) < \infty$.

 $(\Longrightarrow) By the closed graph theorem the injection <math>l_{M} \longrightarrow l_{M_{\varphi}}$ is continuous. It follows that there exists R > 0 such that $\sum_{n=1}^{\infty} M(|a_{n}|) \leq 1$ implies $\sum_{n=1}^{\infty} M_{\varphi}(a_{n}) \leq R$. Take $\rho_{n}(n=1, 2, \cdots)$ such that $M(\rho_{n}) = n^{-1}$. Then $\{\rho_{n}\}$ is strictly decreasing, $\lim_{n \neq n} |\alpha_{n}| = 0$ and $M_{\varphi}(\rho_{n}) \leq n^{-1}R$. Consider α on $(0, \rho_{1}] \equiv (0, \delta_{0}]$ and take k such that $\rho_{k+1} < \alpha \leq \rho_{k}$. Then $M(\alpha) > M(\rho_{k+1}) = (k+1)^{-1} \geq k(k+1)^{-1}R^{-1}M_{\varphi}(\rho_{k}) \geq (2R)^{-1}M_{\varphi}(\alpha)$. Q. E. D.

Theorem 3.2. There exists some constant A such that

$$\left| \int_{-\infty}^{\infty} \{1 - \exp(i\alpha\phi(t))\} f(t) dt \right| \leq A \int_{-\infty}^{\infty} \int_{0}^{1} \{1 - \exp(-2^{-1}\alpha^{2}u^{2}\phi^{2}(t))\} u^{-2} du f(t) dt$$

for all $\alpha \in \mathbb{R}$.

Proof. $\int_{0}^{1} \{1 - \exp(-2^{-1}tu^{2})\} u^{-2} du \text{ regarded as a function of } t \in [0, \infty)$ is $O(\sqrt{t})$ at $t = \infty$ and O(t) at t = 0. While $|1 + it - \exp(it)|$ is O(t)at $t = \infty$ and $O(t^{2})$ at t = 0. It follows that there exists a constant A > 0such that $|1 + it - \exp(it)| \leq A \int_{0}^{1} \{1 - \exp(-2^{-1}t^{2}u^{2})\} u^{-2} du$ for all $t \in [0, \infty)$. Replacing t by $a\phi(t)$ and integrating both sides of the above inequality, we have $\int_{-\infty}^{\infty} |1 + ia\phi(t) - \exp(ia\phi(t))| f(t) dt \leq A \int_{-\infty}^{\infty} \int_{0}^{1} \{1 - \exp(-2^{-1}a^{2}\phi^{2}(t)u^{2})\} u^{-2} duf(t) dt$. As $\int_{-\infty}^{\infty} \phi(t)f(t) dt = 0$, we have reached the desired result. Q.E.D.

Corollary. For a stationary product measure with f, $D_{\mu} \supseteq l_{M} \Longrightarrow$ there exists A > 0 such that

 $\left|\int_{-\infty}^{\infty} \{1 - \exp(i\alpha\phi(t))\}f(t)dt\right| \leq AM(\alpha) \text{ for all } \alpha \in \mathbb{R}.$

Proof. Using Theorem 3.1 and Theorem 3.2, there exists some constant A such that $|\int_{-\infty}^{\infty} \{1 - \exp(i\alpha\phi(t))\}f(t)dt| \le AM(\alpha)$ for sufficiently small α . Note that M is strictly increasing and $\lim_{\alpha\to\infty} M(\alpha) = \infty$, while $|\int_{-\infty}^{\infty} \{1 - \exp(i\alpha\phi(t))\}f(t)dt| \le 2$. Thus replacing A by a suitable constant if necessary, we may consider the above inequality holds for all $\alpha \in \mathbb{R}$.

Q.E.D.

Theorem 3.3. If an Orlicz function M satisfies $(*) \int_0^1 M(\alpha u) u^{-2} du \leq BM(C\alpha)$ for all $\alpha \in \mathbb{R}$, with some constants, B, C > 0, Then the condition of Corollary of Theorem 3.2 is also a sufficient condition for $D_{\mu} \geq l_M$. (Observe that $M(\alpha) = |\alpha|^p (1 satisfies <math>(*)$.)

Now we shall consider l^{p} -differentiability. If p>2, this is impossible for such μ , and if p=2, a result is already obtained in [5] as the following theorem. (Using Theorem 2.7 we have another proof of this theorem.)

Theorem 3.4. For a stationary product measure μ with f,

$$D_{\mu} \cong l^2 \Longleftrightarrow \int_{-\infty}^{\infty} \phi(t)^2 f(t) dt < \infty$$

For $1 , <math>\int_{-\infty}^{\infty} \{1 - \exp(i\alpha\phi(t))\}f(t)dt = O(|\alpha|^p)$ is necessary and sufficient for $D_{\mu} \ge l^p$ by the above theorems. The following theorem is a weak version of this assertion but it is somewhat useful.

Theorem 3.5. For a stationary product measure μ with f and for 1 ,

(1)
$$D_{\mu} \supseteq l^{p} \Longrightarrow 0 < \forall q < p$$
, $\int_{-\infty}^{\infty} |\phi(t)|^{q} f(t) dt < \infty$.
(2) $\int_{-\infty}^{\infty} |\phi(t)|^{p} f(t) dt < \infty \Longrightarrow D_{\mu} \supset l^{p}$ but $D_{\mu} \neq l^{p}$.

Proof. (1) By the assumption, there exist K > 0 and $R_0 > 0$ such that $M_{\theta}(R^{-1}) \leq KR^{-p}$ for $R \geq R_0$. Now put dm(t) = f(t)dt. Then for $R \geq R_0$, $m(|\phi(t)| \geq R) \leq \sqrt{e}(\sqrt{e}-1)^{-1} \int_{-\infty}^{\infty} \{1 - \exp(-2^{-1}R^{-2}\phi^2(t))\} dm(t) \leq \sqrt{e}(\sqrt{e}-1)^{-1} \int_{-\infty}^{\infty} \int_{0}^{1} \{1 - \exp(-2^{-1}R^{-2}u^2\phi^2(t))\} u^{-2} du dm(t) = \sqrt{e}(\sqrt{e}-1)^{-1} M_{\theta}(R^{-1}) \leq \sqrt{e}(\sqrt{e}-1)^{-1} KR^{-p}$. It follows that $\int_{-\infty}^{\infty} |\phi(t)|^q f(t) dt \leq R_0^q + \int_{R_0^q}^{\infty} m(|\phi(t)| \geq R^{1/q}) dR \leq R_0^q + \sqrt{e}(\sqrt{e}-1)^{-1} K \int_{R_0^q}^{\infty} R^{-p/q} dR < \infty$. (2) Since $1 - \exp(-2^{-1}t^2) \leq K |t|^p$ with a suitable constant K, we have $M_{\theta}(a) = \int_{-\infty}^{\infty} \int_{0}^{1} \{1 - \exp(-2^{-1}t^2) \leq K |t|^p$ with a suitable constant K, we have $M_{\theta}(a) = \int_{-\infty}^{\infty} \int_{0}^{1} \{1 - \exp(-2^{-1}t^2) \leq L \|a\|^p \int_{-\infty}^{\infty} |\phi(t)|^p f(t) dt \int_{0}^{1} u^{p-2} du$. Thus $l^p \subseteq D_{\mu}$ by Theorem 3.1. If we would have $D_{\mu} = l^p$, then we proceed in the same way as in the proof of Theorem 3.1 and conclude that there exist A > 0 and $\delta_0 > 0$ such that

$$A\alpha^{p} \leq \int_{-\infty}^{\infty} \int_{0}^{1} \{1 - \exp(-2^{-1}\alpha^{2}u^{2}\phi^{2}(t))\} u^{-2} duf(t) dt , \text{ for } 0 \leq \alpha \leq \delta_{0} .$$

Hence $A \leq \int_{-\infty}^{\infty} \int_{0}^{1} \{1 - \exp(-2^{-1}\alpha^{2}u^{2}\phi^{2}(t))\} |\alpha|^{-p}u^{-2}duf(t)dt$. However, since $\{1 - \exp(-2^{-1}\alpha^{2}u^{2}\phi^{2}(t))\} |\alpha|^{-p}u^{-2} \leq Ku^{p-2} |\phi(t)|^{p}$, we can apply Lebesgue bounded convergence theorem to get

$$\lim_{\alpha \to 0} \int_{-\infty}^{\infty} \int_{0}^{1} \{1 - \exp(-2^{-1}\alpha^{2}u^{2}\phi^{2}(t))\} |\alpha|^{-p} u^{-2} duf(t) dt = 0,$$

which is a contradiction.

806

Q.E.D.

Later we shall give examples of stationary product measures μ_p such that $D_{\mu_p} = l^p$ for 1 . However,

Theorem 3.6. For stationary product measures μ , we always have $D_{\mu} \neq l^{1}$.

Proof. If we would have $l^1 = D_{\mu}$ for some μ , then there exists some constant K > 0 such that $K|\alpha| \leq M_{\theta}(\alpha)$ for sufficiently small $|\alpha|$. It follows take $K|\alpha| \leq |\alpha| \int_{-\infty}^{\infty} \int_{0}^{|\alpha|} \{1 - \exp(-2^{-1}u^2\phi^2(t))\} u^{-2} duf(t) dt$ and $K \leq \lim_{\alpha \to +0} \int_{-\infty}^{\infty} \int_{0}^{\alpha} \{1 - \exp(-2^{-1}u^2\phi^2(t))\} u^{-2} duf(t) dt = 0$. It is a contradiction. Q.E.D.

If the product type measure μ is not stationary, then " $l^1=D_{\mu}$ " may occur, as seen in the following example.

Example 2. Take a sequence $\{\alpha_n\}$ such that $0 < \alpha_n < 1$ $(n=1, \dots) \sum_{n=1}^{\infty} (1-\alpha_n) < \infty$, and put $\beta_n = \alpha_n^{-1}(1-\alpha_n)$. Let $f_n(t)$ be an even function on \mathbb{R} such that α_n on $[0, 2^{-1}]$, $-\alpha_n\beta_n^{-1}(t-2^{-1})+\alpha_n$ on $[2^{-1}, 2^{-1}+\beta_n]$ and 0 on $[2^{-1}+\beta_n,\infty)$. Then $\int_{-\infty}^{\infty} f_n(t)dt = 1$ and $\int_{-\infty}^{\infty} |f_n'(t)|dt = 2\alpha_n$. Hence μ defined by $d\mu(x) = \bigotimes_n f_n(x_n)dx_n$ is l^1 -differentiable. On the other hand if $a = (\alpha_n) \in D_{\mu}$, then $\|\mu_{sa} - \mu\|_{tot} < 2$ for sufficiently small s > 0. It follows that for $sa \equiv b = (b_n)$, $\prod_{n=1}^{\infty} \int_{-\infty}^{\infty} \sqrt{f_n(t)} \sqrt{f_n(t+b_n)} dt > 0$, which is equivalent to $\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} |\sqrt{f_n(t)}| \sqrt{f_n(t+b_n)} dt < 0$. Thus we have $D_{\mu} = l^1$.

Remark 6. Let C_{μ} be the set of all continuous shifts, i.e. $C_{\mu} = \{a \in \mathbb{R}^{\infty} | \lim_{t \to 0} \|\mu_{ta} - \mu\|_{tot} = 0\}$. Then the proof of the second half is valid for $a \in C_{\mu}$. Thus in this case we have $C_{\mu} = D_{\mu} = l^1$. (We have $D_{\mu} \subseteq C_{\mu}$ in general.)

Example 3. $(D_{\mu_p} = l^p, 1 \le p \le 2)$ Put $s = 1 - p^{-1}(0 \le s \le 2^{-1} \Leftrightarrow 1 \le p \le 2)$ and define $f_p(t) = \sigma_p \exp(-|t|^s)$, where σ_p is the normalizing constant. Then

$$\phi_{p}(t) = f_{p}'(t)/f_{p}(t) = -s|t|^{s-1}sgn(t) \text{ and}$$

$$F_{p}(\alpha) \equiv \int_{-\infty}^{\infty} (1 - \exp(i\alpha\phi_{p}(t))f_{p}(t)dt$$

$$= 2\sigma_{p} \int_{0}^{1} \{1 - \cos(s\alpha|t|^{s-1})\}\exp(-|t|^{s})dt$$

$$+ 2\sigma_{p} \int_{1}^{\infty} \{1 - \cos(s\alpha|t|^{s-1})\}\exp(-|t|^{s})dt .$$

Some calculations derive that the first term and the second term of the right hand is $O(|\alpha|^p)$ and $O(\alpha^2)$ at $\alpha=0$ respectively. So $F_p(\alpha)=O(|\alpha|^p)$ at $\alpha=0$. It follows from Theorem 3.3 that we have $D_{\mu_p}=l^p$ for $d\mu_p(x)=\bigotimes_n f_p(x_n)dx_n$.

For our later discussions we investigate the set $T_{\mu} = \{a = (a_n) | \mu_a \simeq \mu\}$, where \simeq means equivalence relation for absolute continuity. Put $g_p(\xi) = \int_{-\infty}^{\infty} \exp(2\pi i \xi t) \sqrt{f_p(t)} dt \equiv \mathcal{F}(\sqrt{f_p})(\xi)$. Then it is well known (See, [2].) that $a \in T_{\mu_p} \Leftrightarrow \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \{1 - \exp(2\pi i a_n \xi)\} | g_p(\xi) |^2 d\xi < \infty$. Since $g_p(\xi) = O(|\xi|^{-(1+s)})$ at $|\xi| = \infty$ and $\int_{-\infty}^{\infty} \{1 - \exp(i \alpha \xi)\} | g_p(\xi) |^2 d\xi = O(|\alpha|^{3-2p^{-1}})$ at $\alpha = 0$ (Detailed calculations are omitted here.), it follows that $T_{\mu_p} = l^{3-2p^{-1}} \supseteq l^p = D_{\mu_p}$. (Since $3 - 2p^{-1} > p$ for $1 .) If <math>s = 2^{-1}$, then we proceed in the same way as before. But in this case $\int_{-\infty}^{\infty} \{1 - \exp(i \alpha \phi_2(t))\} f_2(t) dt$ and $\int_{-\infty}^{\infty} \{1 - \exp(i \alpha \xi)\} | g_2(\xi) |^2 d\xi$ are $O(\alpha^2 \log |\alpha|)$ at $\alpha = 0$. Thus we have $T_{\mu_2} = D_{\mu_2} = \{a = (a_n) | \sum_{n=1}^{\infty} a_n^2(1 + |\log|a_n||) < \infty\}$.

§4. Relation to Quasi-Invariance

Let μ be a probability measure on $\mathfrak{B}(\mathbf{R}^{\infty})$. If for a subset $\boldsymbol{\Phi} \subset \mathbf{R}^{\infty}$ we have $T_{\mu} \supseteq \boldsymbol{\Phi}$, then μ is said to be $\boldsymbol{\Phi}$ -quasi-invariant. We wish to discuss the relation between T_{μ}, D_{μ} and C_{μ} . Note that we always have $C_{\mu} \supseteq D_{\mu}$ and $C_{\mu} \supseteq T_{\mu}^{0} \equiv \{a \in T_{\mu} | ta \in T_{\mu} \text{ for all } t \in \mathbf{R}\}$. (For example, see [3].)

Theorem 4.1. Let (X, τ) be a topological linear space such that X is a subset of \mathbb{R}^{∞} , the vector topology τ is stronger than the product topology on \mathbb{R}^{∞} and τ is metrizable with d such that (X, d) is a complete metric space. If $X \cap T_{\mu}$ is dense in (X, d) and $C_{\mu} \supseteq X$, then $T_{\mu} \supseteq X$.

Proof. Define a metric on C_{μ} such that $\delta(a, b) = \sup_{0 \le t \le 1} \|\mu_{ta} - \mu_{tb}\|_{tot}$. Then (C_{μ}, δ) is a complete metric linear topological space whose topology is stronger than the product topology on \mathbb{R}^{∞} . (For example, see [3].) Thus using closed graph theorem, the injection $X \mapsto C_{\mu}$ is continuous. Now take any $a \in X$. Then by the assumption a sequence $\{a_n\} \subset X \cap T_{\mu}$ exists such that $\lim_{n\to\infty} d(a, a_n)=0$, hence $\lim_{n\to\infty} \|\mu_a - \mu_{a_n}\|_{tot}=0$. Consequently, for $E \in \mathfrak{B}(\mathbb{R}^{\infty})$, $\mu(E)=0 \Rightarrow \forall n, \mu_{a_n}(E)=0 \Rightarrow \mu_a(E)=0$. Similarly, $\mu(E)=0$ implies that $\mu_{-a}(E)=0$. **Corollary 1.** Let μ be \mathbb{R}_0^{∞} -quasi-invariant and (X, τ) satisfy the same assumption of Theorem 4.1. If X contains \mathbb{R}_0^{∞} densely, then $C_{\mu} \supseteq X$ implies $T_{\mu} \supseteq X$.

Corollary 2. If T_{μ} is a dense subset of (C_{μ}, δ) , then $T_{\mu}^{0} = C_{\mu}$.

Proof. Put $X = C_{\mu}$ in Theorem 4.1. Then we have $T_{\mu} \supseteq C_{\mu}$ and therefore $T_{\mu} = C_{\mu}$. Since C_{μ} is a linear space, so is T_{μ} and therefore $T_{\mu}^{0} = T_{\mu} = C_{\mu}$. Q. E. D.

Now let \mathfrak{B}^n be a minimal σ -field with which all the coordinate functions x_{n+1}, x_{n+2}, \cdots are measurable and put $\mathfrak{B}^{\infty} = \bigcap_{n=1}^{\infty} \mathfrak{B}^n$. If \mathbb{R}_0^{∞} -quasi-invariant measure μ takes only the values 1 or 0 on $\mathfrak{B}^{\infty}, \mu$ is said to be \mathbb{R}_0^{∞} -ergodic.

Theorem 4.2. If μ is \mathbb{R}_0^{∞} -ergodic, then $T_{\mu} \supseteq C_{\mu}$ and therefore $T_{\mu}^{0} = C_{\mu}$.

Proof. For $\mu_a \simeq \mu$, it is necessary and sufficient that $\mu = \mu_a$ on \mathfrak{B}^{∞} . (See, [2].) Now let $a \in C_{\mu}$ and $B \in \mathfrak{B}^{\infty}$. Since $\mu(B + ta)$ is continuous for t and takes only the values 0 or 1, so it is a constant. Thus we have $\mu(B) = \mu(B + a)$. Q.E.D.

In general even if μ is \mathbb{R}_0^{∞} -quasi-invariant, differentiability does not imply quasi-invariance and vice-versa.

Example 4. Let f(t) be an even function on \mathbb{R} such that $3(t-1)^2/2$ on [0,1] and 0 on $[1,\infty)$. Put S; $t \in \mathbb{R} \longrightarrow t(1,1,\cdots,1,\cdots) = te \in l^{\infty}$ and define a measure ν on $\mathfrak{B}(\mathbb{R}^{\infty})$ such that $\nu(E) = \int_{S^{-1}(E)} f(t)dt$ for $E \in B(\mathbb{R}^{\infty})$. We convolute ν with $dG(x) = \bigotimes_n (2\pi)^{-1/2} \exp(-2^{-1}x_n^2) dx_n$, and thus $\nu_* G = \mu$ is obtained. Since $D_G = l^2$ and $D_\nu \ni e$, so $D_\mu \supseteq l^2 + \mathbb{R}e$. Put $S \equiv \{x \in \mathbb{R}^{\infty} | p(x) = \lim_n \frac{1}{n} (x_1 + \cdots + x_n); \text{ exists.}\}$. Then S is a linear space and $\mu(S) = 1$, which implies $T_\mu \cup C_\mu \subset S$. Observe that for $B \in \mathfrak{B}(\mathbb{R}^{\infty})$ and $E \in \mathfrak{B}(\mathbb{R}^1)$,

$$\mu(B \cap p^{-1}(E)) = \int_{E} G(B - te) f(t) dt \text{ and}$$
$$\mu_{a}(B \cap p^{-1}(E)) = \int_{E} G(B - a - te) f(t) dt , \text{ if } p(a) = 0.$$

(Namely, $[G_{te}, p]$ is a canonical decomposition of μ as stated in [4].) From this some calculations derive that $\|\mu - \mu_a\|_{tot} = \|G - G_a\|_{tot}$, if p(a) = 0. Now let $a \in T_{\mu}$. Then $\mu_a(p^{-1}(E)) = \int_{E^{-p}(a)} f(t) dt$ must be equivalent with $\mu(p^{-1}(E))$. Hence we have p(a) = 0. Moreover using the above two inequality for μ and μ_a , we can derive that G_{te} is equivalent with G_{te+a} for almost all t for the measure f(t)dt. (See, [4].) It follows from $T_G = C_G = l^2$ that $a \in l^2$ and thus $l^2 = T_{\mu}$. (Reverse including relation directly follows from $T_G = l^2$.) Next let $a \in C_{\mu}$. Then for b = a - p(a)e, $0 = \lim_{t \to 0} \|\mu - \mu_{tb}\|_{tot} = \lim_{t \to 0} \|G - G_{tb}\|_{tot}$. So we have $b \in l^2$, $a \in l^2 + \mathbf{R}e$ and thus $l^2 + \mathbf{R}e$ $= C_{\mu} = D_{\mu}$.

Remark 7. If \mathbf{R}_0^{∞} -differentiable measure μ is of product type, then \mathbf{R}_0^{∞} is a dense subset of D_{μ} . (See, Theorem 2.1.) However this does not hold in general. In fact the measure obtained in Example 4 is \mathbf{R}_0^{∞} -differentiable and \mathbf{R}_0^{∞} -quasi-invariant. However $D_{\mu} = l^2 + \mathbf{R}e$ whose topology coincides with the product topology of l^2 and \mathbf{R} does not contain \mathbf{R}_0^{∞} densely.

Remark 8. Theorem 4.2 assures that $D_{\mu} \subseteq T_{\mu}$, but $D_{\mu} = T_{\mu}$ does not hold in general, as we have seen in Example 3 to the case 1 . Now we shall supply following examples to the case <math>p=1 and p=2.

Example 5. $(T_{\mu}=l^{1}, D_{\mu}\neq l^{1})$ Let $K_{0}(u) = \int_{1}^{\infty} \exp(-ut)(t^{2}-1)^{-1/2}dt(u>0)$ be modified Bessel function. Since $\lim_{u\to+0} K_{0}(u) = \infty$, K_{0} is not bounded. Put $f(u)=4\pi^{-1}K_{0}^{2}(2\pi|u|)$. Then $\int_{-\infty}^{\infty} f(u)du=1$, $g(v) \equiv \mathcal{F}(\sqrt{f})(v) = \{\pi(1+v^{2})\}^{-1/2}$ and $\int_{-\infty}^{\infty} \exp(ivt)|g(v)|^{2}dv = \exp(-|t|)$. It follows that a measure ν defined as the stationary product with f is l^{1} -quasi-invariant. (See, [2].) Now put $f_{n}(t) = f(t)$ if $f(t) \leq n$, and $f_{n}(t) = n$ if f(t) > n. Then $\int_{-\infty}^{\infty} |f_{n}'(t)| dt < \infty$ for all n and $\lim_{n} ||f - f_{n}||_{L^{1}} = 0$. Thus taking a subsequence $\{n_{k}\}$ such that $\sum_{k=1}^{\infty} ||f - f_{n_{k}}||_{L^{1}} < \infty$, ν is equivalent with μ defined as $d\mu(x) = \bigotimes_{k} f_{n_{k}}(x_{k}) dx_{k}$. (See, [2].) So we have $D_{\mu} \supset R_{0}^{\infty}$ and $T_{\mu} = T_{\nu} = l^{1}$. However if it would $T_{\mu} = l^{1}$ hold, then by Remark 2 after Theorem 2.4 $f_{n_{k}}(t)(k=1, \cdots)$ must be uniformly bounded. Thus the same holds for f, but it contradicts to the unboundness of K_{0} .

Example 6. $(T_{\mu} = l^2, D_{\mu} \neq l^2)$

Let $(a_n) \in l^1$ such that $0 < a_n < 1$ $(n=1, \cdots)$ and (β_n) be a positive sequence such that $\lim_n a_n \beta_n = \infty$. We take a non negative differentiable function $g_n(t)$ for each *n* satisfying $\int_{-\infty}^{\infty} g_n(t) dt = 1$. $\int_{-\infty}^{\infty} |g_n'(t)| dt < \infty$ and $g_n(0) = \beta_n$. Now let $f_0(t) = (2\pi)^{-1/2} \exp(-2^{-1}t^2)$ and put $f_n(t) = (1-a_n)f_0(t)$ $+ a_n g_n(t)$ $(n=1, \cdots)$. Then $||f_n - f_0||_{L^1} = a_n ||f_0 - g_n||_{L^1} \le 2a_n$, so *G* which is the stationary product with f_0 is equivalent with μ defined as $d\mu(x) = \bigotimes_n g_n(x_n) dx_n$. Hence $T_{\mu} = T_G = l^2$. On the other hand $f_n(0) \ge \alpha_n \beta_n \to \infty$ $(n \to \infty)$, so $\{f_n(t)\}$ is not uniformly bounded. It implies $D_{\mu} \supset l^1$.

Concerning the above example, we shall list a following fact whose proof follows directly from Remark 5 and Theorem 3.2 in [2].

Theorem 4.3. If a product type measure μ is l^2 -quasi-invariant, then there exists a product type measure ν such that $\nu \simeq \mu$ and $D_{\nu} \supseteq l^2$.

Acknowledgement

Professor Yamasaki kindly read the first manuscript and gave the author useful suggestions. Especially Example 1, Example 5, Example 6 and Theorem 2.7 are improved by him.

References

- [1] Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces I, Springer-Verlag, 1977.
- [2] Shimomura, H., An aspect of quasi-invariant measures on R[∞], Publ. RIMS, Kyoto Univ., 11 (1976), 749-773.
- [3] —, Some results on quasi-invariant measures on infinite-dimensional spaces, J. of Math. Kyoto Univ., 21 (1981), 703-713.
- [4] ——, Ergodic decomposition of quasi-invariant measures, Publ. RIMS, Kyoto Univ., 14 (1978), 359-381.
- [5] Yamasaki, Y and Hora, A., Differentiable shifts for measures on infinite dimensional spaces, *Publ. RIMS, Kyoto Univ.*, 23 (1987), 275-296.