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An Unbounded Generalization of the
Tomita-Takesaki Theory II

By

Atsushi INOUE*

Abstract

An unbounded generalization of the fundamental concepts of the Tomita-Takesaki theory
such as modular automorphism groups and Radon-Nikodym derivatives is considered.

§1. Introduction

In this paper we continue our study of an unbounded generaliza-
tion of the Tomita-Takesaki theory begun in a previous paper [14].

The Tomita-Takesaki theory shows that the vector state wg, defined
by a cyclic and separating vector § for a von Neumann algebra
satisfies the KMS-condition with respect to the modular automorphism
group {af"}. To extend these results to unbounded operator algebras,
we define the notions of modular vectors, standard vectors and stan-
dard systems for a closed Oj-algebra (4, 2). Using the unbounded
Tomita-Takesaki theory developed in a previous paper [14], we show
that if & is a modular vector for (4, 2) then a one-parameter
group {af"} of *-automorphisms of an unbounded bicommutant
(M/ D) ue of the OF -algebra A/ D, on a dense subspace D of 2 is
defined, and the vector state wg, on (M /@50);’,6 satisfies the KMS-
condition with respect to {o7}.

We next apply the unitary Radon-Nikodym cocycle introduced by
Connes [3] to the unbounded case. Let (4, 2) be a closed Of-
algebra and a pair (&, &) of vectors in @ be strongly cyclic for #
and separating for the usual commutant #'=(4,)’ of the weak
commutant .#, of #. Connes showed that the modular automorphism
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groups {61} and {69 of the von Neumann algebra £’ satisfy the
relation: afl(A)=(Dw’5’1:Dw'éz)tafz(A) (DwZI:Dw'gz)t* for all t€R and
AeM’, where (Dog:Daog), is the unitary Radon-Nikodym cocycle
for the vector state g of " relative to the vector state , of M.
To extend the above result to the Oj-algebra (4, 2), we have to
consider the following problems:

1. the extension of the modular automorphism groups {afl} and {afz}
of M" to the Oj-algebra (M, D);

2. the invariance of domains under the unitary Radon—Nikodym cocycle
(Do, : Do) .

With this view, we define the following notion: A pair (&, &)
is said to be relative modular for (4, 2) if there exists a subspace
¢ of P such that &, €8, ME=6, 46 =6 and 46 =¢& for
all t€R, where 4; and 4, are modular operators of the left Hilbert
algebras £"¢; and A", respectively. Let (&, &) be relative modular
for (#, 2). We denote by .., the maximal subspace in the set of
the above subspaces & of 2, denote by (J//@;léz);',c an unbounded
bicommutant of the Oj-algebra (#/ZD:, P¢e) and put FHX) =
43X 457" and 07 (X) =43 X 47" for t€R and X € (4/ D) k.. We show
that the closed O;-algebra (#/D ). contains (Dw; :Dwg) /Dy, for
all teR, and {ofl} and {af’} are one-parameter groups of x-auto-
morphisms of (#/@,;)%, which satisfy the relation: o} (X) £ = (D :
Do), 02 (X) (Dwy: Do) 16 for all tER, XE (M/D )b and E€ D,

We study Radon-Nikodym theorems and Lebesgue decomposition
theorems for Oj-algebras. Radon-Nikodym theorems for von Neu-
mann algebras have been investigated in detail [1, 3, 6, 19, 24, 28,
32]. In particular, in [19] Kosaki recently defined the notions of
absolute continuity and singularity for normal forms on a von Neu-
mann algebra .#, with a cyclic and separating vector &, and establi-
shed a Lebesgue decomposition theorem. Further, he characterized
strongly wg-absolutely continuous (called wg-absolutely continuous by
Kosaki) forms and wg-singular forms using the Tomita-Takesaki
theory (modular operators, relative modular operators, unitary Radon-
Nikodym cocycles etc).

On the other hand, in the case of Of-algebras the study in this



UNBOUNDED TOMITA-TAKESAKI THEORY 675

direction seems to be hardly done except for [8, 13, 16]. The
difficulties in the case of Oj-algebras exist in the points that s-weakly
continuous positive linear functional on an Ojf-algebra # is not
necessarily a vector state and a pathological relation between the
Oj-algebra # and the von Neumann algebra .#” occures frequently.

In [8] Gudder defined the notion of strongly absolute continuity
which is stronger than one of classical absolute continuity, and tried
to obtain a Radon-Nikodym theorem for a *-algebra with no addi-
tional assumptions. Further, he defined the notion of singularity, and
established a Lebesgue decomposition theorem in the Banach *-algebra
case. After that, developing Gudder’s results, in [13, 16] we obtained
the following: Speaking roughly, a positive linear functional ¢ on a
closed Ojf-algebra (#, 2) with a strongly cyclic vector & is decom-
posed into the sum: ¢=¢.+ @, where ¢. is a strongly w,-absolutely
continuous part of ¢ and ¢, is a w-singular part of ¢; and ¢ is
strongly ,-absolutely continuous if and only if ¢=¢, if and only
if ¢ is represented as ¢=wy for some positive self-adjoint operator

H’ affiliated with £’ such that £ 2 (H') and H'§=2. However,
we didn’t know whether the strongly w.-absolutely continuous part
¢. of ¢ in the above Lebesgue decomposition theorem is maximal, or
not.

In Section 4 we show that Gudder’s definitions of absolute conti-
nuity and singularity are identical with Kosaki’s definitions, respecti-
vely, and apply Kosaki’s results to the case of Oj-algebras. In
particular, we obtain that a strongly w;-absolutely continuous part
¢. in our Lebesgue decomposition theorem is maximal in the set of
strongly w;-absolutely continuous parts of ¢.  Further, using an
unbounded generalization of the Tomita-Takesaki theory developed in
a previous paper [14] and Section 3, we generalize the Radon-
Nikodym theorem of Pedersen and Takesaki [24] to the unbounded
case.

In the case of Oj-algebras satisfying the von Neumann density
type theorem, somewhat of the pathological facts for Oj-algebras are
omitted, and so in Section 5 we obtain more detailed results for the
Radon-Nikodym theorems, and further apply these results to the
spatial theory for Oj -algebras.
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In Section 6 we first investigate the absolute continuity and the
singularity of concrete positive linear functionals on the Oj-algebra

9”(—1’%) generated by the differential operator _idit’ and next

characterize positive linear functionals on the canonical algebra o for
one degree of freedom which are invariant with respect to the one-
parameter group {4*_,,},cr of *-automorphisms of &/ defined by
[10], and finally by modifying Kosaki’s examples [19] for von
Neumann algebras we construct some concrete examples of positive
linear functionals on the maximal Oj-algebra Z'(¥ (R)) on the
Schwartz space & (R) which show that the sum of singular positive
linear functionals need not be singular, the strongly absolute continuity
is not hereditary and the Lebesgue decomposition is not necessarily

unique.

§2. Preliminaries

In this section we review some of the definitions and the basic
properties about O -algebras and refer to [7, 9, 15, 16, 20, 23, 25,
29] for further details.

Let 2 be a pre-Hilbert space with inner product ( | ) and
9(2) be the Hilbert space obtained by the completion of 2. We
denote by #'(2, 9(2)) the set of all linear operators X such that
2(X)N2(X*)D P, and define a subset £'(2) of ¢'(2,9(2)) by

PUD)=(X€?"(2, D(2)); 2(X)=9, XTCD, X*DC D}.

Then #'(2, $(Z2)) is a *-invariant vector space with the usual
operations and the adjoint X*, and £'(2) is a #-algebra with
involution X'=X*/2. A *-subalgebra # of £'(2) is said to be
an Oj-algebra on 2. We here treat with only Oj-algebras with
identity operator I. An Oj-algebra # on 2 is also denoted by
(M, D).

Let (#, 2) be an Oj-algebra. A locally convex topology on 2
defined by a family {|| - |[x;XE.#} of seminorms:

lElle=l1€l1+-11XEll, =2

is said to be the induced topology on £, which is denoted by ¢,.
If (2, t4) is complete, then (A, Z) is said to be closed. It follows
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from ([25] Lemma 2.6) that for each Oj-algebra (4, P) there
exists a closed OF-algebra (., &) which is the smallest closed exten-
sion of (A, 2), which is said to be the closure of (4, ). A vector
§ in 2 is said to be cyclic (resp. strongly cyclic) for ./ if #&, is
dense in D(2) (resp. (2, tu)). If .9=XQ/[9(X*), then (A, 2)
is said to be self-adjoint.

We define some locally convex topologies on an Oj-algebra (4,
2). Locally convex topologies on €'(2, 9(2)) defined by systems

[Pe,(2); &€ D), {Pe(-);6€ 2} and {Pf (- );6€ D} of seminorms:
Peo(X) = | (XE|p) |, Pe(X) =|XEl, P§(X)=I[|XE&|+[X*E]]

are said to be a weak topology, a strong topology and a strong*

topology, which are denoted by ¢,, t; and ¢, respectively. To introduce

o-weak, o-strong, o-strong* topologies on .#, we define an Oj-algebra
(L2], 2=(A4)) as follows:

2= = ({6} 2 TIXEIP<eo for all Xed);

[X1{&} = (X&), Xed, {&}ea=(L);

L21={[X]; Xe.u}.
The weakest locally convex topology on . such that the map X—[X]
of A into (¥'(2= (M), D(D)™), t,) (resp. (¥ (2= (M), D(2)),t,),

(B'(2=(M), D(2)7), t¥)) is said to be a o-weak (resp. o-strong,

o-strong*) topology for ., which is denoted by t%(resp. £, ti#),

where ©(2)" is the direct sum of the Hilbert spaces 9,=9(2) for
n=1,2,....
We define commutants of an Of-algebra (£, 2) as follows:

Mo={CER(D(2)): (CXE|n) =(CE|X )
for each & 7€2 and X</},
where Z (9(2)) is the set of all bounded linear operators on (2) ;
M={SEF (D, D(2)); (X§|Sn)=(§*¥¢|X'y)
for each & 792 and X4} ;
M= MN L (D).
Then 4, (simply, #’) is a *-invariant weakly closed subspace of

Z(9(2)), but it is not necessarily an algebra [9, 15,25]. If (A4, 2)
is self-adjoint, then #£'2 =2, which implies £’ is an algebra; and
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the converses don’t necessarily hold. But, if 4’ is an algebra, then
there exists a closed Oj -algebra (.//A/, ) which is the smallest extension
of (M, D) satisfying A'=M" and M'D=F [16]. This result is
a particular case of Proposition 5.5 in the Schmiidgen paper [29].
M, is a strongly* closed subspace of ¥'(2,9(2)) whose bounded part
is identical with .#’; and ., is an Of -algebra on 2. We next define
bicommutants of / as follows:

M=M) ={A€B (D(2)); AC=CA for each CeA’}

Mo={XEF (D, D(2)); (CXE|y) =(CE[X*n)

for each &, €92 and Ce4'},

M= M N L (D).
Then 4" is a von Neumann algebra on 9(Z2), but (A£°)’ is not
necessarily identical with #’. If 4’ is an algebra, then (#£")'=.4".
My, is a strongly* closed *-invariant subspace of ¥'(2, 9(2))
containing # U.#" whose bounded part is identical with .#”; and
My is an Oj-algebra on 2, which equals

R(M', D)= (XL (D); X is affiliated with 4"}
if #'9=9. Further, #’ is an algebra if and only if the closure
5 of 4 in (9(2,9(D)), 1) equals M if and only if
X5 N2LN(D) =M 16].

A closed O -algebra (A4, ) is said to be a generalized von Neumann
algebra if #/'2=2 and M=M,. If (M, D) is a closed ,0;-algebra
such that /4’9 =2, then A, is a generalized von Neumann algebra.

Let &/ be a x-algebra. A *-homomorphism 7 of =/ onto an Of-
algebra on a dense subspace 2 (x) in a Hilbert space 9(x) is said to
be a x-representation of & in 9, with domain 2 (z). Let # be a
x-representation of /. We put

9(7?)=219(7W), £#(x)e=n(x)§, xEA, EED (%)
2 (z*) =Q/9(ﬂ(x)*), m*(x)E=n(x*)*E, xEA, EED (7%).

Then # is a closed *-representation of =/ which is the smallest closed
extension of m, which is said to be the closure of z, and z* is a closed
representation of &7, but it is not necessarily a *-representation [9,
15, 25]. A *-representation = of &/ is said to be closed (resp. self-
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adjoint) if #=# (resp. w=n*); that is, the Of-algebra (z(&/), 2 (n))
is closed (resp. self-adjoint).

Let ¢ be a positive linear functional on a *-algebra /. It is
easily shown that /' y={xe/; ¢(x*x) =0} is a left ideal in &/, For
each x=&/ we denote by 2;(x) the coset of &/A 'y which contains x,
and define an inner product ( | ) on 2,(&) by

A (%) 12 () = (*x), xyEHL.
Let 94 be the Hilbert space which is completion of the pre-Hilbert

space 2;(&), and m; be the closure of a *-representation zj of &
defined by

ﬂg(xﬂ;t()’) =2¢(xy), X5 .yE"Q{'
The triple (my, A5, ©4) is said to be the GNS-construction for ¢.

§3. Modular Vectors and Relative Modular Vectors

In this section we first apply the unbounded Tomita-Takesaki
theory developed in a previous paper [14] to the case of a closed
Oj-algebra with a strongly cyclic and separating vector.

Throughout this section let (/#, 2) be a closed Oj-algebra such
that 4’2 =2 and a vector & in 2 be cyclic for # and separating
for 4", Since M'D =2, it follows that X is affiliated with #" for
each Xe#, which implies that & is a cyclic vector for #’, so that
M’y is an achieved left Hilbert algebra in 9(2) equipped with
the multiplication (4&,) (B&) =A4B& and the involution A&—>A*&,.
Let S;’n be the closure of the involution A&—>A*&, and

Sty =J el

be the polar decomposition of Sz. The fundamental theorem of Tomita

Jgo‘/ﬂ”]gg ='/””
6.1 _ . )

Ag;t./ﬂ” ;’(;—'t :.///”, A?;ﬂzﬂ%’;;”:./ﬂ,, teR
is obtained. Further, #&, possesses the structure of an unbounded
generalization of left Hilbert algebras; that is, .#&; is a dense subspace
in 9(2) and a *-algebra with the multiplication (X&) (Y&) =XY§&,
and the closable involution X&—X'6. Let S be the closure of the
involution X&—X'&, and
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Sey=J e, AE?
be the polar decomposition of §,. Then, S;CS;, but they don’t

necessarily equal. To extend (3.1) to the unbounded left Hilbert
algebra #&, we introduce the following notions:

Definition 3.1. A vector & in £ is said to be modular for
(M, 2) if the following conditions hold:

(1) & is strongly cyclic for # and separating for 4";

(2) there exists a subspace & of 2 such that #£§C & C,
ME=¢E and L& =& for all teR.
A modular vector & tor (4, 2) is said to be standard if Sz =S,

A positive linear functional ¢ on a *-algebra &/ with identity e
is said to be modular (resp. standard) if 4;(¢) is a modular (resp.
standard) vector for the Oj-algebra (ms(), 2 (m;)).

Let & be a modular vector for (A4, 2). Put
D.,=U &
) .gLEJ_g«’ 9 ~
R(M', D) ={XEL (D) X is affiliated with M},
where & is the set of all subspaces & of & satisfying (1) and (2)

of Definition 3.1. Then %, is the largest element of .
By ([14] Theorem 3.3) we have the following

Theorem 3.2. Suppose & is a modular vector for (M, D). Then
the following statements hold.
) ZM', D) is a generalized von Neumann algebra on D, which

equals the bicommutant (M) D)y of the OF—algebra (M) D, D). In
particular, if (M, D) is self-adjoint, then so is R (M, D).
2) Pu
oP(X) =4 X4, Xed, iR
Then {0f°},ex is a one—parameter group of *—automorphisms of Z (M, D).
(3) The positive linear functional wg on % (M’, D) defined by
w, (X) = (X&), XER(M', D)
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satisfies the KMS-condition with respect to {af"}; that is, for each X, YE
R (M) D) there exists a function fxy in A(0,1) such that

Srr @ =0y, (02 (X)Y) and fry(t+i) =05 (Yo (X))

Sor all t€R, where A(0,1) is the set of all complex—valued functions,
bounded and continuous on 0=1,z=<1 and analytic in the interior.

Definition 3.3. A system (A4, Z,&) is said to be standard if the
following conditions hold:

(1) (A4, 2) is a generalized von Neumann algebra;

(2) a vector & in 2 is cyclic for . and separating for #”;

3 4i2=2 for all teR.

A standard system (4, 2, &) is said to be full if & is a strongly
cyclic vector for /.

Lemma 3.4. (1) Suppose (M, D, &) is a standard system. Then
{af“} is a one—parameter group of *—automorphisms of M and wg is a
standard positive linear functional on M which satisfies the KMS-condition
wilh respect to {o3}.

(2) Suppose (M, 2D,&) is a full standard system. Then & is a
standard vector for (M, D) with D;=2.

Proof. (1) It is clear that {of"} is a one-parameter group of
x-automorphisms of .#, which implies

A =

for all 1R, where AE* denote the closure of .#& relative to the
induced topology ¢,. Hence, o is a modular positive linear functional

on 4 with 9"’60:‘9<ﬂ"’50)' Further, it follows from ([14] Lemma
3.8) that 4F'=4f for all t€R, which implies w, is standard.
(2) This follows from (1).

Suppose & is a modular vector for (#, 2). By Theorem 3.2,
(Z (M, D), D, &) is a standard system, but it is not necessarily full.



682 ATsusHI INOUE

Lemma 3.5. Suppose H is a positive self-adjoint operator in (D)
affiliated with M'NM" such that &E D (H) and HEED. Then the
Sollowing statements hold.

(1) Suppose &y is a modular vector for (M,2D). Then HEHE D
and the positive linear functional @y on X (M', D) satisfies the KMS-
condition with respect to {0}}. Further, suppose H is non-singular. Then
(R (M, D), D, HEo) is a standard system with Spe =S¢,

(2) Suppose (M, 2, &) is a standard system and H is non-singular.
Then (M, 2, H&,) is a standard system. In particular, if (M, D, &)
is full, then so is (M, 2, HE).

Proof. (1) Since 4g/HE=HS, for all tER and P, is maximal,
it follows that H&E D, so that the positive linear functional g,
on Z(M’, D) is well-defined. By ([32] Theorem 15.4) the normal

form w’quo on the von Neumann algebra £ defined by
W, (A) = (AH& | HE), A’

satisfies the KMS-condition with respect to {af‘)}. Hence, for each
A, BE#" there exists a function f,3=4(0,1) such that

Fa5(®) =0l (67 (A) B), fan(t+i) = O, (Bo(4))

for all t&R. Since Z (A", D))" =M" and M'D =D, it follows that
for each X,YEZ (A, D) there exist sequences {4,}, {B,} in A4
such that hmA JHE=XHE, hmA H&=X'HE&, lim B,H&=YHE&,and
lim B} H,O-Y Hé,. Then, smce we have T

n—>oc0

sup |fa, 5, (8) - (0 (X)YHE | HE,) | =
supl s, s, (¢t +i) — (Yol* (X) Hé | He) | =0,

it follows that there exists a function fxy=4(0,1) such that
Frr () =0z @2 (X)Y),  fry(t+i) =0m, (Yo (X))

for all tER; that is, wg, satisfies the KMS-condition with respect to

{a, }.

Suppose H is non-singular. Then it is clear that H§, is cyclic
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and separating for # (A", D.)"'=4". Let H =S:ldE (2) be the spect-

ral resolution of H and put
#=ue®, &= 1w, 5={ #E®, en
0 Un A Un

Since H,, K,, E,&#4'NA", it follows that their restrictions to 9, are
contained in Z (A’, D). Since H is non-singular, it follows that
{E,} converges strongly to I, which implies

lim K, XH&,=1lim E, X&,= X&,

n—>co n—>00

for each XeZ% (4', D), so that HE is cyclic for Z (A", D).

Further, we have

lim AK, Hé,=lim E, A&= A&,

n—>co n—>oo

lim K,A*Hé&,=lim K, HA*&,= A*&,,

n—>c0 n—>co

lim AH,,f():AHEo, lim A*HnEQ=A*H$0

for each Ae.#’. Hence, Sy;=S:, and so gt D, =4 D= D, for
all t€R. Thus (% (A’ D), D¢, HE) is a standard system,
(2) It follows from (1) that if (A4, 2, &) is a standard system,

then so is (A4, 2, H&). Suppose (M, D,&) is full. For each X/
we have

lim K, XH&,=X¢&, and lim YK, XH&=YX&

n—>o0 n—>c0

for each Yeu#. Hence, H%, is a strongly cyclic vector for .#. Thus,
(M, D, HE) is full.

To apply the unitary Radon-Nikodym cocycle introduced by
Connes [3] to unbounded operator algebras, we define the following
notion.

Definition 3.6. Let (#, 2) be a closed Oj-algebra. A pair
(&1, &) of vectors in 2 is said to be relative modular for (4, 2)
if the following conditions hold:

(1) & and §&; are strongly cyclic for # and separating for #";

(2) there exists a subspace & of 2 such that

@) &, &E6;
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b) ME=6&;
© 4#¢=¢ and £F6=2¢

for all R,

Lemma 3.7. Let (M, D) be a closed Of -algebra such that M'D =D
and a pair (£,&) in D be relative modular for (M, D). Then the
Sollowing statements hold.

1) Put

Do, =gLEJ?_<§ ,

where F is the set of all subspaces & of 2 satisfying (a), (b) and (c)
of Definition 3.6. Then D, is maximal in F.

(2) & and & are modular vectors for (M, D) satisfying Dee, CD

N,
B) M Dee=Des,
4) Put

R(M'y Des) ={XEL (D) s X is affiliated with M"}.

Then Z (M, D, is a generalized von Neumann algebra on Dgg, such
that R (A" Dep)'=M'. In particular, if (M, D) is self-adjoint, then
(R (M Des), D) is self-adjoint.
()  Put
o.fl (X) =A/é/1uXA”—it o.fz (X) :A::;tXA:fI;it

& o

Jor XeR (A, D) and tER.  Then {afl} ter and {a?} tcr are ome-
bparameter groups of *—automorphisms of the generalized von Neumann algebra
R (M, D).

6) (Z(M', D), D, ) and (R(M'y D), Dy, &) are stan-
dard systems.

Proof. The statements (1) and (2) are trivial.

(3) It is easily shown that the subspace generated by #'9D.,
satisfies the conditions (1), (2) and (3) of Definition 3.6. Since
D¢, is maximal, we have M'Dee =D,

(4) Since MEC Dy, CD, we have (M/Dyp) =AM'. Tt hence
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follows from (3) that % (A’, D) is an Oj-algebra on P, contain-
ing M/ D e, such that

'% (‘/”/I’ 95152) I:MI,
(3.2) L3RR (M, D) M =R (M, D),

AER (M, D) M =R (M, Do), LER,

2
Put
D= N DX, D= N DXH.

Xe.%(.l”.géléz) Xe.%(.d”.géléz)

Then it is shown that J,, is an element of F. Since D, is
maximal, it follows that P, =D, ; that is, (B (A", D), Deg,) is
closed. Thus, (% (4", D), Dye,) is a generalized von Neumann
algebra. Suppose (A, D) is self-adjoint. Then it is shown that
DY, is an element of &, which implies (Z (A", Dyg), D) 1
self-adjoint.

(56) This follows from (3.2)

(6) This follows from (3) and (4).

Let (4, @) be a closed Oj -algebra such that 4’2 =2 and vectors
& and & in 2 be strongly cyclic for . and separating for .#". Let
9, be a four-dimensional Hilbert space with an orthogonal basis
{9} i 212 and F, be a 2X2-matrix algebra generated by the matrices
E;; which are defined by E;,;=0;7;. Then we have the following

Lemma 3.8. AQRZF; is a closed Of-algebra on D QRDs such that
(-///®'9‘—2) ,(9®"@4) = 9@'@4, and a vector 'QflézE 51®7711+52®7]22 in 9®SQ4
is strongly cyclic for MQRF, and separating for (MRF,)".

Theorem 3.9. Let (M, D) be a closed Of-algebra such that M'D
=9, and vectors & and & in D be strongly cyclic for M and separating
Jor M". Then the following statements hold.

I A4 pair (&, &) in D is relative modular for (M, D) if and only
if Qye, is a modular vector for (MQF,, D2QDs). In this case, D % 6=
D 6,94

II.  Suppose that (&, &) is relative modular for (M, D). Then
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(1) (Dof: D)o/ D ey, € R (M'y D) for all tER, where (Do
Dwy,), denotes the unitary Radon-Nikodym cocycle of the normal form oy
of M" relative to the normal form wg, of M”;

@) o (X)é=(Doy: Day) o (X) (Dwi: Daiy)ié for all teR, Xe
R(M'y Dy,) and EE Dy,

Proof. 1. Suppose (&, &) is relative modular for (£, 2). Since
61, Ezegglgz and ‘#95152=95152’ lt fOllOWS that 95152695152@)@4 and

(MRF ) (D¢,Q9) =D, @Ds.  To show 45! (D4, R90) = D, P

2
4é
for all :eR, we here state about the definition and the basic properties

of the relative modular operators [2]. Let & and 7 be cyclic and
separating vectors for the von Neumann algebra £’. Let Sz, denote
the closure of the conjugate linear operator on "y defined by

S An=A4*%¢, A’
and let
Ser=Jerder”
denote the polar decomposition of S7,. The positive selfadjoint operator

4;, =88, is called the relative modular operator of ¢ and 7 The
relative modular operators satisfy the following properties [2]:
3.3) AL =05(4), A, t<R;
3.4) dgg-ted’,  teR;
3.5) (Dwy: Do), =447, teR
for each cyclic and separating vector { for .#°. By (3. 4) and Lemma
3.7 we have
Ay o= At A e D

(3.6) Cl'D s, =D e,
44 D26, C D,y teR.
Since
A’g;ﬁz G711 +E:Q7a +La&Q71e +Li&722)
=" 01 + 45t LQmn + L L@z + 457 R

for all G, &, &y, L4E Dy, and (R, it follows from (3.6) that
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Agglfz (9 5152®©4) = 9 5152®©4, te R,

which implies that 2, is a modular vector for (AQF;5 DD
with

3.7 P4,®8:C Do, .
Suppose 2, is a modular vector for (A QF; 2&9). Put
¢ =ED; L®m+LQ7a+EQ7 +l&72E Do, , }-
Identifying
£=0&7u +5Q7a + L@z +i&72 EQ XD,
with L=, L, G, ) EOBOEHED, every clement X= 3 XyQFEy A

i,j=1

Q& is represented as the following matrix
Xu X O 0
Xn X»n O 0
0 0 Xu Xy
0 0 Xn Xp

X=

Further, it is clear that
Cu 0 G O
0 Cu 0 Cyp
Cau 0 GCp O
0 Cqn 0 Gy
Since (MARF,) 995152= 996152 and (AQRF,) ’996152 = 995152 , it follows
that
3.8 tie¢ (:1=1,2,3,4)
for each {=({;, $,, 83, C0) € 995152, which implies that &, §,E 6, £ E =6,
and 45*6 =¢&, and 4;)¢ =& for all tER, so that (§,§;) is relative
modular for (4, 2) with & CD.,. Hence, by (3.7) and (3.8) we

have

(ARTF ) = ; CueM’, iy j=1,2

@5152®‘©4 c QQEISZC 4 ®©4 - ‘95152®©4=
II. By (8.5) we have

” o, ” —_— it AV — it _ "3 1/ e g
(DCDEI . DCOEZ) ¢ —A;; AEZSI -——Ag;ézdéz tt, i ER.



688 ATsusHI INOUE

It hence follows that
(Doy: D) Dge, =deMe5it D s, (by 3.6)
=4 D,
=D,

and
(Do : Do) 0 (X) (Dt : D) 26
= M A XA A Ay
=4, Xde 336 (by 3.3)
=a}! (Xé

for all tER, XEZX (A", D¢y,) and EEDg,,. This completes the
proof.

By Theorem 3.9 we have the following

Corollary 3.10. Suppose (M, D, &) and (M, 2D, &) are full standard
systems. Then (&, &) is relative modular for (M, D), (Dw’;’l:Dw'go),/.@
eM for all tER and

o (X)L = (Do : Do) 0 (X) (Dot : Dag) L

for all teR, XEM and LED.

Poposition 3.11. Let (A, D) be a closed O}-algebra such that
MD=2D and a pair (5, &) of vectors in D be relative modular for
(My D). Then the following statements are equivalent.

(1) The positive linear functional wg on the generalized von Neumann
algebra E (M', Dys) is {07} ~invariant.

(2) The positive linear functional wg, on R (M'yDye) is {of} -
invariant.

(3)  {(Dwg,:Da)}icr is a strongly continuous one-parameter group
of unitary operators in J{Zélﬂu//,;éz, where M7 denotes the Sfixed—point
algebra of {07} in M (i=1,92).
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Proof. (1)=>(3) It follows from Theorem 3.9 and the {afz} -Invari-
ance of @ that

(X6, 16) = (a2 (X) &1 1€)
= ((Ddf,: Da) 07 (X) (D2 Do) 161160)

for each XeZ (A", D¢;) and tER, which implies by
(D, D)/ D ey ER (M D)

that

3.9 ((Dwy,: Do) 61| X'61) = ((Dey,: Do) - X6 16)

for all Xe and t=R. Since (Z (A’, D)y Deg, §1) is a standard
system and % (A", D¢,)"=M" by Lemma 3.7, it follows from Lemma
3.4 (1) and (8.9) that

((leéz: Do) 16, 14%6) = ((D‘”’éz: Do) 1 4%116)
for all AE#" and tER, which implies the normal form @y on .

is {afz}—invariant, so that the statement (3) follows from ([31]
Corollary 10. 28).

3)=> () By ([31] Corollary 10.28) we have
of, (07(4)) =a, ()
for all A=#” and t=R, which implies
g, (07 (X)) =0, (X)
for all XeZ (4", Dye,) and teR.

Similarly, the equivalence of (2) and (3) is shown.

Proposition 3.12., Let (M, D) be a closed Of-algebra such that
MD=2D, and a vector 7o in D be strongly cyclic for M and separating
Jor M.

1. Suppose no is tracial; that is,

(XY |70) = (Y X0 | 70)
Sor each X, YEM. Then the following statements hold.

(1) o is a standard vector for (M, D) with 4; =1I.

(2) Suppose & is a modular vector for (M, D) such that n<D,.
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Then, a pair (§, ) is relative modular for (M, D) with Dey=D,, and
{(Do%: Do) }icr is a strongly continuous one-parameter group of unitary

operators, which satisfies

(Dw;: Do), De= D and

of (X){= (Dw: Do) X (Dew: D)
Sor each teR, X R (M) D) and LED..

1. Conversely, suppose there exists a modular vector & for (M, D)
such that n€ D, (Dwy: Dwy)De =Dy, for each tER and

(3.10)  ¢P(X)L= (Do} : Day), X (Dwyy: D) ¥C

for each tER, XM and L= De. Then o is a tracial vector.

Proof. 1. (1) Suppose 7 is a tracial vector. Then it is easily
shown that §, equals the isometry J,, and hence it follows from

S8y CSyy that S, =87 =7, =J,. Hence, the statement (1) holds.

(2) Suppose ¢ is a modular vector for (4, 2) such that n & D,
By (1), a pair (&, 7o) is relative modular for (4, ) with D =D,
and hence from Proposition 3.10 {(Dw;: Dwy)}cr is a strongly

continuous one-parameter group of unitary operators, and further by
Theorem 3.9
(Dw: Doy )2 ¢= D,
o} (X)C= (Daw;: Dwy) 0y’ (X) (D D)L
= (Dw;: Dw;o)tX(Dw'é: Dw';o) iC

for each teR, XeZ (L', D,) and (=P,
II. Since (Dog: Dwy) D =P, for each tER, we have
Ay D oy =gy (dey " deg) (e das) P

cAEM' D, (by 3.4)

0

:‘960

for each t&R, which implies that the pair (&, 7) is relative modular
for (#,2) with D, =9,. It hence follows from Theorem 3.9 that
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o2 (X)L = (Do} : Do) 07 (X) (Dot : Day) £C
for all teR, X and (€D, which implies by (3.10)
a (X){=XC

for each tER, Xe# and (€D, Since the positive linear functional
w, on X (M, D) satisfies the KMS-condition with respect to {0}
by Theorem 3.2, for each X, Y&.# there exists a function fxy in
A(0,1) such that

fX.Y(t) =(1),,0(0';]°(X) Y) :wrlo(XY) 3
Frx @ +i) =0, (Yo (X)) =0, (YX)

for all tR, which implies
0y (XY) =0, (YX)

for each X, YE; that is, 7 is a tracial vector. This completes the
proof.

We give some concrete examples for standard systems and relative
modular vectors.

(i) Let A, be a von Neumann algebra on a Hilbert space §, T
be a positive self-adjoint unbounded operator in § affiliated with

My and 2=(T) =fi°\1.@(T”). Then the following statements hold.

t* i PD=1)

€Y R (Mo, =(T)) =MP™D* , where
MDD ={4/D=(T); AcMs AD=(T)C2>(T),
A*2=(T) 2= (T)},

which are self-adjoint genmeralized von Neumann algebra containing {1} ,ex

whose induced topology t equals the Fréchet topology defined by

R(M G DT (T))
the seminorms {|| < |l,=||T" - ||; nEN]}.

(2) Suppose & is a cyclic and separating vector for My and T is
affiliated with the fixed—point algebra M5° of (6 in Mo such that
&€ 2=(T). Then (R (Mo D2=(T)), D2=(T), &) is a full standard system.

(3) Suppose & and & are cyclic and separating vectors for My and T
is affliated with ME'O\ME? such that &, &= D=(T). Then (&, &) is



692 ATSUSHI INOUE

relative modular for (R (Mo 27(T)), D2=(T)) with 95152=9°°(T). By
Theorem 3.9, {afl} and {afz} are one-parameter groups of *—automorphisms
of Z(My 2=(T)), (Dw'e'l: Dw’e'z),/.@”(T) ER (Mo 27 (T)) forall teR

and
o (X){= (Do : Dafy) 0 (X) (Do : Dasg) £

Sor all teR, X R (Mo, 2=(T)) and L= 2=(T).
(ii)) Let &= (R) be the Schwartz space of infinitely differentiable
rapidly decreasing functions and let

N=3 0+ DfRF

where {f,} is an orthonormal basis in the Hilbert space L?=L?(R)
contained in & consisting of the normalized Hermite functions. Then
F=2>(N), and hence L'(¥) is a selfadjoint Oj -algebra containing
the inverse N of a positive Hilbert-Schmidt operator, which implies

that a self-adjoint representation 7z of &'(¥) on LARI? is defined by
r(X)T=XT, TeSRQIL

where L*®L? denotes the Hilbert space of Hilbert-Schmidt operators
on I? and ¥QL*={Te*QL?; TI*Cc¥}. We put

si={{a}; &,>0 for n=0,1,2,...
and sup n*|a,|<co  for each kEN},

Q(“n’znz_;i)aﬂﬁléaf—‘m {an} €s,.
Then the following statements hold. The proofs follow from Section
5 in [14].

1) @), SRL? 2i)) is a full standard system for each
{a,} Es,.

(2) Every pair (2w, 25)) for {a.}, {B} Es+ is relative modular
Sor @(L(9)), SRLY) with (FQL g, 10, , =S L

(8) Let m be a self-adjoint representatz?on ;f the canonical algebra of
Sor one degree of freedom defined by

m (%) =n(m(x)), xEH,
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where m, denotes the Schrodinger representation of . Suppose {a,} s,
satisfies
8.11) 0<a,<re ™, neN
Sor some B>0 and y>0. Then Q‘“n’ is a standard vector for (m (&),
FRLY with (FQLY g, =S QI

(4) Suppose (), {B) s, satisfy the condition (3.11). Then
('Qfan” Q(ﬁ”)) is relative modular for (m (), ¥ RLE) with (¥ RL?) %)
=P QLA

Q
8,

§4. Radon-Nikodym Theorems for Of-algebras

In this section we study Radon-Nikodym theorems and Lebesque-
decomposition theorems for Oj-algebras. We first investigate in more
detail the Radon-Nikodym theorem and Lebesgue decomposition theo-
rem obtained in [13, 16] with the help of Kosaki’s results [19] for
von Neumann algebras.

Let (A, 2) be a closed Ojf-algebra such that £'2=2, & be a
strongly cyclic vector for .# and let go=w,. For each positive linear

functional ¢ on /# we put
TRXE,=24(X), X<

In accordance with the Gudder definition [8] and [13], we define
the notions of ¢y-absolute continuity and @o-singularity, respectively
as follows:

Definition 4.1. A positive linear functional ¢ on £ is said to
be ¢-absolutely continuous if T:” is a map; and ¢ is said to be
strongly ¢e-absolutely continuous if T$° is a closable map of $(2)
into §4; and ¢ is said to be @g-dominated if Tﬁ" is a continuous map.
If for each X&.# there exists a sequence {X,} in . such that
lim ¢ (X3X,) =0 and h_)rg ¢ ((X,—X)"(X,— X)) =0, then ¢ is said to be

n—>o0 n

¢o-singular,

Remark 4.2. (1) The following statements hold immediately.
(@) If ¢, ¢ are strongly do-absolutely continuous, then so is ¢-+¢.
(d) If 0=Z¢=¢ and ¢ is dysingular, then so is ¢.



694 ATsusHI INOUE

However, an analogous statement (a) (resp. (b)) for @o-singularity
(resp. strongly go-absolutely continuity) does not necessarily hold
(Example 6. 3).

(2) For normal forms on a von Neumann algebra with a cyclic
and separating vector & the notions of ¢-absolute continuity and
do-singularity defined by Kosaki [19] are identical with the notions
of strongly ¢o-absolute continuity and ¢o-singularity defined the
above, respectively.

It is easily shown that bounded linear maps ¢g+¢ and TY"
defined by
T¢0+¢2¢0+¢ (X) =X&,
TR 16 (X) =25(X), XEM
satisfy

(T¢o+¢) *T¢0+¢’ (T¢o+¢) *T¢0+¢ETE¢O+¢ (.ﬁ) /,

“4.1) (T ¢o+¢)* ¢0+¢+( ¢0+¢)*T¢0+¢

Further, we have by (4.1)

[(X&, 2(X)) i XEMY = ((TH°C, T LEDset s

¢0+¢ (T¢°+¢) * T¢0+¢ (T¢°+¢) >

7"350"1ﬁ (T¢¢:)0+¢) £ T¢0+¢ (T¢¢0+¢) *

(4.2) G, (T5%) <

where CP(T::O) denotes the projection from $y+5EPg,+4 onto

{(X&, 4(X)); Xed}.
Using these facts, in analogous with [19] we can characterize the
notions of strongly do-absolute continuity and ¢@-singularity by the

maps T * and T§°+¢ as follows:

Lemma 4.3. Let ¢ be a positive linear functional on M.
1. The following statements are equivalent.
(1) ¢ is strongly ¢o-absolutely continuous.
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) ngw is non-singular.

In this case, D (T) =R (TR, (TP =R (T¥") and
TP=T3" ™)
II. The following statements are equivalent.
(1) ¢ is ¢o—singular.
(2) T$g+¢ is a partial isometry.
@' T (T *=Isa.
¢o+¢ 3 . .
8) T4 is a partial isometry.

@ T& (TP * =1,

@) {(X&, (X)) XEM}=H(D)ETD,.

B) inf {pX'X)+o(Y'Y); X, Yed, X+Y=2Z}=0
for each Ze 4.

(5)’ inf ((X'X)+o6(Y'Y); X, YEMl, X+Y=1I}=0.

We denote by P(#) the set of all positive linear functionals on
M. Then, by an order relation ¢=¢ ($(X'X)=¢(X'X) for each
Xed) (P(#), =) is an ordered set. We donote by P(A#, ¢) the
set of all elements ¢ of P(4#) such that ¢=<¢, and denote by

Pf°(.///, @) (resp. Pf"(.///, ¢)) the set of all strongly ¢o-absolutely
continuous (resp. ¢o-singular) elements of P(A4, ¢).

Lemma 4.4. Suppose ¢ is a positive linear functional on M such that
g9 (M) is a von Neumann algebra. Then the following statements hold.

(1) The isometry Us of $(D) into Dyyvp defined by
Xe— (T3 VT3 Y 209 (X),  XEl
satisfies
4.3) U D (myre) CD* (M) and X*UFe=
Ui g9 (X)E for each XEM and EE D (ny ).
(2) A sequence {H}P} of positive operators on (D) defined by
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'¢—U¢(S YA —=DIE@A))Us, neN

satisfies
{Hfyc', HP<HP=... and
lim (H$)Y2X¢&, exists for each XE M,

n~>00

where SME (2) 1is the spectral resolution of (T

4.4

¢o+¢ *T:0+¢
0 °

3) Put
¢c (X) =1im (H:?X& [50) s

. (X) = <P¢°*“’z¢o+¢<X> Zs06(D),  XEM,

where Pg::+ is the projection from Dy .4 onto Ker (T, ¢°+¢)"‘ ¢°+¢. T hen

¢c’ ¢SEP(“’”1 ¢) a”d ¢—¢c+¢s-

Proof. (1) This is easily proved.
(2) Since g, +s(A)’ is a von Neumann algebra, it follows that

K,,ES (1~ DAER) En 1(A)’ for nEN, which implies HfS.4’
for nEN Further, since UyU} ((T¢°+¢)* ¢0+¢)1/2 (T ¢°+¢)* ¢°+¢)1/2
it follows that (H)Y:=Uj;K,/*U; for neN, which implies that
HY<HfF<... and

lim ||(H2)YV2XE— (H2)V2XE|?

n, m—»o0

=lim {((T5"")* T8 Kudgyrs (X) [24505 (X))
— (TR TR R, L (X) | (TR ¥TE ) 2R Y2, 1 5(X))
— (TR T3 ) R Y s (X0 | (T3 ) ¥ T30 ) K Ay (X))
+ (TR YT Kodgos (X)) |2g506(X)))
=lim {((T3")¥T5 U= E(1/n)) Ay (X 25005 (X))
— (TR TR 2 (I~ E(1/n)) gy (X) | (TR 5T 12
X (I —E(1/m)) A5 (X))
— ((TEH*TE) 2 (I~ E(1/m)) gy (X) | (T *TR) 12

X = E(1/)) d4(X))
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+ (TEY TR (I~ E(1/m)) Rgges (X) |26 (X))}
=0
for each X, and hence lim (H,?)2X¢, exists for each XE .

n—>o0

(3) This follows from the equality:

lim (H$ X6 | &) =Lim (T4 ") ¥ T30 K dyys (X) 106 (1))
=lim ((T}

n—>c0

= ((TE*Y* T 25,106 (X) 124,06 (D)

VKT (I E(1/0)) dgy8 (X) 12,15 (D))

— (TR TR PR 2416 (XD |20 (D))
=6 (X) — (I~ (TRY*¥TE™) P2 1o (X)) 25,6 (D)

= (X)) — (PR 2306 (X) 12026 (D)

=¢(X) —¢.(X)
for each Xe.#. This completes the proof.

By Lemma 4.2, Lemma 4.4 and ([16] Lemma 5.5) we have the
following

Theorem 4.5. (Radon-Nikodym theorem) Let (M, D) be a closed
Oj -algebra such that M'D =D and & be a strongly cyclic vector for M.
Suppose ¢ is a positive linear functional on M such that my.4(M)' is a
von Neumann algebra. Then the following statements are equivalent.

(1) ¢ is strongly ¢o—absolutely continuous.

2 ng+¢ is non-singular.

(B) ¢ is represented as

#(X) =1£IE(H;X50|§0)9 Xed

JSor some sequence {H,} of positive operators in M’ such that H<H,=<...
and lim H;Y2X&, exists for each XEM.

n->o0

(4) & is represented as
¢ (X)=(XH'&|H'S), Xed

Sor some positive self-adjoint operator H' affiliated with M’ such that
6 ED (H') and H'&E D,
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Theorem 4.6. (Lebesgue-decomposition theorem) Let (4, 2)
be a closed Oj-algebra such that M'D =2 and & be a strongly cyclic vector
Jor M. Suppose ¢ is a positive linear functional on M such that mys (M)’
is a von Neumann algebra. Then, ¢. is maximal in Pf"(.//{, @), ¢
PO, §) and =g+ ..

Proof. It follows from Lemma 4.4 and Theorem 4.5 that
¢CEPf°(.///, ¢) and ¢=¢,+¢,. It is easily shown that ¢SEP°:°(./4, ®).
We show that ¢, is maximal in P®(#, ¢). This is proved by
analogy with ([19] Theorem 3.3). Take arbitrary psPP A, $).
We denote by T;’gI;'Z a bounded linear map of Y444 into Py 4, defined
by

1¢0+ +(X) —*2¢0+¢ (X.
Since ¢ is strongly ¢o-absolutely continuous, it follows from Theorem
4.5 that 9" is non-singular and T{ly= (T9")TX™.  Hence, we

have
TP a6 (X) = (TR ) TR PR 2411 (X)
=0
for each X&.#, which implies
PX'X) + Go(X'X) = (245 (0 |1
=I5 Aayee (O I
=|ITE5 U = PR™) Ay (X |
<~ PR s (DO

=¢.(X'X) + ¢ (X' X)
for each Xe#. Hence, ¢=¢.. This completes the proof.

Corollary 4.7. 1. Suppose $EP (M) satisfies my4(M)’ is a von
Neumann algebra. Then the following statements are equivalent.

(1) ¢ is do-singular.

) ¢.=0.

(3) P(A,¢)NP(M, po)={0}.
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IL.  Suppose ¢, EP (M) satisfies mypg( M)’ and my4(M)' are von
Neumann algebras. Then the following statements hold.

1) @Ag)c=24. for 21=0.

@) If 0=¢=¢, then ¢.=¢..

(3)  Further, if wy419(M)" is a von Neumann algebra, then ¢+ .
=(¢+9)e

Proof. 1. (2)=> (1) This is trivial.

(1)=>(3) Take arbitrary ¢=P (M, $) N P(M, $o). Since ¢ is ¢
singular and ¢ =P (A, ¢), it follows from Remark 4.2, (a) that ¢
is ¢y-singular. On the other hand, ¢ is strongly ¢—-absolutely
continuous since ¢=¢, Hence, ¢=0.

(3)=>(2) By Theorem 4.5 ¢, is represented as

$.(X) =lim(HPX&|&), XE.

Then, it follows that for each neN
AP EP (M, ¢) NP (M, o) = {0}
for some 21>0, where
#(X) = (H!X& &), Xed,
which implies ¢.=0.
II. This follows immediately from Theorem 4. 6.

Remark 4.8. (1) In [13,16] we have obtained the Lebesgue-
decomposition theorem: ¢, EPX (A, ¢), ¢, PP (M, $) and ¢=g.+ &..
However, it did not know that ¢, is maximal in Pf“(.///, ¢). By
Theorem 4.6 this fact is true, but there exists a pathological fact
that this Lebesgue decomposition is not unique in general (Example
6.3).

(2) By Corollary 4.7 the Kosaki definition of ¢o-singularity
P(A, ¢) NP(M, ¢) = {0} is identical with our definition of @y-singu-
larity in the case 7 44(#)’ is 2 von Neumann algebra.

We have treated with an unbounded generalization of the Tomita-
Takesaki theory in [14] and Section 3, so that we now generalize
the Radon-Nikodym theorem of Pedersen and Takesaki [24] to that
for Oj -algebra.
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Theorem 4.9. Let (A, D,&) be a standard system. Then the
Sollowing statements hold.

I. ¢ is a do—dominated positive linear functional on M which satisfies
the KMS-condition with respect to {af°} if and only if ¢ is represented
as

¢(X) =(XH&|HE), Xed
for some positive operator H in M'N.M".

II. The following statements are equivalent.

(1) ¢ is a strongly @o—absolutely continuous positive linear functional
on M which satisfies the KMS-condition with respect to (0} such that
o+ @ is standard.

(2) & is represented as

Sor some sequence {H,} of positive operators in M'NM" such that
H,=H,=<... and lim HY2X¢&, exists for each XE M.

n—>c0

(3) ¢ is represented as
$(X) =(XH&|HE), Xed
Sor some positive self-adjoint operator H affiliated with M'NM" such that
&ED (H) and HEE D,

III.  Suppose ¢ is a positive linear functional on M which satisfies the
KMS-condition with respect to {ai"} such that ¢o+ ¢ is standard.  Then,
both the maximal strongly @o—absolutely continuous part ¢, and the ¢o-
singular part ¢, of ¢ satisfy the KMS-condition with respect to {af°}.

Proof. 1. Since ¢ is ¢o-dominated, there exists a positive operator
H in A’ such that

$(X) = (XH& |Hé)
for all Xe#. Put
¢ (4) = (AH&|HE), A€M’
Then ¢" is a normal form on the von Neumann algebra .#° which

satisfies the KMS-condition with respect to {ai°}. In fact, take
arbitrary 4, BE". Since-Sz =S¢, by Lemma 3. 4 there exist sequences

{X.} and {Y,} in # such that lim X,§=A4%&, lim X,§=A4%&, lim Y,&

n—»oo n—> n—>co
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=B&, and lim Y,;&=B*&,. Since ¢ satisfies the KMS-condition with

respect to ”_)f:r?}, there exists a sequence {fxn,yn} in A(0,1) such that
fr,x, () =8 @7 (X)) Y,) = (HPY, 6 |4, X180,
Fr v (+i) = §(Y,0°(X,)) = (HUEX,5| Y6

for all teR and neN, which implies that

lim sup| Sx, v, (8) — (H?B& |44 4*&) | =0,

lim sup | fx,¥, (¢ +1) — (H?4E A& | B¥&o) | =0,

n—>oco

Hence, there exists a function f,5 in 4(0, 1) such that

Fan(t) = (H2BE, |4 4*2)) = 4" (a°(4) B),

0
fan(t+i) = (HU A& | B*6) = ¢ (Bol*(4))
for all t€R, which means that ¢" satisfies the KMS-condition with

respect to {af°}. It hence follows from ([32] Theorem 15.4) that
Heu'Nn#’. The converse follows from Lemma 3. 5.

Suppose ¢ is a positive linear functional on  which satisfies the
KMS-condition with respect to {050} such that ¢o+¢ is standard.
Then it follows from Lemma 4. 4 that H!c.#’ for neN, HY<H?
=..., im(H$Y X¢ exists for each X4 and

n—>oc0

¢c(X) =11_)1"13 (H;¢XEO |50)a

$:(X) = (P2, 00 (X) 2,16 (D)), XEM.

Since ¢o+ ¢ is standard, it follows from the above I that

(4. 5) (TEYTR Eyrg (M) Mg (M),

0

We show Hfe#” for nEN. For each X, Y, ZE# and CEML" we
have
UsCU; (TR Y ¥ T ) g s (0 Dy (V) 1246 (2))
=(CXY&|Ug2414(2))
(by 4.3)
= (CY& U749 (X) A4 (2))

= (U,CU (T TR 2, o (V) |74 (XD 25026 (2)),

0 0
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and hence UsCU} (TR *TR™)2en, ,,(4)’, which implies

0
CHfX=CU} (S:/ Y1 —=2dE Q) UsX&,
1
=U3 U (7 A=DAEWD) (THH¥TE™) 24020
—[J* % fotdy srtoriyi (1 oo
~U3 U,CUD (T TR 171 =DAE D) 240 (0)
(by 4.5)

=03 (|| 1 A-DAED) WiCUF (T¥TE™) dyyes (X0
=H ;¢C-X$0
for each Xe, C=#’ and nEN. Hence, H!c.#" for all nEN,
which implies the implication (1)=>(2) in IL

The implication (2)=>(3) in II is similar to the proof of (2)=
(8) in Theorem 4. 5.

We show the implication (3)=> (1) in II. It is clear that ¢ is a
strongly do-absolutely continuous positive linear functional on . By
Lemma 3.5, (1), ¢ satisfies the KMS-condition with respect to {af“},
We note that (1+H?Y is an invertible positive self-adjoint operator
in $(2) affiliated with A4’'NA" such that 2 ((1+H?»Y?) =9 (H)D
MEy and o+ p=0qsmtV2, It hence follows from Lemma 3.4 (1)
and Lemma 3.5 (2) that ¢y+¢ is standard.

In the above proof we have proved HPe#’'N#" for neN, and
hence the statement III follows from the statement II. This completes
the proof.

Let (#, 2, &) be a standard system. Then the following
questions arise.

Question 1. Suppose ¢ is a positive linear functional on M which

satisfies the KMS—condition with respect to {af"}. Then, is ¢ automatically
strongly go-absolutely continuous?

In Section 5 we shall state that the above question is affirmative
in case that the Oj-algebra (4, &) satisfies the von Neumann density

®
type theorem; that is, [AToe=[AT".



UNBOUNDED TOMITA-TAKESAKI THEORY 703

Question II. Suppose ¢ is a positive linear functional on M which

satisfies the KMS-condition with respect to {05,0}. Under what conditions
is ¢ represented as

¢ ZCUHEO

for some positive self-adjoint operator H affiliated with M'NM" such that
§£E D (H) and HEED?

We here consider Question II.

1. If ¢ is strongly do-absolutely continuous and ¢o+ ¢ is standard,
then Question II is affirmative (Theorem 4.9).

However, it seems to be difficult to show directly that ¢+ ¢ is
standard, and so we consider when Question II is affirmative without
the assumption of the standardness of ¢+ ¢.

2. Suppose ¢ is represented as

d=w;, EED
and the normal jform o; on the von Neumann algebra M° satisfies the
KMS-condition with respect to {0":"}. Then Question II is affirmative.

In fact, by ([32] Theorem 15.4) there exists a positive self-
adjoint operator H affiliated with #'N.#" such that &2 (H) and
(4.6) (4§18) = (AH& | H&)
for all Ae#". Take an arbitrary Xe#. Since 4’2 =2, there is
a sequence {X,} in " such that lim X {=X{ for each (&9,

n—>c0

Then it follows from (4.6) and &2 (H) that {X,6} C2(H),
lim X,6=X& and lim ||HX,5—HX,%l||= lim ||X,§—X,§||=0, and

n—>00 7, m—>c0

hence 45 C 2 (H), and so H§ €2 and XHE,=HXE&,, which implies
¢ (X) =(XHE | HE) for all Xe.

3. Suppose ¢ is strongly ¢o-absolutely continuous, ws+s(M)’ is a von
Neumann algebra and
4.7) ¢ (X'X) =7{(X'X) + (XX}, XA
for some constant y>>0. Then Q uestion II is affirmative.
In fact, by Theorem 4.5 ¢ is represented as
P=wgrg,

for some positive self-adjoint operator H’ affiliated .#” such that
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&ED (H') and H'GED. Since wgy, is {af"} -invariant, we have
(4.8) (H'4¢ X& |H'48Y &) = (H'X& |H'Y &)

for all X, YEL. Take arbitrary A€.#". Since S; =S, there exists
a sequence {X,} in . such that lim X,§=4& and lim X;&=4%.
By (4.7) and (4.8) we have M

4.9 lim H'X,§y=H’'A&; and lim H'AEZX,,E(,:H'A%AEO.

n—>c0 n-—>oc0

By (4.8) and (4.9) we have
[|H 4L A&ol|=|H" A&ll, (H'4EXE |H 4% A&) = (H'X&|H'A)
for all Xe# and A=4’, which implies
(4.10) [|H' 48 X&— H'AEA&|| = || H' X§— H'A&||
for all Xe# and AE.4". Since wg, satisfies the KMS-condition
with respect to {of"}, it follows from (4.9) and (4.10) that the
normal form wp, on #" satisfies the KMS-condition with respect to
{af"}. By the above statement 2 Question II is affirmative.
4. Suppose ¢ is represented as
=g,

Sfor some positive self-adjoint operator H' affiliated with M’ such that
§ED (H?) and H?*6y=2D. Then Question 11 is affirmative.
In fact, since MEC D (H?), H?XE =XH", for each XEA and

Wyeg, 18 {af"} -invariant, it follows that
(4. 11) Hf} X¢,= 4 H?X&,
for all Xe#/U4" and t€R, which implies by S§; =S, that the

normal form w}}lso on /" satisfies the KMS-condition with respect

to {0i}. By the statement 2 Question II is affirmative.
5. Suppose (M, D, &) is a full standard system and ¢ is strongly
$o—absolutely continuous, w4 s(M)’ is a von Neumann algebra and

(4.12) $(X'X) < ?:1 S(X'V,Y,X), XEM

for some finite subset {Yy, Y, ..., Y,} of M. Then Question II is
affirmative.
In fact, ¢ is represented as
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¢=wH’Eo

for some positive self-adjoint operator H’ affiliated with #’ such
that §€92 (H’) and H'§,c2. Since & is a strongly cyclic vector
for 4, it follows from (4.12) that 2 C 2 (H’), which implies #&
C 2 (H"”). Hence, by the statement 4, Q uestion II is affirmative.

6. Suppose the Oj -algebra (M, D) satisfies the von Neumann density
type theorem and ¢ is o-weakly continuous. Then Question II is affirmative
(Theorem 5.6).

We study a Radon-Nikodym theorem for {of(’} -invariant positive
E £
linear functionals on .#. We denote by 4" and 4" the fixed
point algebras of {0,°} in " and .#’, respectively.

Theorem 4.10. Let (M, D, &) be a standard system.

I. The following statements are equivalent.

(1) ¢ is a oy -dominated, {o'fo} —invariant positive linear functional on
M.

(2) ¢ is represented as

¢=wH’§o

¢
or some positive operator H' in M .
Je p
(8) ¢ is represented as
P =0y,

Jor some positive operator H in .///”"éo such that H&E 9.

In the following II and III, suppose ¢ is a positive linear jfunctional
on M such that o+ ¢ =t for some standard positive linear functional T on
M which satisfies the KMS-condition with respect to {of"}.

II. Suppose ¢ is {af"} —invariant. Then ¢ is decomposed into the sum:
P=dc+ o5

where @ is a strongly @o—absolutely continuous {af"} —invariant positive linear

Sunctional on M and @7 is a Po-singular, {af“} —invariant positive linear

JSunctional on M. If ¢ is strongly Po-absolutely continuous, then ¢=¢2;

and if ¢ is Po-singular, then ¢= ¢l
III. The following statements are equivalent.
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(1) ¢ is strongly @o—absolutely continuous and {05”} —tinvariant.
(2) ¢ is represented as

¢=wH’50

¢
JSor some positive self-adjoint operator H' affiliated with M7 such that
EoE.@(H,) and H,Eoeg.
8) ¢ is represented as

P =wpg,

&
Sor some positive self-adjoint operator H affiliated with M such that
&e2 (H) and H5€ 9.

Proof. 1. (1)©(2) This is trivial,
2)=>@) Put

H=]50H,-]€o'
£
Then H is a positive operator in M satisfying H&=H'%, and
hence H&E D and ¢ =gy,

(3)=>(2) This is similar to the proof of (2)=(3).
II. Since 7 satisfies the KMS-condition with respect to {af°}, it
follows from ([14] Lemma 3. 8) that

(4.13) 442, (X) =2, (a2 (X))

for all X and t=R. Since ¢=7 and @#=r, there exist R, K&
n, (M)’ such that 0=R, K=1 and

$o(X) = (R2(X) |2.(D), ¢(X)= (K (X) |4(D))

for Xe#. Using (4.13) and the standardness of 7, we can prove
in the same way as in Theorem 4.9 that the normal form on
(M)

A—(RA2.(D) |2.(D))
satisfies the KMS-condition with respect to {of} and A4— (K44, (l)l
D

2.(I)) is {of} -invariant. Hence, RE€n (#) ' Nr (#)" and KEn, (M) 2
We donote by U the isometry of §(2) into §. defined by:

UXé =RV (X), XE M.

We now put
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H;:U*(S; 1/2dE (%)) KU, neN,

1
where R=SoldE () denotes the spectral resolutions of R. Since R
and K commute, it follows that {H,} is a sequence of positive

E
operators A" and lim H}XE, exists for each X&4. We here put

#2(X) =£1_)17£ (H,X& &),

$:(X) =(KE(0)2.(X) (2. (D)), XE 4.
Then it is easily shown that ¢7 is a strongly @o-absolutely continuous,
{af°} -invariant positive linear functional on #, ¢; is a ¢e-singular,
{af"} -invariant positive linear functional on 4 and ¢= ¢+ ¢:. Suppose

¢ is strongly ¢o-absolutely continuous. For each Xe&.£ there is a
sequence {X,} in « such that lim 1. (X,) =E(0)2 (X).

n—>00

Then we have
lim X,5=lim UR¥?X,&=URYE (0)1,.(X) =0,

fim (2, (X,) 12, (1)) =lim (KA (X)) 12.())

= (KE(0)Z4.(X) [2(Y))
for each Y. Since ¢=t and ¢ is strongly ¢,-absolutely continuous,
we have lim 2;(X,) =0, and hence (KE(0)2.(X) |2.(Y))=0 for each

Yeud. ﬁence, KE(0)4.(X) =0; that is, ¢;=0. Similarly, if ¢ is
go-singular, then ¢=¢.

III. (1)©(2) Using II, this is proved in similar to the proof of
Theorem 4. 9.

(2)=>(@3) Put
H=J€0H’=/£0'
£
Then H is a positive self-adjoint operator affiliated with A" such
that &€ 2 (H), Hé,=H'6E 2 and p=ap,

(3)=>(2) This is similar to the proof of (2)=(3). This completes
the proof.

Remark. We don’t know whether ¢? is maximal in the subset of

B . . . . .
P (M, ¢) of {af°} -invariant positive linear functionals or not.
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§5. Radon-Nikodym Theorems for O}-algebras Satisfying
the von Neumann Density Type Theorem

Throughout this section, let (#, 2) be a closed Oj-algebra such
that £’2 =2 and [all]’;,g:r.//l—]‘:, and & be a cyclic and separating
vector for .#’. We denote by #% the set of all positive linear
functionals which are continuous relative to the o-weak topology for
M, and denote by £} the natural positive cone associated with

L', &) [1,4,11].

Theorem 5.1. Suppose p=M%. Then there exists a unique vector
& in PLND such that
¢(X) = (ngs ,5¢)
Sfor all Xe .

Proof. By ([16] Lemma 5. 2) there exists a vector § in £ such
that ¢=w,. It hence follows from ([31] Theorem 10.25) that
6.1 (4§18) = (445 189), AEM’
for a unique vector & in £}, Take an arbitrary X&#. Let (X*X)?
=S:ZdE(2) be the spectral resolution of (X*X)'? and let E,,=S:dE(l)

for neN. Since 4’2 =2, it follows that E, XE,c.#" for n€N.
Hence, we have by (5.1)

lim E£;=&; and hm || XE,.&,— XE,£,|

a Zlim || XE&— XEE

20,

which implies §;,€ /E\ 2(X)=2 and ¢ @, Suppose ¢=w;=w,
for &, ;€2 N 2. Since [(A],= [.///]’ and (5.1), we have & =¢,
This completes the proof.

Theorem 5.2. Suppose p=.ME. Then the following statements hold.
(1) ¢ is strongly @o-absolutely continuous if and only if ¢ is repre-
sented as

¢(X) =(XH'&|H'S), Xed
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for some positive self-adjoint operator H' affiliated with M’ such that ME,
is a core for H'. In this case, such an operator H’ for ¢ is unique,
which is denoted by Hy.

(2) ¢ is go-singular if and only if P(M, ¢) NP (M, ¢o)={0}.
8) ¢ is decomposed into the sum:
¢=¢.+ &,
where @, is maximal in PX(M, ¢) and ¢, =PP(M, §).

Progf. By Theorem 5.1, ¢o+ ¢ is represented as
(5.2) ($o+ @) (X) = (X&g49 [ Egp49), XEM

%
for a unique vector §;,,€ 2 N 2, which implies by [J{]';a———[.///]t’
that &444 is a separating vector for #°. Since &§15E€ 2}, it follows
that §,44 is also cyclic for #’. We put

UZ¢0+¢ (X) =X€¢o+¢, XE./%.

By (5.2) U is extended to a unitary operator of Ds,+s onto H(2),
which is also denoted by U. Using [.//l]';,,,=[.//{_]t’* and 544 is a
cyclic vector for .£’, we can prove that 7y .s(A)'=U*4'U, so that
ws+4(A) " is a von Neumann algebra. Hence, the statements (2) and
(3) follow from Corollary 4.7 and Theorem 4.6, respectively.

We show the statement (1). Suppose ¢ is strongly ¢-absolutely
continuous. We denote by Tz° the closure of a closable map:

XEQE./%Eo")XE(gE-/%E‘ﬁ.

*
Then, it follows from [ Ao =[A]"° that .//{"EOCQ(T:") and Tﬁ"AEo
=A¢&; for all A=4’, which implies £"%; is a core of Tﬁ“ and TZ;" is
affiliated with #’. Put
Hy=((T)*TH)™.
Then it is easily shown that Hj is a positive self-adjoint operator
affiliated with .4’ such that & is a core for Hy and ¢=wyj. The

uniqueness of Hj follows from that of polar decomposition. The
converse follows from Theorem 4.5. This completes the proof.

Remark 5.3. Representing operators H’ for ¢ in Theorem 4.6
satisfy #£C 2 (H’) but without the condition [#1,=[#]"°, there
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does not necessarily exist a representing operator H’ for ¢ such that
ME, is core for H’.

Remark 5.4. Suppose 4’ is finite, Then every ¢ =4} is strongly
go—absolutely continuous. This is proved in similar to ([19] Corollary
2.3).

Theorem 5.5. Suppose (M, D, &) is a standard system and ¢ M5
satisfies the KMS-condition with respect to {af"}. Then the following
statements hold.

(1) ¢ is represented as

¢(X) =(XH&|Hé), Xed
Sor some positive self-adjoint operator H affiliated with M'N\M" such that
=2 (H) and HéE D. Further, if ¢ is faithful; that is, ¢$(X'X) =0
implies X=0, then ¢ is a standard positive linear functional on M with
Dy=D (7).

(2) Suppose (M, D, &) is full. Then ¢ is a standard positive linear
Sunctional on M with Dy=2D (ny). Further, if ¢ is faithful, then
(my (M), D (7y), 26(])) is a full standard system.

Proof. (1) It follows from Theorem 5.1 that ¢=aw, for {,€ 2}
JE—
N2. Since [.///]’,;,:[.//{]t‘, it follows that wg¢e(.///”)1 satisfies the
KMS-condition with respect to {of"}, so that by ([32] Theorem 15. 4)
there exists a positive self-adjoint operator H affiliated with .#'N.#"
such that
(5.3) (d€s164) = (AHE& | HE)
for all Ae#’. We denote by U’ the partial isometry on $(2)
defined by:
A&~ AHE, Acd’.
[

Using [.//{]Z,,,=[.ﬂ]t‘, we can prove U'e4’, and hence H§=U'§;
2, which implies ¢=wg by (5.3).

Suppose ¢ is faithful. Since the projection E of $(Z) onto Ker H

is contained in #'N A" and (A, 2) is a generalized von Neumann
algebra, it follows that E,=E/2 .#, and hence

¢(E0) = (EHEO IHEO) =0.



UNBOUNDED TOMITA-TAKESAKI THEORY 711

Since ¢ is faithful, we have Ey;=0, and hence H is nonsingular. It
follows from Lemma 3.4 and Lemma 3.5 that ¢ is a standard
positive linear functional on 4 with 2,=9 (z,).

(2) We denote by E'qu the projection of $(2) onto AHE. It
follows from [#],,=[A4]" e that #HE&, is a closed subspace which is
invariant for £, and hence E'ge€A4’. It is easily shown that the
restriction #/E'g, 2 of the Oj-algebra 4 to Ey P is a closed OF-
algebra such that (A/Eyy D)’ =EpM'/Epe®(2) and (M/EpeD)"
=M [Ex (D). Let H=S:2dE(2) be the spectral resolution of H.
Put

. n 1 . n
K,— Sm TE®), E,= SwdE )

for neN. Then we have K,/92, E,/2 €4 and

lim E,Ey Xé=lim K,XHé

o — Fig, Xeo— E(0) Ei, Xo
= Eyg X&o,

lim YE Eﬂ'eoXEQ—EHE Y X§,

n—>c0

for each X, YE, which implies Eye X&EMHE for each Xe.
On the other hand, it is easily shown that E}{Eo.@ CE}HO.///EOM. Hence,

we have

(5. 4’) E}I%.ﬂéo‘j=.ﬁH€0‘j :E;IEO.@
that is, Hé, is a strongly cyclic vector for (#/Eue P, Eyey2). It is
clear that Hé, is a separating vector for (M/Epe2)" =M"/Ep (D).
Since dgMHE=MHE, for all tER, we have 4 Epy=FEydf for all
tER, which implies that o, satisfies the KMS-condition with respect
to a strongly continuous one-parameter group of *-automorphisms:
A/Ene® (D) = (dE Ere) A (Ene A7)

of the von Neumann algebra #'/Ep$(2). By ([32] Theorem
13.2) we have

At Adig) Eng § = (4% Eg) A (42} Efre) Erge €
for all £€9(2) and tER, which implies 45 =4% Ey for all t€R.
Hence H&, is a modular vector for (#/Euy9D, Ey:,?) with Dy, =
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Ey,, 2. Since [./%]Z,,=f://—]': , it follows that H§&, is standard, which
implies by (5.4) that ¢ is a standard positive linear functional on
M with D= (z,).

Suppose ¢ is faithful. By (1), H is non-singular, and so Exs=I.
By (5.4) Hé, is a strongly cyclic vector for ., and hence (4, 2,
Hé&y) is a full standard system, which implies that so is (m4(A),
2D (my), A45(I)). This completes the proof.

We can similarly prove the following result using ([32] Theorem
15. 2).

Theorem 5.6. Suppose (M, D, &) is a standard system and = MF.
Then ¢ is {af"} —invariant if and only if ¢ is represented as
¢(X) =(XH&|HE), XEM

Sor some positive self-adjont operator H affiliated with M such that
&ED (H) and HSE 9.

We apply Radon-Nikodym theorems obtained the above to the
spatial theory for Oj-algebras. The spatial theory for Oj-algebras
was investigated in [13,16,33,35]. In particular, it was obtained
that every *-automorphism of the maximal Oj-algebra is unitarily
implemented [33,35] and each *-automorphism @ of the Oj-algebra
my(/) of the Schrédinger representation m, of the canonical algebra
&/ for one degree of freedom satisfying a (m(%)*) Cre(&)™* is unita-
rily implemented [33]. In the case of von Neumann algebras .#, with
a cyclic and separating vector, each *-automorphism of .#, is always
unitarily implemented, but in [33] Takesue gave an example of the
self-adjoint Oj -algebra (the polynomial algebra (?(—i%/@), 2),
where 2 ={feC~[0,1]; f®(0)=,"(), n=0,1,2,...}) with a
strongly cyclic and separating vector for which the above fact does
not necessarily hold, and so we need consider the spatial theory for
a self-adjoint Oj -algebra with a strongly cyclic and separating vector.

In a previous paper [16], we obtained the following Propositions
5.7,35.8.

Proposition 5.7, Let (M, D) be a self-adjoint Of -algebra, a vector
& in D be strongly cyclic for M and separating for M* and a be a
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x—aqutomorphism of M. Then the following statements hold.
(1)  Suppose both the map X&G—a(X)& and X&—a'(X)& are
continuous. Then o is represented as

a(X)=U'XU, X
for some UL (2),={UcsZ"(D); U is unitary}.

(2)  Suppose Tsprppa( M)’ is a von Neumann algebra, and the map
X&—a(X)& and X&—a ™ (X)E, are closable. Then «a is represented as
a(X)=U'XU, X4

for some UeZ'(2),.

Throughout the rest of this section, let (#, 2) be a selfadjoint
*
O; -algebra such that [.//!]t‘ =[M],0, a vector & in D be strongly

cyclic for 4 and separating for .#” and a be a *-automorphism of
M.

Proposition 5.8. Suppose ¢ooa and ¢ooa™ in ML; in particular, a
and a™' are continuous relative to the o-weak topology for M. Then a is
represented as

a(X)=U'XU, X
for some UcZ'(9D)..

We here weaken the condition of the continuity of @ and a™ in
Proposition 5. 8.

Theorem 5.9. Suppose « is continuous relative to the o-strong topology
Jor M. Then a is represented as

a(X)=U'XU, XcM

Jor some UeZL'(2),={Uc%'(2); U*U=I}. Further, suppose at
is closable relative to the o-sirong*® topology for M. Then a is represented
as

a(X)=U'XU, X
Sor some UL (D),.

Proof. Since a is continuous relative to the o-strong topology for
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A, it follows that

lla (X) &l =(I[XT L}, Xea
for some {§,} €2~ (#). In similar to the proof of ([16] Lemma
5.2), we can prove that

(a(X)& &) = (XG|Co), XeA
for some { ;€ 2. By Theorem 5.1 there exists a vector 7 in 9’200 2
such that
(5.5) (a(X)&ol&0) = (Xno|n0)
for all Xe#. Put

an(X)E():Xﬂg, XE./”.

Then, by (5.5) the closure U, of U, is an isometry on §(2). We
now put

U=U,/2.

Then it is easily shown that Ue £'(2),, UU*E4’ and a(X) =U'XU
for all Xe .
Suppose a™! is closable relative to the o-strong* topology. Then

*
we show Ue £ (2).. Suppose An=0, A=.A’. Since [.//{”]C[.///]t‘,
there exists a net {X;} in 4 such that

(5. 6) Um[X,] {6} =[A1{&}, Um[X] {6} =[4*] {5}

for each {£§,} €2~ (#). Since a is continuous relative to the g-strong
topology for #, there exist elements a’(4) and a’(4*) of £ (2,
H(2)) such that

lm [a(X) ]{&} =[a"(D1{&},

6.7
lim [a(XD]{&} =[" (4D ]}

for each {£,} €2~ (#). Then we have

([" (AT L&} [H{ma}) =1ixm ([a (XD T{&} | {na})
= ({&} [[" (4*) 1 {n})

for each {&,}, {9} €2~(#). Hence, we have a”(4) €€ '(2,H(2))
and a”"(4)'=a"(4%). By (5.5), (5.6) and (5.7) we have
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”a”(A)Eo”=li}nl|“(Xx)foH
=lim|| Xl
=||4n||=0,
and hence &”(4)&=0, and further we have
(" (4%) & |C&o) =lizm (a (X)) & |CE)
=1i2m (C*&o | (X3) o)
= (C*&|a" (4) &)
=0
for each CE’, and hence a’(4*)&,=0, which implies
(@ (A)§|C&) = (C*& |a" (4*) &) =0
for each €2 and C=#’. Hence, «"(4) =0. By (5.6) and (5.7),
a net {@(X;)} in 4 converges to 0 and {a'(a(X;))} is a Cauchy
net in ./ relative to the o-strong* topology for .#. Since a™ is

closable relative to the o-strong* topology for .#, it follows that
lilm X;=0, and hence 4=0. Hence, 7, is a separating vector for .#’.

It follows from n& &} that 7 is a cyclic vector for 4", which implies
that U is a unitary operator on $(2). This completes the proof.

Theorem 5.10. Suppose ¢gooca S ML and the map X&—a ™ (X)& is
closable. Then a is represented as

a(X)=U'XU, X4
Jor some UsZL"(2).,.

Proof. By Theorem 5.1 there exists an element 7 of Z{NZ
such that

5.8) (a(X) & |§0) = (X0 [ 70)
for all Xe#. Suppose An=0, A=.#". Since [J{”]C[.//{_]t’* and
(5. 8), there exists a net {X;} in . such that
liin a(X)&=0 and lilrn a(a (X)) E=Aé..
Since Xé—a'(X)& is closable, we have A&=0, and hence A=0.

Hence, 70 is a separating vector for .#’. It follows from npEZ}

that 7, is a cyclic vector for .#’, which implies by (5.8) that a is
represented as
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a(X)=U'XU, X4
for some UeZ'(2),.

§6. Examples

In this section we investigate the absolute continuity and singularity
of positive linear functionals on the Oj-algebra generated by the
differential operator, the Ojf-algebra defined by the Schrédinger
representation and the maximal O} -algebra £'(& (R)) on the Schwartz
space < (R).

Example 6.1. Put
2 ={£€C~[0,1]; 7 (0) =" (1), n=0,1,2,...},
—.d
Xo= i |2,
2

&o(®) =|:exp {— exp(-— %)}] 5—4cos2at) 7Y, te[0, 1].

Then the polynomial algebra # (X,) generated by X, is a self-adjoint
Oj-algebra on 2 and a vector & in 2 is strongly cyclic for £ (Xo)
and separating for & (X;)’. We consider positive linear functionals
on Z (X,) defined by
6. (p(X0) = (p(aXo+b)&16), a=0,bER.

Then the following statements hold.

(1) ¢ (nx0, me&Z) are strongly w.-absolutely continuous.

In fact, by ([33] Example) ¢2™ is represented as

T (p(Xo) = (p (X)) U |U&)
for some UeZ'(2),={Uc¥'(2); UU=I}. We put
(7™ (4) = (AU&\UE&), AP (Xy)"

Since 2 (X,)” is a commutative von Neumann algebra ([15] Theorem
2.1 and [25] Theorem 7.1) and & is a cyclic vector for Z(X,)’,
it follows that £ (X,)” is finite, so that by ([19] Corollary 2.3)
(#F™)" is strongly wg,~absolutely continuous. Hence we have

(AU&|U&) = (¢77)" (4) = (AH'& | H &), A€ (Xo)"

for some positive self-adjoint operator H’ in L?[0, 1] affiliated with
Z (Xo)', which implies
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H'§E€ 2 and (¢7™) (p(Xo)) = (p(Xo) H'éo | H'&0).
Hence, ¢2™ is strongly ;-absolutely continuous.

(2) For each bounded subset B of R we define positive linear functionals
on P (Xo) by

(wg,ox8) (£ (X)) = (x8(Xo) p(Xo) &0 |€0),

(geexs) (p(X0)) = (x8(Xo) p(aXo+b) &0 o).
Then ¢oys (a€Z or b&2aZ) are (wgoxp)-singular.

In fact, for each polynomial p and nN we define a polynomial
ba by
ba() = jg a [(t42n7) (142 (n—1)7). .. (t+27)¢(t—27)
eo. (t—2nm)}E,
where {ay, ay, ..., a3,4} is a unique solution of the equation:
p.@mrma+b) =p(2mra+b), m=—n, ..., —1,0,1,...,n

(the existence of the unique solution dues to ax0). Since B is a
bounded subset of R, it follows that

(‘%"XB) (pn (Xo) rpn (Xo)) =09
(Paoxz) ((ba(X0) = p(X0))' (p(Xo) — p(X0)) =0

for sufficient large all n&N. Hence, gioys is w;oys-singular.

Let =% (R) be the Schwartz space of infinitely differentiable
rapidly decreasing functions and {f,},-012... be an orthonormal basis
in the Hilbert space L?=IL%*(R) contained in & consisting of the
normalized Hermite functions. We denote by IL*®L? the Hilbert
space with inner product { | > of Hilbert-Schmidt operators on L2
by #®I? the subspace {T€I*QI?; TI’C¥} of IL*®I? and by
(£ &®L,) + the set of all positive operators of FRI: Let K be a
densely defined closed operator in L% We define densely defined
closed operators n”(K) and =n’(K) as follows:

[9 (@' (K)) = {Tel’Q1L% KTcI*RLY},
©(K)T=KT, T2 (K));
2 (' (K)) = {Tel}QL*; TKcIL*QL?,
[::’(K)=TT<, TE (z'(K)).
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Then z"(K) (resp. n’(K)) is a densely defined closed operator in
I*QI? affiliated with the von Neumann algebra z’(# (L) (resp.
7' (B (L) ' =n"(#(L?)). In particular, if K is a positive self-
adjoint operator in L? then z°(K) and =n’(K) are positive self-adjoint
operators in I*®IL? ([14] Lemma 5.1).

As stated in Section 3, a self-adjoint representation = of £'(&)

in L*®L? is defined by

r(X)T=XT, XeZ' (&), TcsIQL,
which satisfies

n(LN(L)) '=a"(# (L)) and n(L'(¥))"="(% (LH).

We put

s.={{a,}; «,>0 for n=0,1,2,... and

sup n* a,< oo for each k&N},
Quy=Z /@ (@} s

Then, for each {a,} €3, @(L'(¥)), QL% 2,,) is a full standard
system such that Jo T=T* for Te}QL? Ag{a)——-n’(.Q(‘jn,)n” @,

Q4q )

and {o; ™ ()=, - 0 ,cx is a one-parameter group of *-auto-
n n 0 «
morphisms of £'(&) satisfying AS(Q , m(X)Ag(fj )=7r(a,( n (X)) for each

XeZ' (&) and t€R ([14] Theorem 5.4, Corollary 5.5). We define
strongly positive linear functionals ¢, (o€ S®L?) on Z'(Z) by
6o (X) =Trpp*X=<{n(X)p|od, XEL(¥)
and in particular, when ng‘%’({aﬂ} €s;) we simply write Po, , by
¢(a")'
Let m be a self-adjoint representation of the canonical algebra &/
for one degree of freedom defined by

m(x) =r(m(x)), rE,
where 7, denotes the Schrsédinger representation of &. Then Q(e_,,,g, is
a standard vector for (m (&), L XRIL?) with (y®L2)Q(8_nﬁ)=.9”®L2
and there exists a one-parameter group {47 —up} ter of *-automor-
phisms of & such that

it — Ait —it
™ (A(a—nﬁ)x) = Ag(e_"ﬁ)ﬂ& (x) Ag(e_nﬂ)
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for each xe&/ and ¢t€R ([10] Theorem 20 and [14] Corollary 5. 6).
For each pe(¥®L?. we simply denote by ¢, a positive linear
functional ¢,om on &/ and in particular, denote by ¢, a positive
linear functional ¢(a”,o7ro on .

In next Example 6.2 we consider the strongly ¢ _,-absolute
continuity, ¢(e_,,3)—singularity and {Afi_,,ﬂ)} er—invariance of positive
linear functionals on &, and in Example 6.3 we give concrete exam-
ples of @ _,p-singular positive linear functionals on £'(&#) and
strongly ¢(z_,,3)—absolutely continuous positive linear functionals on
L'(&), and characterize {A(‘:_,,,g)} ser—invariant positive linear functio-
nals on Z'(¥).

Example 6.2. Let ¢ be a positive linear functional on &. It is
well-known that gom? is strongly positive if and only if ¢=¢, for
some p<& (FRLZ), [29]. Consider positive linear functionals g,.

(1) Suppose Q71,5 p is densely defined.  Then @, is strongly @ s~
absolutely continuous.

In fact, ¢, is represented as

¢P(x) <TL'1(.7C) |TE (‘Q —np; P) |’Q —nﬁ)l |7T ('Q —nﬁ)p) ]‘Q PN >9 xE&f

for a positive self-adjoint operator |z'(271,; p) | affiliated with =" (Z (L?))
such that |z’(2] _,,g)p) I.Q(e_,,ﬁ)e.?@Lz. Hence, ¢, is strongly ¢ _s-
absolutely continuous.

We next consider when ¢, is {Az_,,ﬂ3},eg—invariant. It is clear
that ¢, y({a,} €s,) are {A”_nﬁ)} -invariant. Hence, the following
question arises: If ¢, is {A ' _np)} —invariant, then $,=¢., for {a,} Es,?
For this problem the following fact holds.

@) If ¢, is - -dominated, then ¢,=¢u, for some {a,} Es..
In more general, if 271,50 is densely defined and p.Q Lus) S RIL?, then
6=y for some () s,

In fact, we now suppose 21,0 is densely defined and p.Q g
e¥®IL? and put

= (2L000) (27,5 ).

Then #'(H,) is a positive self-adjoint operator in I? affiliated with
n’'(# (L?). Since p’Q _”B)Ey®]:§, it follows that
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Q(e_”ﬁ) e (TE’ (Ho) ) and
7 (Ho) 2, -1y = 02, -0, ES QL

b
and hence

71 ()2, 0, C D (x' (Hy)),
& (H) 7 (0) 2, sy =52 ()7 (H) D,y
and

6 () =(m ()7 (H) 2, -5, |2, 08>
for all x€«/. Since ¢ is {A‘;i_,,ﬂ)} -invariant, it follows that
¢ ()’*Aiwﬂ}x) =<{m (y*djf_,-ms,x) =’ (Ho) ‘Q(e—nﬁ} |2 -8,
=<’ (Hoy)m (A::—me,x) Q(e—ms) |7 () ‘Q{e-—nﬁ)>
=<z’ (Hy) AS(B-nﬁ)ﬂl (%) Q(g—ms, |7 () ‘Q{e—nﬂ)>9
BOM g ) = (U (FA_5 5))
= 6 ((d7H0s ) %)
= <Az(2—nﬂ)ﬂ1 (x) 7" (Ho) ‘Q(e—nﬁ) lm () ‘Q‘g-—nﬂ)>
= <Ag(2—nﬂ)ﬂl (Ho)m (x) ‘Q(e—nﬂ) lm () ‘Q(E—nﬁ)>
for all x, ye«/, which implies since z"(%# (Lz))Q(e_”B) C 9 (x’(Hy))
that
$my (%) 2, sy 145, 7" (Ho) 7" (D) R _p.>
=<a’ (Ho) 43" np,m (x) 'Q(e—nﬁ) |z" (4) 2 e
=g sy (HO) T (2) 2, =g, |7 (A) 2, 0>
=< (1) D, |7 (Ho) B, s @ (4) D, -0
for all Ae# (I*), x« and t=R. Hence we have

¥ () (08 ) 7 () ()2,

=n'(Ho)w' (P, )" (272 ) 7" (A) 2, s,
for all Ae# (L*») and t=R. Since f,e2 (H,) for kNU {0}, it
follows that

et (H fiol fo) fo= (FoRFw) HOQ(:—Zifﬁ,fk

= (ul® ) 2% Ho fi
:e-2nﬁit (Hofk [ fn) fm

which implies that

Hofn:(HOfn]fn)fm 72:0, 1,2,--..
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Hence we have

{an} = {e—nﬂ (Hofn |f;t) 1/2} Es+ and ¢P: ¢(a”)'
Suppose @, is @ _n5~dominated. Then ¢ is represented as

60 () =<m ()T (H) 2,y |7 (H) D, s>,  2ESA

for some positive operator H, in % (L?), and hence we can take

ﬂ'(Ho)Q(e-ng}€<7®Z§ as p. Since

Q1,7 (H)Q, s =HoE Z (17),

(& (Ho) 2,32, Las, = (@' (H) R, ) Ho€ S QL
it follows from the above fact that ¢,=¢, for some {a,} €s,.
(8) A positive linear functional ¢ on & which satisfies the KMS-
condition with respect to {A’;‘g_,,ﬁ)} ter 1S represented as
P=70 —ns,
Sor some constant y>>0 ([10] Theorem 30).

Example 6.3. We consider $,,-ns,—absolute continuity, @ s
2

. . —n8 . . e 1 .

singularity and {o, “ "'} ,cg-invariance of positive linear functionals on

ZL'(&#). The following examples (1)~ (4) are modifications of exam-
ples constructed by Kosaki in [19].

() @r o7, s @ ,-np,—singular, where fw=ioe‘"ﬁf,,ey.
In fact, for each XE.,?’(V) we put

1 o _
Xn=fogm & e (XF-RF), m=2,3,....

Then we have
X, e QL
1
T (Xn) 2, —np, = Togm & —( Xful /)

and

® (X (fo®F2) = 2 0 (S-®0)

for m=2,3,.... It hence follows that

lim 7(X,) 2 -5 =0 and lim z(X,) (fe®f) =7(X) (f=®f-)
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for each Xe£'(&), which means that ¢; g7 is $,,-ns,~Singular.
(2) ¢f;®}: iS @ ,-np,~singular and ¢f°°®]‘:+¢f;®z is not @, g ~singular,

where fo=2 fy— fu.

In fact, it is shown in similar to (1) that ¢, S is ¢(E_,,ﬂ)—singular.

We show that ¢; g7—+ ¢, _— is not ¢ ,-na,-singular. Since

7! 00®F oo
(f-®f-)? +(f~®f~)2— (fm®fw+f~®f~),
((fo®F )+ (fu®F)?) (f~+f~) = (fm+f==),

((fw®fw)+<fm®foe 2)(f=° fM)_(z,e )z(fw f°°

it follows that f.+ fw=2f; and f. f‘,° are elgenvectors for ((fu®.f)?

2 2¢% 26
+(f.®f=)% with eigenvalues 5] and @—17

respectively,

which implies

(f-®F) + (fe®f )= z,e  (fo®fo.

Hence we have
(B 072+ by o) (X'X) =Tr ((fo®F)*+ (fLRFDD X'X

> 2 T (AR XX
_ Qezﬂ B X'
—W¢fo®fo( X)

for all Xe%'(&), and hence

Pre7, 0
EP(L(P), 55— Bra7s+ 8, 7)) NP(LN(P), B )

It hence follows from Theorem 5.2, (2) that ($r. 07219y o) is not
¢ ,—ns,~Singular.

(8) The strongly @ ,—ns,~absolutely continuous positive linear functional
P —ns2s, O L' (#) dominates a positive linear functional ¢ on FL'(&F)

which is not strongly B, ,—ns,~absolutely continuous.

Let ©; be the closed subspace of L? generated by {fi, f3 ...,
JSeat1, -..} and P be the projection of L? onto §,. Since Q(e_"/gg)P:

PQ(Z_,M} is a non-singular compact operator on &, it follows from
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([19] Lemma 8.8) that there exists a unitary operator U on
such that

R (2, —ns2a,P) N U% (2 - P) = {0}
We here put
=2 —n28 U2, —w1s, where U=UP+ (1—P),
O(X) =Trpe*X, XeZL' ().
Since
¢ (X'X) =]l (X) ‘Q‘e—n/zﬁ,U‘Q(g—n/Zﬁ)Hg
:Ilﬂ,(U‘Q(e—n/zﬁ)>ﬂ(X) -Q(E-n/z;e,Hg
<11 UR, ) | (X) 2D, s
<0, -, (X'X)
for all Xe¥£'(¥), it follows that ¢ is ¢ ,-n2,-dominated. Suppose
¢ is strongly ¢(e_,,,g)—absolutely continuous. By Theorem 5.2, ¢ is

represented as
$(X) =(a (XY YD, s |HQ, s>, XEL ().
Hence, a positive linear functional ¢” on # (L?) defined by
¢ (A) =<" (A) HyR —np, |H2 _np>
is faithful and strongly ¢’(’e_,,ﬁ]—absolutely continuous, and so by ([19]
Corollary 7.3) ='(%# (LZ))Q(e_nﬁ)ﬂn/(ﬁ (ILH)p is dense in LARIA
Take an arbitrary Hen' (% (Lz))Q(e_,,,g, Nz’(%# (L?))p. Then, since
H=x'(A)p=r'(B)2 -, A, BEZ LY,
we have
U‘Q(E—n/zﬂ;AE=‘Q(B—n/2ﬁ)B£
for each £=I? which implies
PR s BE=UPQ, _,ps AEE R (PR, _ups) NUR (PR _ups) = {0}.
Hence, we have
PHE=PQ,__,; BE=0Q 25 PO _,5 BE=0
for each £€=12 and so # (H) C (1—P)$, which contradicts
' (B (L%) .Q(e_,,,g)ﬂn"(&? (I®)p is dense in LZXL?. Hence, ¢ is not

strongly ¢ _,s—absolutely continuous.
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(4) The Lebesgue decomposition of P28, 15 N0t unique.

In fact, the strongly ¢ _,;-absolutely continuous positive linear
functional @ .z on Z'(&) is decomposed into

¢(e—n/25) = ¢(g——n/2/9) +0
= {($,-nze,— ) + &} + s,

where ¢ is in (3). Since ¢, 28" 9=¢ s and ¢,=0, it follows that
((¢(e_,,,2ﬂ)—¢) +¢,) is B —ns28,” —-dominated and strongly ¢(£_,,ﬁ) absolutely
continuous and ¢*0 is ¢ _,s-singular, which shows that the Lebes-
gue decomposition of ¢ _,z is not unique.

(5)  Every strongly ¢, ,—ns,~absolutely continuous and {o, S )} ter—LNVAT-

iant, strongly positive linear functional ¢ on L'(&) is represented as
¢:¢(an)

Sor some {a,} Es..
In fact, by Theorem 5.6 ¢ is represented as

$(X) =<x(X)HR, .5 |HR s>, XEL(F)

for some positive self-adjoint operator H in IA®I? affiliated with
7' (% (L))" such that HQ, _,, €¥Q@I%. It is easily shown that

7 (B (L) = (4); A= z @, R EZ (LD].
Hence, we have
- g:oﬁ,gm FRfHEB 1Y), neN

and
llm 71' (H”)Q -—nﬂ) H.Q —n,@},

which implies
lim gPe™*¥=a, k=0,1,2,..

n—>c0

and
H, =3 @ [iRHEFSRIL?,

and hence {x} €3, and ¢=g ).

(6) Every strongly positive linear functional ¢ on L'(F) which
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. .. . Q 8 .
satisfies the KMS-condition with respect to {6, " '}ier is represented as

¢ = r¢(2"ﬂﬂ)

Sfor some constant 7>0.

In fact, by Theorem 5.5 ¢ is represented as

6(X) =<n(X)HO, s |HQ, s, XEL(P)

for some positive self-adjoint operator H affiliated with z"(% (L*))
Nz’(# (L?) such that H.Q(e_,,ﬁ)ey@l?, It is easily shown that
a’(# (L)) N='(# (L*)) =CI, which implies ¢=y¢ _,5, for some con-
stant y>0.
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