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An Unbounded Generalization of the
Tomita-Takesaki Theory II

By

Atsushl INOUE*

An unbounded generalization of the fundamental concepts of the Tomita-Takesaki theory
such as modular automorphism groups and Radon-Nikodym derivatives is considered.

In this paper we continue our study of an unbounded generaliza-
tion of the Tomita-Takesaki theory begun in a previous paper [14].

The Tomita-Takesaki theory shows that the vector state co^Q defined

by a cyclic and separating vector f0 for a von Neumann algebra
satisfies the KMS-condition with respect to the modular automorphism

group {fft°} . To extend these results to unbounded operator algebras,
we define the notions of modular vectors, standard vectors and stan-
dard systems for a closed Op -algebra (^9 ^). Using the unbounded
Tomita-Takesaki theory developed in a previous paper [14], we show
that if f0 Is a modular vector for (^, &) then a one-parameter

group {(Jt°] of ^-automorphisms of an unbounded bicommutant
"wc of the Op -algebra Jt / & ̂  on a dense subspace 2^ of 2 is

defined, and the vector state w^ on (Jt / 2 ^"we satisfies the KMS-

condition with respect to {o-^°}0

We next apply the unitary Radon-Nikodym cocycle Introduced by
Gonnes [3] to the unbounded case. Let (Jl^ @) be a closed Op-
algebra and a pair (?l5 ?2) of vectors in @ be strongly cyclic for Ji
and separating for the usual commutant J^f'=(^^)f of the weak
commutant Jl'w of Ji. Gonnes showed that the modular automorphism
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groups {fft
1} and {at

2} of the von Neumann algebra JT satisfy the

relation: at
l(A) = (Da^: Defy t$ (A) (Dca!^: Da%J f for all ttER and

A^Jt\ where (Dw'^i Dco"^ t is the unitary Radon-Nikodym cocycle

for the vector state ca% of Jt" relative to the vector state a%2 of Jf '.

To extend the above result to the Op -algebra (Ji^ ^), we have to

consider the following problems :

1. the extension of the modular automorphism groups \a^\ and {0t
2}

of Jt" to the 0! -algebra (Jl, 3) ;
2. the invariance of domains under the unitary Radon-Nikodym cocycle

With this view, we define the following notion: A pair (?l5 f2)
is said to be relative modular for (J£, ^) if there exists a subspace
g of 3 such that fb f2e <f , Jig = g, 4g £ = £ and J£V =• £ for

all ^^R3 where d"^ and ^ are modular operators of the left Hilbert

algebras J£"^ and Jt"^ respectively. Let (fl3 f2) be relative modular
for (Ji^ ^). We denote by ^^2 the maximal subspace in the set of

the above subspaces $ of ^3 denote by (df/^^wc an unbounded

bicomm-utant of the 0| -algebra (Jl / 3 ̂  ^^ anc^ Put (

A'gX^-* and a?(X} =^X^if for ̂ eK. and X^ (Ji / ^ ^"wc. We show

that the closed 01 -algebra (Jt/3^™ contains (-D^^a)*/^v2
 for

all £eR, and {^f1} and {(7^} are one-parameter groups of *-auto-

morphisms of (Jf/3^^ which satisfy the relation: a t
l(X)£=

Dw'tJ, a\2(X} (Da>'h:Da>'tjrG for all ^R, X^Jt/a^'^ and

We study Radon-Nikodym theorems and Lebesgue decomposition
theorems for Op -algebras. Radon-Nikodym theorems for von Neu-
mann algebras have been investigated in detail [1, 3, 69 193 243 283

32], In particular, in [19] Kosaki recently defined the notions of
absolute continuity and singularity for normal forms on a von Neu-

mann algebra ^0 with a cyclic and separating vector f0, and establi-
shed a Lebesgue decomposition theorem. Further, he characterized
strongly ^-absolutely continuous (called cw^-absolutely continuous by

Kosaki) forms and o^-singular forms using the Tomita-Takesaki

theory (modular operators, relative modular operators, unitary Radon-

Nikodym cocycles etc).

On the other hand, in the case of 0| -algebras the study in this
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direction seems to be hardly done except for [8, 133 16], The
difficulties in the case of 0/-algebras exist in the points that a-weakly
continuous positive linear functional on an Op -algebra Ji is not
necessarily a vector state and a pathological relation between the
Op -algebra Ji and the von Neumann algebra Ji" occures frequently,,

In [8] Gudder defined the notion of strongly absolute continuity
which is stronger than one of classical absolute continuity, and tried
to obtain a Radon-Nikodym theorem for a ^-algebra with no addi-
tional assumptions. Further5 he defined the notion of singularity,, and

established a Lebesgue decomposition theorem in the Banach ^-algebra
case0 After that, developing Gudder's results, in [13, 16] we obtained
the following: Speaking roughly,, a positive linear functional $ on a
closed Op -algebra (JI, ^) with a strongly cyclic vector f0 is decom-

posed into the sum: 0 = 0c + 0« where <fic is a strongly ^-absolutely

continuous part of <$> and 0S is a ^-singular part of 0; and <j) is

strongly ^-absolutely continuous if and only if $ = $e if and only

if <j> is represented as $=COH,£Q for some positive self-adjoint operator

H' affiliated with Ji' such that £^®(H') and H'£^2. However,
we didn't know whether the strongly ^-absolutely continuous part

<j)c of <j> in the above Lebesgue decomposition theorem is maximal, or

not.

In Section 4 we show that Gudder's definitions of absolute conti-
nuity and singularity are identical with Kosaki's definitions, respecti-
vely, and apply Kosaki's results to the case of 0|-algebras. In
particular, we obtain that a strongly w^-absolutely continuous part

<$>c in our Lebesgue decomposition theorem is maximal in the set of
strongly ^-absolutely continuous parts of 0. Further, using an

unbounded generalization of the Tomita-Takesaki theory developed in
a previous paper [14] and Section 3, we generalize the Radon-
Nikodym theorem of Pedersen and Takesaki [24] to the unbounded
case.

In the case of Op -algebras satisfying the von Neumann density
type theorem, somewhat of the pathological facts for Op -algebras are
omitted, and so in Section 5 we obtain more detailed results for the
Radon-Nikodym theorems, and further apply these results to the
spatial theory for Ojf-algebras*
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In Section 6 we first investigate the absolute continuity and the
singularity of concrete positive linear functionals on the Op -algebra

~i—T-) generated by the differential operator —i—j—? and next

characterize positive linear functionals on the canonical algebra j/ for
one degree of freedom which are invariant with respect to the one-
parameter group {J" fllfejz of ^-automorphisms of stf defined by

[10], and finally by modifying Kosaki's examples [19] for von
Neumann algebras we construct some concrete examples of positive
linear functionals on the maximal Op -algebra JSfT(^(R)) on the
Schwartz space £P (R) which show that the sum of singular positive
linear functionals need not be singular, the strongly absolute continuity
is not hereditary and the Lebesgue decomposition is not necessarily
unique.

§ 20 Preliminaries

In this section we review some of the definitions and the basic
properties about O/ -algebras and refer to [7, 9, 15? 16, 20, 23, 25,
29] for further details.

Let 2 be a pre-Hilbert space with inner product ( | ) and
§(^) be the Hilbert space obtained by the completion of 2. We
denote by ^T(S, §>(S)) the set of all linear operators X such that
3f(X) n@(X*)^)@, and define a subset J^T(^) of <i?r(S, £>(S)) by

Then ^ f(S, §>(S)) is a ^-invariant vector space with the usual
operations and the adjoint X*, and J^T(S) is a *-algebra with
involution X* = X*/2. A *-subalgebra Ji of ^f f(S) is said to be
an Op -algebra on 2. We here treat with only Op -algebras with
identity operator I. An 0| -algebra Ji on 2 is also denoted by
(Jl, 3).

Let (Jl) @) be an 0| -algebra. A locally convex topology on 2
defined by a family {|| • \\x\X^Jt} of seminorms:

is said to be the induced topology on @, which is denoted by t^a

If (@, tjt} is complete, then (Ji^ 2) is said to be closed. It follows
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from ([25] Lemma 2. 6) that for each Op -algebra (Jl, ®} there
exists a closed Op -algebra (Jl^ 2} which is the smallest closed exten-
sion of (Jt^ S)3 which is said to be the closure of (Ji^ ^)0 A vector
?o in Sf is said to be cyclic (resp, strongly cyclic) for Jt if JK£Q is
dense in §(&) (resp. (^, ^)). If S-^S(X*), then (Ji, $}

x&^t
is said to be self-adjoint.

We define some locally convex topologies on an Op -algebra (Ji^
®}a Locally convex topologies on ^T (^ 3 §(^)) defined by systems

and {P| ( • ) ; fe^} ofseminorms:

are said to be a weak topology, a strong topology and a strong*
topology, which are denoted by tw, £s and £s*9 respectively . To introduce
a- weak, (7-strong, ^-strong* topologies on ^, we define an Op -algebra

as follows:

2<oo for all
&=i

[Z] {sk} =

The weakest locally convex topology on Ji such that the map X-* \_X~\

of uT into (^T(^°°(^), ^(S)00), ^)(resp. C^^^00^), §(^)°°)5 O,
C^^^00^), §(^)°°), ^s*)) is said to be a (7- weak (resp0 ^-strong,
cr-strong*) topology for Jl^ which is denoted by ^(resp. t£, t*^),

where §>(^)°° is the direct sum of the Hilbert spaces §B = ̂ (^) for
11 = 1,2,. . . .

We define commutants of an Op -algebra (Ji^ S) as follows:

for each f,-^eS and

where ^(£>(S)) is the set of all bounded linear operators on

for each f, ^e^ and

Then ^^ (simply, ^') is a ^-invariant weakly closed subspace of
J>(£>(^)), but it is not necessarily an algebra [9, 15, 25] . If (Jt, 2)
is self-adjoint, then Jlr& = &^ which implies dlf is an algebra; and
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the converses don't necessarily hold. But, if Jtf is an algebra, then

there exists a closed 0|-algebra (^ @) which is the smallest extension

of Of, 2) satisfying J'=Jt' and Jt'@=-@ [16]0 This result is
a particular case of Proposition 5, 5 in the Schmudgen paper [29].
J£'a is a strongly* closed subspace of ^ T ( ^ > & ( ^ ) ) whose bounded part
is identical with Jt'\ and Jt'c is an Oj?-algebra on @. We next define
bicommutants of Jt as follows:

AC = CA for each

i7) = (C£|**7)
for each £, ?eS and

Then Jt* is a von Neumann algebra on §(^), but (Jt"Y is not
necessarily identical with Jt'a If Jlr is an algebra, then
Jt"wa is a strongly* closed ^-invariant subspace of ^r(
containing Jt U Jt" whose bounded part is identical with Jt"; and
Ji"wc is an Op -algebra on @^ which equals

^ Of', $} = (X^^(^) ; X is affiliated with uT"}

if J£'@ = @, Further, Jl' is an algebra if and only if the closure

of Ji" in (^T(S, £>(S)), ^s*) equals u^0 if and only if
,*

^y" <:

A closed 0|-algebra (^, S) is said to be a generalized von Neumann
algebra if Jt'@ = @ and Ji = Ji"wc. If (uT, ^) is a closed ^/-algebra
such that Jt'@ = @, then ^^e is a generalized von Neumann algebra.

Let stf be a ^-algebra. A *-homomorphism ^ of J/ onto an 0|-
algebra on a dense subspace Of (TT) in a Hilbert space §(TT) is said to
be a ^-representation of J/ in & with domain ^ (TT) . Let TT be a
^-representation of <$$'. We put

Then ft is a closed ^-representation of £# which is the smallest closed
extension of TT, which is said to be the closure of TT, and TT* is a closed
representation of J/, but it is not necessarily a ^-representation [9,
15, 25]. A ^-representation n of J/ is said to be closed (resp. self-
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adjoint) if K = K (resp. TT^TT*) ; that is3 the Op -algebra (TT(J/), S(TT))
is closed (resp. self-adjoint).

Let 0 be a positive linear functional on a ^-algebra J/0 It is
easily shown that Jf$=\x^£$\ $(x*x) = 0} is a left ideal in si. For
each #ej/ we denote by ^(#) the coset of jt/Jf^ which contains x,
and define an inner product ( | ) on ^(««0 by

Let §0 be the Hilbert space which is completion of the pre-Hilbert
space /^(j/)? and n$ be the closure of a * -representation T$ of J/
defined by

The triple (TT^ ^, §0) is said to be the GNS-construction for 0.

§3. Modular Vectors and Relative Modular Vectors

In this section we first apply the unbounded Tomita-Takesaki
theory developed in a previous paper [14] to the case of a closed
Op -algebra with a strongly cyclic and separating vector0

Throughout this section let (Jt^ &) be a closed Op -algebra such
that Jt'Q} = Q} and a vector f0 in @ be cyclic for ^ and separating
for Jt"a Since Ji'2 — Qi^ it follows that X is affiliated with Jl" for
each X&^s which implies that f0 is a cyclic vector for Jt" ^ so that
^fo is an achieved left Hilbert algebra in &(@) equipped with
the multiplication (ASo) (BSo) =AB£0 and the involution A£Q
Let S'IQ be the closure of the involution A£Q-*A*gQ and

be the polar decomposition of S"^ The fundamental theorem of Tomita

(Jo 1)

" A" -ii _ //» A" it //' A* -ii _

is obtained. Further, ^<?0 possesses the structure of an unbounded
generalization of left Hilbert algebras ; that is, J(^ is a dense subspace
in $(^) and a ^-algebra with the multiplication (X£Q) (Y£Q) = XY£Q

and the closable involution X£Q-*X*£Q. Let 6*|0 be the closure of the

involution X£Q-^>X*£Q and
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be the polar decomposition of S%Q. Then, S^cS'̂ , but they don't

necessarily equal. To extend (3. 1) to the unbounded left Hilbert
algebra Jt^ we introduce the following notions:

Definition 3. 1. A vector f0 in ® is said to be modular for
[, S) if the following conditions hold:

(1) fo is strongly cyclic for *J£ and separating for Ji" \
(2) there exists a subspace £ of & such that ^fod^cS,
= S and A'£g = g for all t^R.

A modular vector f0 for (^, ^) is said to be standard if S^Q = S^

A positive linear functional 0 on a ^-algebra <stf with identity e
is said to be modular (resp. standard) if ^(e} is a modular (resp.
standard) vector for the Op -algebra

Let f0 be a modular vector for (JK, &). Put

lo) ; X is affiliated with Jt'}9

where IF is the set of all subspaces g of 9 satisfying (1) and (2)

of Definition 3. 1. Then 9^ is the largest element of IF.

By ([14] Theorem 3.3) we have the following

Theorem 3,2. Suppose f0 is a modular vector for (JP9&). Then

the following statements hold.

(1) 0t Wi @$ is a generalized von Neumann algebra on 2^ which

equals the bicommutant (Jt/@^wC of the Op -algebra (Jl/Sft^

particular, if (^, &) is self-adjoint, then so is 3%(Jt'\ @^.

(2) Put

Then {fft°}teR is a one-parameter group of ^-automorphisms of 3% (Jt">

(3) The positive linear functional o)^Q on & (^", 2^ defined by

1 fo),
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satisfies the KMS-condition with respect to {at
Q} l that is^ for each X,

£%(Jl\ ^|Q) there exists a function fx,y in .4(0,1) such that

Y) and fx.

for all £eR.3 where .4(0,1) is the set of all complex-valued functions^
bounded and continuous on 05^IOT£^1 and analytic in the interior 0

Definition 30 30 A system (^ @ ', f0) Is said to be standard If the
following conditions hold:

(1) (J^ &) is a generalized von Neumann algebra;
(2) a vector £0 in & is cyclic for j% and separating for Ji" \
(3) A"ggi = 3i for all £EER.

A standard system (JP, ^3 <?0) Is said to be full if f0 Is a strongly
cyclic vector for Jt«

Lemma 3040 (1) Suppose (J^ @^ f0) is a standard system. Then

{at°} is a one-parameter group of ^-automorphisms of Ji and, CD^Q is a

standard positive linear functional on Jl which satisfies the KMS-condition

with respect to {a®} .
(2) Suppose (Jt, @^ f0) is a full standard system. Then f0 is a

standard vector for (Jt^@) with 2)^=20

Proof, (1) It Is clear that {cj^°} is a one-parameter group of
^-automorphisms of ̂  which implies

for ail zeR, where Jl^^ denote the closure of ^f0 relative to the
induced topology t^. Hence, co^Q is a modular positive linear functional

on Jl with 2m — & (x^.). Further9 It follows from ([14] Lemma
M) ^0

3.8) that 4o'=4o for a11 t^^ which Implies a)^ Is standard.
(2) This follows from (1).

Suppose f0 is a modular vector for (J?9 @). By Theorem 30 23

(^ (Jt'\ S|Q)? ^|Q3 f0) is a standard system, but it Is not necessarily full.
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Lemma 3. 5» Suppose H is a positive self-adjoint operator in
affiliated with Jtf f\Jt" such that $Q<=@(H) and H£0G&. Then the
following statements hold.

(1) Suppose f0 is a modular vector for (J£,@). Then H%^3^

and the positive linear functional a)H%Q on & (-^"5 ^$0) satisfies the KMS-

condition with respect to {0t°} . Further, suppose H is non-singular. Then
(&(Jt",@^, 3^ H£o) is a standard system with 5^ = ^.

(2) Suppose (Jl^ 3, f0) is a standard system and H is non-singular.
Then (Jt, & , H£Q) is a standard system. In particular, if (Jt^ ^, <?0)
is full, then so is (Ji, 39 #£„).

Proof. (1) Since d'£H£0 = H£Q for all ^^R and 3^ is maximal,

it follows that H^0^^^Q, so that the positive linear functional COH^Q

on St(Jl\ 3^ is well-defined. By ([32] Theorem 15.4) the normal

form o>#£0 on the von Neumann algebra Ji" defined by

satisfies the KMS-condition with respect to {at°} . Hence, for each
there exists a function /A.B& A(Q, 1) such that

for all t<E:R. Since ^ (JT , 3^" = Jf' and Jt'3^=3^ it follows that

for each X9Y^&(^#", 3^ there exist sequences [An] , [Bn] in Jl*

such that HmAnH^ = XH^ limA;H£0 = X'H£Q, lim BnH$ 0 = YH£ 0 and
n-»oo n->oo n->°o

*//|r0 = yT//fo. Then, since we have

up 1/X..B.CO - C ( A ) Y/ffo l^fo) | =0,su

it follows that there exists a function fx.y^A(Q, 1) such that

/
s, N /• §0 / V\ \?"\ f f 4- I " "\ / \^ 0 f V\ "\

Y" y" ( f y ~~~ ̂ )pf£ \.@t v-^*- J ^ ) 9 IX Y v* ~T" 2y ^H£ v -«• ^f v-^- y J

for all ^eR; that is, c%|Q satisfies the KMS-condition with respect to

Suppose H is non-singular. Then it is clear that H£0 is cyclic
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and separating for St(Jl\ ®£* = Jt'm Let H=( ME(X) be the spect-

ral resolution of H and put

E(X), En = (° dE(X)9 n^N.
Jl/»

Since Hn, Kn, En^.Jt' {\Jt\ it follows that their restrictions to 3f ^ are

contained in 2% (Jt'\ ^0). Since H is non-singular, it follows that

{En} converges strongly to /, which implies

lim KHXH& = lim EnX? Q = X&
n-*oo n-»oo

for each X<=3% (Ji\ ®^, so that H£* is cyclic for &(Jt\@^0

Further, we have

lim
n->oo

lim

for each A^Jt\ Hence, ^0 = 5J0, and so ̂ 3^=^S^=S^ for

all /J^R8 Thus (&(Jt\®^9 ®t0 H£0) is a standard system.

(2) It follows from (1) that if (Jt^ @, f0) is a standard system,
then so is (^/, @,H£0)0 Suppose (Jt, 2, f0) is full For each
we have

= X^ and lim

for each Ye^0 Hence, H£Q is a strongly cyclic vector for JL Thus,
(Jl, 39 //f0) is full

To apply the unitary Radon-Nikodym cocycle introduced by
Connes [3] to unbounded operator algebras, we define the following
notion.

Deieltioo 3. 69 Let Of, 2) be a closed Op -algebra. A pair
(£19 fa) of vectors in 2 is said to be relative modular for (^, @)
if the following conditions hold:

(1) ^ and ?2
 ar^ strongly cyclic for ^f and separating for JK";

(2) there exists a subspace <f of @ such that
(a) f l9 f 2 e ^ ;
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(b)
(c) f* g = g and Sg £ = £

for all t<=Ra

Lemma 30 70 Let (Jl, ®) be a closed Op -algebra such that J£'$!=-®

and a pair (ft, ft) in ® be relative modular for (,J£9@). Then the
following statements hold,

(1) Put

where 2F is the set of all subspaces $ of & satisfying (a), (b) and (c)
of Definition 30 6. Then ® ̂ 2 is maximal in ZF 0

(2) & and ft are modular vectors for (Jl, 91} satisfying S^

n^a.
(3) ^'3^=3^
(4) P^

) ; X is affiliated with Jl"}.

Then 3% (^'\ @ ̂  ) is a generalized von Neumann algebra on @ ̂ 2 such

that £%(Jl\ S|i|2)
/ = ̂ /

0 In particular^ if (V/3 S) is self-adjoint, then

(@(J£'\@^2\ S¥z) is self-adjoint.

(5) Put

4> (X) =SgX4£», a\* (X) =SgXS£*

for X&&W, S^) and t^R, Then [$}teR and {a?\teR are one-

parameter groups of ^-automorphisms of the generalized von Neumann algebra

(6) (* (Jt\ ^¥2)5 SliV ft

systems,

Proof, The statements (1) and (2) are trivial
(3) It is easily shown that the subspace generated by Jl' 3 ^

satisfies the conditions (1), (2) and (3) of Definition 38 6. Since
S^ is maximal, we have Jif^^^ =&^°

(4) Since u T f t c ^ c ^ , we have (J!/9' = Jt'. It hence
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follows from (3) that £%(Jt\Q}^ is an 0|-algebra on S^ contain-

ing Jl/&^ such that

(3.2)

Put

2

Then it is shown that ^^2 is an element of J^* Since &?& *s

maximal, it follows that & #2= ® *&'• that is, (&(JT9 ®*i*J> ® *\*J is

closed. Thus, (&W, ^^9 ^^ ^s a generalized von Neumann

algebra. Suppose (Jt, <&} is self-adjoint. Then it is shown that
Si^2 is an element of J% which implies (& (Ji\ ^ya), ^^2)

 is

self-adjointe

(5) This follows from (3. 2)
(6) This follows from (3) and (4).

Let p^, ^) be a closed 0| -algebra such that J£f2 = @ and vectors

?i and ?2 in ^ be strongly cyclic for ^ and separating for Jt" a Let
§4 be a four-dimensional Hilbert space with an orthogonal basis
{^ij}i,j=i,2 and ^2 be a 2x2-matrix algebra generated by the matrices

EU which are defined by Eij^kl = djkr]ilo Then we have the following

Lemma 308a JI®1F2 is a closed Op -algebra on ^®§4 such that

(^(8)^*2) 7(^(8)§4) =^(8)^43 ^^ fl y^or fiV2=
ij strongly cyclic for Jt® 2F2 and separating for

Theorem 30 9, Let (Jt, ®} be a closed Op-algebra such that Jtf3l

= &, and vectors ?x and f2 in ® be strongly cyclic for Jt and separating
for Jt''. Then the following statements hold.

I. A pair (fb f2) in ^ is relative modular for (^, ^) if and only

if QH is a modular vector for (^(X}^r
23 ^(8)^4)- In ^s case^ @Q =

II. Suppose that (fb f2) z'j relative modular for (J19 &). Then
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(1) (D^.D^t/3^^at(JT,3^ for all *eR, where (

2)j denotes the unitary Radon-Nikodym cocycle of the normal form

of J£" relative to the normal form o)^2 of J£" \

(2) ^(X)t=(Dco"h: D^ta\\X)(D^. DafyfG for all t^R,

and

Proof, I. Suppose (fi, ?2) is relative modular for (Ji^ @). Since
fl5 <?2eS¥2and J[S^2=2^ it follows that Q^^S^J&Qt and

(X(X)JS) (Slil2(g}^)4) = Slil2(x)§4. To show ^il2(%i2®£>4) = ̂ ^®$4

for all £eR, we here state about the definition and the basic properties
of the relative modular operators [2], Let £ and 57 be cyclic and
separating vectors for the von Neumann algebra Jl". Let 6^ denote
the closure of the conjugate linear operator on Jt"?} defined by

and let

denote the polar decomposition of 5^. The positive selfadjoint operator
df7t = St*Sto is called the relative modular operator of f and f]e The
relative modular operators satisfy the following properties [2] :

(3.3)

(3.4)

(3. 5)

for each cyclic and separating vector £ for ^/x
e By (3. 4) and Lemma

38 7 we have
" '-it A' 'it

(3.6)

Since

for all Ci, Ci, Cs, C4e^fl|2 and ieR, it follows from (3.6) that
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which Implies that Q^ is a modular vector for

with

(3.7) S¥2(x)£4c^w

Suppose Q^2 is a modular vector for (uf®^"2» S(x)$4)8 Put

<r = {Ci e 0 ; Ci(8)?ii +C2(8>?2i +£3(8)912 +C4®%2 e 0 fl } .h*2

Identifying

C =Cl(8)?ll +

, every element Z= Z

is represented as the following matrix

/Au Au 0 0

An Aa 0 0

0 0 Au A,

0 0 Aa

Further, it is clear that

X=

,)' =

i 0 C12 0 \

0 Cu 0
,• = !. 2

1 0 C21 0 C.2 /

Since (ur®.F2)0fl. =00., and (uT®^,) '00 . =00, , , it follows
n^2 ?1^2 n^2 51^2

that

(3.8) C,-e* (i- l ?2,394)

for each C = (Ci, C25 Cs, CO ̂  ^o- , , which implies that &, £2^ & 9 -^ & = & 9
^1^2

and A"gg = g, and A'g g = g for all ^eR3 so that (fi, f2) is relative

modular for (Jt,2) with ff c:®^. Hence, by (3.7) and (3.8) we

have

II. By (3. 5) we have
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It hence follows that

(by 3. 6)

and

(by 3.3)

for all *eR, X^3t(Jf^ 3^ and feS^. This completes the

proof.

By Theorem 3. 9 we have the following

Corollary 3. 10. Suppose (Jt, @, f0) and (Jt, ®, Si) are full standard

systems. Then (?0, ?i) is relative modular for (Jt, &)9 (Dcal^iDof

for all *eR and

for all t<=R, X^Jt and

Poposition 3. 11. Let (Jl, 3) be a closed Op -algebra such that

Jt'& = ® an(i a pair (fb f2) of vectors in 2 be relative modular for

(^,0). Then the following statements are equivalent.

(1) The positive linear functional o)^ on the generalized von Neumann

algebra 3% (Ji\ ^ya) w {at
2} -invariant.

(2) The positive linear functional (o% on 3% (^"5 ® $ |2) is {0*^} -

invariant.

(3) {(Dof^iDof^dten is a strongly continuous one- parameter group

of unitary operators in Jtg
 l fl ̂ a

 2, where ^G ' denotes the fixed-point

algebra of {a*} in Jt" (f = l,2).
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Proof. (1)=>(3) It follows from Theorem 3. 9 and the fal2} -invari-

ance of o) that

: Defy < ( } [ ) (Defy DafythM

for each X^3t(Jf92^ and t^R, which Implies by

that

(3. 9) ( (Do>",2 : Dafy _,ft \

for all X<=Jt and £<ER0 Since (&(J{'\@^, ^^ ft) is a standard

system and t% (Jt'\ & ̂ " =Jt" by Lemma 3. 73 it follows from Lemma

394 (1) and (3.9) that

( (£K2 : Do>y .,ft 1 4*ft) = ( (D^2 : Dafy .,4ft | ft)

for all .4^^" and ^eR, which implies the normal form of^ on Jt"

is fo-f2} -invariant9 so that the statement (3) follows from ([31]
Corollary 10,28),

(3)=X1) By ([31] Corollary 10,28) we have

for all A^Jt" and £^R3 which implies

for all X^M(Jt'\ ^Va) and

Similarly, the equivalence of (2) and (3) is shown,,

Proposition 3* 12. Let (Jt, @) be a closed Op -algebra such that
J(f@ = @s and a vector 370 in & be strongly cyclic for Jt and separating

for Ji" \

I. Suppose 370 is traciall thai is,

for each X? Y^Jt. Then the following statements hold.
(1) 7]$ is a standard vector for (^9 &) with JJ =/.

(2) Suppose ? is a modular vector for (Jt^ &) such that
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Then, a pair (?, 370) is relative modular J or (^? ^) with 0^=0^ and

{(Dco^i Da)'^) t} tf=R is a strongly continuous one-parameter group of unitary

operators, which satisfies

for each feR, X^3i(JT, 9$ and
II. Conversely, suppose there exists a modular vector £0 for (Jl^

such that r]s<=@^ (Da)'lQ: Daf^ t& ^= ® ̂  for each ZeR and

(3. 10)

for each ^eR5 X^Jt and C^^|0. Then 570 w a tracial vector.

Proof, I. (1) Suppose 570 is a tracial vector,, Then it is easily
shown that S^ equals the isometry JVQ9 and hence it follows from

S,QaS;Q that SVQ = S^Q=JVQ=fVQ. Hence, the statement (1) holds.

(2) Suppose q is a modular vector for (Jl, &) such that 570^-^1-
By (1), a pair (f, 770) is relative modular for (^ ^) with 0^ = 0^

and hence from Proposition 3. 10 {(Do%: Do)ff^t}t^R is a strongly

continuous one-parameter group of unitary operators, and further by
Theorem 3, 9

for each feR, X^9t(JT,®£ and Ce^.
II. Since (Do>?o: Z)a>J0),^fo = ^f(J for each £eR3 we have

(by 3. 4)

for each ^eR9 which implies that the pair (f0, 270) is relative modular
for (JK,&) with ^ i 7 = ^ i c It hence follows from Theorem 3. 9 that
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for all f(ER, X^JC and Ce^Q, which implies by (3. 10)

for each ^ElR, X^Ji and C£=^|0. Since the positive linear functional

Q)^ on ^ (^"3 2 £0) satisfies the KMS-condition with respect to {̂ °}

by Theorem 3. 2, for each X, Y^.Ji there exists a function fx.r in
-4(0, 1) such that

fx.r(f + i) =0

for all ^eR9 which implies

for each X9 Y$=.Jt\ that is, 7?0 is a tracial vector,, This completes the
proof.

We give some concrete examples for standard systems and relative
modular vectors,,

(i) Let Jt% be a von Neumann algebra on a Hilbert space ^3 T
be a positive self-adjoint unbounded operator in $ affiliated with

Jt* and S°°(r)-^S(Tn)0 Then the following statements holda
n=l

-** in^(^°°(T^

(1) « (^Oj ̂ "(T)) =-*f °(T) ̂  , where

which are self-adjoint generalized von Neumann algebra containing {jTw}neN

whose induced topology t ^ ^-(T)) equals the Frechet topology defined by

the seminorms {|| • ||B = ||7lB ° ||; /zeN}.
(2) Suppose fo is a cyclic and separating vector for J£Q and T is

affiliated with the fixed-point algebra Jta§ ° of {at°} in ^Q such that

t^Q & <~& {J.)e _/ lien ^ «-^ (^i/^/0? °^ \ -* / / 5 —^ \ -* / ? Co/ Z5 ^z jull standard systerfi,
(3) Suppose ?! fl^rf ?2

 fl^ £)>£/z'£ <2?zrf separating vectors for ^Q and T

is affiliated with ^o1n^o2 ^w^A M<2^ ?l5 ^2^^°°(T)0 Then (fb f2) z'j
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relative modular J or (& (ufo, ̂ °°(T)), S°°(T)) with 0^ = 9- (T). By

Theorem 3. 9, {&*} and {a2} are one-parameter groups of ^-automorphisms

of & (Xo, ^~CO), (Dco^i Dcf£t/9-(T) s=& (Xo, 9~(T)) for all

and

for all t<=R, X^»(Jl^ S°°(T)) and
(ii) Let £f = SP (R) be the Schwartz space of infinitely differentiable

rapidly decreasing functions and let

n=0

where {/„} is an orthonormal basis in the Hilbert space L2 = L2(R)
contained in £f consisting of the normalized Hermite functions. Then
ce = @°°(N)^ and hence ^ ' (&} is a selfadjoint Op -algebra containing
the inverse N of a positive Hilbert-Schmidt operator, which implies

that a self-adjoint representation TT of £? f (&*) on L2®L2 is defined by

where L2®L2 denotes the Hilbert space of Hilbert-Schmidt operators

on L2 and ^(g)Z?= [T^L20L2'f TL2d&>}. We put

+ = { K) ; «»>0 /or n =0, 1, 2, . . .

and sup ft*|arnK°° /or each

n=0

Then the following statements hold. The proofs follow from Section
5 in [14].

(1) (^(J^f(y)), ^®L2
5 £{a ,) fj a full standard system for each

[an] <Es+e

(2) Every pair (Q(a )5 Q[p ,) /or {«„}, ($J es+ i5 relative modular

for (7r(J^T(^))5 ^®I?) z&t'M (^®Z"2)fl( l f i f f l =^®Z?.
(«n) (/3B)

(3) L^^ TTJ o^ <2 self-adjoint representation of the canonical algebra si
for one degree of freedom defined by
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where TTO denotes the Schrodinger representation of J/Q. Suppose [an] es+
satisfies

(3.11) Q<aH^re-**, n^N

for some fi^>Q and f^>§. Then Q(a } is a standard vector for (^i(^)?

oJ7/<v?^7^2^ 7« i« /& f &&\fv\ — <&(\?\jz^7 \/\)±j ) Wllll \tS (X.}±j ) Q - ^7 VO/JL/ „
{an]

(4) Suppose {an}, {&}£*+ satisfy the condition (3.11). Then

(Q(aH}9 <0{/y) is relative modular for (^C^), ^(X)l7) with (^®L2)Q(a }0(ft }

§4 Radon-NIkodym Theorems for O* -algebras

In this section we study Radon-Nikodym theorems and Lebesque-
decomposition theorems for 0| -algebras. We first investigate in more
detail the Radon-Nikodym theorem and Lebesgue decomposition theo-
rem obtained in [133 16] with the help of Kosaki's results [19] for
von Neumann algebras,,

Let (u?, &} be a closed Op -algebra such that J£fg> = @, f0 be a
strongly cyclic vector for Ji and let ^Q = ̂  For each positive linear

functional <p on Jl we put

In accordance with the Gudder definition [8] and [13], we define
the notions of 00-absolute continuity and 00-singularity5 respectively
as follows:

Deieltion 40 1. A positive linear functional <p on ^ is said to

be ^"absolutely continuous if T^° is a map ; and 0 is said to be

strongly ^-absolutely continuous if T$ is a closable map of $(&)

into ^^ ; and ^ is said to be ^-dominated if T/ is a continuous map.
If for each X^Jt there exists a sequence [Xn] in Jl such that

lim fo(XlXH) =0 and lim <f>((Xn-XY (Xn-X)) =0, then 0 is said to be

Remark 40 2. (1) The following statements hold immediately.
(a) If ($>, <l> are strongly ^-absolutely continuous, then so is

(b) If 0^^^^ and $ is fa-singular 9 then so is <p0
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However, an analogous statement (a) (resp. (b)) for ^-singularity

(resp. strongly ^-absolutely continuity) does not necessarily hold

(Example 6. 3).

(2) For normal forms on a von Neumann algebra with a cyclic

and separating vector ?0 the notions of ^-absolute continuity and

^-singularity defined by Kosaki [19] are identical with the notions

of strongly ^-absolute continuity and ^-singularity defined the

above, respectively.

It is easily shown that bounded linear maps T/Q and 7^°

defined by

satisfy

(4.1)

Further, we have by (4. 1)

where Cp(T$°) denotes the projection from $00+0@4?00+0 onto

Using these facts, in analogous with [19] we can characterize the
notions of strongly ^-absolute continuity and ^-singularity by the

maps T^ and T*f* as follows :

Lemma 4B 39 Let <j> be a positive linear functional on

I. The following statements are equivalent,

(1) 0 is strongly ^-absolutely continuous,
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(2) Tf"+* is non-singular,

In this case, ^ (T$°)-^ (T^)? 9t (T?) = # (T^) and

II. T7z<? following statements are equivalent,

(1) 0 z'j 0<r singular 0

(2) T0° ij <2 partial isometry.

(3) T/ i5 fl partial isometry.

sS sic _ r
) ~ ^v

(4)

(5)

/or ^c/

(5)' «z/ (^0(^T^)+^(FT); Z9 Fe^3 X+Y=I}=Q.

We denote by P(^) the set of all positive linear funetionals on
Then, by an order relation 0^0 (^(ZTZ) ^^(ZTZ) for each

(P(uT), ^) is an ordered set We donote by PpT, 0) the
set of all elements <p of P(J£) such that ^^^ and denote by

Pf°(^? ^) (resp0 P^(Ji, ^)) the set of all strongly ^-absolutely
continuous (resp. ^o-singular) elements of

Lemma 40 40 Suppose $ is a positive linear functional on Jl such that

+t W) ' is a von Neumann algebra* Then the following statements hold.

(1) The isometry U$ of $(&) into ^00+0 defined by

satisfies

(4. 3) £7J ^ (^+0) c

Utn^+ftX*^ for each X^J^ and f e ^ C^0+#) -

(2) ^4 sequence {H'£} of positive operators on $d(@} defined by
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Jl/n

satisfies

[Iff] cuT', H?£H?£. . . and
(4.4)

lim (//;*) 1/2Xf0 exists for each
n-*°°

where J^EGO w fA« #«rtra/ resolution of (Tj+')*Tj+*.

(3)

where P$ is the projection from $^+4, onto Ker(T"^ )

#„ #.eP(ur, ?5)

°

Proof. (1) This is easily proved.
(2) Since ff#()+^(^')' is a von Neumann algebra, it follows that

J-1 (!-,*)</£ We*, +,(uf)' for weN, which implies f

for neN. Further, since C/,£/; ((O*7^f)^= ((O*rJ+#)1/2,

it follows that (H?)ia = U$lG*Ut for neN, which implies that
H'-f •£!#<.... and

lim 1 1 (///) 1/2^f o - C/TM') 1/z^ff ol I2

n,m-»°°

-lim

=lim

X (/-

x (/-
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=0

for each X<=JZ, and hence lim(#;<6)1/2Z?0 exists for each
n-»oo

(3) This follows from the equality:

for each X^Jt* This completes the proof0

By Lemma 4.2, Lemma 4.4 and ([16] Lemma 5e 5) we have the
following

Theorem 4a5e (Radon-NIkodym theorem) Let (^ &) be a closed

Op -algebra such that JtfQ} = Qi and fo be a strongly cyclic vector for J£»

Suppose <j> is a positive linear functional on ^ such that ^+0 (~^) ' is a

von Neumann algebra. Then the following statements are equivalent.
(1) $ is strongly ^-absolutely continuous*

(2) T0° is non-singular.

(3) # is represented as

for some sequence {//„} of positive operators in Jlf such that //i
lim/fn

1/2Xf0 exists for each
n-*oo

(4) # is represented as

for some positive self -adjoint operator H' affiliated with Jtf such that
f) and /f'
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Theorem 4,6. (Lebesgue-decompositlon theorem) Let (Jl, ^)
be a closed Op -algebra such that Jtr@ = ® and ?0 be a strongly cyclic vector
for ^. Suppose <f> is a positive linear functional on Jt such that 7fy

is a von Neumann algebra. Then, <j>c is maximal in

Ps°(^, #) and # = &

Proof. It follows from Lemma 4. 4 and Theorem 4. 5 that
0c^Pt°(^5 0) and 0 = ^+0.. It is easily shown that 0s<Epf°(X3 0).
We show that ^c is maximal in Pc°(^3 ^). This is proved by
analogy with ([19] Theorem 3.3). Take arbitrary ^ePt°(^5 $).

We denote by 7"^°+^ a bounded linear map of $00+0 into ^?00+^ defined
by

Since ^ is strongly ^-absolutely continuous, it follows from Theorem
4.5 that 7f is non-singular and T^= (T^)~1T^. Hence, we

have

for each X^.Ji^ which implies

for each X^.Ji, Hence, <p1=^<$>c. This completes the proof.

Corollary 4e 7, I. Suppose <j>^P(Jl) satisfies n^+t(Jl)f is a von

Neumann algebra. Then the following statements are equivalent.
(1) <j> is (pQ-si

(2)
(3)
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II. Suppose <f>^<p^P(Jt} satisfies ^(J+#(^)/ and x^+^Jty are von

Neumann algebras. Then the following statements hold,
(1) (^)c = ̂ c for JfeO.

(2) // 0^^0, then &^#e.
(3) Further, if 7fy0+0+0 (^) ' w a z;0?z Neumann algebra, then

Proo/. I. (2)=>(1) This Is trivial

(1)=>(3) Take arbitrary ^(EPpf, 0) nP(uT, 00).
 Since 0 is 0<>-

singular and (/>eP(^, 0), it follows from Remark 4e 2, (a) that ^
is ^-singular. On the other hand, <f) is strongly ^-absolutely
continuous since (p^fa. Hence, $ = Q.

(3) => (2) By Theorem 4. 5 0C is represented as

Then, it follows that for each 72

J#eP

for some /T>0, where

which implies ^ = 0.
II. This follows immediately from Theorem 4. 60

Remark 48 88 (1) In [13,16] we have obtained the Lebesgue-

decomposition theorem: ^cePc°(^, 0), 0sePs°(^, 0) and ^ — 0c + ^s«>

However, it did not know that 0C is maximal in Pc°(^, ^). By
Theorem 4. 6 this fact is true, but there exists a pathological fact
that this Lebesgue decomposition is not unique in general (Example
6.3).

(2) By Corollary 4. 7 the Kosaki definition of ^-singularity

P (Jt^ 0) n P 0^5 0o) — {0} is identical with our definition of ^-singu-
larity in the case ^0+#(^)7 is a von Neumann algebra.

We have treated with an unbounded generalization of the Tomita-
Takesaki theory in [14] and Section 3, so that we now generalize
the Radon-Nikodym theorem of Pedersen and Takesaki [24] to that
for Op -algebra.
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Theorem 4. 9. Let (Jl^ @, f0) be a standard system. Then the
following statements hold.

I. <j) is a ^-dominated positive linear functional on J£ which satisfies

the KMS-condition with respect to {fft°} if and only if <j> is represented
as

for some positive operator H in J
II. The following statements are equivalent.
(1) (j> is a strongly ^-absolutely continuous positive linear functional

on Jt which satisfies the KMS-condition with respect to {0t
Q} such that

is standard.
(2) 0 is represented as

for some sequence {Hn} of positive operators in Jtr{\Jt" such that

//i^//2 = - • • and lim H%2X£Q exists for each
n->°°

(3) 0 is represented as

for some positive self -adjoint operator H affiliated with Jt' F\J£" such that
f0eS(//) and H^@.

III. Suppose 0 is a positive linear functional on J£ which satisfies the

KMS-condition with respect to {fft°} such that 0o+0 is standard. Then,
both the maximal strongly ^-absolutely continuous part <j>c and the <J)Q-

singular part <j)s of <j> satisfy the KMS-condition with respect to {o?}.

Proof. I. Since 0 is ^-dominated, there exists a positive operator
H in Jtf such that

for all X(=J[. Put

Then <j>" is a normal form on the von Neumann algebra Jl* which

satisfies the KMS-condition with respect to {G?}. In fact, take
arbitrary A, B^Jt". Since~jS"|0 = S^ by Lemma 3. 4 there exist sequences

{Xn} and {FJ in Jl such that limXn$0=A£Q, lim JKfo=-4*fo, Urn Yn£Q
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= Bfo and lim YJ£0 = -B*?0. Since $ satisfies the KMS-condition with
n-*«> |

respect to {^0}5 there exists a sequence {/^ ,y } in .4(0,1) such that

for all *eR and ra^N, which implies that

Km sup \/x ,Y co - (/m0 i4^*fo) i =o,
n-*°° *e/e B n °

lira sup I/* >r (f + 0 - (//24^f0 15*1,,) I -0.
n->°° (eK » " u

Hence, there exists a function JA.B in J(0, 1) such that

B (0 - (^2^f „ | J|J4*f .) = f (*" (4) 5) ,

for all I^R, which means that <j)" satisfies the KMS-condition with

respect to {a?}a It hence follows from ([32] Theorem 15.4) that
The converse follows from Lemma 30 50

Suppose 0 is a positive linear functional on Jt which satisfies the
KMS-condition with respect to {<rt°} such that 00+0 is standardo
Then it follows from Lemma 4, 4 that H'f^Jl' for 72 eN, H'f^H'f
^ 0 0 0 ? lim (//?) w Zf exists for each X^Jt and

Since $50+^ is standard, it follows from the above I that

/yj p-\(4.5)

We show H'^Ji" for ?zeNB For each Z9 F3 Ze^f and Ce^' we
have

(by 4. 3)
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and hence £/#C£/!((rJ+VrJ+V/2e^0+#M')'5 which implies

l/n

Jl/n

=u
(by 4. 5)

i/n

for each ^euT, Ce^' and ?zeN. Hence, H'*^Jt° for all ra
which implies the implication (1)=>(2) in II.

The implication (2)=>(3) in II is similar to the proof of (2)=>
(3) in Theorem 4. 5.

We show the implication (3)=^>(1) in II. It is clear that <f> is a
strongly ^-absolutely continuous positive linear functional on Jt» By

Lemma 3.5, (1), 0 satisfies the KMS-condition with respect to \o?}«
We note that (l+H2)l/2 is an invertible positive self-adjoint operator
in $(0) affiliated with Jt'ftJT such that ® ((1 +#2)1/2) =2 (H) Z)
^fo and 0o+0=<*>(i+#2)1/2!0. It hence follows from Lemma 3.4 (1)
and Lemma 3.5 (2) that ^0 + 0 is standard.

In the above proof we have proved H'£^.Jtf t\J£" for ra^N, and
hence the statement III follows from the statement II. This completes
the proof.

Let (Ji^ @, f0) be a standard system. Then the following
questions arise.

Question I. Suppose <j> is a positive linear functional on Jt which

satisfies the KMS-condition with respect to {a?} . Then, is <f> automatically

strongly ^-absolutely continuous?

In Section 5 we shall state that the above question is affirmative
in case that the Op -algebra (^, @} satisfies the von Neumann density

_ *
type theorem; that is,
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Question II. Suppose <f) is a positive linear functional on Ji which

satisfies the KMS-condition with respect to {a?} . Under what conditions
is <p represented as

for some positive self-adjoint operator H affiliated with Jtr{\Jl" such that

and

We here consider Question II.
1. If (f> is strongly ^-absolutely continuous and ^o+0 is standard,

then Question II is affirmative (Theorem 4.9).
However,, it seems to be difficult to show directly that 00+0 is

standard3 and so we consider when Question II is affirmative without
the assumption of the standardness of

2B Suppose <f> is represented as

and the normal form (sj% on the von Neumann algebra Ji" satisfies the

KMS-condition with respect to {fft°} . Then Question II is affirmative,
In fact9 by ([32] Theorem 15.4) there exists a positive self-

adjoint operator H affiliated with Jlr [\Jl" such that £Q^@(H) and

(4.6) (Ae\V = (AHh\H£0)

for all ^4 e^". Take an arbitrary Xe^. Since Jl'2 = 2, there is
a sequence [Xn] in Jl" such that lim Xr£ = X£ for each

Then it follows from (4.6) and f0eS(//) that {Zref
lim Xn^ = X^ and lim \\HXn^-HXm^\\= lim \\XJ~ -Xm£\\=Q, and
n~*°° n, m-*°° n, m-*°°

hence ^f0C^(//)5 and so //?0eS and XH^ = HX^, which implies

0(X) = (Z//?0|^o) for all X^Jt.
3, Suppose $ is strongly ^-absolutely continuous, it^+$(Jl}r is a von

Neumann algebra and

(4. 7) 0(zfx) ̂ r{MX*x) +^0(^^f)}9 x^j^
for some constant 7^>0. Then Question II is affirmative,

In fact9 by Theorem 4. 5 <f> is represented as

0=fl>2r/fo

for some positive self-adjoint operator H' affiliated Jl' such that
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^O and //'fo^S. Since COH^Q is {at°} -invariant, we have

(4. 8) (

for all X, Y^Jt. Take arbitrary A^.J£". Since S^Q = S^ there exists

a sequence [Xn] in Jl such that lim Jf^o^^fo and lira X*n^ =

By (4. 7) and (4. 8) we have

(4. 9) lim H'XHh = H'A& and lim H'
B-*oo M-»°o

By (4. 8) and (4. 9) we have

1 1 tf '4<0^ ol I = I \H'A^\ I, (H'^Xt* I #'

for all X^Ji and ^.e^", which implies

(4. 10) \\

for all X^^ and A^Jl". Since cy^/|o satisfies the KMS-condition

with respect to [0t
0}9 it follows from (4.9) and (4.10) that the

normal form a)^/£0 on ^ satisfies the KMS-condition with respect to

fa*0}. By the above statement 2 Question II is affirmative.
4. Suppose <f> is represented as

for some positive self-adjoint operator H' affiliated with Jtr such that
<?0£ES(#'2) and #'2?0EES. Then Question II is affirmative,

In fact, since J?gQc:@ (H'2), H'2X^ = XH'2^ for each X^Ji and

oH't0 is {fft°} -invariant, it follows that

(4.11)

for all X^Jl\$Jt" and t<=R, which implies by S^Q = S^ that the

normal form <w#/|0 on Ji" satisfies the KMS-condition with respect

to {0t
0}. By the statement 2 Question II is affirmative.

5. Suppose (Jt^ ^, ?o) is a full standard system and $ is strongly

^-absolutely continuous, K$Q+<!> (Jt}f is a von Neumann algebra and

n

(4. i£j T\ •**•) = zLi Y^\X *k-*k^)i X£=.*/n

for some finite subset [Y^ Y2, . -., Yn] of Jlm Then Question II is

affirmative.

In fact, ^ is represented as
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for some positive self-adjoint operator H/ affiliated with Jif such
that fo^-^CW) and H'£Q^@B Since f 0 is a strongly cyclic vector
for Jt, it follows from (4.12) that ^C^(H')> which implies u?f0

C ̂  (///2) . Hence, by the statement 43 Question II is affirmative.
6. Suppose the Op -algebra (Jl, 2} satisfies the von Neumann density

type theorem and $ is o-weakly continuous* Then Question II is affirmative

(Theorem 50 6),

We study a Radon-Nikodym theorem for {al°} -invariant positive

linear functional on Jt. We denote by Jt"a and Jt'G the fixed

point algebras of {̂ °} in Ji" and Jl\ respectively.

Theorem 40 100 Let (Jl, ^9 ?0) be a standard system.
I. The following statements are equivalent,

(1) 0 is a ^-dominated, [a t°] -invariant positive linear functional on

Ji.

(2) 0 is represented as

<5=ofc,€o

'apositive operator H' in
(3) <j> is represented as

for some positive operator H in Ji"° such that H^0^^0

In the following II and III, suppose <f> is a positive linear functional

on Jt such that fa + fi^T for some standard positive linear functional r on

Jl which satisfies the KMS-condition with respect to {dt°}.

II. Suppose $ is {fft°} -invariant. Then <fi is decomposed into the sum:

where $° is a strongly ^-absolutely continuous [of] -invariant positive linear

functional on Jt and <j>°s is a <j)Q-singular, {0®}-invariant positive linear

functional on Ji, If <fi is strongly ^-absolutely continuous, then $ = <j>a
e\

and if $ is fa-singular, then <f> = <j>G
s.

III. The following statements are equivalent.
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(1) ^ is strongly ^-absolutely continuous and [a t°] -invariant.
(2) 0 is represented as

for some positive self-adjoint operator H' affiliated with Ji/a such that

O and //'
(3) <f> is represented as

for some positive self-adjoint operator H affiliated with Ji"° such that

and H

Proof. I. (1)0(2) This is trivial
(2)=>(3) Put

Then H is a positive operator in Jl"a satisfying HSQ = H/^9 and
hence //f0e^ and ^ = a)H^Qm

(3)=>(2) This is similar to the proof of (2)=>(3).

II. Since T satisfies the KMS-condition with respect to {^°}3 it
follows from ([14] Lemma 3. 8) that

(4.13) 4%W=^°™

for all X^Jt and ZeR. Since fio^T and ^^f? there exist R, K^
n,(JfY such that Q^R, K^l and

^o (X) = (R^ (X) | Jr (/) ) , f* (X) = (Kl, (X) | ̂  (/) )

for X^^. Using (4. 13) and the standardness of r, we can prove
in the same way as in Theorem 4. 9 that the normal form on

satisfies the KMS-condition with respect to [tf] and A-^(KAZt(I)
^ r ( i )

^ (/) ) is {a\} -invariant. Hence, R <E?rr (Jl) ' n ic* (JK) " and K<=xT (Jl) /a

We donote by U the isometry of $(^) into ^r defined by:

We now put
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l/n

where ^ = \ AdE(X) denotes the spectral resolutions of Re Since R

and K commute, it follows that [H'n] is a sequence of positive

operators Jt'a and lim H^/2X$Q exists for each X^J£0 We here put
-

Then it is easily shown that $ is a strongly ^-absolutely continuous,

{0-|°} -invariant positive linear functional on Ji^ <p°s is a ^o-singulars

{of} -invariant positive linear functional on Jl and (j) = <jfc-\-*j)a
so Suppose

0 is strongly ^-absolutely continuousa For each X^Jt there is a
sequence {^TM} in Jt such that lim

n-»oo

Then we have

lim jr.fi, = lim

Hm

for each Fe^0 Since $^T and ^ is strongly ^-absolutely continuous,
we have lim ^(JTJ =0, and hence (A"£(0)^(JQ |^(Y)) =0 for each

Hence, JST£(0)^(^0 =0 ; that is, fs = Q. Similarly, if 0 is
r, then $ = $ff

s.
I I I . (!)<=> (2) Using II, this is proved in similar to the proof of

Theorem 4. 9,

(2)=X3) Put

Then H is a positive self-adjoint operator affiliated with Ji"° such

that fi,e^(#), JE/c0 = // /fo^^ and <j> = (*)H^

(3) =^> (2) This is similar to the proof of (2) z> (3) . This completes
the proof,

Remark, We don't know whether <f>a
e is maximal in the subset of

Pc°(^, 0) of {tfj0} -invariant positive linear functionals or not,
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§5. Radon-Nikodym Theorems for O* -algebras Satisfying
the von Neumann Density Type Theorem

Throughout this section, let (^, @) be a closed Op -algebra such
_ ,*

that Jtr® = & and [^]L— E^]S
3 and f0 be a cyclic and separating

vector for Jt" , We denote by Ji% the set of all positive linear
functional which are continuous relative to the er-weak topology for
^, and denote by ^|Q the natural positive cone associated with

(JT, ft) [1,4,11].

Theorem 5. 1. Suppose <j>^.Jt%. Then there exists a unique vector

f# in &r\® such that

for all

Proof. By ([16] Lemma 5.2) there exists a vector £ in & such
that 0 = <»€. It hence follows from ([31] Theorem 10.25) that

(5.1) (4e|£) = (4£, £,), 4eur
for a unique vector £# in |̂Q. Take an arbitrary X^Jt. Let

= r^/£(^) be the spectral resolution of (X*X)l/\ and let EH =

for n eN. Since ^XS = ^3 it follows that £n5 XEn^Jt* for
Hence, we have by (5. 1)

Km E& = 5t and im

which implies f^e /^ &(X)=& and (f> = a)%. Suppose $ = 0)^=0)%

"for ft, <?2EE^onS. ince \JTb = \^f and (5.1), we have ft = £a.
This completes the proof.

Theorem 5.2. Suppose $^Jt%. Then the following statements hold,

(1) 0 is strongly ^-absolutely continuous if and only if $ is repre-

sented as
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for some positive self -adjoint operator Hf affiliated with Jif such that

is a core for Hf
e In this case, such an operator Hf for $ is unique,

which is denoted by H'^

(2) 0 is fa-singular if and only if P(Jt, $) nP(J£, fa) = {0}0

(3) <j> is decomposed into the sum:

where <j>c is maximal in PC°(J^9 <f>) and ^sePs

Proof. By Theorem 5e 1, fa+$ is represented as

(5e 2) (0o + 0) (X) = (Jf£00+0|£00+0), X£=.Jt

for a unique vector f00+$5e^|on ^3 which implies by

that £0Q+0 is a separating vector for J?. Since f^+^e^l^ it follows

that £0+0 is also cyclic for ^. We put

By (5.2) U is extended to a unitary operator of £00+0 onto

which is also denoted by U. Using [^]»ff=[^]s and f^0+^ is a

cyclic vector for ^3 we can prove that 7r^>Q+<^(^y = U^^/U^ so that

;fy0+0(.^)' is a von Neumann algebra,, Hence, the statements (2) and

(3) follow from Corollary 4e 7 and Theorem 40 63 respectively.,
We show the statement (1). Suppose 0 is strongly ^

continuous8 We denote by T$ the closure of a closable map :

Then, it follows from [^J^-pO that ^f0cS(r°) and Tf0

= ^4f0 for all <4e^/x
9 which implies Ji"^ is a core of T$ and T/ is

affiliated with Jl'm Put

Then it is easily shown that H$ is a positive self-adjoint operator

affiliated with Jl' such that Jl^ is a core for H$ and ^ = 6>^i0. The

uniqueness of //£ follows from that of polar decomposition,, The

converse follows from Theorem 40 5. This completes the proof0

Remark 5. 3B Representing operators H/ for $ in Theorem 40 6

satisfy u^f 0 C ̂  (//') but without the condition [^]»a=[Xj there
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does not necessarily exist a representing operator H' for 0 such that
is core for H'e

Remark 5.4. Suppose Jf is finite0 Then every ^e^J is strongly
^o-absolutely continuous. This is proved in similar to ([19] Corollary

2.3).

Theorem 5.5. Suppose (Jt, @, f0) is a standard system and

satisfies the KMS-condition with respect to {fft°} . Then the following
statements hold.

(1) <f> is represented as

for some positive self -adjoint operator H affiliated with Jt'£\Jt" such that
fi>e^(tf) and H£*<=3. Further, if <f> is faithful; that is, $(X^X)=Q
implies Jf=0, then <j> is a standard positive linear functional on JH with
a+= a <fij.

(2) Suppose (Jl, @, ?o) is full. Then <j> is a standard positive linear

functional on Ji with 3ft$ = 3(fid. Further, if <j> is faithful, then
(fit (Jt) 5 3 (fif) , ^ (/) ) is a full standard system.

Proof. (1) It follows from Theorem 5. 1 that 0=o for f#e^|0
n^o Since [̂ ];a = [uT] , it follows that ^e(uTO* satisfies the

KMS-condition with respect to [a\°}9 so that by ([32] Theorem 15.4)
there exists a positive self-adjoint operator H affiliated with J£f{\Jt"
such that

(5.3) (^|^) = (4//f0|//fo)

for all A^.Ji". We denote by U' the partial isometry on $(3)
defined by:

Using MXff=[u?]*, we can prove U'^.Jl\ and hence //f0 = C/ /f#^
&, which implies ^=O)H^Q by (5.3).

Suppose 0 is faithful. Since the projection E of $(3) onto Ker H
is contained in Jl' ^Jt" and (^ 3) is a generalized von Neumann
algebra, it follows that EQ=E/3&^9 and hence
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Since 0 is faithful, we have £0 = 03 and hence H is nonsingular. It
follows from Lemma 30 4 and Lemma 3. 5 that 0 is a standard
positive linear functional on Ji with @ $ =

(2) We denote by Er
 Hk. the projection of Q(2) onto JtH£*. It

_ _
follows from [^]^0 = [^]* that JtH^ is a closed subspace which is
invariant for ^"9 and hence E'H%^Jl'. It is easily shown that the

restriction Jt/E'H^ of the 0| -algebra Jt to E'H^@ is a closed Ojf-

algebra such that (J(/E'H^9) ' = E'H^ ' / E'H$ (®) and (Jt/E'H^Y

Let // = r^£(A) be the spectral resolution of H0

Put

En = dE(I)
l/n X Jl/»

for raeN. Then we have KJ @ , EJ @ ̂ .Ji and

lim £,£^0Jff0=lim ^MZ//f0
n-»oo ° w-»oo

= E'H£QX£Q — E (0) E'H£Q

= E'H^X^

lim

for each Z, Fe^, which implies E'H^X£^JIH£*'* for each

On the other hand, it is easily shown that E'H^@ c:Ef
H^Jtt~Q ^ B Hence9

we have

(5. 4) E'

that is, //fo is a strongly cyclic vector for (Jt/E'H^^ E'H^)0 It is

clear that H£0 is a separating vector for (Jt '/Ef
H^Y ' =Ji" ' /E'H^{®}.

Since A^JtH£*=JttH£* for all t<=R, we have 4o-B^0
:=jB^o^o for a11

^eR? which implies that ofH^ satisfies the KMS-condition with respect

to a strongly continuous one-parameter group of ^-automorphisms:

of the von Neumann algebra Jt"/E'He$(&). By ([32] Theorem

13.2) we have

^A^Ef
H^ = (4 |̂Q) A (47^0)

 E/^

for all f e£(^) and ^eR, which implies |̂0=4 |̂0 for all

Hence //?0 is a modular vector for (Jt/E'H, E ' H } with
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_ j#
E'H^@. Since [^]W(T=[^] % it follows that //f0 is standard, which

implies by (5. 4) that <j> is a standard positive linear functional on
Ji With 9t=9(lCJ).

Suppose <f> is faithful. By (1), //is non -singular, and so E'H^=L

By (5. 4) //fo is a strongly cyclic vector for Jt, and hence (^, ^,
Hfo) is a full standard system, which implies that so is (K<J>(^),
& (TT^) , ^ (/) ) . This completes the proof.

We can similarly prove the following result using ([32] Theorem
15.2).

Theorem 5.6. Suppose (^, ^ ', f0) « a standard system and

is {0t°} -invariant if and only if $ is represented as

/or 507720 positive self -adjoint operator H affiliated with

We apply Radon-Nikodym theorems obtained the above to the
spatial theory for 0| -algebras. The spatial theory for Op -algebras
was investigated in [13,16,33,35], In particular, it was obtained
that every ^-automorphism of the maximal Op -algebra is unitarily
implemented [33, 35] and each ^-automorphism a of the Op -algebra
7r0(jaO of the Schrodinger representation TTO of the canonical algebra
j/ for one degree of freedom satisfying tf(7T0(j/)

+) C7T0(J3f)+ is unita-
rily implemented [33], In the case of von Neumann algebras ^0 with
a cyclic and separating vector, each ^-automorphism of ^0 is always
unitarily implemented, but in [33] Takesue gave an example of the

self-adjoint Op -algebra (the polynomial algebra (9*(—i-=-/2\ @),

where 3 = {/eC°°[0, 1] ; /(ra)(0) =/(n)(l), » = 0, 1, 2, . . . }) with a
strongly cyclic and separating vector for which the above fact does
not necessarily hold, and so we need consider the spatial theory for
a self-adjoint Op -algebra with a strongly cyclic and separating vector.

In a previous paper [16], we obtained the following Propositions
5. 7, 5. 8.

Proposition 5.7. Let (JH, ®) be a self -adjoint Op -algebra, a vector
f o in @ be strongly cyclic for Jl and separating for Ji" and a be a
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^-automorphism of J£« Then the following statements hold*
(1) Suppose both the map X^->a(X)^ and X£0-*a~1(X)£Q are

continuous. Then a is represented as

a(X)=U^XU, X^Ji

for some C/e^T(S)M= {C/eJ&?T(0) ; U is unitary}.
(2) Suppose 7T00+00aa (^) ' is a von Neumann algebra^ and the map

and X£Q->a~l(X)£Q are closable. Then a is represented as

for some

Throughout the rest of this section,, let (^, ^) be a selfadjoint
-

0^ -algebra such that [^]s=[^]^, a vector f0 in @ be strongly
cyclic for *M and separating for Ji" and or be a ^-automorphism of

Proposition 50 80 Suppose <j>Q°a and <j>Q°a~l in Jt%\ in particular^ a

and a~l are continuous relative to the a-weak topology for Jt« Then a is

represented as

for some

We here weaken the condition of the continuity of a and a~l in
Proposition 5. 8,

Theorem 50 9Q Suppose a is continuous relative to the a-strong topology
for Jt« Then a is represented as

a(X}=U*XU, X^Jt

for some U^^\^{= {U^^(^) ; £/*£7=/}. Further, suppose a-1

is closable relative to the a-skrong* topology for Jt» Then a is represented
as

for some

Proof. Since a is continuous relative to the a-strong topology for
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u?, it follows that

for some {£„} eS°°(^). In similar to the proof of ([16] Lemma
5. 2) , we can prove that

for some Co^^. By Theorem 5. 1 there exists a vector 570 in ^|
such that

(5.5) (

for all ZeuT. Put

Then, by (5.5) the closure f/0 of UQ is an isometry on $(^). We
now put

Then it is easily shown that £7eJ2"(0)£, UU*^Jl' and
for all Z<E^.

Suppose a"1 is closable relative to the ff-strong* topology. Then
we show Ue&(9)u. Suppose A^ = Q9 A^Jf. Since *
there exists a net {JT^} in ^ such that

(5. 6)

for each {£„} e^°°(^). Since a is continuous relative to the ff-strong
topology for ^, there exist elements a" (A) and a" (A*) of

such that

lim [
(5. 7) '

lim [a (ZD ] {f B}

for each {?„} e^~(uT). Then we have

([«' 00] {f J I {%}) =lim([«(^)] {fj | {%})

for each {£„} , {ijj <= S °° (u?) . Hence, we have a" (-4) S «" ( ̂  , $ ( 0 ) )
and a"(^)T=a"(^*). By (5.5), (5.6) and (5.7) we have



UNBOUNDED TOMITA-TAKESAKI THEORY 715

and hence aff(A)^Q = 09 and further we have

for each C^Ji\ and hence a*C4*)fo = 0, which Implies

(a* (4) f | Cft,) = (C*f o I *" (-4*) fo) = 0

for each fe^ and C<EE<J". Hence, a"(4)=0. By (5.6) and (5.7),

a net [a(X^} in uf converges to 0 and {a"1 (a (JFj) ) } is a Gauchy
net in ^ relative to the 0-strong* topology for Jt. Since a~l is
closable relative to the ^-strong* topology for Jl, it follows that
lim X^ = 09 and hence ^4 = 0. Hence, ^0 is a separating vector for Jt" .

It follows from r}Q^^lQ that 570 is a cyclic vector for J£'\ which implies

that U is a unitary operator on $(^). This completes the proof.

Theorem 5e 10. Suppose <j>^a^.Jt\ and the map X^-^a~l(X)^ is
closable. Then a. is represented as

a(X)=U'XU,

for some

Proof, By Theorem 5.1 there exists an element 370 of

such that

(5.8) (

for all Xs^Jt. Suppose 4?0 = 0, A<=Jt". Since [^]c[^] and
(5.8), there exists a net {X^} in ^ such that

lim a(Zj)f0 = 0 flwrf lim

Since X^Q-^xx~'1(X)So is closable, we have ^4f0 = 0, and hence
Hence, ^0 is a separating vector for ^f"., It follows from

that 370 is a cyclic vector for Ji\ which implies by (5. 8) that a is
represented as
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a(X)=U'XU,

for some

§ 6. Examples

In this section we investigate the absolute continuity and singularity
of positive linear functionals on the Op -algebra generated by the
differential operator, the Op -algebra defined by the Schrodinger
representation and the maximal 0|-algebra &*(£P(R)) on the Schwartz
space

Example 6.1. Put

fo(0 =[eexp -exp(-^ 5-4COS27TO-1, te[0,l].

Then the polynomial algebra & (Xo) generated by X0 is a self-adjoint
Op -algebra on 3ft and a vector f0 in 3ft is strongly cyclic for & (X0)
and separating for 0* (Xtf . We consider positive linear functionals
on ^(Jf0) defined by

Then the following statements hold.
(1) $?m (n^Q, m eZ) are strongly a) ̂ -absolutely continuous,

In fact, by ([33] Example) $fm is represented as

for some C/e^f(^) t-= {C/eJSfT(^) ; C7*t7=/}. We put

(#f») " W) - (^t/co I C/f 0) , A <= ̂  (Z0) '.

Since & (X^" is a commutative von Neumann algebra ([15] Theorem
2.1 and [25] Theorem 7.1) and ft, is a cyclic vector for ^W,
it follows that &(XQy is finite, so that by ([19] Corollary 2.3)
(<j>2nmY is strongly ^-absolutely continuous. Hence we have

(AU£* | US 0) - (#*") x/ (^) - (^^/7f o I # 'f o) , 4 e ^ (-Yo) "

for some positive self-adjoint operator //' in L2[0, 1] affiliated with

9 which implies
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and (<K

Hence, <ffim Is strongly ^-absolutely continuous.

(2) For each bounded subset B of R we define positive linear functionals

on 0>(Xo) by

Then $1°%B (a^Z or £^27rZ) are (co^ofe) -singular.

In fact, for each polynomial p and rc^N we define a polynomial

Pn by
2n+l

where {ab a2, . . . , »2«+i} is a unique solution of the equation :

pn (2m7ua + b) = p (2miza + b)9 m= — ? 2 3 8 0 . 3 — 1 , 0, 1 5 . . . , w

(the existence of the unique solution dues to a^O), Since 5 is a
bounded subset of R9 it follows that

) =0

for sufficient large all ^eN. Hence, <j>l°%B is tt>|0o ̂ -singular.

Let &* = &>(&) be the Schwartz space of infinitely differentiable

rapidly decreasing functions and {/n}»=o,i,2,... be an orthonormal basis
in the Hilbert space L2 = L2(R) contained in 6f consisting of the

normalized Hermite functions. We denote by L2(X)L2 the Hilbert

space with inner product < | > of Hilbert-Schmidt operators on L2
3

by &®L2 the subspace {reL2(g)Z*; TL2C^} of L2(X)I? and by

(^(x)L2)+ the set of all positive operators of ^(x)Zl Let K be a

densely defined closed operator in ZA We define densely defined

closed operators if (K) and n'(K) as follows:

n (K) T=KT, Te 3 (if (K) ) ;



718 ATSUSHI INOUE

Then TC ' (K) (resp. n'(K)) is a densely defined closed operator in

L2(X)Z2 affiliated with the von Neumann algebra 7r"(«^(L2)) (resp.
^(*(L2)) / = ff/(^(L2))). In particular, if K is a positive self-
adjoint operator in .L2, then if ' (K) and K' (K) are positive self-adjoint

operators in L2®L2 ([14] Lemma 5. 1).
As stated in Section 3, a self-adjoint representation TT of

in L2(x)L2 is defined by

which satisfies

7t(^(y)Y = x'(@(L2)) and w(J

We put

«+ ={{«„}; tfw>0 for n = 09 1, 2, . . . and
sup 7zfe <v<°° for each

n
oo _

AcU = S <*nfn®fn> KJ ^8+.
n=0

Then, for each [an] E^s+ (^(J^f t(^))J (̂g)!2, G{«n)) is a full standard

system such that JQ{ T=T* for T^L2®!*, AQi =n'(QT2 })*" (Ofa ,)
^{a } . w re n "

and [<rt
 n ( • )=52i'} « J2{~

2^}^eR is a one-parameter group of ^-auto-

morphisms of J^T(^) satisfying Jg(a } n(X)Ao*a }=n(a°{an} (X)) for each

ZeJ^T(^) and feR ([14] Theorem 5.4, Corollary 5.5). We define

strongly positive linear functional $p (p^£f(g)L2) on J£?T(^) by

and in particular, when /o= Q(a } ({an} Gs+) we simply write $0 by

^{«n}.
Let TTj be a self-adjoint representation of the canonical algebra J/

for one degree of freedom defined by

where TTO denotes the Schrodinger representation of jtf. Then ®{e-n$} is

a standard vector for (^(j/), ^(x)!2) with
(e~nfi}

and there exists a one-parameter group {J1* o} i e R of ^-automor-

phisms of J2/ such that

„
-nl3
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for each x^stf and t<=R ([10] Theorem 20 and [14] Corollary 5,6).

For each 1oe(^®L2)+ we simply denote by <f>p a positive linear
functional ^P

07r0 on £$ and in particular, denote by <j){a } a positive

linear functional ${a }°7r0 on <$£ '.

In next Example 6. 2 we consider the strongly fy.-nt -absolute

continuity, ^-^-singularity and {JjL^ } feR-invariance of positive

linear functional on s$ \ and in Example 6. 3 we give concrete exam-
ples of 0{g_njS}-singular positive linear functional on JS?T(«^) and

strongly <j) _n/3 -absolutely continuous positive linear functionals on

JS?T(^)9 and characterize {J{Ln/3 }jeR-invariant positive linear functio-

nals on J

Example 602e Let 0 be a positive linear functional on si. It is
well-known that $°TI:QI is strongly positive if and only if <f> = $p for

some /oe(^(X)L2)+ [29], Consider positive linear functionals $p.
(1) Suppose Q~Lnft p is densely defined. Then <f>p is strongly ^(e-n^}~

absolutely continuous.

In fact, $p is represented as

for a positive self-adjoint operator \n' (Q~Ln/3 p) \ affiliated with n'(& (I/2))

such that \^(Q-^}p) [fl^^e^®!?. Hence, <f>p is strongly <f>{-np}-

absolutely continuous.
We next consider when $p is {J|*_B0 } feR-invariant It is clear

that <j>{an}({an} ^s+) are {JjLBi9)} -invariant. Hence, the following

question arises: If <pp is {J|LB^ } -invariant, then $P = ${an} for {an} ̂ s+?

For this problem the following fact holds.
(2) If <j)p is <j> {rnp -dominated, then *j>P = <j>{an} for some {«„} es+.

In more general, if Q~Ln^ p is densely defined and p2Q~eLn0 EE<5^(X).L2
3 then

0P = 0{«j f°r some (an} ^^+»
In fact, we now suppose Q lnft p is densely defined and p2Q Lnp

and put

Then n'(Ho) is a positive self-adjoint operator in L2 affiliated with

Since (PQ-&Se®!*, it follows that
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fl-rfe=<3 (*'(#,)) and

jc' (H0) 0{§ _„, =

and hence

»r ' (H0) *! (*) J0(j_rf} = % 00 *' (//„) £ e_B/))

and

000 =<>ri(*)«'(//o)flt.-rfj |fl(.-rf}>

for all #ej/. Since 0 is {J"_rf)} -invariant, it follows that

^ (J* ̂ -rf*) =

-^, I ffi (y) Q(e-ne}>

*) fi{(_rf) | ff! 00 ^u_B/3}>

for all *, y<^3?, which implies since ^(J1 (I,2) ) £ ̂  C ̂  (7r'(//0))

that

= <^«_rf)ff ' (H0) ffl 00 /3{e_rf) | ff'

= <»! (*) fl-rf I >r' (H0) ^g - r f f f '

for all A<=£t(L2), x^.$t and JeR. Hence we have

if (Q™-^ ic' (Q-^}) *' (H0) x" (A) Q le_B(3)

= JT' (H0) ff' ( f l . ) ,r' (£-»,) *'

for all ^eJ'CL2) and feR. Since /»e^(H0) for &eN(J{0}, it
follows that

which implies that

H0/B=(H0/
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Hence we have

[an] = {e~^(H,fn\fnY
/2} ^+ and 0, = ^,.

Suppose <j>p is $,-n& -dominated. Then $ is represented as

for some positive operator HQ in £ffi (IT) , and hence we can take

as p. Since

=H^a (I,2),

it follows from the above fact that $p = <f>(a } for some [an] es+a

(3) A positive linear functional $ on $4 which satisfies the KMS-

condition with respect to {J"_no}(eR is represented as

<t> = r0{e-ne}

for some constant ^>0 ([10] Theorem 30) .

Example 60 30 We consider 0 B / J -absolute continuity, ^(e-n0}-

singularity and [at
 {e n }} ieR-invariance of positive linear functionals on

=SPT(c5^)0 The following examples (1)^^(4) are modifications of exam-
ples constructed by Kosaki in [19].

(!) 0/ ®7^ « $ n/3 -singular, where /oo = E e~n^00 l« J n=0

In fact, for each XEEJ^C^) we put

Then we have

and

for m = 2, 3, . . . . It hence follows that

lim jrCYJfl „ .=<) and Km ff(*»)
B
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for each X^^(^}^ which means that ^/^/^ is 0 ^-singular,
(2) ^/>7L is $lt-n0}-singular and <f>foo®j^ + f^^ « HO* $(rHft -singular,

where f» = 2 ft- fw

In fact, it is shown in similar to (1) that 0 / -r is 0 _n* -singular.
JOO^JGO ^e '

We show that fo^®/^ + $f' # ~7~ is not 0{e-n/?}-singular. Since

2+
it follows that /c.+/l = 2/0 and /»— /I are eigenvectors for

__ 2#2'9 2^2;S

+ (/~(8)/-)2) with eigenvalues -^ — r- and -y-^ — rvY, respectively,
^ 1 v.£ 1 _/

which implies

Hence we have

for all Ze^fT(^)5 and hence

It hence follows from Theorem 5.2, (2) that (0/oo<s>/^ + 0' p") is not

(3) 7"A^ strongly <j*na -absolutely continuous positive linear functional

<f>(e-n/2/3} on o^T(^) dominates a positive linear functional 0 on J£?T(«$*)

ie;AzVA w wo^ strongly $np -absolutely continuous.

Let $! be the closed subspace of L2 generated by [fl9 /3, . . . ,

/2n+i5 • - • } and P be the projection of L2 onto ^. Since Q n/2i5P =

PQ(rn/2^} is a non-singular compact operator on $b it follows from



UNBOUNDED TOMITA-TAKESAKI THEORY 723

([19] Lemma 8.8) that there exists a unitary operator U on §1
such that

nw}P) = {0} .

We here put

P=Q{-M]UQ{e-n/W}, where U=OP+(l-F),

4> (X) =

Since

for all X^^(£f), it follows that <p is ^{g_n/2/3}-dominated. Suppose

<[> is strongly ^ _n/8 -absolutely continuous,, By Theorem 5B 2, <p is

represented as

Hence, a positive linear functional ^ on 3S (L2) defined by

is faithful and strongly <j>",-n$ -absolutely continuous, and so by ([19]

Corollary 78 3) K' (<% (L2))^u_^} n^7(^ a2))/> is dense in L^Zl

Take an arbitrary H^n'(@ (L2))Q[r^} r\x'(& (L2)} p. Then, since

we have

for each feL2, which implies

pQ(e_n/2^=ffpQ(e^W}A^m(pQ{e_n/^ n ## (PQlt-4»}) = {0} .
Hence, we have

p^f =PQ{^}BS =Qli-4U}pali-«vl)Be =o
for each feL2, and so ^ (//) C (1 — P)g>, which contradicts

rc'CJ'CL2)) Ou_ r f )nJt'(«(I- I))/o is dense in i2(g)l72. Hence, ^ is not

strongly 0 B/J -absolutely continuous.
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(4) The Lebesgue decomposition of <f> n/2/3 is not unique.

In fact, the strongly 0{g_n/3}-absolutely continuous positive linear

functional ^{e_K/20} on & (£P) is decomposed into

where 0 is in (3). Since <!>, -n/2^-$^<j>t -n^ and 9^0, it follows that
Ifi ) \e i

((<?>[e-n/2i3} — 0)+0c) is 0{e_n/2/3}-dominated and strongly 0{e_M/S}-absolutely

continuous and 0S=^0 is 0 -^-singular, which shows that the Lebes-

gue decomposition of $ n/2p} is not unique.
Q _-«

(5) Every strongly <j>na -absolutely continuous and [at
 {e }} te=R-invar-

iant, strongly positive linear functional $ on &*(£?) is represented as

for some {<xn} ^s+.
In fact, by Theorem 5. 6 ^ is represented as

for some positive self-adjoint operator H in L2(X)L2 affiliated with

if (38 (L2))^'"^ such that HQ _n/} e<^(x)L2. It is easily shown that\ \ / / [e np} \^ /

] = {*' (A) ; A = E a.
n=0

Hence, we have

and

lim n(Hn)Q e
w-*oo l« J te )

which implies

lim $°*-w = ab A = 0,1,2, . . .
M-»oo

and

and hence {orj} e*+ and <f> = fi{a].n

(6) £0077 strongly positive linear functional $ on & (&*) which
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Q _n/3

satisfies the KMS-condition with respect to [at
 (e }} tf=R is represented as

for some constant

In fact, by Theorem 5. 5 <j> Is represented as

for some positive self-adjoint operator H affiliated with

riTr 'C^CL2)) such that HQrnp^Sf®l?. It is easily shown that

7r''(^(L2)) n7r'(^(L2))=C/? which implies 0 = r<p[g_nl3} for some con-

stant
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