The Ergodicity of the Convolution $\mu * \nu$ on a Vector Space

By

Yoshiaki OKAZAKI* and Yasuji TAKAHASHI**

Abstract

Let G be a subgroup of a vector space X and μ, ν be two probability measures on X. If μ and ν are G-quasi-invariant and G-ergodic, then the convolution $\mu * \nu$ is also G-ergodic.

§1. Introduction

Let X be a vector space, \mathscr{R} be a subspace of X^{*} (the algebraical dual of X) and $\mathscr{B}_{\mathscr{R}}$ be the smallest σ -algebra on X which makes each $x' \in \mathscr{R}$ measurable. For probability measures μ and ν on $\mathscr{B}_{\mathscr{R}}$, μ is said to be absolutely continuous with respect to ν (denoted by $\mu < \nu$) if $\nu(A) = 0$, $A \in \mathscr{B}_{\mathscr{R}}$, implies that $\mu(A) = 0$. μ and ν are equivalent (denoted by $\mu \sim \nu$) if $\mu < \nu$ and $\nu < \mu$. Denote by $A \ominus B = (A \cap B^{c}) \cup (A^{c} \cap B)$ the symmetric difference.

Denote by $\tau_x(x \in X)$ the translation $\tau_x(z) = z + x$. $\tau_x: (X, \mathscr{B}_{\mathscr{R}}) \to (X, \mathscr{B}_{\mathscr{R}})$ is measurable and $\tau_x \mathscr{B}_{\mathscr{R}} = \mathscr{B}_{\mathscr{R}}$ for every $x \in X$. We put for $x \in X$,

$$\mu_{x}(A) = \tau_{x}(\mu)(A) = \mu(A-x), A \in \mathscr{B}_{\mathscr{R}}$$

Let $A_{\mu} = \{x \in X; \mu_x \sim \mu\}$ be the set of all admissible translates of μ . A_{μ} is an additive subgroup of X. For a subset $G \subset X$, μ is called Gquasi-invariant if $G \subset A_{\mu}$, and μ is called G-ergodic if $\mu(A \ominus (A-x))$ =0 for every $x \in G$ implies that $\mu(A) = 0$ or 1.

Let $\Phi(x, y) = x + y$. Then $\Phi: (E \times E, \mathscr{B}_{\mathscr{A}} \otimes \mathscr{B}_{\mathscr{A}}) \to (E, \mathscr{B}_{\mathscr{A}})$ is measurable, where $\mathscr{B}_{\mathscr{A}} \otimes \mathscr{B}_{\mathscr{A}}$ denotes the product σ -algebra. So the

Communicated by S. Matsuura, March 4, 1987. Revised April 15, 1987.

^{*} Department of Mathematics, Kyushu University 33, Fukuoka 812, Japan.

^{**} Department of Mathematics, Yamaguchi University, Yamaguchi 753, Japan. (Current address: School of Health Sciences, Okayama University, Shikata, Okayama 700, Japan.)

convolution $\mu * \nu$ of two probability measures μ and ν is defined as follows:

$$\mu*\nu(A) = \int_X \mu(A-x) \, d\nu(x).$$

 $\mu * \nu$ coincides with the image measure $\Phi(\mu \times \nu)$, where $\mu \times \nu$ is the product measure on $(E \times E, \mathscr{B}_{\mathscr{R}} \otimes \mathscr{B}_{\mathscr{R}})$.

It holds that $A_{\mu*\nu} \supset A_{\mu} + A_{\nu}$, see Yamasaki [2], p. 170, [3], Theorem 13.1. By this result, for a subgroup G of X, it follows that if μ or ν is G-quasi-invariant, then $\mu*\nu$ is also G-quasi-invariant.

Concerning the ergodicity of $\mu * \nu$, Yamasaki [2], p. 170, raised the following problem.

Problem. Let G be a subgroup of X and let μ , ν be probability measures on $(X, \mathcal{B}_{\mathcal{R}})$ which are G-quasi-invariant and G-ergodic. Then is the convolution $\mu * \nu$ G-ergodic?

Yamasaki [2], Theorem 23. 2, proved that if G is either

(1) G is a linear subspace of algebraically countable dimension, or

(2) G is a complete separable metrizable topological vector subspace of X such that the identity $G \to X_{\sigma(X,\mathscr{R})}$ is continuous, where $\sigma(X,\mathscr{R})$ is the weak topology determined by \mathscr{R} ,

then the answer is affirmative.

In this paper, we shall prove that the answer to the above problem is affirmative without any assumption on G.

§2. Main Result

Theorem. Let μ , ν be probability measures on $(X, \mathscr{B}_{\mathscr{R}})$ and G_{μ}, G_{ν} be two subgroups of X. Suppose that μ , ν be G_{μ}, G_{ν} -quasi-invariant and G_{μ}, G_{ν} -ergodic, respectively. Suppose also that $G_{\nu} \subset A_{\mu}$, that is, μ is G_{ν} quasi-invariant. Then $\mu * \nu$ is G_{μ} -ergodic.

Corollary. Let μ , ν be probability measures on $(X, \mathcal{B}_{\mathcal{R}})$ and G be a

728

subgroup of X. If μ and ν are G-quasi-invariant and G-ergodic, then $\mu * \nu$ is G-ergodic.

To prove the theorem, we use the following lemma due to Yamasaki [2], Theorem 25. 6, p. 182. The proof given here is a modification of Shimomura [1], p. 706-707.

Lemma. Let $\{x_{\alpha}\} \subset A_{\mu}$ be a net satisfying that $\int |(d\mu_{x_{\alpha}}/d\mu)(z)-1| d\mu(z) \rightarrow 0$. Then it follows that $\mu(B \ominus (B-x_{\alpha})) \rightarrow 0$ for every $B \in \mathscr{B}_{\mathscr{B}}$.

Proof. First we show that $x_{\alpha} \rightarrow 0$ in $\sigma(X, \mathscr{R})$. For every $x' \in \mathscr{R}$, take δ so that $|t| < \delta$ implies that $|\int \exp(it < z, x' >) d\mu(z)| > 1/2$. By

$$|1 - \exp(it < x_{\alpha}, x' >)| |\int \exp(it < z, x' >) d\mu(z) |$$

= $|\int \exp(it < z, x' >) ((d\mu_{x_{\alpha}}/d\mu)(z) - 1) d\mu(z) |,$

we have

$$|1-\exp(it < x_{\alpha}, x' >)| < 2 \int |(d\mu_{x_{\alpha}}/d\mu)(z) - 1| d\mu(z)$$

for every t with $|t| < \delta$. Thus $< x_{\alpha}, x' > \rightarrow 0$.

Next we claim that $\int |(d\mu_{x_{\alpha}}/d\mu)(z)f(z-x_{\alpha})-f(z)|d\mu(z)\to 0$ for every $f \in L^{1}(X, \mathscr{B}_{\mathscr{R}})$. In fact, for each function of the form $f(z) = \sum_{j=1}^{n} c_{j} \exp(i \langle z, x_{j}' \rangle)$, c_{j} are real numbers and $x_{j}' \in \mathscr{R}$, the assertion holds since $\langle x_{\alpha}, x_{j}' \rangle \to 0$ for every j. Since these functions are dense in $L^{1}(X, \mathscr{B}_{\mathscr{R}})$, we get the claim.

For every $B \in \mathscr{B}_{\mathscr{R}}$, we have

$$\mu(B \ominus (B-x_{\alpha})) = \int |\chi_{B-x_{\alpha}}(z) - \chi_{B}(z)| d\mu(z) \leq \int |(d\mu_{-x_{\alpha}}/d\mu)(z)| d\mu(z) + \int |(d\mu_{-x_{\alpha}}/d\mu)(z)\chi_{B}(z+x_{\alpha}) - \chi_{B}(z)| d\mu(z) \rightarrow 0$$

remarking that

$$\int |(d\mu_{x}/d\mu)(z) - 1| d\mu(z) = \int |(d\mu_{-x}/d\mu)(z) - 1| d\mu(z),$$

where χ_B is the characteristic function of B. This proves the Lemma.

Proof of the Theorem. Suppose that for $A \in \mathscr{B}_{\mathscr{R}}, \ \mu*\nu(A \ominus (A-x))$

=0 for every $x \in G_{\mu}$. By the definition of the σ -algebra $\mathscr{B}_{\mathscr{R}}$, there exists a countable subset $\Gamma = \{x'_i\}_{i=1}^{\infty} \subset \mathscr{R}$ such that $A \in \mathscr{B}_{\Gamma}$; \mathscr{B}_{Γ} is the minimal σ -algebra on X which makes each x'_i (i=1, 2, ...) measurable. The measures μ, ν are also G_{μ}, G_{ν} -quasi-invariant and G_{μ}, G_{ν} -ergodic on the sub- σ -algebra $\mathscr{B}_{\Gamma} \subset \mathscr{B}_{\mathscr{R}}$. Consequently, in order to show $\mu * \nu(A) = 0$ or 1, we can suppose in advance that the σ -algebra $\mathscr{B}_{\mathscr{R}}$ is countably generated. In particular, $L^1(X, \mathscr{B}_{\mathscr{R}})$ is separable.

Take a countable dense subset $\{d\mu_{x_n}/d\mu\}_{n=1}^{\infty}$ of $\{d\mu_x/d\mu; x \in G_{\mu}\}$ in $L^1(X, \mathscr{B}_{\mathscr{R}})$. We claim that for each $A \in \mathscr{B}_{\mathscr{R}}$, if $\mu(A \ominus (A-x_n)) = 0$ for every n, then $\mu(A \ominus (A-x)) = 0$ for every $x \in G_{\mu}$. Let $x \in G_{\mu}$ be arbitrary. By $\mu(A \ominus (A-x_n)) = 0$ for every n, it follows that $\mu(A \ominus (A-x)) = \mu((A-x_n) \ominus (A-x_n)) = 0$ for every n. By the preceding Lemma (putting B = A - x), for every $\varepsilon > 0$, there exists $\delta = \delta(A, x, \varepsilon)$ such that $\int |(d\mu_y/d\mu)(z) - 1| d\mu(z) < \delta$ implies $\mu((A-x) \ominus (A-x-y)) < \varepsilon$. By the definition of the sequence $\{x_n\}$, there exists $n = n(\delta)$ such that $\int |(d\mu_x/d\mu)(z) - (d\mu_{x_n}/d\mu)(z)| d\mu(z) = \int |(d\mu_{-x+x_n}/d\mu)(z) - 1| d\mu(z) < \delta$. Thus we have $\mu((A-x) \ominus (A-x_n)) = \mu((A-x) \ominus (A-x-(-x+x_n))) < \varepsilon$, that is, $\mu(A \ominus (A-x)) < \varepsilon$ for every $\varepsilon > 0$ which proves $\mu(A \ominus (A-x)) = 0$.

By $\mu*\nu(A \ominus (A-x_n)) = \int_X \mu((A-z) \ominus (A-z-x_n)) d\nu(z) = 0$ for every *n*, there exists a subset $\Omega \in \mathscr{B}_{\mathscr{R}}$ satisfying that $\nu(\Omega) = 1$ and $\mu((A-z) \ominus (A-z-x_n)) = 0$ for every *n* and for every $z \in \Omega$. By the second step of this proof and by the ergodicity of μ , it follows that $\mu(A-z) = 0$ or 1 for every $z \in \Omega$. We set $B = \{z \in X; \mu(A-z) = 1\}$. Since $G_\nu \subset A_\mu$, *B* is a G_ν -invariant subset. By the G_ν -ergodicity of ν , it follows that $\nu(B) = 0$ or 1. If $\nu(B) = 1$, then we have $\mu*\nu(A) = 1$ and if $\nu(B) = 0$ then $\mu*\nu(A) = 0$. Thus $\mu*\nu(A) = 0$ or 1. This completes the proof.

References

- Shimomura, H., Some results on quasi-invariant measures on infinite-dimensional spaces, J. Math. Kyoto Univ., 21 (1981), 703-713.
- [2] Yamasaki, Y., 無限次元空間の測度〈下巻〉不変測度(Measures on infinite dimensional spaces, Vol. 2, Invariant measure), Kinokuniya, Tokyo 1978, in Japanese.
- [3] —, Measures on infinite dimensional spaces, World Scientific, Singapore-Philadelphia 1985.