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§ 1. Introduction

The fact that a Lie group (generally a finite //-space) has a
stably trivial attaching map of its top cell makes a little bit easier to
determine the cohomotopy groups, especially when the space has a
few cells. Actually, for Sp(2) and 617(3), it is easy to obtain 0-th
cohomotopy groups, and moreover ring structure can also be calculated.
These are carried out by G. Walker in [9]. But the more cells the
space has, the more difficult the determination becomes.

In this paper we shall give the 0-th stable cohomotopy group of
G2, the exceptional Lie group, by means of G, Walker's method in
the above mentioned paper and S. Oka's accurate study of the stable
homotopy type of G2 in [6]. We shall also determine the ring
structure by the results of P. Eccles and G0 Walker [3], Then we
shall be able to recover that [G2? L]=K (see §4) .

We denote the q-th reduced stable cohomotopy of X by rcq(X)
, Sm+q~]}. We state our main results.

Theorem 1. 1. iP(G2') =

Generators are q*a2, q*tc, u2pj', Ext e — a Ext 57, Ext e, £, a1? a1>7, res-
pectively (see §3).

Theorem 1.2. l).&=i?pj' + v mod 4Exl(-4<7 ExT). 2).

= 2v. 3). vz — *li)-}-q*K, where v = aExt 5? + Ext e. Other products are trivial,

This paper is organized as follows. In Section 2, we recall the
result of [6]. In Section 3, we shall prove our main Theorem 1.1.
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In Section 45 we shall give above results on the ring structure and
prove our application to [G2? L~\.

§2, fr°(JT3) and ^(F11)

First we recall that G2 is stably equivalent to the space Q\/SU.
For the space (£, there exists a cofibration X*->Q-^Y11, where X3 and
Yu are following cofibers. ([6]).

(2. 1) M4^-^S3-^X3-^M^

(2. 2) S10— M8— F11— S11.

Here Mn denotes the Moore space Sn(Jen+1.
2

From above cofibrations we obtain exact sequences as follows.

(2. 3) 0< - 7T° (S3) ^—7? (X3)

(2. 4)

Lemma A8 In the exact sequence (2. 4) ,

o ker ^* = Z4<tfExt ^> + Z4<Ext e>0 V) . ker /* = Z4<2C>0

Byje Mukai [4], 7r°(M8) =Z4<Ext £>©Z4<>Ext
Now T)* (pp) = (Jff) is the generator of 7rJ0(Toda [8]), where /> is a
projection map.

Consider elements ^(0-Ext 37)5 TJ* (Ext e), these are nothing but
Toda brackets {o1 ,̂ 2, TJ\ and {s, 23 27} . We see easily these contain
zero. Thus a) is obvious. For 6), this time we need to investigate
(A 2

3 ^) 3 (^^ 25 7]} and foe, 23 57} . {^57, 2, 77} =) ̂  {57, 2, 57} , foe, 29 17}
Dsfo32537} and fo? 2, 57} = {p'9 -v'} (5.4 [8]). These contain zero
since i/ = 2i;. We see easily that {//, 25 77} contains 2C3 for example
by ^-invariant of Adams (Theorem 11. 1 in [1]). q0 e. d.

We shall determine group extension in (2. 3). Since 7T3 = Z8<i/>©
Z3<«i>, 7T°(Af5) =Z2(y

2py, we only consider the two primary compo-
nent. We obtain an equality as follows.

(v) =/* {8 ,̂ v, %} mod /(
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This equality is due to Toda (Proposition 1. 9 [8], also refer Walker

[9]). By the natural property of Toda brackets, i0 {8^ y, fj] = {i0, 8^ v]

( — 6^)5 where z'0: S°->M° is the inclusion,, We obtain (z'o, 8^ y} =

(Coext 77) )?2 since /?{zo58^y} can be easily seen to be 4v=/? (Coext

3?) if and by Theorem 3. 2, [4] (Goext )?)/72 is a generator of \_S\ M°]

= Z2o On the other hand, as (Coext rf)rf( — Ext 6*27) =372^3 ̂ O by vi) of

Proposition 2.1 [5]? {z'o, 8*, v} ( — 77) = 0. Finally, z'0 induces a mono-

morphism i0* : [Af5, 5°]-^[M5
3 Af°] again by [4. Theorem 3.1 and

Theorem 3. 3]. So {8*, v,#}=0. Thus (2.3) is split. We summarize

our result as follows,,

Proposition 20 5.

Analogously9 we obtain the following,,

Proposition 20 60 7r°(Yn) =Z4<E^tT-

Z7<a1>7>.

Proof, {4^9 Ext £3 ̂ } 4c= {2c, 2Ext s? ^} 4*= {2^ e^3 ^} 4^= {2^? s^? ^}

4^-=4C since [2c, ey, ?]} =C+ 2^ [8, (9.4)]. Therefore {4*, Ext e, fl}
contains the element C- Thus the extension of Ext £3 we denote it

by Ext e, is the element of order 8. Similarly aExt 37 has the order
80 Finaly3 by (2. 4) and Lemma A we obtain our proposition,,

§ 3, The Determination of w°(C?2)

Let (f> be a map given in [6]. Then there exists the cofibration

as follows.

(3. 1 ) x3-^d-^Y11-^ S X3 ( - X4) .

Because first we see that ^(Y11) is easily seen to be zero and Tr'1^3)
contains only elements of order 2? on the other hand 0 is equal to

2(l'i/)o1/ by [6. Theorem 4. 12], Then it is not hard to show that
the following is exact,

(3. 2) 0< - 7T° (X3) < - 7r° (Q) < - if ( Y11) < - 08

We have to determine this group extension,, First we consider the
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2-component. As in Section 2, we need to know Toda brackets

{2,, *pj'9 Z-*f} and {fc, P, 2~^} . &, »2pj\ ^Vl D {2,, u», />/ ^Vl

contains zero since 0 = 2 ( I i ' ) f f j " and £/' is order 2. Thus the Z2-

summand splits. We claim that {&, P, ̂ ~V1 = 0? since without indeter-

minacy we obtain the equality: {&, P, ̂ "VJ = {8', 23 2t V ̂ -1/} = {8*,

K'cr, 2£~lj"} =0 since fJi /a = w = 0. Therefore Z8-summand also splits0

As at the prime 3 (£ is stably equivalent to (S3 W 011) , we only have
2«2

to consider the Toda bracket {3 ,̂ al9 2a2] . By Theorem 11.4 [1], we
see that its ^-invariant, ec{3^cxl9 a2] = — d ( 4 9 6 ) / 3 mod Z and (1/3)
Z. As we may take <5(45 6) =2* 5 -23/3° 7, our invariant is nontrivial.
Thus we obtain a nontrivial extension on the 3-primary part. Now
we complete the proof.

§4e The Ring Structure (Proof of Theorem 1.2)

To prove Theorem 1.23 we use the results of [3] and the spectral
sequence of Atiyah-Hirzebruch associated to the filtration Fq(X)9

°(Xq-1^ Xq~l is a (^-1) -skeleton of X. Thus

\ ExTs, crExt feF8, 4Ext 7= 40Exty=f (Q , al9?

g*((T2)3 ^*(/r)eF14
5 where Fm = Fm(G2}. It is easy to see that

all products except S2, a\, (v2pj'}\ (v2pj')v, (v2pj')»2, *x and (Jpj')x

(x = Exts or crExt^), P3, P4
3 5-j*(C) are zero for filtration reasonse

In the Atiyah-Hirzebruch spectral sequence,

converges to v. By the multiplicative properties,

converges to i^/y', i^e-El'9 converges to P3. Since 2/XC) has the

filtration 14 and corresponds to vC = 0? it is trivial. Also relations

i#r = ye = 0 give the results (v2pj')x = Q, (^ = Exts or ffExtfl). On the

other hand, the element P2 is equal to \?pj' at filtration 6, P3 and

(y2/?j')y corresponds to 22 at F9 since \? = rfa + r]e, which is 2(aExt 37

+ Ext e) in 7r°(M8)0 In if(SU(3)) it has been proved that &=»,

thus by the natural inclusion we obtain that &2 = i?pj'+v + t9 where t

is an element of higher filtration. As G2 is stably self dual, we can

apply Proposition 3. 1 of [3]0 Using this proposition, a composition

Su-^-»G2f\G2^S0/\S° = S0 is the Toda bracket {!>, &£>*}, where d

is a duality map and P* means the dual of £. The bracket {£,
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contains zero since 2 {0, ifol~lj\ v*} =0 (*?4(5°) = (2)2). Thus the
restriction of t to the top cell ( = SU) is trivial This is 1). Similarly,,
(rfpj')& = 2v mod/'(0 since {£, 0, (rfpj')*} also cotains zero0 Moreover
the element (i?pj')9 can not involve /(£) by the ^-invariant argu-
ment. Namely, we define ^-invariant on [Q ,̂ 5"°] and [Y11,5°] in
terms of the Ghern character as in [6], so that we obtain the follow-
ing commutative diagram.

in which vertical arrows are monic0 On [F11, 5°], £c(j"(O) —1/4
mod(l/2)Z, thus ec of/'CQ on 02,5°] is also nontriviaL ^ince we
can easily see that ec((v

2pj'}fy — 0c(2y) =0, we obtain our result
Part 3). As tf = v(u2pj'+v) =2v+vv by 1) and 2), we have to

determine £v. Since this element has the filtration 143 we can use the
similar method as above to obtain that at the top cell vv is equal to
the bracket [v, Ext % Goext £} which is * by [8] p0 96. Samely P4

and (j^/y7)2 are also seen to be trivial,

(Odd prime case). It is well known that at the prime 3, G2 is
equivalent to (53W^n) (Jeu. We obtain the following homotopy

2«2

commutative diagram.

where J is the diagonal map, C — 5s W^11, ^ is a representative of the
2«2

restriction of ax to C. Obviously, there exists A which makes this
diagram commutative. We observe that nfiCCAC1) = 0, thus the top
rows of the diagram are trivial. Therefore &* is contained in F12(G2)0

Since Xu(S0)w=Q we can conclude that &\ = Q.

Let [G2? i] be a stable homotopy element obtained by applying
the Pontryagin-Thom construction to the left invariant framing L of
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G2. By [7], [10], it has been shown that [G2,L]=Ka Also in [2],
this fact is stated without the full proof. Combining our theorem above
with the method in [2], we can easily obtain the result.

Corollary 4.1. ([7], [10] and [2]). [G2, L]=*.

Proof. q*[G2,LJ=J2
R(JR-2) by [2. (5.4) Theorem (a)], where

JR is the Hopf construction of 7-dimensional representation of G2«
As it is seen by the natural inclusion (S

lt/(3)-»G2 that JR=±$-l-t, t
an element of higher filtration. Thus g*[G2, L]=2v2±i?=q*K by our
theorem above.
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