The Stable Cohomotopy Ring of G_2 Dedicated to Professor Hirosi Toda on his 60th birthday

By

Ken-ichi MARUYAMA*

§1. Introduction

The fact that a Lie group (generally a finite *H*-space) has a stably trivial attaching map of its top cell makes a little bit easier to determine the cohomotopy groups, especially when the space has a few cells. Actually, for Sp(2) and SU(3), it is easy to obtain 0-th cohomotopy groups, and moreover ring structure can also be calculated. These are carried out by G. Walker in [9]. But the more cells the space has, the more difficult the determination becomes.

In this paper we shall give the 0-th stable cohomotopy group of G_2 , the exceptional Lie group, by means of G. Walker's method in the above mentioned paper and S. Oka's accurate study of the stable homotopy type of G_2 in [6]. We shall also determine the ring structure by the results of P. Eccles and G. Walker [3]. Then we shall be able to recover that $[G_2, L] = \kappa$ (see §4).

We denote the q-th reduced stable cohomotopy of X by $\pi^{q}(X)$ $(=\lim[S^{m}X, S^{m+q}])$. We state our main results.

Theorem 1.1. $\pi^0(G_2) = Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_4 \oplus Z_8 \oplus Z_8 \oplus Z_{27} \oplus Z_7$. Generators are $q^*\sigma^2$, $q^*\kappa$, $\nu^2 pj'$, $\operatorname{Ext} \varepsilon - \sigma \operatorname{Ext} \eta$, $\operatorname{Ext} \varepsilon$, $\tilde{\nu}$, $\tilde{\alpha}_1$, $\tilde{\alpha}_{1,7}$, respectively (see §3).

Theorem 1.2. 1). $\tilde{\nu}^2 \equiv \nu^2 p j' + \tilde{\nu} \mod 4 \operatorname{Ext} \varepsilon (= 4\sigma \operatorname{Ext} \eta)$. 2). $(\nu^2 p j') \tilde{\nu} = 2\tilde{\tilde{\nu}}$. 3). $\tilde{\nu}^3 = 2\tilde{\tilde{\nu}} + q^* \kappa$, where $\tilde{\tilde{\nu}} = \sigma \operatorname{Ext} \eta + \operatorname{Ext} \varepsilon$. Other products are trivial.

This paper is organized as follows. In Section 2, we recall the result of [6]. In Section 3, we shall prove our main Theorem 1.1.

Communicated by N. Shimada, March 9, 1987.

^{*} Department of Mathematics, Kyushu University, Fukuoka 812, Japan.

In Section 4, we shall give above results on the ring structure and prove our application to $[G_2, L]$.

§ 2. $\pi^{0}(X^{3})$ and $\pi^{0}(Y^{11})$

First we recall that G_2 is stably equivalent to the space $Q \vee S^{14}$. For the space Q, there exists a cofibration $X^3 \rightarrow Q \rightarrow Y^{11}$, where X^3 and Y^{11} are following cofibers. ([6]).

$$(2.1) M^4 \xrightarrow{\eta} S^3 \xrightarrow{i'} X^3 \xrightarrow{j'} M^5.$$

$$(2,2) S^{10} \xrightarrow{\dagger} M^8 \xrightarrow{i''} Y^{11} \xrightarrow{j''} S^{11}$$

Here M^n denotes the Moore space $S^n \cup e^{n+1}$.

From above cofibrations we obtain exact sequences as follows.

(2.3)
$$0 \longleftrightarrow \pi^{0}(S^{3}) \xleftarrow{i^{\prime *}} \pi^{0}(X^{3}) \xleftarrow{j^{\prime *}} \pi^{0}(M^{5}) \longleftarrow 0.$$

(2.4)
$$\pi^{0}(S^{10}) \stackrel{\mathfrak{F}^{*}}{\longleftarrow} \pi^{0}(M^{8}) \stackrel{i'''}{\longleftarrow} \pi^{0}(Y^{11}) \stackrel{j'''*}{\longleftarrow} \pi^{0}(S^{11}) \stackrel{\mathfrak{F}^{*}}{\longleftarrow} \pi^{0}(M^{9}).$$

Lemma A. In the exact sequence (2.4), a). ker $\tilde{\eta}^* = Z_4 \langle \sigma \text{Ext } \eta \rangle + Z_4 \langle \text{Ext } \varepsilon \rangle$. b). ker $j''^* = Z_4 \langle 2\zeta \rangle$.

Proof. By J. Mukai [4], $\pi^0(M^8) = Z_4 \langle \text{Ext } \varepsilon \rangle \bigoplus Z_4 \langle \sigma \text{Ext } \eta \rangle \bigoplus Z_2 \langle \mu p \rangle$. Now $\tilde{\eta}^*(\mu p) = \mu \eta$ is the generator of π_{10}^s (Toda [8]), where p is a projection map.

Consider elements $\tilde{\eta}^*(\sigma \text{Ext }\eta)$, $\tilde{\eta}^*(\text{Ext }\varepsilon)$, these are nothing but Toda brackets $\{\sigma\eta, 2, \eta\}$ and $\{\varepsilon, 2, \eta\}$. We see easily these contain zero. Thus a) is obvious. For b), this time we need to investigate $\{\mu, 2, \eta\}$, $\{\eta\sigma\eta, 2, \eta\}$ and $\{\eta\varepsilon, 2, \eta\}$. $\{\eta\sigma\eta, 2, \eta\} \supset \eta\sigma\{\eta, 2, \eta\}$, $\{\eta\varepsilon, 2, \eta\}$ $\supset \varepsilon\{\eta, 2, \eta\}$ and $\{\eta, 2, \eta\} = \{\nu', -\nu'\}$ (5.4 [8]). These contain zero since $\nu'=2\nu$. We see easily that $\{\mu, 2, \eta\}$ contains 2 ζ , for example by *e*-invariant of Adams (Theorem 11.1 in [1]). q. e. d.

We shall determine group extension in (2. 3). Since $\pi_3^s = Z_8 \langle \nu \rangle \bigoplus Z_3 \langle \alpha_1 \rangle$, $\pi^0(M^5) = Z_2 \langle \nu^2 p \rangle$, we only consider the two primary component. We obtain an equality as follows.

$$8\iota i'^{*-1}(\nu) = j'^* \{8\iota, \nu, \bar{\eta}\} \mod j'(8\iota[M^5, S^0]).$$

This equality is due to Toda (Proposition 1.9 [8], also refer Walker [9]). By the natural property of Toda brackets, $i_0\{8\iota, \nu, \bar{\eta}\} = \{i_0, 8\iota, \nu\}$ $(-S\bar{\eta})$, where $i_0: S^0 \rightarrow M^0$ is the inclusion. We obtain $\{i_0, 8\iota, \nu\} =$ $(\operatorname{Coext} \eta) \eta^2$ since $p\{i_0, 8\iota, \nu\}$ can be easily seen to be $4\nu = p(\operatorname{Coext} \eta) \eta^2$ and by Theorem 3.2. [4] ($\operatorname{Coext} \eta) \eta^2$ is a generator of $[S^4, M^0] = Z_2$. On the other hand, as ($\operatorname{Coext} \eta) \eta^2(-\operatorname{Ext} S\bar{\eta}) = \eta_2^2 \eta_3 = 0$ by vi) of Proposition 2.1 [5], $\{i_0, 8\iota, \nu\}(-\bar{\eta}) = 0$. Finally, i_0 induces a monomorphism $i_{0*}: [M^5, S^0] \rightarrow [M^5, M^0]$ again by [4. Theorem 3.1 and Theorem 3.3]. So $\{8\iota, \nu, \bar{\eta}\} = 0$. Thus (2.3) is split. We summarize our result as follows.

Proposition 2.5. $\pi^0(X^3) = Z_8 \langle \tilde{\nu} \rangle \oplus Z_3 \langle \tilde{\alpha}_1 \rangle \oplus Z_2 \langle \nu^2 p j' \rangle$, where $i'^*(\tilde{\nu}) = \nu$, $i'^*(\tilde{\alpha}_1) = \alpha_1$.

Analogously, we obtain the following.

Proposition 2.6. $\pi^{0}(Y^{11}) = Z_{4} \langle \widetilde{\operatorname{Ext} \varepsilon} - \sigma \widetilde{\operatorname{Ext} \eta} \rangle \oplus Z_{8} \langle \widetilde{\operatorname{Ext} \varepsilon} \rangle \oplus Z_{9} \langle \alpha'_{3} \rangle \oplus Z_{7} \langle \alpha_{1,7} \rangle.$

Proof. $\{4\iota, \operatorname{Ext} \varepsilon, \tilde{\eta}\} 4\iota = \{2\iota, 2\operatorname{Ext} \varepsilon, \tilde{\eta}\} 4\iota = \{2\iota, \varepsilon\eta, \eta\} 4\iota = \{2\iota, \varepsilon\eta, \eta\} 4\iota = \{2\iota, \varepsilon\eta, \eta\} 4\iota = 4\zeta \text{ since } \{2\iota, \varepsilon\eta, \eta\} = \zeta + 2\pi_{11}^{s}[8, (9, 4)].$ Therefore $\{4\iota, \operatorname{Ext} \varepsilon, \tilde{\eta}\}$ contains the element ζ . Thus the extension of $\operatorname{Ext} \varepsilon$, we denote it by $\operatorname{Ext} \varepsilon$, is the element of order 8. Similarly $\widetilde{\sigma\operatorname{Ext} \eta}$ has the order 8. Finally, by (2.4) and Lemma A we obtain our proposition.

§ 3. The Determination of $\pi^{0}(G_2)$

Let ϕ be a map given in [6]. Then there exists the cofibration as follows.

(3.1)
$$X^3 \xrightarrow{i} Q \xrightarrow{j} Y^{11} \xrightarrow{\phi} \Sigma X^3 (=X^4).$$

Because first we see that $\pi^1(Y^{11})$ is easily seen to be zero and $\pi^{-1}(X^3)$ contains only elements of order 2, on the other hand ϕ is equal to $2(\Sigma i')\sigma j''$ by [6. Theorem 4.12]. Then it is not hard to show that the following is exact.

$$(3.2) \qquad \qquad 0 \longleftarrow \pi^0(X^3) \longleftarrow \pi^0(Q) \longleftarrow \pi^0(Y^{11}) \longleftarrow 0.$$

We have to determine this group extension. First we consider the

2-component. As in Section 2, we need to know Toda brackets $\{2\iota, \nu^2 pj', \Sigma^{-1}\phi\}$ and $\{8\iota, \tilde{\nu}, \Sigma^{-1}\phi\}$. $\{2\iota, \nu^2 pj', \Sigma^{-1}\phi\} \supset \{2\iota, \nu^2, pj' \Sigma^{-1}\phi\}$ contains zero since $\phi = 2(\Sigma i')\sigma j''$ and pj' is order 2. Thus the Z_2 -summand splits. We claim that $\{8\iota, \tilde{\nu}, \Sigma^{-1}\phi\} = 0$, since without indeterminacy we obtain the equality: $\{8\iota, \tilde{\nu}, \Sigma^{-1}\phi\} = \{8\iota, \tilde{\nu}, 2i'\sigma \Sigma^{-1}j''\} = \{8\iota, \tilde{\nu}'\sigma, 2\Sigma^{-1}j''\} = 0$ since $\tilde{\nu}i'\sigma = \nu\sigma = 0$. Therefore Z_8 -summand also splits. As at the prime 3 Q is stably equivalent to $(S^3 \cup e^{11})$, we only have to consider the Toda bracket $\{3\iota, \alpha_1, 2\alpha_2\}$. By Theorem 11.4 [1], we see that its e_c -invariant, $e_c\{3\iota, \alpha_1, \alpha_2\} = -\delta(4, 6)/3 \mod Z$ and (1/3) Z. As we may take $\delta(4, 6) = 2 \cdot 5 \cdot 23/3 \cdot 7$, our invariant is nontrivial. Thus we obtain a nontrivial extension on the 3-primary part. Now we complete the proof.

§4. The Ring Structure (Proof of Theorem 1.2)

To prove Theorem 1.2, we use the results of [3] and the spectral sequence of Atiyah-Hirzebruch associated to the filtration $F^q(X)$, $F^q(X) = \ker[\pi^0(X) \to \pi^0(X^{q-1})]$, X^{q-1} is a (q-1)-skeleton of X. Thus $\tilde{\nu}, \tilde{\alpha}_1 \in F^3, \nu^2 p j' \in F^6$, $\tilde{\operatorname{Ext}} \varepsilon, \sigma \tilde{\operatorname{Ext}} \eta \in F^8$, $\tilde{\operatorname{4Ext}} \varepsilon = \tilde{\operatorname{4\sigma Ext}} \eta = j''(\zeta), \tilde{\alpha}_{1,7} \in F^{11}, q^*(\sigma^2), q^*(\kappa) \in F^{14}$, where $F^m = F^m(G_2)$. It is easy to see that all products except $\tilde{\nu}^2, \tilde{\alpha}_1^2, (\nu^2 p j')^2, (\nu^2 p j')\tilde{\nu}^2, \tilde{\nu}x$ and $(\nu^2 p j')x$ $(x = \tilde{\operatorname{Ext}} \varepsilon \text{ or } \sigma \tilde{\operatorname{Ext}} \eta), \tilde{\nu}^3, \tilde{\nu}^4, \tilde{\nu} \cdot j''(\zeta)$ are zero for filtration reasons.

In the Atiyah-Hirzebruch spectral sequence,

$$E_2^{i,j} = H^i(G_2: \pi_j^S) \Longrightarrow \pi^{i-j}(G_2).$$

 $\nu \in E_2^{3,3}$ converges to $\tilde{\nu}$. By the multiplicative properties, $\nu^2 \in E_2^{6,6}$ converges to $\nu^2 p j'$, $\nu^3 \in E_2^{9,9}$ converges to $\tilde{\nu}^3$. Since $\tilde{\nu} j''(\zeta)$ has the filtration 14 and corresponds to $\nu \zeta = 0$, it is trivial. Also relations $\nu \sigma = \nu \varepsilon = 0$ give the results $(\nu^2 p j') x = 0$, $(x = \operatorname{Ext} \varepsilon \text{ or } \sigma \operatorname{Ext} \eta)$. On the other hand, the element $\tilde{\nu}^2$ is equal to $\nu^2 p j'$ at filtration 6, $\tilde{\nu}^3$ and $(\nu^2 p j') \tilde{\nu}$ corresponds to $2\tilde{\nu}$ at F^9 since $\nu^3 = \eta^2 \sigma + \eta \varepsilon$ which is $2(\sigma \operatorname{Ext} \eta + \operatorname{Ext} \varepsilon)$ in $\pi^0(M^8)$. In $\pi^0(SU(3))$ it has been proved that $\tilde{\nu}^2 = \tilde{\nu}$, thus by the natural inclusion we obtain that $\tilde{\nu}^2 = \nu^2 p j' + \tilde{\nu} + t$, where t is an element of higher filtration. As G_2 is stably self dual, we can apply Proposition 3.1 of [3]. Using this proposition, a composition $S^{14} \xrightarrow{d} G_2 \wedge G_2 \xrightarrow{\tilde{\nu} \wedge \tilde{\nu}} S^0 \wedge S^0 = S^0$ is the Toda bracket $\{\tilde{\nu}, \phi, \tilde{\nu}^*\}$, where d is a duality map and $\tilde{\nu}^*$ means the dual of $\tilde{\nu}$. The bracket $\{\tilde{\nu}, \phi, \tilde{\nu}^*\}$ contains zero since $2\{\tilde{\nu}, i'\sigma\Sigma^{-1}j'', \tilde{\nu}^*\} = 0$ ($\pi_{14}^S(S^0) = (2)^2$). Thus the restriction of t to the top cell ($=S^{14}$) is trivial. This is 1). Similarly, $(\nu^2 p j')\tilde{\nu} \equiv 2\tilde{\nu} \mod j''(\zeta)$ since $\{\tilde{\nu}, \phi, (\nu^2 p j')^*\}$ also cotains zero. Moreover the element $(\nu^2 p j')\tilde{\nu}$ can not involve $j''(\zeta)$ by the e_c -invariant argument. Namely, we define e_c -invariant on $[Q, S^0]$ and $[Y^{11}, S^0]$ in terms of the Chern charactor as in [6], so that we obtain the following commutative diagram.

$$e_c \colon [Q, S^0] \longrightarrow Q/2Z \oplus Q/\frac{1}{2}Z$$

$$\uparrow \qquad \uparrow$$

$$e_c \colon [Y^{11}, S^0] \longrightarrow Q/\frac{1}{2}Z,$$

in which vertical arrows are monic. On $[Y^{11}, S^0]$, $e_C(j''(\zeta)) = 1/4 \mod(1/2)Z$, thus e_C of $j''(\zeta)$ on $[Q, S^0]$ is also nontrivial. Since we can easily see that $e_C((\nu^2 p j') \tilde{\nu}) = e_C(2\tilde{\nu}) = 0$, we obtain our result.

Part 3). As $\tilde{\nu}^3 = \tilde{\nu} (\nu^2 p j' + \tilde{\nu}) = 2\tilde{\nu} + \tilde{\nu}\tilde{\nu}$ by 1) and 2), we have to determine $\tilde{\nu}\tilde{\nu}$. Since this element has the filtration 14, we can use the similar method as above to obtain that at the top cell $\tilde{\nu}\tilde{\nu}$ is equal to the bracket { $\tilde{\nu}$, Ext η , Coext $\bar{\nu}$ } which is κ by [8] p. 96. Samely $\tilde{\nu}^4$ and $(\nu^2 p j')^2$ are also seen to be trivial.

(Odd prime case). It is well known that at the prime 3, G_2 is equivalent to $(S^3 \cup e^{11}) \cup e^{14}$. We obtain the following homotopy commutative diagram.

where Δ is the diagonal map, $C = S^3 \bigcup_{2\alpha_2} \ell^{11}$, g is a representative of the restriction of $\tilde{\alpha}_1$ to C. Obviously, there exists $\bar{\Delta}$ which makes this diagram commutative. We observe that $\pi^{S}_{11}(C \setminus C) = 0$, thus the top rows of the diagram are trivial. Therefore $\tilde{\alpha}^2_1$ is contained in $F^{12}(G_2)$. Since $\pi^{S}_{14}(S^0)_{(3)} = 0$ we can conclude that $\tilde{\alpha}^2_1 = 0$.

Let $[G_2, L]$ be a stable homotopy element obtained by applying the Pontryagin-Thom construction to the left invariant framing L of G_2 . By [7], [10], it has been shown that $[G_2, L] = \kappa$. Also in [2], this fact is stated without the full proof. Combining our theorem above with the method in [2], we can easily obtain the result.

Corollary 4.1. ([7], [10] and [2]). $[G_2, L] = \kappa$.

Proof. $q^*[G_2, L] = J_R^2(J_R-2)$ by [2. (5.4) Theorem (a)], where J_R is the Hopf construction of 7-dimensional representation of G_2 . As it is seen by the natural inclusion $SU(3) \rightarrow G_2$ that $J_R = \pm \mathfrak{p} + t$, t an element of higher filtration. Thus $q^*[G_2, L] = 2\mathfrak{p}^2 \pm \mathfrak{p}^3 = q^*\kappa$ by our theorem above.

References

- [1] Adams, J. F., On the group J(X)-IV, Topology, 5 (1966), 21-71.
- [2] Becker, J. C. and Schultz, R. E., Fixed point indices and left invariant framings, Proceedings of Northwestern Topology Conf. 1977, Springer Lecture Notes in Math., 657, 1-31.
- [3] Eccles, P. J. and Walker, G., The elements β_1 are representable as framed hypersurfaces, J. London Math. Soc. (2), 22 (1980), 153-160.
- [4] Mukai, J., Stable homotopy of some elementary complexes, Mem. Fac. Sci. Kyushu Univ., Ser. A, 20 (1966), 266-282.
- [5] _____, On the stable homotopy of a Z₂-Moore space, Osaka J. Math., 6 (1969), 63-91.
- [6] Oka, S., Homotopy of the Exceptional Lie group G₂, Proc. Edinburgh Math. Soc., 29 (1986), 145-169.
- [7] Steer, B., Orbits and the Homotopy class of the compacsification of a classical map, Topology, 15 (1976), 383-393.
- [8] Toda, H., Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies, No. 49. Princeton University Press, Princeton, 1962.
- [9] Walker, G., The stable cohomotopy rings of SU(3) and Sp(2), Bull. London Math. Soc., 9 (1977), 93-96.
- [10] Wood, R., Framing the exceptional Lie group G_2 , Topology, 15 (1976), 303-320.

736