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Outer Conjugacy for Actions
of Continuous Amenable Groups

By

Valentin Ya. GOLODETS* and Sergey D. SlNELSHCHIKOV**

Abstract

The paper introduces a cohomological approach to the outer conjugacy problem in ergodic
theory. Specifically, the following fact is proved: up to an isomorphism of an approximately
finite type II ergodic full group there exists only one cohomological class of cocycles with dense
range in a given amenable group. This result is used to establish outer conjugacy for strictly
outer actions of continuous unimodular amenable subgroups of the normalizer of the full group
generated by an ergodic type II automorphism. As a special case we show that outer conjugacy
of compact groups reduces merely to conjugation. Besides that the correlation is established
between the automorphisms of a principal groupoid with continuous orbits and ones of its
discrete reduction. Also the correspondence is found between the automorphisms of groupoids
with continuous orbits and those of the associated von Neumann algebras.

§ Do Introduction

The classification of Lebesgue space automorphisms is one of the
central problems in ergodic theory. Initially the notion of conjugacy (or

just isomorphism) of the measure space transformations was imposed.

Among other well known invariants of conjugacy one should mention first

of all the entropy introduced by Kolmogorov and Sinai [7]. This permits

the complete classification of Bernoulli shifts to be obtained [27]. How-

ever, a large collection of non-isomorphic transformations hints that a

Communicated by H. Araki, May 26, 1986. Revised February 25, 1987.
* Institute for Low Temperature Physics and Engineering, UkrSSR Academy of Sciences,

Lenin avenue, 47, Kharkov 310164, USSR.
** Kharkov State University, Department of Mechanics and Mathematics, Dzerzhinsky square

4, Kharkov 310077, USSR.



738 VALENTIN YA. GOLODETS AND SERGEY D. SINELSHCHIKOV

simple complete system of invariants for conjugacy can hardly be found.
It became clear later that it is important to study the orbit equivalence

for actions of (possibly different) groups on a Lebesgue space. A
significant progress in this sphere was advanced in works of W. Krieger
[22] and T. Hamachi, Yu. Oka, M. Osikawa [17]. Now one has that the
ergodic actions of any two discrete amenable groups with a finite invariant
measure are orbit equivalent [5]. A similar result is valid also for a class
of continuous amenable unimodular locally compact separable (l.c.s.)
groups [28].

As soon as the orbit equivalence classes of amenable group actions
were described, the problem of studying the outer automorphism groups of
amenable equivalence relations came up, and first of all the problem of
outer conjugacy of such groups (see the definition in § 3). The first result
in this field was obtained by A. Connes and W. Krieger [6], where they
described the complete system of invariants for outer conjugacy of
Z-actions in the normalizer of the full approximately finite group [F] in the
case when the /"-action is of type II. After that a similar problem was
solved for a transformation group F of type III [1], and in [2], [3] a
complete system of invariants was obtained for actions of countable
amenable groups in the normalizer of an approximately finite ergodic full
group of an arbitrary type. The outer conjugacy for actions of countable
groups were also studied in [33]. The outer conjugacy problem for contin-
uous transformation groups was never considered before.

It should be noted that the outer conjugacy is also extensively studied
for automorphism groups of von Neumann algebras (see for instance [4],
[21], [26], [35]). However, for the case of continuous groups, except
compact Abelian ones [21], the worthwhile results are still unknown.

We approach the studying of outer conjugacy problem by proving the
uniqueness theorem for cocycles of an ergodic type II automorphism with
dense ranges (see [14] and Theorem 1.5 of this paper). This theorem is
also of some independent interest. It claims that up to an automorphism
of the full group there exists only one cohomological class of cocycles with
dense ranges in a fixed amenable group.

In § 2 we establish a correspondence between the automorphisms of
measure groupoids with continuous orbits and ones of their discrete reduc-
tions and the associated von Neumann algebras (see Theorems 2.4, 2.7
— 2.8). We also describe how to form the semidirect product of a measure
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groupoid with discrete orbits by a continuous l.c.s. group of its non-strict
automorphisms (Remark 2.2).

§ 3 contains the proof of the main result concerning outer conjugacy
for strictly outer actions of continuous unimodular amenable l.c.s. groups

(Theorem 3.3). The case of compact groups is considered separately in

§ 4. It will be shown that outer conjugacy of such groups reduces merely
to conjugation by means of some transformation from the full group
normalizer (Theorem 4.1; cf. [38]).

Finally, we prove in Appendix that the equivalence relation generated
by an ergodic automorphism T together with an amenable subgroup of
N[T], is approximately finite (Theorem Al).

The present paper is a mildly expanded version of our preprint [37].

§ 1. Uniqueness Theorem for Cocycles with Dense Ranges

We begin with recalling some definitions. Let (5, p) be a Lebesgue
space and 3) a non-singular countable transformation group of (S, //).

Then one can consider the full group [3)] of automorphisms 7 on (S, IJL)

such that rs^{cos: o)^3)} for a.a. s^S [6]. In the case when 3) is generat-

ed by a single transformation T we shall write [T] to denote the corre-
sponding full group. The 3)-action on 5 and the full group [3)] are said to
be of type Hi (IL,) if there exists a finite (infinite ) ^-invariant measure,
equivalent to p..

The normalizer N[3)] of the full group [3)] is formed by the automor-
phisms #<EAut (S, //) with the property 0~l[3)]ff = [d)]. Assume that [3)]

is of type Hi, and p. is ^-invariant, then any 9^N[3)} is /^-preserving. In

the case of type ILo one has v°d = (mod d)° p, for some positive number
modd [6].

Suppose a l.c.s. group H acts ergodically on a Lebesgue space (X, v).

A Borel map x: H x X-* G is called a cocycle of a dynamical system (X, v,

H) with values in a l.c.s. group G if 7c(h2hi, x) = x(h2, h\x)n(h\, x) for all hi,

hz^H at a.a. x^X. Two cocycles n and r are said to be cohomologous

if r(h, x)=g(hx)~l7r(h, x)g(x) for some Borel function g\ X-+G for all &£E
H at a.a. x^X.

Let fjtc be the left Haar measure for G, then one can define a //-action

on (GxX, A*cXy) as follows: h(g, x) = (x(h, x)g, hx) for h^H, (g, x)^G
x X. We call it the skew producO action and denote by G x nX. In the
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case when this action is ergodic, the cocycle n is said to have a dense range
in G [24].

Let F = {0,1} be a two element set with a measure v defined by y({0})
= y({l}) = l/2, then one can form a Lebesgue space (X, p) = ( Y, v)N with N
being the set of positive integers. (X, p) admits a countable Abelian
measure preserving transformation group F generated by the automor-
phisms dk, k^N, given by

for every sequence of O's and 1's
The dynamical system (X, ^ F) is orbit equivalent to an ergodic type

Hi automorphism [34], [5], and hence every cocycle of the latter can be
transferred to (X, p., F). Let G be a l.c.s. group, then by [13, Theorem 2 of
§ 1] every cocycle c: FxX-> G is completely determined by a sequence of
Borel maps /*: A> G,

(1.1) c(Sklx)

with every fk(x) being invariant with respect to <5i, • • • , 8k. Conversely,
every sequence of Borel maps /*: X-* G satisfying the invariance condition
as above generates some cocycle c in correspondence with (1.1).

Definition 1.1. A cocycle c: FxX^G, determined by a sequence of
Borel functions /*: X-*G (see (1.1)), is said to have a special form if the
following conditions are satisfied:

(i) every function fk(x) takes only finitely many values;
(ii) the inverse images for /* are the finite unions of cylinder sets;
(iii) there exists a sequence {w,-}"=iC JV such that fk(Sjx)=fk(x) for k<

mi<j or, equivalently, fh(x) depends only on X k + i , — 9 x n t with i being
chosen so that ml-i<k<mi.

Since the F-action on X is free, every cocycle of this action can be
uniquely extended up to a cocycle of the full group [F]. Conversely, given
any countable freely acting subgroup Ffd[F] with [F'] = [F], then every
cocycle of [F] is an extension as above of some cocycle of the F'-action on
X. We shall show that every cohomology class of cocycles with dense
range contains a cocycle of the special form relatively to some freely acting
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r'c[r] such that r is isomorphic to r and |/"] = [r].
Below in this section we shall use for a l.c.s. group G a notion { Wi}T=i

which refers to the fundamental system of neighbourhoods of the identity
in G with the following properties: every Wi is compact, Wi=Wrl, and
Wi+i-JFmCWi.

Let a and /? be the cocycles of (X, /JL, F) determined by sequences of
functions /*: X-> G and /*: X^> G respectively. Set up

Lemma 1.2. Suppose that one can associate to every pair of functions
fn(x] and fn(x] a set AndX and a neighbourhood of the identity Vn^G
such that v(An)>l-l/2n and for

Then a and /3 are cohomologous.

Proof. Let B* = n£=nA-, then fjt(Bn)>l-l/2n. Form a sequence of
functions gn(x) = <pn(xYl 9n(x). Now for all nt k^N, x^Bn we have:

9n+h(x)gn(xYl=9n + k(xYl9n + k(x)Vn(xYl9n(x)

^nUWn + lU)*^1'-^

C Wn + k-2Wn + k-2Wn + k-*'~ W, + iC-C Wn .

Since Bn^Bn+i and \Jn=\Bn = X (mod 0), the correlation gn+k(x)gn(xYl

e Wn for x^Bn implies that gn(x) converge a.e. to a function g(x) as ^->oo.
Let ^>^, then

l 9n(dkx] <pk-i(SkxYl • 7^(x)(~1>J:fe ̂ -i(x) ̂ ( j:)- I9n(x)
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= 9n(3kxYl • <pn(x) = 9k(dkxYl • <pk(x)

= 9k-i(8kxYl*Mx}(-l}Xk9k-i(x} = a(8k, x} .

Passing in the correlation

a(8*9 x)=gn(dkx)-0(3k, x)-gn(x)~l

we have got to a limit as n-+c°, we obtain for a.a. x^X and all

i.e. a is cohomologous to /?. Q.E.D.

Lemma L30 Every cocycle a:FxX-*G can be replaced by a Co-
homologous cocycle 0 with values in a given countable dense subgroup Hd
G.

Proof. Suppose a is determined by the functions /*: X-+ G. Since G
is a countable union of compact sets, one can associate to each function
fn(x) a set AndX which is invariant with respect to &, • • - , dn, p-(An}>l
— l/2n, and a compact set QndG containing the identity so that fn(x)^Qn

for x^An. Then choose a neighbourhood of the identity Vn so that for
each element h of a compact set Q\*Q2—Qn-\ one has hVnh~lc: Wn (n>2\
Vi= Wi). Approximate fn(x) by a function f n ( x ) with values in H so that
fn(x)fn(xY1^ Vnj and fn(Sjx)= f n(x) for l<j<n. Thereby we are in the
conditions of Lemma 1.2, so that if 0 is a cocycle determined by the
functions f n ( x ) , then 0 is cohomologous to a. Q.E.D.

Consider a metric d on a full group [F]:

for <o

Then ([F], d) is a complete metric space [8].

Lemma 1.4. Let a be a cocycle of the dynamical system (X, p., F) with
dense range in a l.c.s. group G. Then the cohomology class of a contains
a cocycle n admitting a representation in a special form.

Proof. One may assume by Lemma 1.3 that a takes values in a
countable dense subgroup HdG.

Let {Bi}?=i be a sequence of Borel subsets in X generating the Borel
a- algebra, and suppose that every set appears in this sequence infinitely
often. Form in a similar way a sequence {/J?=i consisting of generators of
the group F so that each generator appears in the sequence infinitely often.
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We shall construct pairwise commuting automorphisms §^[F
with order 2, which generate [F], and associate to each of them a function
pi". X-»H. These will determine a cocycle n in correspondence with (1.1).

By [8, Lemma 6.3] we can choose a cyclic subgroup L\ with order 2a in
[F] so that d([Li], /i)<l/2. Then there exist pairwise commuting
automorphisms §i, • • - , da^[r], each of them with order 2, which generate
the full group coincident with [Li] [8, Lemma 6.4]. We can associate to
everyone of these automorphisms a function /«•: X-»H so that

(1.2) f i ( x ) = a ( d t 9 x ) for x^Ff, and

(1.3) f i ( 8 j x ) = f t ( x ) for !<;</,

with Ft being a fundamental set of the group ft generated by di, • • • , di,

Choose for every function f i ( x ) , I<i<a, a finite set Qtc:H containing
the identity and a set AidX invariant with respect to d\, • • • , <5Z so that

(1.4) MA-)>1-1/2Z>1

(1.5) fi(x}^Qi for

For / as above set

,. „, .,, ^ \fi(x) for
(1.6) p l ( x ) = \

[e for

Everyone of these functions takes only finitely many values.
s

Let X= U 3)k be a partition of X generated by the inverse images of

p/(x), 2 = 1, • • • , a. Then the sets

and /-'(SiPl/Fa), A=l, -, s,

generate also a partition of Fa, say Fa=(JRj. Let p be a positive integer
.7 = 1

such that 2p>2a+lN. Represent RJy l<j<N, as a disjoint union Rj=(JRjt
i

so that fjL(Rj') = I / 2 p for l< / f<A^- l , and X^/0<l/2 /J. Denote 0 =

U U //?/J and set for
7&raj=i

,.„. ^, .(1.7) Pi(x) =
e
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It follows from (1.6) and (1.7) that pi(x)=f= f t ( x ) on a set with measure
less than l/2i+1 + I/2a+1<l/2i,

N

One can readily transform (JRjNi into the finite union of disjoint sets

with measure 1/2P which form together with R/,l<j<N,l<t<Nj — ly a
partition of Fa by 2p~a disjoint sets Af,-, 0</<2p-fl-l.

Let U be a symmetric neighbourhood of the identity in G such that for
all elements h of the finite set Qi-Q2'~Qa (see (1.4), (1.5)) one has hUh~ld
Wp. Choose a symmetric neighbourhood of the identity V so that

V-V—VdU.
(1.8)

times

Since a has dense range in G, a simple argument permits one to
construct a periodic automorphism f on Fa from the full group [F] reduced
to Ffl, with order 2p~a, which permutes Afc, 0<;<2p"f l~l, and such that ar(?,
x}^. V for a.a. x^Fa. We shall describe this construction in more details.

Let V be a symmetric neighbourhood of the identity in G satisfying
the condition V'-V'dV. It follows from the ergodicity of the skew
product action GxaX that there exist a set EidMo and an element /i^F
such that /JL(EI)>Q, yuBiCAfi, and a(r\, x)^ Vf for x^Ei. Then we form
in a similar way E2^M0\Ei and /2^F so that /^(£12)>0, 72E2^Mi\7iEi, and
#(72, x)^ V for x^Ez. Repeat this procedure infinitely many times and
thus form a Borel isomorphism a)\\ M0-»Afi(mod 0) from the full group [F]
such that coix=YiX for x^Ei, and a(coi, x)& V at a.a. x^Mo.

After that we construct in a similar manner isomorphisms cok: Mo-* Af*,
2<^C<2 / )~<2 —1; let also cyo^idMo. Define an isomorphism f: ^.r^^A+icyA"^
for x&Mk with indices being taken mod 2p~a. It is straightforward to see
that ? satisfies all necessary conditions; in particular,

<ar(£, JC^dKcyft+io;*"1, x) = a(o)k+i, a)k~
lx)'a(a)k~l, x)

= a(a)h+i, a)k-
lx)-a(a)k, cok~

lx)-1^ V- V'd V

under an appropriate choice of k.
Construct as before related to f automorphisms Si on Fa, with order

2, a + l< i<p, and then extend them onto jFa for every r^Fa by formulae
rdiY~l. Thus we obtain new automorphisms with order 2 on X which
commute in pairs with each other and with formed before S z-'s. As above,
associate with newly formed transformations the functions /,•: X^G (see
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(1.2), (1.3)). Then ft(x}^U at a.a. x^X, as one can deduce from the
properties of £ and (1.8). Set pt(x} = e for x^X, a + \<i<p, then f i ( x ) ~ l

•pi(x)<EU at a.a. x^X.
It follows from our construction that by the choice of p the set B\ is

approximated by the /V invariant ^-algebra generated by FP in measure up
to 1/2. This completes the first step of our construction (mz=p).

Repeat this procedure making the approximation more and more
exact.

At the n-th step 7* is approximated in the metric d by the group [Ln]

up to l/2n. This provides [0 /\] = [r]. Furthermore, at the n-th step Bni=\
is approximated in measure by the /^-invariant finite (7-algebra generated
by Fmn up to 1/2*. This guarantees the coincidence of the initial Borel
a- algebra on X with the a- algebra generated by the Increasing sequence of
finite a- algebras associated with Fmn, n^N.

The functions / \(x) and pi(x) formed above satisfy the conditions of
Lemma 1.2, so that if we denote by n the cocycle determined by {pi(x)}?=i,
then TT is cohomologous to a. Besides that n has a special form with

00 ^

respect to the dynamical system (X, IJL, U Ft). Q.E.D.
z = l

The following uniqueness theorem shows that any two cohomology
classes of cocycles of an approximately finite full group [d)} of type Hi with
dense range in a given amenable group differ from each other by an
automorphism in the normalizer N[9)] of the full group. The existence of
cocycles with dense ranges was established in [20], [14], [15].

Theorem 1.5. Let G be an amenable l.c.s. group, a, @: 3)xX^G the
cocycles of a free approximately finite action of a countable group 3) on a
Lebesgue space (X, IJL) with invariant probability measure p.. Suppose that
the skew product actions G x aX and Gx^X are ergodic. Then there exist
cocycles a and 0 cohomologous to a and 0 respectively as the cocycles of the
full group [£D]9 and an automorphism d^N[3)} such that a(r, x) = I3(6rd~\
Ox) for all r^[®} at a.a.

Proof. In virtue of Lemma 1.3 one may assume that a and /? take
values in a countable dense subgroup HdG. We shall reduce
simultaneously a and /3 to a special form, and a significant part of our
argument will resemble some phases of the proof of Lemma 1.4. There-
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fore we shall omit details referring the reader to the corresponding steps of
the proof of the previous theorem.

Denote by tBz-}~=i, {rJ?=i and { Wi}"=i the same as in Lemma 1.4.
Fulfil for a cocycle a the first step of the construction described in the

proof of the preceeding lemma. Thus, we construct the pairwise com-
muting automorphisms dta on X with order 2, 1< i < mi. For every / fix a
fundamental set F,- of the group IT*, generated by d\a

y • • • , <J,-fl, so that FiZ>
F2D--OF0Z2, //(F,-)=l/21'. The group [f!Ja] approximates 71 in metric d up
to 1/2, and /^-invariant finite tf-algebra generated by Fm2 approximates JBi
in measure up to 1/2. Associate to the constructed above d" the functions
ff(x) such that

fia(x) = a(dia,x) for x^Ft, and fia(Sjax)=fia(x) for ;"</.

Now for every function fia(x) form the related function pia(x) just as
in Lemma 1.4 constant on the sets 7FOT2, 7^/l?2, and invariant with respect
to TV, with values in a finite set QiC//, e^Qi, and such that

(1.9) fia(x)'pi
a(xYl^Ui for x^A", and ^(Aa)>l-l/2z'

with f/z a neighbourhood of the identity in G chosen so that hUih~ld Wt for
all h^Qi'Q2'"Qi-i.

Turn to the cocycle 0. For i as above construct using the ergodicity
of the skew product action Gx/*X, the isomorphisms S/&[3)] which take
Fi onto FZ-AFZ (Fo=X) and such that

(1.10) /3(d^x)^Uipia(x) for

(1.11)

for any collection {&}*=i+i of O's and l*s.
Thus we obtain the automorphisms <5/ on Fz-i with order 2 which then

are extended onto /F,--i by the formulae r~ld/r for all elements 7 of the
group JTi generated by <J/f ••• , df-i. Set also p/(x)=pia(x) for xeFz and
extend />/(j:) onto X by F/-invariance. Let /i^(x), I<i<m2 be the func-
tions associated to /? and 5/, • • - , Sm2, i.e.

f / ( x ) = j 3 ( d / , x ) for xe=Ft,Bndf/(d/x)=tf(x) for ;</ ,

then it follows from (1.10) that

(1.12) fS(x)-p/(x)-lG Ui for a.a.
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Moreover, (1.11) implies the following correlation:

(<5ifl)cW)h»-(M^

which means exactly that pf(x] satisfy the conditions of Definition 1.1 with
respect to the cocycle /? and the transformations 5/, • • • , 3m2.

Further fulfil the first step of the construction described in the proof of
Lemma 1.4 for the cocycle /?, i.e., form the automorphisms d / ^ [ S ) ] with
order 2, mi + \<*i<*Mi which commute in pairs with each other and with
5/'s constructed before, associate to them the functions ff(x) and pf(x) so
that

(1.13) ff(x)p/(xYl^Ui for xeA,-,and //GV)>l-l/2'' .

Fix also the fundamental sets Fm2+i^>'-'^FM2 for each of the groups F£2+i
C---CJ~$2 SO that Fmz + l^Fmz.

The group [7~#g] approximates j\ in metric d up to 1/2, and the
/M2-invariant finite cr-algebra generated by FMz approximates B\ in mea-
sure up to 1/2.

Now for mi+\<i<M'L and the fundamental sets Ft constructed above
form the automorphisms dia^[3)] and the functions fia(x), pta(x) so that

(1.14) f * ( x ) - p f ( x Y l G : Ui at a.a. x^X, and

(<yS,+i)fa '+l---(<S&,)^^^^

(see the described above construction of 8f,pf(x),fif(x) for I
This completes the first step of our procedure.
In a similar way construct at the k-th step for M^H-l<z< mk+i the

automorphisms &ff and the functions pia(x] which satisfy (1.9) and provide
approximation of 7* and Bk up to 1/2*. Then for the same i form the
automorphisms and the functions p/(x} satisfying the conditions (1.12) and

(1.15) (<^i)^+i-(&LJ^^^

Further construct for mk+i + l^i^Mk+i the automorphisms 3* which
provide approximation of jk and Bk up to 1/2* and satisfy the condition
(1.13). After that form the automorphisms dia and the functions pta(x)
which satisfy the conditions (1.14) and

(1.16) (3a
mk+l+iy

m^l''iS^J^FMk+l
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The approximation of y*, i^N, provides the coincidence of the full

groups [U/7], [U/7] and [0].
i = 1 z" = 1

Let a and 0 be the cocycles corresponding respectively to <J,-ff, pi*(x)
and 8f, P/(x). Then it follows from (1.9), (1.12), (1.13), (1.14) and Lemma
1.2 that a is cohomologous to a, and 0 is cohomologous to 0.

The approximation of the Borel tf-algebra on X we have made in our
construction implies that almost every point x^X coincides with the

00

intersection of all the cylinder sets corresponding to the group U/T, which1=1
contains this point:

(1.17) o;=rV0Ff>i=\

with /(z)£ Fia. Evidently, this intersection is non-void iff 7(1

and the latter condition is equivalent to the following one:

for some sequence {£,•}"=! e{0, 1}̂ . Thus we have the Borel isomorphism
Qa\ X->{0, 1}* that takes a.e. point x^X into the associated to x by (1.17)
sequence {rj~=ie{0,lp.

oo

Let dp. X-»{0, 1}^ be a similar isomorphism related to the group \JFf.
i = 1

Then 8adi
ada~

l = 8p8fd^l = di, with &, i&N, being the automorphism of {0,
1}^ given by

r

~{s* + l (mod 2), i=k.

Let F be the transformation group generated by &. Form the cocycles a',

These cocycles are determined by the functions pia°da~
l and pfo6f~l, i

respectively (see (1.1)), and have the special form. But (1.15) and (1.16)
imply pia°da~1=p/0df~l, hence a'=/3'. Thus we get a correlation

Set 0a~
ls = x^X, 6a~1a)0a=r^[3)], d = 0p-l6a, and obtain finally:
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a(r,x)= 0(070-*, 0x).

Note that 6^N[S)] since edl
ad~l = 8l^ i^N . Q.E.D.

Corollary 1.6. Let G be an amenable l.c.s. group, a, /?: Fx Y-*G the
cocycles of a free approximately finite action of a countable group F on a
Lebesgue space (Y, v) with invariant measure v, v(Y) = °om Suppose that
the skew product actions GxaY and G><pY are ergodic. Then there exist
cocycles a and /? cohomologous to a and {3 respectively as the cocycles of the
full group [F], and a v-preserving automorphism 0£=N[F] such that a ( y , y)
= f}(070~\ 0y) for all r^[F] at a.a. y^ Y.

Proof. The F-action on Y is orbit equivalent to the Fx Z-action on
X x Z, with (X, ft, F) being the dynamical system described at the begin-
ning of this section, and Z acting on itself by translations. Therefore a
and /3 can be transferred to the Fx ^-action. Change a and (1 to the
cohomologous cocycles which do not depend on the translation of Z, and
apply Theorem 1.5. Q.E.D.

§ 20 Automorphism Groups of Ergodic Equivalence Relations
Associated von Neumann Algebras

Measure groupoids play a significant role in the modern ergodic the-
ory. All necessary definitions as well as the detailed exposition of related
techniques are contained in [10-12, 18, 19, 24, 25, 29-32].

Let (jQ, Q) be a measure groupoid and a: G-> AutCQ, Q) an action of a
l.c.s. group G by strict automorphisms of the groupoid (Q, Q) such that the
map (g, x^a(g)x is Borel (the latter condition will be implicit for all
actions of continuous groups on groupoids or measure spaces we shall
consider below). This permits one to impose the groupoid structure on G
X.Q. Specifically, form the projections r, d: Gx,Q->{e} X J2(0): r(g, x) =
(e, a(g)r(x)\ d(g, x) = (e, d(x)). These maps together with the product
(9,x}(h,y} = (gh,(a(h~l}x}y] defined when (a(h~l)x, y}^Q(2\ provide Gx
Q with a structure of an algebraic groupoid. Note that under above
definitions one has (g, x)~1==(g~\ a(g)x~l). All these maps are Borel
relatively to the product Borel structure an (Gx£?3 [/^G]x Q) becomes a
measure groupoid (JJLC is a left Haar measure of G). We shall term this
construction the semidirect product and denote it by G®aQ.

A similar definition was formulated in [32] for automorphism groups of
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topological groupoids. However, in the case of measure groupoids one
needs to work with an automorphism group G consisting of non-strict
automorphisms, i.e. isomorphisms between some inessential reductions (i.
r.) of the groupoid Q. Thereby some difficulties arise in defining the
semidirect product, especially when G is continuous. Nevertheless it will
be shown below that a slight reorganization of the original groupoid Q
makes all the automorphisms a(g) constituting the G-action on Q to be
strict. We shall stick to the case when Q is principal and has discrete
orbits.

Let 3) be a countable non-singular transformation group on a Lebes-
gue space (S, /^), v(S) = l. Given any automorphism d^N[3)], then one
can form two families of Borel maps <pr> </>r'- S-»S, /e£D: <p7(s) = 6'Ys, <l)7(s)

Denote by A7S^S the (Borel) set on which <p7 coincides with ^. It
follows from the definition of the full group normalizer that for every /£
3) the set A7= U Ars is just the entire space S (mod 0). The same

property is certainly valid for the set Ae= C\ A7. Furthermore, let Ve= O
7^3) nt=Z

Aen, and then Ue(3)}= Pi 9kVe. Thus we get a Borel set Ue(3)} which is

invariant with respect to 0n, n^Z, and has measure 1. It also possesses
the following property: given any two points x, y^ t/e(5)), then x and y are
in the same 3) -orbit iff dx, dy are in the same 3) -orbit. We shall call
Uo(3)) the strictness domain for the transformation 0^N[3)] with respect
to 3). Note that a strictness domain for 9 can be also described with
respect to any countable transformation group d)\ such that [5)i] = [^].

Denote by R ® the Borel countable equivalence relation on S associat-
ed with the 3) -action.

Theorem 2.1. Let a: G-»Aut (S, //) be an action of a l.c.s. group G on
(S, n) such that a(g)^N[3)} for all g^G. Then there exist a Borel strictly
(but not only mod 0) G- invariant equivalence relation RdSxS and a
conull Borel set BdS such that R and R ® agree when restricted to B.

Proof. One can easily see from the above discussion that the depen-
dence of Ua(9)(3)} on g is Borel since the map (g,x)->a(g}x and the
^-action are Borel. Hence a set A = {(g, x)e G x S: x^ Ua(9)(3)}} is Borel
in G x S. Moreover, this set is conull with respect to the product measure
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since j^(Ua(9)(3))) = l for every g^G. Apply now the Fublni's theo-
rem in order to conclude that the set Mx = {g^G: x^ Ua(g)(9))} is conull in
G for a.a. x^S. Let BdS be the Borel set in S with ju-measure 1
consisting of the points x with that property.

Form the set C = {(g, x, y)eGx Sx S: (a(g)x, a(g)y}^R $}. It is
Borel since C = F~1(R®) for a Borel map F: GxXxX-+XxX given by
F(ff, x, y) = (&(g)x, a(g)y\ Thus we get a Borel field of sets L(x, y) = {g^
G:(a(g)x, a(g)y)^R®}. It is straightforward to check the following
properties of L(x, y):

(i) L(x,x)=G for all x^S;
(ii) L(x, y) = L(y, x) for all x, y^S;
(iii) L(x, z)^)L(x, y)C\L(y, z) for all x,
(iv) L(a(ti)x, a(ti)y) = L(x, y}h~l for all x, ;
Consider a subset /? = {(*, y)^5xS: fjLG(G\L(x, y}} = $ in SxS

together with a function /:SxS-»l?, f ( x , y) = jLtc(G\L(xJ y)\ A Borel
nature of this function follows from the fact that C is Borel and Theorem
1 of [16, § 35]. Therefore R is a Borel set.

It follows from (i —iii) that R is an equivalence relation, (iv) implies
that R is strictly invariant with respect to every h^G, i.e., GR = R.

Let x,y<^B be given. If (x,y)^R<D\B, then L(x,y)^>Mxr\My, and
hence fjtc(G\L(x, y)) = G. On the contrary, if (x,y)&Rg\B, then one has
G\L(x, y)^Mx^My. This means exactly that R ® \B = R\B. Q.E.D.

Remark 2.2. The equivalence relation R in the above theorem is a
Borel set and therefore it admits the structure of an ergodic equivalence
relation [24, p. 203], and hence the structure of a measure groupoid. This

is provided by a measure v on R given by v = jvxdp.(x)y x^S, with vx(E)

=card (Ed{x}xB) for each Borel EdS. Thus we obtain a principal
measure groupoid R which is isomorphic to the groupoid R ®, though the
isomorphism is not strict.

The correlation GR = R permits one to raise the G-action a on (S, p)
to an action by strict automorphisms a(g) of the groupoid (R, [y]): a(g)(x,
y) = (a(g)x, a(g)y) for (x, y)£=R. This enables one to form the semidirect
product G®dR which we shall also denote by G®aR ® and thereby
associate it with the original groupoid R ®.

Remark 2.3. The statement of Theorem 2.1 is also valid when the
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group 3) is continuous, and every automorphism a(g) is inner with respect
to R Q , i.e., (a(g)x, x)^R $ for a.a. x^S. It suffices in this case to declare
Ua(g)(£)) = {x^S: (a(g)x, x)^R$} to be a strictness domain for a(g) and
transfer the proof almost literally.

Let (jQ, Q) be an orbit groupoid of an ergodic type Hoc or III action of
a countable group F on a Lebesgue space (X, ft) and (TxT, [VT><VT]) a
transitive groupoid associated with the translation of a circle T on itself
with Haar measure VT. Form the direct product (Q, C) = (Q x (T x T\ Q
x[fjLrX JJLT}). Recall that every principal ergodic groupoid with continu-
ous orbits is isomorphic to some groupoid of the above form [10, Theorem
6.4].

Theorem 2.4. Let A be an automorphism of the groupoid (G, C).
Then there exist an automorphism 6 of (Q, Q) and an inner automorphism
T of (Q, C) such that A = (0xid)r.

Proof. Since (S, C) is principal, A is completely determined by its
restriction to the unit space S(0}=XxT. Set A(x, t) = (Ai(x, t\ A2(x, t)).

Choose to^ T so that the set Xx{tQ] is contained mod 0 in the i.r. of Q
on which A is a strict isomorphism. Form a Borel map <p\ X->X, <p(x)=
Ai(x, to). Since A is an automorphism, one may assume after discarding
a Borel null set that every point in X has at most countable inverse image
with respect to <p. This implies that <p(X) is a Borel subset of X with
positive measure. Note that the partition of X into the inverse images of
9 is measurable. Hence there is a Borel set SdX with positive measure
such that <p is one-one when restricted to S.

Note that A\(x, t) and <p(x) are in the same F-orbit when (x, t) is in
some i.r., and hence the maps A and (x, t)->(v(x), t) take almost every pair
Or, t) into Fx T-equivalent pairs. A is an isomorphism, hence 9 should
take complete sets into complete ones, and non-complete into non-complete
ones (recall that a measurable set in the unit space of a groupoid is said to
be complete iff its saturation is conull). Note that the class of complete
sets in X is just the class of sets of positive measure due to the countability
of F. Thus 9 is non-singular on S.

We shall assume below that the F-action preserves the measure JJL, and
fjL(X) = com The case of type III F-action can be considered in a similar
way.

Let f ( x ) = d{jL°(p/d[jt(x) be the Radon-Nikodym derivative of the mea-
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sure fjL° 9 with respect to p.. One can readily deduce from the T-invariance
of JJL that f ( x ) is invariant with respect to the full group [F] reduced to S.
By the ergodicity of F f ( x ) is constant a.e., that is, JJL°<P=CIJL for some c>
0.

Replacing if necessary S by its subset of finite measure and normaliz-
ing fjt in a suitable way, we can get fjt(S) = l, f*(v(S)) = c. Partition X

twice into countable families of disjoint sets X=USi=US/ so that So=
z=0 i=0

S, So'=<p(S), XSi) = l, MS/) = c. Choose the transformations /,-,
z'=0, 1, 2, - so that 7.-(So) = S,-, 7/(So') = S/. Finally, set 0: X^X, ftr = 7/
0?>07r1(-^) for xG^Si. Clearly d^N[F] and hence 5 is an automorphism
of (,Q, Q). It follows from the above constructions that d(x) and q>(x) are
T-equivalent at a.a. x^X. Thus 0 x id is pointwise F x T-equivalent to p
xid, and hence to A. This implies A-(^xid)"1 is an inner automorphism
of ( f i ,C) . Q.E.D.

The paper by P. Hahn [19] presents a construction which associates to
each measure groupoid (M, B) a Banach * -algebra ll(M) together with its
regular representation in LZ(M) by convolution operators L/, /eil(Jf).
This permits, in particular, to put in correspondence to each automorphism
of the measure groupoid JC an automorphism of the von Neumann algebra
L(II(^))", and thereby to impose the notion of module for groupoid
automorphisms. We shall describe briefly the corresponding construction
for ergodic type II groupoid ( S , C) mentioned above in this section.

To begin with, consider the groupoid (£?, Q) with discrete orbits (the
discrete reduction of ( S , C)). We shall assume below for simplicity's sake
that (Q, Q} is generated by a free action of a countable group F, so (Q, Q)
= (FxX, [vrXfJ-]) with ^ a counting measure on F. One has:

II(r x X) =

l/In=sup{

The convolution of functions and involution are defined in the follow-
ing way:

)= 2
7'er

/*(r, x)=f(7~\ rx), f,
Form type II=o factor M=L(ll(F x X))" generated by the convolution
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operators L/:

Then every element of M is an operator of convolution with some measura-
ble function [12, propositions 2.6, 2.10].

Given any function a(x)^L°°(X\ then one can form a function

,
[ 0 ,

The convolution operator Lfl- is just the multiplication operator by a(x)\

(L«£)(7, x) = a(rx)-£(r9 x) for f ̂ L2(rxX) .

Let <->? be the subalgebra in M consisting of all the multiplication operators,
then Jl is maximum Abelian and isomorphic to L°°(X). Moreover, JL is
regular in the sense that its normalizer N(Ji) = {U^M: U is unitary,
UJIU*= Jl} generates M [12, proposition 2.9].

Every automorphism of the groupoid F x X is determined by some d^
N[F] and acts in a following way:

(2.1) e(r,x)=(r'(x),ex)
with re(x)^F be such that j6(x}Qx=Qjx. d can be raised to an automor-
phism 0 of the Banach algebra

(2.2)

It is easy to see that d can be extended to M.
The following two lemmas concerning the connection between

automorphisms of principal measure groupoids with countable orbits and
automorphisms of the associated von Neumann algebras are due to J.
Feldman and C. C. Moore [12].

Lemma 2.5. There is a one-to-one correspondence between the inner
automorphisms of the groupoid FxX (or just the elements of the full group
[F]) and the classes of unitary operators U^N(Jl} which differ from each
other by some unitary

Lemma 2860 For every outer automorphism of FxX there is a
naturally associated class of coincident on Jl outer automorphisms <f> of M
such that <f> (<Jl)=Jl. Conversely, every class of outer automorphisms of M
with above properties determines some outer automorphism of
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Turn to the groupoid ( S , C), whose orbits are continuous. The
associated von Neumann algebra L(II( Q ))" splits into the tensor product

It contains a maximum Abelian regular subalgebra Ad®Ac with Ad=Jl,
AC = L°°(T) [10, propositions 8.1, 8.2].

Theorem 2.7. There is a one-to-one correspondence between the inner
automorphisms of (Q , C) and the classes of operators from N(Ad®Ac}

(^
M(g)J3(L2(T)), which differ by unitary elements of Ad®Ac.

Proof. Let 6 be an inner automorphism of ( S , C). The restriction of
8 to the unit space X x T is defined by some Borel maps <p\ X x T -> F and
</>:XxT-*T:

Let Xx T= U Qr be the partition of the unit space into the inverse
rer

images of <p, Q7=9~l(7\ This partition induces a family of transforma-
tions r~l6\ Q7-+ r'l9Q7, r^F, submitted to the T-action on Xx T. These
transformations generate the partial isometries a7^Ad®B(L2(T)}.

Consider the family of unitary operators A7^M®B(L2(T}\r^F,
given by (/^)((/, x\ (s, f)) = f((7~Y, x\ (s, t}\ with (/, x^F xX, (5, 0

The strongly convergent row Ue=l£/(7a7 determines some unitary

operator Ue^N(Ad®Ac}. We shall denote by 6 the associated inner
automorphism Ad Ue of M®B(L2(T}}.

Let now U be a unitary operator from N(Ad®Ac), r the trace on
M®B(L2(T}} and £ the conditional expectation onto the subalgebra
Ad®B(L2(T)). Then U admits the decomposition U= 2 &7a7 with a7=

7er

E(A7-iU)^Ad®B(L2(T)}, which converges to an operator in
L2(M®B(L2(T)), r). It follows from the orthogonality properties of the
family {A7: y^.F} with respect to r and the condition U^N(Ad®Ac) that
a7 in the decomposition of U are the partial isometries. Moreover, the
systems of domain and range projections of the partial isometries A7a7 are
disjoint and contained in Ad®Ac. By means of multiplication by the
unitary elements of Ad®Ac one can make ar to be generated by the T-
action on ^x T. Thus we obtain a row with the structure as above for
the operator Ua, a^Ad®Ac being a unitary element. Let 6 be the
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automorphism of the Lebesgue space XxT which is the point realization
of the action of Ad(Ua) on Ad®Ac [23], then Ad (Ud)= 0. Q.E.D.

Theorem 2.8. There is a one-to-one correspondence between the outer
automorphisms of (Q, C} and the classes of outer automorphisms <S> of
M®B(L2(T)} coincident on Ad®Ac and such that <f>(Ad®Ac)=Ad®Ac.

Proof. Let A be an outer automorphism of S. By Theorem 2.4 it
admits a representation A = (9 xid)- a) with 9 being an outer automorphism
of F x X, a) an inner automorphism of S. Associate with A the automor-
phism A = ( d x i d ) ° c o of M®B(L2(T}) where 6 is the automorphism of M
given by (2.2) and aj the inner automorphism of M®B(L2(T})J described in
the proof of Theorem 2.7.

Conversely, let 0 be an outer automorphism of M®B(L2(T)) such that
(t>(Ad®Ac) = Ad®Ac. This clearly implies that <f>(N(Ad<8)Ac)) =
N(Ad®Ac} and hence by Theorem 2.7 the point realization A of <f> on S(0)

normalizes the group of inner automorphisms. We need only to deduce
from this fact that A is an automorphism of (Q, C).

Recall that (S, C) is an orbit groupoid for an ergodic action of a l.c.s.
group G = Tx T on a Lebesgue space (S(0\ &)=(Xx T, A/x^ r) . We shall
denote by 0(g), g^G, the automorphisms which constitute this action, and
R? the corresponding Borel equivalence relation on Q(0).

Form an action a: G-> Aut(S (0), /I) by the automorphisms a(g) =
A~lj3(g)A, and let Ra be the corresponding Borel equivalence relation on
Q(0>. It follows from the above discussion that every transformation a(g)
is inner with respect to Re. We apply Theorem 2.1 and Remark 2.3 to
deduce the existence of a Borel equivalence relation R on Q(0) and a conull
Borel set BdS(0} such that a(g)R = R strictly for all g^G, and R\B=RP\B.
This implies, in particular, that every transformation a(g) is inner also
with respect to /?, i.e. for every g^G a Borel set Eg = {x& fi(0): (a(g)x, x)
e/?} is conull in 5(0). Thus the Borel set E = {(g, x)^Gx S(0): (a(g)x, x)
^R] is P.G x /I-conull in G x 5(0) and hence by Fubini's Theorem the set Ex

= {g^G: (a(g)x, x)^R] is conull in G for x in some conull Borel J3'C fi(0>.
It follows from the strict of-invariance of R that Ex is a conull subgroup in
G, and hence EX=G for x^B'. This means exactly that /
Form a Borel set Bi=BC\B', then .ffU^^U,, and hence R
One can readily exchange the actions a and /3 with each other in the above
reasoning and get a conull Borel set B2d Q(0) such that /?*Uac/?ff|j,2. Thus
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we have proved that the equivalence relations Ra and Rp coincide when
restricted to the conull Borel set BidBz. But Ra=A(R0), and hence RP is
A-invariant mod 0, i.e., A is an automorphism of (S , C). It is easy to see
that <p and A agree on Ad®Ac.

Definition 2.9. We call the number mod A=r°A/r a module of an
automorphism A of type II groupoid ( S , C) described in this section, where
A is the automorphism of M®B(L2(T)} associated to A, r the trace on
M(x)5(L2(T)). Now let (M,P) be an arbitrary type II groupoid with
continuous orbits, and <p\M-+Q an isomorphism. For an automorphism B
of (JC, P) set up mod B=mod(<pB(p~l).

Evidently, module is a homomorphism Aut (*#, P)-+R+*) which does
not depend on the choice of <p.

Remark 2.10. The module of an automorphism A of (£ , C) coincide
with the module of the associated to A by Theorem 2.4 automorphism 9^
N[r], mod 0 = f*°0/fjL.

Let CQi, Qi) be an orbit groupoid of an ergodic type Hi action of a
countable group 3) on a Lebesgue space (S, v). Form the direct product
( f i i , Ci) = Cax(rx T), QiX[^ rx^T]) . It is certainly isomorphic to some
groupoid (Q/, C) as described before in this section, whose discrete reduc-
tion CQ, Q) is type IL>. The following can be easily deduced from Theorem
2.4.

Corollary 2.11. Let A be an automorphism of the groupoid (S\, Ci),
and mod ^4 = 1. Then there exist an automorphism 9 of the groupoid (Q\,
Q\) and an inner automorphism co of (Q\, C\) such that A = (0xid)a).

Recall that the automorphism <9e N[3)] for an arbitrary full group [3)]
is said to be inner if 0GE[5)] and outer otherwise. In a similar way, the
action a: G-»Aut (S, v) of a l.c.s. group G such that a(g)^N[3)} for all g
e G, is called outer if every transformation a(g) is outer. A sharpening of
this notion is given by

Definition 2.12. The action a is said to be strictly outer if there exists
a conull Borel set BdS such that for all s^B a(g}s^.B and a(g}s=rs for
some /e5) implies 7=eg),g=ec.

Clearly every strictly outer action is outer and free. Moreover, the
semidirect product G®a/?$ formed in Remark 2.2 is a principal groupoid
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iff the action a is strictly outer.
It is easy to see that every outer action of a countable group G is also

strictly outer, but this is not the case for a continuous group G.

Example 2.13. We shall show how to imbed an arbitrary l.c.s. group G
into the normalizer N[3)] of a type Hi full group [3)] so that the G-action
is strictly outer. Consider the case of noncompact G.

Let ( Y, v) be a free properly ergodic (i.e. non-transitive) Lebesgue G-
space with invariant probability measure v. Form the space (X, fj) = (Y,
v) ® which admits a /^-preserving G-action by the automorphisms a(g):

(a(g)x)7=gx7,

Define also a free ergodic //-preserving 3) -action on (X, JJL):

(rx)i=xS7j 7, aefl).

This 3)-action clearly commutes with a(g), g^ G, and so a(g}^N[3)]. We
claim the action a is strictly outer.

Suppose a(g)x = 7x for some x^X, g^G, r^d). Since the actions of
G and 3) are free, one may assume that g3=ec, j^e ®. Then x satisfies
the condition xS7=gxs for all d^3), and hence is contained in the Borel set
B7={x^X: Xr^Gxe] where Gxe is the G-orbit of xe^ Y. Since the G-
action on Y is properly ergodic, every G-orbit in Y has y-measure 0, hence
v(B7) = Q. Set up B= U B7, then p.(B}=$. This means that the action a

re g)

is strictly outer.
A strictly outer action of an arbitrary compact group G can be con-

structed in a similar way.

§ 3e Outer Conjugacy for Actions of Unimodular Amenable Groups

We shall denote throughout this section by F a free countable amena-
ble ergodic transformation group of a Lebesgue space (S, /*), fi(S) = l, with
jj. being F-invariant, a, 0: G-> Aut (S, //) will mean the actions of a contin-
uous unimodular amenable l.c.s. group G on (S, ft) by the automorphisms
a(ff\ 0(ff)*=N[r]' Recall that such actions are called outer conjugate if
&(g} = 9@(g}9~lt(g} for some <p^N[F] and t(g)^[F] for all g^G.

Consider the groupoid ( S , [ v ] ) generated by the F-action on S: S =F
x S, v = fir x fjt. Then by Theorem 2.1 and Remark 2.2 the actions a and 0
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generate actions of G by the strict automorphisms a(g) and &(g) of some
groupoid R isomorphic to S , which we shall identify with S .

Let (ff, M) be the transitive groupoid generated by the translation of
G, ff^GxG, rj = jjLGXp.G. Consider the direct product (S x£P, [p]), p=v

x rj. The automorphisms a(g}, P(g) are naturally extended up to
automorphisms a(g)=a(g)x[d and /3(g) = @(g)xid of S x£P.

Definition 3.L We shall say that the actions a and /3 are stably outer
conjugate if there exist an automorphism A and a Borel family of inner
automorphisms l(g) of the groupoid S x <? such that for every #eG the
automorphisms /3(g) and A^CsOA"1/^) agree on an i.r. of S x<?.

Lemma 3020 Et>£ry few strictly outer actions a and /? are stably outer
conjugate.

Proof. Let r: G -> G x G be a Borel measure preserving isomorphism
of the Lebesgue spaces. Define the map f: £P -> 2> x <? by

where r(g) = (n(g), r2(^)). It is easy to see that f is a strict isomorphism of
groupoids, which can be extended up to a strict isomorphism f : 5 x <? -» 5
x f f x S 5 , f = idx£. This isomorphism transfers the G-action onto the
groupoid ( ^ x ^ P x f f , [ i / x j y x 77]). Specifically, we have for each g^ G the
automorphisms a(g}= £a(g) f -1 and ji(g)= £{3(g) f -1 given by

(3.1) 3(g)(x,s,t) = (a(g)x,s,t),

for (x,s, O e f i x f f x f f .
Form the semidirect products (G®<?( 5 x £P), [//c x i> x ??]) and (G(DX Q

xff ) , [/^Gx i/x^]) together with their homomorphisms ;ra and KP re-
spectively into G: na(g, x)=g for (^, x)^G®d(S x2>); ^ is defined in a
similar way. This permits one to consider the skew products

(G x naG®a( S x SP)), [HG x fjtc x y x 77]) and

(G®,XG(s)X5xS ))) ,[^Gx / .GXyX ?7]) [10].

Each of them possesses the G-action a)a and w? respectively:

Q*a(p)(h, g, x, t) = (hp~\ g, x, t)

for (A, g, x, t)^GxJla(G®d(S x ff)); o>ft(p) is defined in a similar way.
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Let the action of G by inner automorphisms J(g) on S x <Px<? be
given by 7(g)(x, t, (k, *)) = (*, t, (k, hg~1}) for x^S, f eff, (k,

Define the maps <j>a: G x *m(G®s(G x 2>))-» 5 x £P x 2>,

#«(*, 0, *, t) = (a(h~1)x, t, (g, A)), and

#,: G x K.(G®f( Gx£y)-+Gx$x£t

, 9, x, t) = (p(h~l)x, t, (g, /*)), for

One can readily check that (f>a and $? are the groupoid isomorphisms
and the following is true:

(3.2) a(g)T(g) =

The groupoids G®s(G x f f ) and G®t(£ xSP) may be written in the
form (G®a£)x£* and (G(D^5)x5> respectively, and they should be
approximately finite due to the amenability of G (see the Appendix).
Moreover, since the actions a and 0 are strictly outer, the groupoids above
should be principal. Hence by [10, Theorem 6.4] there exist the isomor-
phisms

(3.3) Fa. G®a-(£x£)^(Zx T)x(S'x T)

(3.4) F*: G®t(G x $)-*(Zx T)x(S'x T)

Since G is unimodular, it follows that the modular homomorphisms
[18] of the groupoids G©<?( G x 2>) and G©X S x 5>) are trivial, that is both
groupoids are of type II. Hence we may identify Z-actions on S', written
in (3.3) and (3.4), and choose them to be of type IIoo.

This permits one to transfer na and 7r> onto the groupoid (ZxT)x(S'
x T). Set up 7Ca=na°Fa~1, Xfi= ftp0 F^~l and form the corresponding skew
products Gx^((ZxT)x(S /xT)), Gx^((Zx T)x(5'x T)). F«, F^ are
naturally extended up to the isomorphisms between the skew products:

These induce the actions of G by the automorphisms

(3.5) cda(g) = FaQ)a(g)Fa~1 and ajp(g} = F^
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on G x na((Z x T) x (S' x T)) and G x ̂ ((Z x T) x (S' x T)), respectively.
It is easy to see that the cocycles na and np have the dense ranges in

G. Using a simple argument, we can replace them by cohomologous
cocycles independent of the translation of T. Thus we may apply Corol-
lary 1.6 in order to deduce the existence of a Borel function /: S'x T-»G
and an automorphism d^N[Z] such that (see (2.1))

f(n-s, rt)~lx*((n, r ) , ( s , t)))f(s, t)=n,((n9(s\ r),(0s, t))

on some i.r. of (Z x T) X (S' x T). Define the map

by <f>(g, (n, r\ (s, t)) = (f(s, t)~lg, (ne(s\ r), (0s, t)). Then 0 is a groupoid
isomorphism, and

(3.6) cop(g) = <t>Va(g)<f>~1

for all g^ G on some i.r.
Combine now (3.1), (3.2), (3.5), (3.6) to get the correlation 0(g) T(g) =

Aa(g] l(g)A'\ with T(g)= f'1 T(g) f , and A= r1^^-1^^'1 f being
an automorphism of Q x£P. Equivalently,

(3.7) 0(g)=A3(g)A-ll(g)

for some Borel family l(g) of inner automorphisms of S x f?. (3.7) holds
for every fixed <7^G on some i.r. of S x S . Q.E.D.

Theorem 3830 Every two strictly outer actions a and @ are outer
conjugate.

Proof. Return to the groupoid Gx^ a((Zx T)x(S'x T)) we have
considered when proving Lemma 3.2. Replace the cocycle xa by a Co-
homologous one n, independent of the translation of T, and respectively,
pass to the isomorphic skew product. The latter may be written in the
form (Gx w (ZxSO)x(Txr ) .

For an arbitrary transformation 8\^N[Z} form the cocycle ndl(n, s) =
n(n6l(s), dis) (see (2.1)). Evidently, n°l has the dense range in G. Hence
by Corollary 1.6 there exist a Borel function fei: S'-»G and do^N[Z] such
that mod A=l and /^(wsJ-V'U, s)fei(s) = 7r(ne°(s

Define the automorphism <f>el of the skew product

, (n, s)) = (
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Evidently, mod </>ei = (mod 0i)~\ This induces naturally the automorphism
$Ql of the groupoid G x na((Z x T) x (Sf x T)) commuting with the G-action
(Da and such that mod <fiei = (mod ft)"1. Thus we can replace correlation
(3.6) by the equivalent one:

(3.8) ajp(g} = <f>fiel aJa(g] $~el ^

and then A in (3.7) by the automorphism

(3.9) B= r^tFf^WetFata-1 f , so that

0(g)=BS(g)B'1lf(g)

for some Borel family l'(g) of inner automorphisms of Q x <?„ Choosing 8\
&N[Z] in a proper way, we can get mod B — \.

By Corollary 2.11 there are 9^N[F] and an inner automorphism r of
Q x £P such that B = (<pxid)r. Rewrite (3.9) in the form

This implies that the family l"(g) of inner automorphisms should have the
form l"(g)=p(g)xid with p(g)^[F] for each g^G. Hence 0(g) =

Q.E.D.

Remark 3.4. A similar argument proves Theorem 3.3 in the case when
the approximately finite full group [F] is of type II*,, and mod a(g)=mod
0(g) = I for all #^G. Moreover, the intertwining automorphism <p^N[F]
in this case has module 1.

§ 4. Outer Conjugacy of Compact Groups

Let r, S, ju, a, J3 be the same as in § 3. We replace only an arbitrary
continuous amenable unimodular l.c.s. group G by a compact second
countable group K, and prove a sharpening of Theorem 3.3 for strictly
outer actions a and 0 of K. It turns out that two such actions are simply
conjugate by means of some transformation from N[F].

Theorem 4-L For every two strictly outer actions a and 0 of K there
exists an automorphism <p^N[F] such that ft(g)s = <pa(g)(p~ls for all
at a.a.

Proof. It follows from the compactness of K that the partitions of S
into a- or /?-orbits are measurable. Moreover, since F is ergodic and a, /?
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are strictly outer, every a- or /?-orbit Is a null Borel set. This implies that
the orbit spaces S/a(K) and S/0(K) are standard and uncountable, hence
isomorphic. Set S/a(K) = S/@(K) = X, and denote by <pa, 9?'. X-^S the
corresponding Borel sections.

Define the Borel isomorphisms <pa, <l>?: KxX-*S: <l>a(g, x) = a(g~l)<pa(x),
fo(ff, x) = /3(g~1)<pp(x) for (g, x)^KxX. Let also the Jf-action on KxX
be given by co(g)(h, x) = (hg~1, x). It is easy to check the following correla-
tions:

(4.1) co(g) = </>a

(4.2) a>(9) = fo

Let Rr^SxS be the equivalence relation on S generated by the
/"-action. Then Theorem 2.1 implies the existence of a Borel equivalence
relation R which agree with Rr when restricted to some conull Borel set B
C S and such that

a(K)R = R.

Consider the set of pairs Ra^XxX\ (x\, x2)^Ra if there exists na(x\,
x2)^K such that

(a(na(xi, x2)~
1}<pa(xi), 9a(x2})^R .

Lemma 4.20 Ra is a Borel equivalence relation with an inessential
discrete reduction, and na is a Borel cocycle of Ra.

Proof. Since the action a is strictly outer, one may assume, possibly
after discarding from S a <2(AO-invariant Borel null set, that each pair (xi,
X2)^Ra determines uniquely 7ta(xi, xz)^K. It is straightforward to
deduce from the condition a(K)R = R that Ra is an equivalence relation
and Tca is a cocycle. We shall show in more details that Ra and na are
Borel.

Form the Borel function /: KxXxX-»SxS:

f(k,

together with projections px*x: K x X x X-* X x X, pk: K x X x X-> K .
Since the projection px*x is injective when restricted to f ~ l ( R ) , the
equivalence relation Ra=pxxx(f~l(R)) is Borel. Furthermore, for every
Borel set CdK the inverse image 7ca'

1(C)=pxxx(pk~1(C)rif~l(R)) is Borel,
hence na is a Borel map.
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The equivalence relation £ generated by R and the action a of K on
S, admits the structure of a measure groupoid (see Remark 2.2). Hence by
[31, Theorem 5.6] it has a discrete reduction, i.e. a Borel £ -complete set Y\
cS whose intersection with each equivalence class is at most countable.
Replacing if necessary Y by its £ -complete Borel subset, one may assume
that Y meets every tf-orbit at most once. It follows from the correlation
a(K) R = R that the € -saturation of Y\ coincides with the ^-saturation of
a(K) Yi. Since the latter saturation is S (mod 0), and R agree with Rr on
a conull set Be 5, the set a(K)Yi should have the positive measure in S.

Now apply the above argument to the reduction of £ by S\a(K) Y\ and
thereby obtain the set F2, then form in a similar way Ys etc. Let Y =

00

U Yi, then the reduction of £ to Y has at most countable equivalence

classes. After discarding a Borel ^-invariant null set the projection of S
onto the quotient space X becomes one-to-one when restricted to Y. This
projection provides an isomorphism between £\Y and Ra, hence Ra has an
inessential discrete reduction. Q.E.D.

Completion of the proof of Theorem 4.1. Ra induces an equivalence
relation Ra

K on KxX: (gi, Xi)^(g2, x2) if (x\, xz)^Ra and g\ = na(xij x2)#2.
The map $a x <l>a is an isomorphism between Ra

K and R, hence Ra
K is Borel.

In virtue of Lemma 4.2 and [11, Theorem 1] we may assume that Ra is
generated by an action of a countable group 3)a on X, and so Ra

K is
generated by a skew product action K x naX with finite invariant measure

Let Va be the projection of the measure (^T1)*/* onto X, then
S)a-action is ergodic and ^-preserving. Since, due to ^*, the transforma-
tions o)(g),g^K, should preserve the measure (fta"1)*^, the latter admits
the decomposition (^T1)*/^/^ x ya, with /^ being the Haar measure of K.

</>a provides also the orbit equivalence between the F-action on S and
the skew product action K x naX, hence the latter is ergodic and approxi-
mately finite (equivalently, amenable [5]) with respect to the measure
(^a"1)*^- Therefore the 3)a-action on X is also approximately finite [36,
Proposition 2.6].

Form in a similar way an equivalence relation Rp on X, a cocycle it?
with dense range in K, and a measure y*. Since Rp is also a countable
approximately finite type Hi ergodic equivalence relation, one may assume
that up to a Borel automorphism of X, Ra = Rp=Rx, va = vp=v. Suppose
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that Rx is generated by an ergodic y-preserving automorphism A.
Since the skew product actions K x naX and K x KBX are ergodic, we

may apply Theorem 1.5 in order to deduce the existence of d^N[A] and
a Borel function f:X^K such that f(Sx)'17Ca(d9x)f(x) = 7fft(d'1dd, 9~lx)
for all d^[A] at a.a. x^X.

Define the map </>:KxX^KxX by <f>(g, x) = (f(x)~1g, B'lx). It is
Borel, fjik x ^-preserving and provides an orbit equivalence between the
skew product actions KxnaX and KxnpX. Clearly, <f> commutes with
Q*(g), Q^K. Using this fac t and (4.1), ( 4 . 2 ) , we get 0 ( g ) =

-1^1 with foWa-
l^N[r] . Q.E.D.

Remark 4.3. Suppose that the /^-action in Theorem 4.1 preserves
infinite (but a- finite) measure p. Then it follows from the compactness of
K that mod a(g)=mod{l(g) = l for all g^K. Thus the proof of Theorem
4.1 may be repeated almost literally in the case of transformation group F
of type IIoo.

Appendix

The following theorem generalizes a well known proposition by A.
Connes and W. Krieger [6].

Theorem A0L Let (S, IJL) be a Lebesgue space with a probability
measure JJL, T an ergodic non-singular transformation of (S, p). Given also
an action of an amenable l.c.s. group G^N[T] on (S, //). Then the
equivalence relation R on S, generated by G and T, is approximately finite.

In virtue of Theorem 2.1 and Remark 2.2 R admits the structure of a
measure groupoid.

Before proving Theorem A.I note, that by [5], it suffices to check the
amenability of R. The definition of amenability for equivalence relations
given below is just the rephrasing of the Definition 1.4 from [36] (see also
[25, p. 205]).

Let E be a separable Banach space, and for each s^S one has a
non-void weakly- * -compact convex set Ks in E1*. Then s)-*Ks will be
called a Borel field of weakly- * -compact convex sets if the set {(s, /): /EE
Ks} is Borel in Sx£* with E* being supplied with a Borel structure
generated by the weak- * -topology.

A measured equivalence relation R on S is called amenable if for every
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separable Banach space E, for every homomorphism 9 from R into the
group ISO(£) of isometric automorphisms of Ey given the strong operator
topology, and for every Borel field s\-^>Ks of weakly- * -compact convex sets
in E* which is invariant under <p in the sense that

(A.I) P*(SI, S2)KS2=KSl for a.a. (si,

with #>*(si, 52) = <P(SI, S2)*"1, there is a Borel function e: S^>E* such that e(s)
^Ks and £>*(si, 52)0(52) = e(si).

Proof of Theorem A.I. Let E, 9, and s^-^Ks be the same as above.
Consider Ll(S, £) = {/: S->£,/ weakly measurable, and /||/(s)||<#Xs)<oo},
where the functions which agree a.e. are identified. This is a separable
Banach space with the norm ||/|| = /||/(s)||dXs) [9]- Define the (strongly
continuous) representation n of G in the group of isometric automorphisms
of L-(S, E):

for h^L1(S1 E). The adjoint representation ;r* operates in the dual space

L°°(S, £*) = {/: S^E*J weakly- * -measurable, and

ess sup ||/(5) || < 00}

[9, Theorem 8.18.2] in the following way:

for /eL°°(S, E*), that is, **(#) = tfGr1)*.
Consider the set

K={f: S->E*,f weakly- * -measurable, and /

Lemma A.2. KdL^S, E*), and is contained in some ball.

Proof. It suffices to show that a.a. K8 lie in some ball in E*. For this,
consider the function r: S-> jR, r(s)=sup{||/||: f^Ks] and check its measur-
ability. Define also the Borel maps <l>\ Sx E*-* R, #(s, /)=||/|| (this map is
Borel due to the weak- * -compactness of the unit ball), and p: Sx£l*->S
(the projection), p(s,f) = s. Then for any c>0 the set r~l((c, +00)) =
P(<l>~l((c, +oo))p|{(5, /): f^Ks}} is measurable since s^Ks is Borel. That
is, r is a measurable map.

Furthermore, it follows from (A.I) that r(s) is invariant with respect
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to the ergodic transformation T, hence r(s) Is constant a.e. Q.E.D.

Completion of the proof of Theorem A.I. It follows from Lemma A.
2 and [36, Proposition 2.2] that K is weakly- * -compact convex set in L°°(S,
E*). By (A.I) it is invariant with respect to x*(g),

Define an isometric operator A in Ll(S, E):

for h^L1(SJ E}. The adjoint operator A* is also isometric. It is easy to
see that the subspace tixA* = {f£:L"(S, E*): A*f=f] is closed in the
weak- # topology. A simple argument based on the correlation Gc7V[T]
shows that fix A* is invariant under n^(g}, g^ G.

Resuming the above observations, we see that KT=KC\fiyiA* is a
weakly- * -compact convex ;r*-invariant set in L°°(S, £*).

KT is non-void since for A* (hence for the associated affine Z-action)
there exists a fixed point in the weakly- # -compact convex set K. Since G
is amenable, it possesses a fixed point in KT. This is just the desired
invariant section for 9* and the field s\-*Ks, and so the amenability of R is
proved. Q.E.D.
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