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Outer Conjugacy for Actions
of Continuous Amenable Groups

By

Valentin Ya. GOLODETS* and Sergey D. SINELSHCHIKOV**

Abstract

The paper introduces a cohomological approach to the outer conjugacy problem in ergodic
theory. Specifically, the following fact is proved: up to an isomorphism of an approximately
finite type II ergodic full group there exists only one cohomological class of cocycles with dense
range in a given amenable group. This result is used to establish outer conjugacy for strictly
outer actions of continuous unimodular amenable subgroups of the normalizer of the full group
generated by an ergodic type II automorphism. As a special case we show that outer conjugacy
of compact groups reduces merely to conjugation. Besides that the correlation is established
between the automorphisms of a principal groupoid with continuous orbits and ones of its
discrete reduction. Also the correspondence is found between the automorphisms of groupoids
with continuous orbits and those of the associated von Neumann algebras.

§0. Introduction

The classification of Lebesgue space automorphisms is one of the
central problems in ergodic theory. Initially the notion of conjugacy (or
just isomorphism) of the measure space transformations was imposed.
Among other well known invariants of conjugacy one should mention first
of all the entropy introduced by Kolmogorov and Sinai [7]. This permits
the complete classification of Bernoulli shifts to be obtained [27]. How-
ever, a large collection of non-isomorphic transformations hints that a
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simple complete system of invariants for conjugacy can hardly be found.

It became clear later that it is important to study the orbit equivalence
for actions of (possibly different) groups on a Lebesgue space. A
significant progress in this sphere was advanced in works of W. Krieger
[22] and T. Hamachi, Yu. Oka, M. Osikawa [17]. Now one has that the
ergodic actions of any two discrete amenable groups with a finite invariant
measure are orbit equivalent [5]. A similar result is valid also for a class
of continuous amenable unimodular locally compact separable (l.c.s.)
groups [28].

As soon as the orbit equivalence classes of amenable group actions
were described, the problem of studying the outer automorphism groups of
amenable equivalence relations came up, and first of all the problem of
outer conjugacy of such groups (see the definition in § 3). The first result
in this field was obtained by A. Connes and W. Krieger [6], where they
described the complete system of invariants for outer conjugacy of
Z-actions in the normalizer of the full approximately finite group [I"] in the
case when the I'-action is of type II. After that a similar problem was
solved for a transformation group I" of type III [1], and in [2], [3] a
complete system of invariants was obtained for actions of countable
amenable groups in the normalizer of an approximately finite ergodic full
group of an arbitrary type. The outer conjugacy for actions of countable
groups were also studied in [33]. The outer conjugacy problem for contin-
uous transformation groups was never considered before. '

It should be noted that the outer conjugacy is also extensively studied
for automorphism groups of von Neumann algebras (see for instance [4],
[21], [26], [35]). However, for the case of continuous groups, except
compact Abelian ones [21], the worthwhile results are still unknown.

We approach the studying of outer conjugacy problem by proving the
uniqueness theorem for cocycles of an ergodic type II automorphism with
dense ranges (see [14] and Theorem 1.5 of this paper). This theorem is
also of some independent interest. It claims that up to an automorphism
of the full group there exists only one cohomological class of cocycles with
dense ranges in a fixed amenable group.

In § 2 we establish a correspondence between the automorphisms of
measure groupoids with continuous orbits and ones of their discrete reduc-
tions and the associated von Neumann algebras (see Theorems 2.4, 2.7
—2.8). We also describe how to form the semidirect product of a measure



OUTER CONJUGACY OF CONTINUOUS GROUPS 739

groupoid with discrete orbits by a continuous l.c.s. group of its non-strict
automorphisms (Remark 2.2).

§ 3 contains the proof of the main result concerning outer conjugacy
for strictly outer actions of continuous unimodular amenable l.c.s. groups
(Theorem 3.3). The case of compact groups is considered separately in
§ 4. It will be shown that outer conjugacy of such groups reduces merely
to conjugation by means of some transformation from the full group
normalizer (Theorem 4.1; cf. [38]).

Finally, we prove in Appendix that the equivalence relation generated
by an ergodic automorphism 7 together with an amenable subgroup of
N[T], is approximately finite (Theorem A1l).

The present paper is a mildly expanded version of our preprint [37].

§1. Uniqueness Theorem for Cocycles with Dense Ranges

We begin with recalling some definitions. Let (S, ©) be a Lebesgue
space and 9 a non-singular countable transformation group of (S, u).
Then one can consider the full group [9] of automorphisms 7 on (S, )
such that ys€{ws: v 9D} for a.a. s&S [6]. In the case when 9 is generat-
ed by a single transformation 7 we shall write [ 7] to denote the corre-
sponding full group. The 9-action on S and the full group [9] are said to
be of type II (II..) if there exists a finite (infinite ) 9-invariant measure,
equivalent to p.

The normalizer N[9] of the full group [9] is formed by the automor-
phisms d€Aut (S, 1) with the property 07 '[D]0=[D]. Assume that [D]
is of type II;, and # is D-invariant, then any & N[9D] is p-preserving. In
the case of type Il. one has pef=(mod 6)- 4 for some positive number
modéd [6].

Suppose a l.c.s. group H acts ergodically on a Lebesgue space (X, v).
A Borel map 7: H X X— G is called a cocycle of a dynamical system (X, v,
H) with values in a l.c.s. group G if 7(hzh, x)=n(hs, hix)m(h, x) for all A,
h.©€H at a.a. x€X. Two cocycles 7 and r are said to be cohomologous
if z(h, x)=g(hx) 'n(h, x)g(x) for some Borel function g: X - G for all zE
H at a.a. z€X.

Let uc be the left Haar measure for G, then one can define a H-action
on (GX X, uexXv) as follows: (g, x)=(n(h, x)g, hx) for heH, (g9, x)EG
X X. We call it the skew produc0 action and denote by GXX. In the
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case when this action is ergodic, the cocycle « is said to have a dense range
in G [24].

Let Y={0, 1} be a two element set with a measure v defined by v({0})
=y({1})=1/2, then one can form a Lebesgue space (X, £)=(Y, v)¥ with N
being the set of positive integers. (X, ) admits a countable Abelian
measure preserving transformation group I’ generated by the automor-
phisms 6x, kEN, given by

Xi 1+k

whx)i:{x,-—i—l (mod 2) i=k

for every sequence of 0’s and 1's x€ X.

The dynamical system (X, g, I') is orbit equivalent to an ergodic type
11, automorphism [34], [5], and hence every cocycle of the latter can be
transferred to (X, #, I'). Let G be a l.c.s. group, then by [13, Theorem 2 of
§ 1] every cocycle ¢: I' X X - G is completely determined by a sequence of
Borel maps fu: X~ G, kREN:

(1.1) c(Ok, )= fi(8xx)™*+ o802 )*+ frr(On)™*
xfk(x)(—l)x.fk_l(x)—xk—l,,.fl(x)—.z‘l

with every fx(x) being invariant with respect to &1, -, d.. Conversely,
every sequence of Borel maps f.: X - G satisfying the invariance condition
as above generates some cocycle ¢ in correspondence with (1.1).

Definition 1.1. A cocycle ¢: I' X X~ G, determined by a sequence of
Borel functions fx: X = G (see (1.1)), is said to have a special form if the
following conditions are satisfied:

(i) every function fx(x) takes only finitely many values;

(ii) the inverse images for fx are the finite unions of cylinder sets;

(iii) there exists a sequence {m:}7-1C N such that fx(8;x)=fa(x) for k<
m:<j or, equivalently, fx(x) depends only on Zr+1, ", Tm, With 7 being
chosen so that m,.1<&2<m..

Since the I'-action on X is free, every cocycle of this action can be
uniquely extended up to a cocycle of the full group [I"]. Conversely, given
any countable freely acting subgroup I"C[I'] with [I”]=[I"], then every
cocycle of [I'] is an extension as above of some cocycle of the I”-action on
X. We shall show that every cohomology class of cocycles with dense
range contains a cocycle of the special form relatively to some freely acting
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I"C[I'] such that I is isomorphic to I" and [I]=[I"].

Below in this section we shall use for a l.c.s. group G a notion { Wi},
which refers to the fundamental system of neighbourhoods of the identity
in G with the following properties: every W; is compact, W,=W;™!, and
VVH—) ° VVHIC VV;

Let @ and 8 be the cocycles of (X, ¢, I') determined by sequences of
functions fx: X = G and fx: X~ G respectively. Set up

(Pn(l'):fn(513')_]["][71—I(Jﬁ')_ln_l’"fl(x)-'rl ,
Pnlx)= ]Tn(x)_xnfn(x)_“_l'“ /‘Tl(x)ﬂrl .

Lemma 1.2. Suppose that one can associate to every paiv of functions
folx) and fu(x) a set AxC X and a neighbourhood of the identity V.C G
such that p(A.)>1—1/2" and for x<E An

¢n—1(x)_l Vngon—l(l')c Wn B
folZ): Flx) ' EVa .
Then a and B are cohomologous.

Proof. Let Ba=M7nA: then x(B,)>1—1/2". Form a sequence of
functions g»(x)=@(x)'@.(x). Now for all n, kEN, xE B, we have:

Gns () gn(2) ' = @nea(X) " @i n(z) Ba(z) ()
= @) frrr(Z) frsn(2)7* ()5 fraa(2) 7 @ul)
E Wass@n( ) Frusa ()™ Frr a1 (2)75 Fruwnr ()55
o Fr(z) 5 o)
CoorC WasaWasn-1 Wnir C Was sy Wasnoy Waan—zms Waar C
C Wasr-2Whsr-2Wasr-3 Wan1 C--C Wy .

Since BrC B+ and Us-1B.= X (mod 0), the correlation gn+x(x)g-(x)™*
€ W, for x& B, implies that g.(x) converge a.e. to a function g(x) as n— co.
Let n=k, then

9n(8xx)* B(k, 2)* gn(x)™*
= 0n(08L) " Bl 0n) Tat(Saz) Fa(z) V™ Gacr(2) Gn(x) " on(x)
= 0n(8a2) " F(Saz) ™+ Fa(8az) D Fo(ar)
X Falx)® e Fulz)™on(x)
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= 0n(8xz) ™" o(x) = 0a(0nz) ™" u(x)
= @a-1(0x) " [ ) TV prr(x) = (8%, X) .
Passing in the correlation
a(8s, )=gn(6sx)* B(S, x)* gn(x)™
we have got to a limit as oo, we obtain for a.a. r&EX and all k€N
a(3x, £)=g(0x)* B(3k, x)-g(x)™",
i.e. @ is cohomologous to 5. Q.ED.

Lemma 1.3. Every cocycle a: I’ XX~>G can be replaced by a co-
homologous cocycle B with values in a given countable dense subgroup H C
G.

Proof. Suppose a is determined by the functions fx: X~ G. Since G
is a countable union of compact sets, one can associate to each function
f(x) a set A.C X which is invariant with respect to o, -, &, #(An)>1
—1/2", and a compact set @.C G containing the identity so that fz(z)E Q-
for x&A,. Then choose a neighbourhood of the identity V». so that for
each element % of a compact set @ Q- Qn-1 one has AV,h'C Wy (n=>2;
Vi=Wi). Approximate f»(x) by a function f.(x) with values in H so that
@) Fa(z)E Vi, and fa(85x)= fa(x) for 1<j<m. Thereby we are in the
conditions of Lemma 1.2, so that if 8 is a cocycle determined by the
functions f.(x), then £ is cohomologous to a. Q.E.D.

Consider a metric d on a full group [I']:
d(w, w2)=p({x: w1x# w.x}) for wy, wE[I'].
Then ([I'], d) is a complete metric space [8].

Lemma 1.4. Let a be a cocycle of the dynamical system (X, p, I') with
dense vange in a l.c.s. group G. Then the cohomology class of a contains
a cocycle m admitting a representation in a special form.

Proof. One may assume by Lemma 1.3 that a takes values in a
countable dense subgroup HCG.

Let {B:}7-1 be a sequence of Borel subsets in X generating the Borel
o-algebra, and suppose that every set appears in this sequence infinitely
often. Form in a similar way a sequence {7:}7-1 consisting of generators of
the group I” so that each generator appears in the sequence infinitely often.
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We shall construct pairwise commuting automorphisms §.€[I"] (€ N)
with order 2, which generate [I'], and associate to each of them a function
p.: X— H. These will determine a cocycle 7 in correspondence with (1.1).

By [8, Lemma 6.3] we can choose a cyclic subgroup L with order 2° in
[I'] so that d([Li], 7)<1/2. Then there exist pairwise commuting
automorphisms 81, -+, 8.€[I'], each of them with order 2, which generate
the full group coincident with [L,] [8, Lemma 6.4]. We can associate to
everyone of these automorphisms a function fe X—H so that

(1.2) f{x)=a(8., z) for xEF; and
(1.3) fd(8x)=fx) for 1<j<i,

with F, being a fundamental set of the group I, generated by &1, -, 8.,
w(F)=1/2".
Choose for every function f.(x), 1<i<g, a finite set @,C H containing

the identity and a set A.C X invariant with respect to &1, -, 5. so that
(1.4) u(A)>1—1/2!
(1.5) f,-(x)e Q: for x€EA..

For ¢ as above set

f;(l‘) for x€A;
1.6 Jx)=
(1.6) v/ (@) {e for x€X\A:.
Everyone of these functions takes only finitely many values.
Let X =kLiJ1.CDk be a partition of X generated by the inverse images of

p/(x),i=1, -, a. Then the sets
y D NyFa) and ¥y (BiNyFa), k=1,-,s,yEl.,

N
generate also a partition of Fg, say Fo= _Ule. Let p be a positive integer
7=

N;
such that 22 >2°"'N. Represent R;, 1<;<N, as a disjoint union R;= tLJIRjt
so that u(R;)=1/2° for 1<¢t<N;—1, and u(R,*)<1/2?. Denote @®=

N
éjr szlij”’ and set for 1</<a
pi(x), z€X\0
e , T€E0.

1.7 pi(x)={
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It follows from (1.6) and (1.7) that p:(x)# f:(x) on a set with measure
less than 1/2°*1+1/2°v1<1/2°.

N
One can readily transform Ule”’ into the finite union of disjoint sets
P~

with measure 1/2” which form together with R’,1<j<N,1<¢{<N;—1, a
partition of F, by 2°7* disjoint sets M;, 0<;<2P"%—1.

Let U be a symmetric neighbourhood of the identity in G such that for
all elements % of the finite set @ Q2 - Q. (see (1.4), (1.5)) one has ZUA™'C
Wp. Choose a symmetric neighbourhood of the identity V so that

V-V.---VCU.

(1.8) —
2% times

Since @ has dense range in G, a simple argument permits one to
construct a periodic automorphism ¢ on F, from the full group [I"] reduced
to Fa, with order 2°7¢, which permutes M;, 0<7<2?"%—1, and such that a(¢,
z)EV for a.a. rEF,. We shall describe this construction in more details.

Let V'’ be a symmetric neighbourhood of the identity in G satisfying
the condition V’-V'C V. It follows from the ergodicity of the skew
product action G XX that there exist a set E1C Mo and an element n&1I’
such that #(E1)>0, nE:C M, and a(n, )€V’ for x€E,.. Then we form
in a similar way E2C Mo\E: and 7:E T so that u(Ez) >0, y2E;C M\ 7. E1, and
ao(y, x)E V'’ for zEE,. Repeat this procedure infinitely many times and
thus form a Borel isomorphism w:: Mo~ Mi(mod 0) from the full group [I"]
such that smx=7.x for < E;, and a(w, )EV’ at a.a. xE M.

After that we construct in a similar manner isomorphisms wx: Mo— M,
2<K<2P7%—1; let also wo=idm,. Define an isomorphism ¢: {x=we+1w:"'x
for x& M, with indices being taken mod 2°7¢. It is straightforward to see
that ¢ satisfies all necessary conditions; in particular,

1

a(t, x)=a(wk+1wk“, x)=a(a)k+1, we 'z) alwe™, x)

=a(C()k+1, (l)kﬂl.Z')' af(wh, w[‘x)"e V-vcv

under an appropriate choice of 4.

Construct as before related to ¢ automorphisms &: on Fa, with order
2, a+1<i<p, and then extend them onto 7F, for every yE I, by formulae
y8:7~'. Thus we obtain new automorphisms with order 2 on X which
commute in pairs with each other and with formed before &/s. As above,
associate with newly formed transformations the functions 7 X— G (see



OUTER CONJUGACY OF CONTINUOUS GROUPS 745

(1.2), (1.3)). Then F«{x)EU at a.a. zEX, as one can deduce from the
properties of ¢ and (1.8). Set px)=¢ for xEX, a+1<i<p, then f:x)™"
-px)eU at a.a. zE€X.

It follows from our construction that by the choice of p the set B is
approximated by the [p-invariant o-algebra generated by F» in measure up
to 1/2. This completes the first step of our construction (m.=p).

Repeat this procedure making the approximation more and more
exact.

At the n-th step 7» is approximated in the metric d by the group [L~]

up to 1/2". This provides [Qﬁ]Z[F]. Furthermore, at the #-th step B»

is approximated in measure by the ['n.-invariant finite o-algebra generated
by Fm, up to 1/2". This guarantees the coincidence of the initial Borel
o-algebra on X with the o-algebra generated by the increasing sequence of
finite o-algebras associated with I mny NE N,

The functions f.(x) and »:z) formed above satisfy the conditions of
Lemma 1.2, so that if we denote by 7 the cocycle determined by {p:(x)},,
then 7 is cohomologous to @. Besides that 7 has a special form with

respect to the dynamical system (X, g, Qﬁ’)' Q.E.D.

The following uniqueness theorem shows that any two cohomology
classes of cocycles of an approximately finite full group [9] of type I, with
dense range in a given amenable group differ from each other by an
automorphism in the normalizer N[ 9] of the full group. The existence of
cocycles with dense ranges was established in [20], [14], [15].

Theorem 1.5. Let G be an amenable l.c.s. group, a, B: DX X -G the
cocycles of a free approximately finite action of a countable group D on a
Lebesgue space (X, 1) with invariant probability measure p. Suppose that
the skew product actions GX X and G XX are ergodic. Then there exist
cocycles @ and B cohomologous to @ and B respectively as the cocycles of the
full group (D), and an automorphism 6= N[ D) such that a(y, x)=B(0y07",
Ox) for all y<[9D] at a.a. x€X.

Proof. In virtue of Lemma 1.3 one may assume that @ and S take
values in a countable dense subgroup HCG. We shall reduce
simultaneously @ and B to a special form, and a significant part of our
argument will resemble some phases of the proof of Lemma 1.4. There-
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fore we shall omit details referring the reader to the corresponding steps of
the proof of the previous theorem.

Denote by {B:}%1, {7:}71 and { Wi}%: the same as in Lemma 1.4.

Fulfil for a cocycle a the first step of the construction described in the
proof of the preceeding lemma. Thus, we construct the pairwise com-
muting automorphisms d: on X with order 2,1<:<m». For every i fix a
fundamental set F: of the group %, generated by 6% -+, 8%, so that F,D
F; D+ DFn,, 1(F;)=1/2'. The group [I'%,] approximates 7: in metric d up
to 1/2, and I's.-invariant finite o-algebra generated by Fn, approximates B:
in measure up to 1/2. Associate to the constructed above d:* the functions
f#(x) such that

A(x)=a(d2 x) for xEF; and f(8°x)=r(x) for j<i.
Now for every function £%(x) form the related function p.*(x) just as

in Lemma 1.4 constant on the sets yFn,, Y€ I#,, and invariant with respect
to I, with values in a finite set Q:C H, e€ @, and such that

(1.9) A (x) pf(x)'€U: for €A and p(A5)>1-1/2¢
with U: a neighbourhood of the identity in G chosen so that 2U:A~'C W; for
all k€ Q1+ Qo Q1.

Turn to the cocycle 8. For 7 as above construct using the ergodicity
of the skew product action G XX, the isomorphisms 6/€[9] which take
F; onto F;-1\F; (Fo=X) and such that
(1.10) B(8f, x)eUp(x) for zEF;:,

(111) 6,-"(61-"+1)"”(8?+z)“*"--(6;‘,’.2)""=sz
— 6ia(6:'1+1):”!(5?+2)§“2"'(6;2);’"’Fma
for any collection {&}7%+1 of 0’s and 1’s.

Thus we obtain the automorphisms 6/ on F;-: with order 2 which then
are extended onto 7F:-: by the formulae 7y '8/y for all elements y of the
group I'%: generated by 8/%, ---, 82.1. Set also p#(x)=p.*(x) for zEF; and
extend p#(x) onto X by I'/-invariance. Let f#(x),1<i<ms. be the func-
tions associated to 8 and 8/, -+, 0%, i.e.

fA(x)=p(6F, x) for zEF; and f(0fx)=F x) for j<i,
then it follows from (1.10) that
(1.12) f(x)-pf(x)'€U: for aa. z€X .
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Moreover, (1.11) implies the following correlation:
(6111){1(62:1)9,,_(5;2)5'”.,}:’“ — (81;9)51(62#)52...(5;!;’2)&7:21;‘,”2 ,

which means exactly that p#(x) satisfy the conditions of Definition 1.1 with
respect to the cocycle 8 and the transformations &%, -+, 8%..

Further fulfil the first step of the construction described in the proof of
Lemma 1.4 for the cocycle B, i.e., form the automorphisms 6/&[9] with
order 2, m:+1<i< M, which commute in pairs with each other and with
0’s constructed before, associate to them the functions f#(x) and p/#(x) so
that

(1.13) Ax)pf(x)'€U; for z€A:, and p(AF)>1-1/2°.

Fix also the fundamental sets Fin,+1 2D Fu, for each of the groups I,
C--C T, so that Fpn,+1C Fn,.

The group [I¥#.] approximates 7 in metric & up to 1/2, and the
I'fi.-invariant finite o-algebra generated by Fu, approximates B: in mea-
sure up to 1/2.

Now for m.+1<17< M, and the fundamental sets F; constructed above
form the automorphisms 8:*€[9] and the functions f*(x), p.°(x) so that

(1.14) A(x) pMx) '€ U; at a.a. x€ X, and
(8;’12+1)§m2+l"'(8[5{2);MZFM2:(8;’;lz+l)§mz"1‘“(6512);M1FM2

(see the described above construction of 67, p/(x), f(x) for 1<i<m.).

This completes the first step of our procedure.

In a similar way construct at the 4-th step for Ma+1<i<m+ the
automorphisms J;* and the functions p.%(x) which satisfy (1.9) and provide
approximation of y» and B up to 1/2¥. Then for the same 7 form the
automorphisms and the funotions p.”(x) satisfying the conditions (1.12) and

(115) (8}¢lzh+l)§1wk+l'"(Bgthl)gm'”kan 2(81”;1&+1)!M"”'"(agzkﬂ)cm""kaH .

Further construct for #ms+1+1<7{< M.+ the automorphisms JF which
provide approximation of 7 and B up to 1/2* and satisfy the condition
(1.13). After that form the automorphisms 8 and the functions p:%(x)
which satisfy the conditions (1.14) and

(1.16) (Oner) et (Oftns) ™5 Fitys

=(67’;lk+1+l)§m“l+l'“(aﬁké-l)th‘FMk-n .
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The approximation of 7:, i€ N, provides the coincidence of the full
groups [U7¥), [UT¥] and [9].

Let @ and B be the cocycles corresponding respectively to :% p:*(x)
and 87, p#(x). Then it follows from (1.9), (1.12), (1.13), (1.14) and Lemma
1.2 that @ is cohomologous to @, and B is cohomologous to 8.

The approximation of the Borel o-algebra on X we have made in our
construction implies that almost every point x&X coincides with the

intersection of all the cylinder sets corresponding to the group Qﬂ", which
contains this point:
1.17) z=y"F:,
with y"?&TI*. Evidently, this intersection is non-void iff YV FiDy®F,D-,
and the latter condition is equivalent to the following one:
7(i)=(6i4)§1.,,(31a)51

for some sequence {&}71€{0,1}¥. Thus we have the Borel isomorphism
Oa: X {0, 1}~ that takes a.e. point x& X into the associated to x by (1.17)
sequence {&:}1€{0, 1}V,

Let 6s: X~ {0, 1} be a similar isomorphism related to the group L_Jlﬂ’ )
Then 6200, = 0:0/0s7*= 9, with J:, iEN, being the automorphism of {0,
1}" given by

Sk, i+k

(5‘3)“={sk+1 (mod 2), i=Fk.

Let I' be the transformation group generated by 8:. Form the cocycles «/,
B I x{0,1}¥- G:

(w, s)=a(0. " 'wba, 67"s),
B'(w, s)=PB (6 wbs, 657's), wE[T'], s€{0, 1}V .

These cocycles are determined by the functions p.°6. ' and p£-6,"", iEN,
respectively (see (1.1)), and have the special form. But (1.15) and (1.16)
imply p:%° 0., '=pF°6,"", hence a’=4’. Thus we get a correlation

(60 WBa, 87 's)= B (65 wbs, 657 's) .
Set O 's=xE€ X, O 'wbo=yE[D], §=05""'0., and obtain finally:
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a(y, z)=B(6767", 6x) .
Note that 6 N[ D] since 5.0 =67, iEN . Q.ED.

Corollary 1.6. Let G be an amenable l.c.s. group, a, B: FX Y > G the
cocycles of a free approximately finite action of a countable group F on a
Lebesgue space (Y, v) with invariant measure v, v(Y)=co. Suppose that
the skew product actions GX .Y and GX Y are evgodic. Then therve exist
cocycles @ and B cohomologous to a and B respectively as the cocycles of the
full group [F), and a v-preserving automorphism 0 N[ F] such that a(y, y)
= B(0767*, Oy) for all yE[F) at a.a. yEY.

Proof. The F-action on Y is orbit equivalent to the I'X Z-action on
X X Z, with (X, g, I') being the dynamical system described at the begin-
ning of this section, and Z acting on itself by translations. Therefore @
and B can be transferred to the I'X Z-action. Change @ and B to the
cohomologous cocycles which do not depend on the translation of Z, and
apply Theorem 1.5. Q.E.D.

§2. Automorphism Groups of Ergodic Equivalence Relations
and Associated von Neumann Algebras

Measure groupoids play a significant role in the modern ergodic the-
ory. All necessary definitions as well as the detailed exposition of related
techniques are contained in [10—12, 18, 19, 24, 25, 29—32].

Let (2, @) be a measure groupoid and a: G- Aut(£2, @) an action of a
l.c.s. group G by strict automorphisms of the groupoid (2, @) such that the
map (g, x> a(g)x is Borel (the latter condition will be implicit for all
actions of continuous groups on groupoids or measure spaces we shall
consider below). This permits one to impose the groupoid structure on G
X 2. Specifically, form the projections 7, d: GXQ-{e} X 2©: »(g, x)=
(e, a(g)r(x)), d(g, x)=(e, d(x)). These maps together with the product
(g, )(h, v)=(gh, (a(h™")x)y) defined when (e(kh ")z, y)ERQ®, provide G X
2 with a structure of an algebraic groupoid. Note that under above
definitions one has (g, x)'=(¢7', a(g)x™"). All these maps are Borel
relatively to the product Borel structure an (G X, [¢c]X @) becomes a
measure groupoid (u¢ is a left Haar measure of G). We shall term this
construction the semidirect product and denote it by G®.L.

A similar definition was formulated in [32] for automorphism groups of
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topological groupoids. However, in the case of measure groupoids one
needs to work with an automorphism group G consisting of non-strict
automorphisms, i.e. isomorphisms between some inessential reductions (i.
r.) of the groupoid 2. Thereby some difficulties arise in defining the
semidirect product, especially when G is continuous. Nevertheless it will
be shown below that a slight reorganization of the original groupoid 2
makes all the automorphisms a(g) constituting the G-action on £ to be
strict. We shall stick to the case when £ is principal and has discrete
orbits.

Let 9 be a countable non-singular transformation group on a Lebes-
gue space (S, ), #(S)=1. Given any automorphism = N[9D], then one
can form two families of Borel maps ¢, ¢y: S—= S, yED: ¢,(s)=0ys, ¢)(s)
=y0s.

Denote by A,sCS the (Borel) set on which ¢, coincides with ¢s. It
follows from the definition of the full group normalizer that for every y&
9D the set A7=3g)g)Aya is just the entire space S (mod 0). The same

property is certainly valid for the set As= ﬂg)Ay. Furthermore, let Vo=
re

neZ

Agn, and then Uo(@)=kﬂzﬁ"Ve. Thus we get a Borel set Us(9) which is

invariant with respect to 8", € Z, and has measure 1. It also possesses
the following property: given any two points x, y& Us(9D), then x and y are
in the same 9-orbit iff fz, Ay are in the same D-orbit. We shall call
Us(9D) the strictness domain for the transformation & N[9] with respect
to 9. Note that a strictness domain for 6 can be also described with
respect to any countable transformation group 9 such that [9.]=[9D].

Denote by R 5 the Borel countable equivalence relation on S associat-
ed with the 9-action.

Theorem 2.1. Let a: G- Aut (S, ) be an action of a l.c.s. group G on
(S, 1) such that a(g)=N[D] for all g=G. Then there exist a Borel strictly
(but not only mod 0) G-invariant equivalence relation RCTSXS and a
conull Bovel set BCS such that R and R g9 agree when restricted to B.

Proof. One can easily see from the above discussion that the depen-
dence of Uu(9) on g is Borel since the map (g, )~ a(g)x and the
9D-action are Borel. Hence a set A={(g, x)EG X S: xE Uwe(9D)} is Borel
in GXS. Moreover, this set is conull with respect to the product measure
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e X e since (Uaey(D))=1 for every g G. Apply now the Fubini’s theo-
rem in order to conclude that the set M;={9E€ G: 2E U)(9D)} is conull in
G for a.a. x€S. Let BCS be the Borel set in S with g-measure 1
consisting of the points x with that property.

Form the set C={(g, x,y)EGXSXS:(alg)x, a(g)y)ER o}. It is
Borel since C=F (R g) for a Borel map F: GX X X X—- X X X given by
F(g, z, y)=(a(g)x, a(g)y). Thus we get a Borel field of sets L(x, y)={g9<E
G: (a(g)x, a(9)y)ER 9}. It is straightforward to check the following
properties of L(x, y):

(i) L(x,x)=G for all z€S;

(ii) L(x,y)=L(y, x) for all x, yES;

(iii) L(x, 2)DL(x, y)NL(y, 2) for all z,y, zES;

(iv) Lla(h)x, a(h)y)=L(x, y)h™* for all z, yES, hEG.

Consider a subset R={(x, y)€SXS: uc(G\L(x, v))=0} in SXS
together with a function f: SXS—-R, f(x, y)=u«(G\L(x, y)). A Borel
nature of this function follows from the fact that C is Borel and Theorem
1 of [16, § 35]. Therefore R is a Borel set.

It follows from (i—iii) that R is an equivalence relation. (iv) implies
that R is strictly invariant with respect to every Z2€G, i.e., GR=R.

Let x, yEB be given. If (x,y)ER ols then L(x, y)DM.NM,, and
hence uc(G\L(x, y))=0. On the contrary, if (x, y)&R g |5, then one has
G\L(x, y)DM:N\M,. This means exactly that R g |s=R|s. QED.

Remark 2.2. The equivalence relation R in the above theorem is a
Borel set and therefore it admits the structure of an ergodic equivalence
relation [24, p. 203], and hence the structure of a measure groupoid. This

is provided by a measure v on R given by u=/u"d/x(x), €S, with vi(E)

=card (EN{x}xB) for each Borel ECS. Thus we obtain a principal
measure groupoid R which is isomorphic to the groupoid R 4, though the
isomorphism is not strict.

The correlation GR=R permits one to raise the G-action @ on (S, 1)
to an action by strict automorphisms @(g) of the groupoid (R, [v]): @(g)(x,
v)=(a(g)x, a(g)y) for (z, y)€R. This enables one to form the semidirect
product G®zR which we shall also denote by G®&R o and thereby
associate it with the original groupoid R 4.

Remark 2.3. The statement of Theorem 2.1 is also valid when the
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group 9 is continuous, and every automorphism a(g) is inner with respect
toR g,ie., (alg)x, x)ER ¢ for a.a. t€S. It suffices in this case to declare
Uwo(D)={xES: (a(g9)x, x)ER ¢} to be a strictness domain for a(g) and
transfer the proof almost literally.

Let (2, @) be an orbit groupoid of an ergodic type Il or III action of
a countable group I" on a Lebesgue space (X, #) and (T X T, [urX ur]) a
transitive groupoid associated with the translation of a circle T on itself
with Haar measure #7. Form the direct product (&, C)=(2X(T X T), @
X[prx ur]). Recall that every principal ergodic groupoid with continu-
ous orbits is isomorphic to some groupoid of the above form [10, Theorem
6.4].

Theorem 2.4. Let A be an automorphism of the groupoid (G, C).
Then theve exist an automorphism 0 of (2, Q) and an inner automorphism
t of (8, C) such that A=(0xid)r.

Proof. Since (4, C) is principal, A is completely determined by its
restriction to the unit space ¢ @=XXT. Set A(z, t)=(Ai(x, t), Az, t)).

Choose % & T so that the set X X {t} is contained mod 0 in the i.r. of &
on which A is a strict isomorphism. Form a Borel map ¢: X~ X, ¢(z)=
Ai(z, t). Since A is an automorphism, one may assume after discarding
a Borel null set that every point in X has at most countable inverse image
with respect to . This implies that ¢(X) is a Borel subset of X with
positive measure. Note that the partition of X into the inverse images of
@ is measurable. Hence there is a Borel set SC X with positive measure
such that ¢ is one-one when restricted to S.

Note that Ai(x, ¢t) and ¢(x) are in the same I'-orbit when (z, ¢) is in
some i.r., and hence the maps A and (x, ¢)~ (¢(x), ¢) take almost every pair
(z, t) into I' X T-equivalent pairs. A is an isomorphism, hence ¢ should
take complete sets into complete ones, and non-complete into non-complete
ones (recall that a measurable set in the unit space of a groupoid is said to
be complete iff its saturation is conull). Note that the class of complete
sets in X is just the class of sets of positive measure due to the countability
of I". Thus ¢ is non-singular on S.

We shall assume below that the I'-action preserves the measure g, and
w(X)=co. The case of type III I'-action can be considered in a similar
way.

Let f(x)=dye ¢/du(x) be the Radon-Nikodym derivative of the mea-
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sure u° ¢ with respect to 1. One can readily deduce from the I'-invariance
of u that f(x) is invariant with respect to the full group [I"] reduced to S.
By the ergodicity of I' f(x) is constant a.e., that is, u°¢=cu for some ¢ >
0.

Replacing if necessary S by its subset of finite measure and normaliz-
ing ¢ in a suitable way, we can get #(S)=1, u(¢(S))=c. Partition X

twice into countable families of disjoint sets X = QOS,: L=J()Si, so that So=

S, So'=9¢(S), u(S:)=1, u(S.))=c. Choose the transformations 7:, y;'€[I"],
1=0,1,2, - so that 7:{S0)=S;, 7/(So’)=S/. Finally, set §: X- X, Ox=y/
cpoy; Y(x) for xE€S:. Clearly 6 N[I'] and hence 8 is an automorphism
of (2, Q). It follows from the above constructions that #(x) and ¢(x) are
I'-equivalent at a.a. x€X. Thus 6 Xid is pointwise I" X T-equivalent to ¢
Xid, and hence to A. This implies A-(6Xid)™" is an inner automorphism
of (&, C). Q.E.D.

The paper by P. Hahn [19] presents a construction which associates to
each measure groupoid (¥, B) a Banach #* -algebra II(%) together with its
regular representation in L*¥) by convolution operators L,, fEII(H).
This permits, in particular, to put in correspondence to each automorphism
of the measure groupoid H an automorphism of the von Neumann algebra
LI(4))”, and thereby to impose the notion of module for groupoid
automorphisms. We shall describe briefly the corresponding construction
for ergodic type II groupoid (¢, C) mentioned above in this section.

To begin with, consider the groupoid (2, Q) with discrete orbits (the
discrete reduction of (¢, C)). We shall assume below for simplicity’s sake
that (2, Q) is generated by a free action of a countable group I, so (2, )
=(I'X X, [ur X 1]) with gr a counting measure on I". One has:

(I x X)={feL'(I' XX, prx p): ||flu< oo},
IAu=sup(Z, fI£(r, )ikl diu(a): [I7Pdu= [{kldu=1).

The convolution of functions and involution are defined in the follow-
ing way:

(f * g)(7, x)=7§rf(77"1, yx)-9(y, x),

[y, 2)=F,(" rx), f,9€ENIXX).
Form type Il. factor M =L{II(I"X X))” generated by the convolution
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operators Ly:
Li=f%& fENT'XX), EEL(T'XX, urXpy).

Then every element of M is an operator of convolution with some measura-
ble function [12, propositions 2.6, 2.10].
Given any function a(x)EL>(X), then one can form a function

O

The convolution operator Lg is just the multiplication operator by a(x):
(La&)(y, x)=a(rx)-&(7, x) for EELN(I'X X).

Let A be the subalgebra in M consisting of all the multiplication operators,
then A is maximum Abelian and isomorphic to L*(X). Moreover, A is
regular in the sense that its normalizer N(A)={U&M: U is unitary,
UAU*=UJ} generates M [12, proposition 2.9].

Every automorphism of the groupoid I" X X is determined by some &
NI[TI'] and acts in a following way:

(21) 6(y, z)=(7"(x), 6z)

with y°(x)E T be such that y*(x)0x=0yx. 6 can be raised to an automor-
phism & of the Banach algebra II(J" X X):

(2.2) (6, x)=F(r" (), 67'x) .

It is easy to see that & can be extended to M.

The following two lemmas concerning the connection between
automorphisms of principal measure groupoids with countable orbits and
automorphisms of the associated von Neumann algebras are due to J.
Feldman and C. C. Moore [12].

Lemma 2.5. There is a one-to-one correspondence between the inner
automorphisms of the groupoid I' X X (or just the elements of the full group
[I']) and the classes of unitary operators UE N(A) which differ from each
other by some unitary a=A.

Lemma 2.6. For every outer automorphism of I'XX there is a
naturally associated class of coincident on A outer automorphisms ¢ of M
such that ¢ (A)=A. Conversely, every class of outer automorphisms of M
with above properties determines some outer automorphism of I'X X.
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Turn to the groupoid (4, C), whose orbits are continuous. The
associated von Neumann algebra L(II(&))” splits into the tensor product

LT x X)) QLT X T))' = M1,y @B(LXT)) .

It contains a maximum Abelian regular subalgebra A«®Ac: with Aa=UA,
A:.=L>(T) [10, propositions 8.1, 8.2].

Theorem 2.7. There is a one-to-one correspondence between the inner
automorphisms of (4, C) and the classes of operators from N(AsQRA:)C
MQB(LXT)), which differ by unitary elements of AsQ Aec.

Proof. Let 0 be an inner automorphism of (&, C). The restriction of
@ to the unit space X X T is defined by some Borel maps ¢: X X T =1 and
O XXT-T:

6(x, t)=(g(x, t)x, ¢(x, t)).
Let XX T =7LEJI‘Q7 be the partition of the unit space into the inverse

images of ¢, @,=¢ (7). This partition induces a family of transforma-
tions y7'0: Q,~ y'0Q,, yEI', submitted to the T-action on X X T'. These
transformations generate the partial isometries a,E A.QB(LXT)).
Consider the family of unitary operators A,EMQB(LXT)), yT,
given by (L7, x), (s, )=E((r7'7, x), (s, 1)), with (v, x)EI' X X, (s, 1)
ETXT, EcLXG).
The strongly convergent row Ua=7§r/17a7 determines some unitary

operator UsEN(A.RQA:). We shall denote by & the associated inner
automorphism Ad Us of MQB(LXT)).

Let now U be a unitary operator from N(A«®A.), r the trace on
M®B(L¥T)) and E the conditional expectation onto the subalgebra
AdRB(LXT)). Then U admits the decomposition U =7§rxiyay with a,=

E(Ay-U)E As®B(L*(T)), which converges to an operator in
L*(MQB(LXT)), r). It follows from the orthogonality properties of the
family {A,: y&TI'} with respect to r and the condition USN(A.QA.) that
a, in the decomposition of U are the partial isometries. Moreover, the
systems of domain and range projections of the partial isometries A,a, are
disjoint and contained in As®Ac. By means of multiplication by the
unitary elements of A«®A.: one can make a, to be generated by the 7'-
action on X X 7T. Thus we obtain a row with the structure as above for
the operator Ua, a€As®A: being a unitary element. Let 6 be the
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automorphism of the Lebesgue space X X T which is the point realization
of the action of Ad (Ua) on As®A. [23], then Ad (Ua)=4. Q.E.D.

Theorem 2.8. There is a one-to-one correspondence between the outer
automorphisms of (€, C) and the classes of outer automorphisms ¢ of
M@B(LXT)) coincident on Ad®Ac and such that $(AcRAc)=AQA:..

Proof. Let A be an outer automorphism of ¢. By Theorem 2.4 it
admits a representation A=(6 Xid)- w with & being an outer automorphism
of I'X X, w an inner automorphism of ¢. Associate with A the automor-
phism A=(8 Xid)- @ of MQB(L*T)) where 8 is the automorphism of M
given by (2.2) and @ the inner automorphism of M ®B(L*(T)), described in
the proof of Theorem 2.7.

Conversely, let ¢ be an outer automorphism of M® B(L*(T)) such that
p(ARA)=A.QA:. This clearly implies that ¢(N(AsQAc))=
N(As®Ac) and hence by Theorem 2.7 the point realization A of ¢ on ¢©
normalizes the group of inner automorphisms. We need only to deduce
from this fact that A is an automorphism of (&, C).

Recall that (&, C) is an orbit groupoid for an ergodic action of a l.c.s.
group G=I"XT on a Lebesgue space (¢©, @)=(X X T, uX ur). We shall
denote by B8(g), 9= G, the automorphisms which constitute this action, and
R, the corresponding Borel equivalence relation on G ©.

Form an action @: G- Aut(¢G ®, 7) by the automorphisms a(g)=
A7'B(g)A, and let R. be the corresponding Borel equivalence relation on
G®©_ 1t follows from the above discussion that every transformation a(g)
is inner with respect to Ks. We apply Theorem 2.1 and Remark 2.3 to
deduce the existence of a Borel equivalence relation R on ¢ and a conull
Borel set BC & such that a(g)R=R strictly for all g€ G, and R|s=Rsls.
This implies, in particular, that every transformation a(g) is inner also
with respect to R, i.e. for every ¢&G a Borel set E;={x€ ¢®: (a(g)x, x)
€R} is conull in €. Thus the Borel set E={(g, z)EGX & ©: (a(g)x, x)
ERY} is e X g-conull in GX & @ and hence by Fubini’s Theorem the set E-
={g€ G: (a(g)x, x)E R} is conull in G for x in some conull Borel B'C ¢©,
It follows from the strict e-invariance of R that E: is a conull subgroup in
G, and hence E:=G for x€B’. This means exactly that Re/sCR|s.
Form a Borel set Bi=B(\B’, then R|s=Rsls, and hence Rq|s,C Rels,.
One can readily exchange the actions @ and 8 with each other in the above
reasoning and get a conull Borel set B.C & such that Re|s,C Rels.. Thus
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we have proved that the equivalence relations K. and R, coincide when
restricted to the conull Borel set Bi(\B.. But R.=A(R;), and hence R; is
A-invariant mod 0, i.e., A is an automorphism of (&, C). It is easy to see
that ¢ and A agree on A«®A..

Definition 2.9. We call the number mod A=r°A/r a module of an
automorphism A of type II groupoid (&, C) described in this section, where
A is the automorphism of MQB(LXT)) associated to A, r the trace on
MQB(LXT)). Now let (¥, P) be an arbitrary type II groupoid with
continuous orbits, and ¢: H'— ¢ an isomorphism. For an automorphism B
of (4, P) set up mod B=mod(eBe™").

Evidently, module is a homomorphism Aut (¥, P)— R.*) which does
not depend on the choice of ¢.

Remark 2.10. The module of an automorphism A of (&, C) coincide
with the module of the associated to A by Theorem 2.4 automorphism &
NI[TI'], mod 6= pu°0/p.

Let (£, @) be an orbit groupoid of an ergodic type I, action of a
countable group 9 on a Lebesgue space (S, v). Form the direct product
(G4, C)=(2X(TXT), Qx[prxur]). Itiscertainly isomorphic to some
groupoid (¥, C) as described before in this section, whose discrete reduc-
tion (2, Q) istype Il.. The following can be easily deduced from Theorem
2.4.

Corollary 2.11. Let A be an automorphism of the groupoid (€., C1),
and mod A=1. Then there exist an automorphism 6 of the groupoid (£2,
Q1) and an inner automorphism w of (€., C1) such that A=(0Xid)w.

Recall that the automorphism & N[ 9] for an arbitrary full group [9D]
is said to be inner if 6&[9D] and outer otherwise. In a similar way, the
action @: G- Aut (S, v) of a l.c.s. group G such that a(g)eN[D] for all ¢
€ G, is called outer if every transformation a(g) is outer. A sharpening of
this notion is given by

Definition 2.12. The action e is said to be strictly outer if there exists
a conull Borel set BC S such that for all sS€B a(g)s& B and a(g)s=ys for
some y=9 implies y=¢ 9, g=ec.

Clearly every strictly outer action is outer and free. Moreover, the
semidirect product G®sR o formed in Remark 2.2 is a principal groupoid
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iff the action @ is strictly outer.
It is easy to see that every outer action of a countable group G is also
strictly outer, but this is not the case for a continuous group G.

Example 2.13. We shall show how to imbed an arbitrary l.c.s. group G
into the normalizer N[9] of a type II; full group [9D] so that the G-action
is strictly outer. Consider the case of noncompact G.

Let (Y, v) be a free properly ergodic (i.e. non-transitive) Lebesgue G-
space with invariant probability measure v. Form the space (X, u)=(Y,
v)? which admits a u-preserving G-action by the automorphisms a(g):

(dg)x); =9z, r€D.
Define also a free ergodic u-preserving 9-action on (X, p):
(Y.Z‘)Azl'ay, 7, =)

This 9-action clearly commutes with a(g), g€ G, and so a(¢9)EN[D]. We
claim the action a is strictly outer.

Suppose a(g)x=yx for some xE X, g=G, y=9. Since the actions of
G and 9 are free, one may assume that g#=e¢, y#e 9. Then x satisfies
the condition xs,=gzxs for all & 9D, and hence is contained in the Borel set
B,={xr€ X: z,€ Gzx.} where Gzx. is the G-orbit of z.E Y. Since the G-
action on Y is properly ergodic, every G-orbit in Y has v-measure 0, hence
#(By)=0. Set up B=YEUQ B,, then #(B)=0. This means that the action «

is strictly outer.
A strictly outer action of an arbitrary compact group G can be con-
structed in a similar way.

§3. Outer Conjugacy for Actions of Unimodular Amenable Groups

We shall denote throughout this section by I" a free countable amena-
ble ergodic transformation group of a Lebesgue space (S, u), #(S)=1, with
¢ being I'-invariant. @, 8: G- Aut (S, ) will mean the actions of a contin-
uous unimodular amenable l.c.s. group G on (S, 1) by the automorphisms
a(g), B(¢9)ENI[I']. Recall that such actions are called outer conjugate if
a(g)=oB(g)p~'t(g) for some ¢EN[I'] and t(g)E[I'] for all g=G.

Consider the groupoid (&, [v]) generated by the I'-action on S: ¢ =TI"
XS, v=prXpu. Then by Theorem 2.1 and Remark 2.2 the actions @ and 8
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generate actions of G by the strict automorphisms @(g) and B(g) of some
groupoid R isomorphic to &, which we shall identify with &.

Let (2, [#]) be the transitive groupoid generated by the translation of
G, P=GXG, n=pc*X uc. Consider the direct product (€ X 2, [p]), o=V
X 7. The automorphisms a@(g), B(g) are naturally extended up to
automorphisms @(g)= @(g)Xid and B(g)=B(g)Xid of & X 2.

Definition 3.1. We shall say that the actions @ and 8 are stably outer
conjugate if there exist an automorphism A and a Borel family of inner
automorphisms /(g) of the groupoid & X &P such that for every g=G the
automorphisms Z(g) and Aa(g)A'/(g) agree on an ir. of & X @,

Lemma 3.2. FEvery two strictly outer actions a and B are stably outer
conjugate.

Proof. Let r: G- G X G be a Borel measure preserving isomorphism
of the Lebesgue spaces. Define the map {: - P X 2P by

&(g, B)=(n(gh)- u(h)™, u(h)) X (nlgh)- ()", (h)) ,

where 7(g)=(n(g), (g)). It is easy to see that ¢ is a strict isomorphism of
groupoids, which can be extended up to a strict isomorphism &: @ X P~ &
XPxXP, E=idx¢. This isomorphism transfers the G-action onto the
groupoid (€ X P X P, [vXpX7p]). Specifically, we have for each g€ G the
automorphisms @(g)={a(g) £ and B(g)=£A(g) " given by
(3.1) a(g)z, s, )y=(a(g)x,s, t),
B(g)z, s, )=(B(g)x,s, t)

for (x,s, 1) EG XPXP.

Form the semidirect products (G®4i( & X P), [ue X v X 7]) and (G® (&
X @), [ncX vX75)]) together with their homomorphisms 7. and 7 re-
spectively into G: m(g, T)=g for (g, T)EG®( & X P); 7z is defined in a
similar way. This permits one to consider the skew products

(GX2.GO®i( 4 X D)), [1e X uc X vX 7]) and
(GRx(G®#(G X D)), [16 X pe X vX 7]) [10] .
Each of them possesses the G-action w. and w; respectively:
wdp)h, g, x, )=(hp"", g, x, t)
for (h, g, x, t)EGCX 2 (GO®a( G X P)); ws(p) is defined in a similar way.
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Let the action of G by inner automorphisms /(g) on € X X2 be
given by 7(9)(z, t, (&, h))=(x, t, (k, hg™")) for z€ G, tEP, (k, HELP.
Define the maps ¢a: GX 2, (GO G X P))» G X P X 2P,
bk, g, x, t)=(a(h ")z, t, (g, k), and
b5 GX(GOHEXP)»GXPXP,
¢s(h, 9, z, 1)=(B(h ")z, t,(g, k), for zE G, tEP,
(9, HEP .

One can readily check that ¢. and ¢, are the groupoid isomorphisms
and the following is true:

(3.2 a(9) 7 (9)=pawe(g)da*;
B(9) 1 (g)=dswalg)ds" .

The groupoids G®#( & X L) and GO®(¢ X L) may be written in the
form (G®z¢)X 2P and (GO®zSG)X P respectively, and they should be
approximately finite due to the amenability of G (see the Appendix).
Moreover, since the actions @ and £ are strictly outer, the groupoids above
should be principal. Hence by [10, Theorem 6.4] there exist the isomor-
phisms

(3.3) FoGOHEXP)»(ZXT)X(S'XT)
(3.4) Fe: GOi(E XP)>(ZXT)X(S'XT)

Since G is unimodular, it follows that the modular homomorphisms
[18] of the groupoids G®4( & X L) and G® (& X P) are trivial, that is both
groupoids are of type II. Hence we may identify Z-actions on S’, written
in (3.3) and (3.4), and choose them to be of type Il..

This permits one to transfer 7. and 7z onto the groupoid (Z X T) X (S’
XT). Setup Ta=m2F, !, Te=m°Fs ' and form the corresponding skew
products GX#(ZX T)X(S'XT)), GX#(ZXT)X(S'XT)). Fa. Fs are
naturally extended up to the isomorphisms between the skew products:

Fo: GX2(G®a(G X P))» GX z,((ZX T)X(S'X T))
Fo: GX0(GOHEXP))»GCXwm((ZXT)X(S'XT)).
These induce the actions of G by the automorphisms

(35) @a(9)=Fewa(g)Fe" and @p(g)=Fsws(g)Fs™
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on GXz((ZXT)X(§'XT)) and G X z((Z X T)x(S"x T)), respectively.

It is easy to see that the cocycles 7. and 7; have the dense ranges in
G. Using a simple argument, we can replace them by cohomologous
cocycles independent of the translation of 7. Thus we may apply Corol-
lary 1.6 in order to deduce the existence of a Borel function f: S'XT-G
and an automorphism = N[Z] such that (see (2.1))

f(n=s, vt) ' Tol(m, 7), (s, DS (s, t)=7:((n’(s), ), (65, t))
on some ir. of (ZX T)X(S’X T). Define the map
$: GX 2z, ((ZXT)X(S'XT))-» GX 7,((ZX T)X(S’'XT))

by ¢(g, (n, v), (s, 1))=(f(s, t)'g, (n%(s), »), (0s, t)). Then ¢ is a groupoid
isomorphism, and

(3.6) @5(9)=p@o(g)$™"

for all g&G on some i.r.

Combine now (3.1), (3.2), (3.5), (3.6) to get the correlation 8(g) / (¢)=
Aa(g) I (g)A™, with 7(g9)=E"7(9)&, and A= £ '¢sFs ' ¢Fapo"' € being
an automorphism of ¢ X P. Equivalently,

3.7) Blg)=Aa(g)A™i(g)
for some Borel family /(¢) of inner automorphisms of ¢ X 2. (3.7) holds
for every fixed g G on some ir. of & X L. Q.ED.

Theorem 3.3. Every two strictly outer actions a and B ave outer
conjugate.

Proof. Return to the groupoid GXz((Z X T)X(S'XT)) we have
considered when proving Lemma 3.2. Replace the cocycle 7. by a co-
homologous one 7, independent of the translation of 7', and respectively,
pass to the isomorphic skew product. The latter may be written in the
form (GXA(Z X S)X(TXT).

For an arbitrary transformation 6 N[Z] form the cocycle 7% (%, s)=
7(n%(s), bis) (see (2.1)). Evidently, 7% has the dense range in G. Hence
by Corollary 1.6 there exist a Borel function fo,: S'= G and bEN[Z] such
that mod 6=1 and fe,(n°5) " 7% (%, s)fe.(s)=m(2n%(s), bos).

Define the automorphism ¢s, of the skew product

GX lt(Z X S,) .
Bo.(g, (n, $))=f6.(67's)"'g, (n*°7'(s), GO 's) .
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Evidently, mod ¢s,=(mod 6)~'. This induces naturally the automorphism
$o, of the groupoid G X #,((Z X T) X (S’X T)) commuting with the G-action
@ and such that mod ¢s,=(mod #)~'. Thus we can replace correlation
(3.6) by the equivalent one:

(3.8) @6(g)=Pbo,02(9) ol $7

and then A in (3.7) by the automorphism

(3.9) B={"¢sFs ' dpo.Fapa™ €, so that
B(g)=Ba(g)B'1'(g)

for some Borel family /’(g) of inner automorphisms of ¢ X ?. Choosing 6
€NI[Z] in a proper way, we can get mod B=1.

By Corollary 2.11 there are & N[I'] and an inner automorphism r of
@ X @ such that B=(¢Xid)r. Rewrite (3.9) in the form

B(g)xid=(exid)(a(g)xid)(¢~' xid){"(g) .

This implies that the family /”(g) of inner automorphisms should have the
form ["(g)=p(g)xid with p(g)€[I'] for each g&G. Hence B(g9)=
pa(g)e™'p(g) . QED.

Remark 3.4. A similar argument proves Theorem 3.3 in the case when
the approximately finite full group [I'] is of type Il», and mod a(g)=mod
B(g)=1 for all g=G. Moreover, the intertwining automorphism ¢ N[I]
in this case has module 1.

§4. Outer Conjugacy of Compact Groups

Let I, S, u, @, B be the same as in § 3. We replace only an arbitrary
continuous amenable unimodular l.c.s. group G by a compact second
countable group K, and prove a sharpening of Theorem 3.3 for strictly
outer actions @ and 8 of K. It turns out that two such actions are simply
conjugate by means of some transformation from N[I'].

Theorem 4.1. For every two strictly outer actions a and B of K there
exists an automorphism ¢EN[I'] such that B(g)s=pa(g)e™'s for all g€K
at a.a. sSES.

Proof. It follows from the compactness of K that the partitions of S
into @- or B-orbits are measurable. Moreover, since I is ergodic and «, 8
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are strictly outer, every a- or 8-orbit is a null Borel set. This implies that
the orbit spaces S/a(K) and S/B(K) are standard and uncountable, hence
isomorphic. Set S/a(K)=S/8(K)=X, and denote by ¢, ¢s: X—S the
corresponding Borel sections.

Define the Borel isomorphisms ¢a, ¢s: KX X~ S: ¢o(g, x)=a(g™") po(x),
dag, x)=B(g VN ps(x) for (g, x)EK X X. Let also the K-action on KX X
be given by w(g)(k, x)=(hg™*, x). It is easy to check the following correla-
tions:

(4.1) w(@)=¢a'e(g)da,
(4.2) w(9)=¢s'B(g)¢s .

Let RrCSXS be the equivalence relation on S generated by the
I’-action. Then Theorem 2.1 implies the existence of a Borel equivalence
relation R which agree with Rr when restricted to some conull Borel set B
C S and such that

a(K)R=R.

Consider the set of pairs R«C X X X: (&1, x2)€ R, if there exists m.(x1,
Z2)EK such that

(d(ﬁa(l‘1, .Z‘z)_l)fpa(l'l), (Da(l‘z))ER .

Lemma 4.2. R. is a Borel equivalence velation with an inessential
discrete reduction, and 7. is a Borel cocycle of Ra.

Proof. Since the action « is strictly outer, one may assume, possibly
after discarding from S a a(K)-invariant Borel null set, that each pair (z,
Z2)ER. determines uniquely 7.(xi, x:)EK. It is straightforward to
deduce from the condition a(K)R=R that R. is an equivalence relation
and 7, is a cocycle. We shall show in more details that K. and 7, are
Borel.

Form the Borel function f: KX XX X->SXS:

f(k, x1, 22)=(a(k) po(x1), Pa(x2)) ,

together with projections pxxx: KXXXX->XXX, p KXXXX-K.
Since the projection pxxx is injective when restricted to f'(R), the
equivalence relation Ro=pxxx(f"'(R)) is Borel. Furthermore, for every
Borel set CC K the inverse image 7. '(C)=pxxx(p= '(C)Nf'(R)) is Borel,
hence 7. is a Borel map.
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The equivalence relation € generated by R and the action ¢ of K on
S, admits the structure of a measure groupoid (see Remark 2.2). Hence by
[31, Theorem 5.6] it has a discrete reduction, i.e. a Borel €-complete set Y;
C S whose intersection with each equivalence class is at most countable.
Replacing if necessary Y by its € -complete Borel subset, one may assume
that Y meets every a-orbit at most once. It follows from the correlation
a(K) R=R that the &€ -saturation of Y coincides with the R-saturation of
2(K)Y:. Since the latter saturation is S (mod 0), and R agree with Rr on
a conull set BCS, the set a(K)Y: should have the positive measure in S.

Now apply the above argument to the reduction of € by S\a(K)Y: and
thereby obtain the set Yz, then form in a similar way Y3 etc. Let Y=

U Y, then the reduction of € to Y has at most countable equivalence

i=1

classes. After discarding a Borel e-invariant null set the projection of S
onto the quotient space X becomes one-to-one when restricted to Y. This
projection provides an isomorphism between €|y and R., hence R, has an
inessential discrete reduction. Q.ED.

Completion of the proof of Theovem 4.1. R, induces an equivalence
relation R on KX X: (g1, 1) ~(gs, x2) if (1, 22)ERe and g=7ma(x1, X2) 2.
The map ¢« X ¢q is an isomorphism between R;* and R, hence R." is Borel.
In virtue of Lemma 4.2 and [11, Theorem 1] we may assume that R, is
generated by an action of a countable group 9. on X, and so R, is
generated by a skew product action K Xz, X with finite invariant measure
(faspe.

Let v. be the projection of the measure (¢ ')xz onto X, then
9 ,-action is ergodic and ve-preserving. Since, due to ¢, the transforma-
tions w(g), g€ K, should preserve the measure (¢ ")x, the latter admits
the decomposition (¢a ")x 1= s X va, with 1. being the Haar measure of K.

¢« provides also the orbit equivalence between the I"-action on S and
the skew product action K X 7,X, hence the latter is ergodic and approxi-
mately finite (equivalently, amenable [5]) with respect to the measure
(¢aDsp. Therefore the 9.-action on X is also approximately finite [36,
Proposition 2.6].

Form in a similar way an equivalence relation R; on X, a cocycle 7z
with dense range in K, and a measure vs. Since K; is also a countable
approximately finite type I, ergodic equivalence relation, one may assume
that up to a Borel automorphism of X, R.=Rs=Rx, va=vs=v. Suppose
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that Rx is generated by an ergodic v-preserving automorphism A.

Since the skew product actions K X ,X and K X ., X are ergodic, we
may apply Theorem 1.5 in order to deduce the existence of §&N[A] and
a Borel function f: XK such that f(0x) 'm(8, x)f(x)=n(07'86, 6 'x)
for all 6€[A] at a.a. z€X.

Define the map ¢: KXX->KXX by ¢(g, x)=(f(x)"g, 67'x). It is
Borel, wxX v-preserving and provides an orbit equivalence between the
skew product actions K XX and KX X. Clearly, ¢ commutes with
w(g), g€K. Using this fact and (4.1), (4.2), we get B(g)=
Gadpa'a(g) ot o' With depda 'ENI[I]. Q.E.D.

Remark 4.3. Suppose that the I'-action in Theorem 4.1 preserves
infinite (but o-finite) measure #. Then it follows from the compactness of
K that mod a(g)=modfB(g)=1 for all g=K. Thus the proof of Theorem
4.1 may be repeated almost literally in the case of transformation group I”
of type Il.

Appendix

The following theorem generalizes a well known proposition by A.
Connes and W. Krieger [6].

Theorem A.l. Let (S, u) be a Lebesgue space with a probability
measure 1, T an ergodic non-singular transformation of (S, ). Given also
an action of an amenable l.c.s. group GCN[T] on (S, un). Then the
equivalence relation R on S, generated by G and T, is approximately finite.

In virtue of Theorem 2.1 and Remark 2.2 R admits the structure of a
measure groupoid.

Before proving Theorem A.l note, that by [5], it suffices to check the
amenability of R. The definition of amenability for equivalence relations
given below is just the rephrasing of the Definition 1.4 from [36] (see also
[25, p. 205]).

Let E be a separable Banach space, and for each s€S one has a
non-void weakly- * -compact convex set K in E*. Then s— K, will be
called a Borel field of weakly- * -compact convex sets if the set {(s, f): f€
Ks} is Borel in SXE* with E* being supplied with a Borel structure
generated by the weak- * -topology.

A measured equivalence relation R on S is called amenable if for every
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separable Banach space E, for every homomorphism ¢ from R into the
group ISO(E) of isometric automorphisms of E, given the strong operator
topology, and for every Borel field s— K of weakly- * -compact convex sets
in E* which is invariant under ¢ in the sense that

(A1) o*(s1, 52)Ks,=Ks, for a.a. (s1, S2)ER

with ¢*(s1, s2)=@(s1, s2)* 7, there is a Borel function e: S— E* such that e(s)
E K, and ¢*(sy, sz2)e(sz)=e(s1).

Proof of Theovem A.l. Let E, ¢, and s— K be the same as above.
Consider LX(S, E)={f: S E, f weakly measurable, and f||/(s)|du(s)< oo},
where the functions which agree a.e. are identified. This is a separable
Banach space with the norm [f]|=/|f(s)ldu(s) [9]. Define the (strongly
continuous) representation 7 of G in the group of isometric automorphisms
of L=(S, E):

(2(@)))= (s, g™'5Ig7's VoL (s),

for h€L'(S, E). The adjoint representation 7* operates in the dual space
L=(S, E*)={f: S- E*, f weakly- * -measurable, and
ess sup [ f(s)l< oo}

[9, Theorem 8.18.2] in the following way:
(7*(@))(s)=9*(s, g7's)f(g7"s)

for fEL™(S, E*), that is, 7*(g)=n(g™")*.
Consider the set

K={f: S- E* f weakly- * -measurable, and f(s)EK;} .
Lemma A.2. KCL>(S, E*), and is contained in some ball.

Proof. It suffices to show that a.a. K lie in some ball in E*. For this,
consider the function »: S— R, »(s)=sup{||f|: f£Ks} and check its measur-
ability. Define also the Borel maps ¢: SX E*—> R, ¢(s, f)=| /|l (this map is
Borel due to the weak- * -compactness of the unit ball), and p: SXE*-> S
(the projection), (s, f)=s. Then for any c¢>0 the set » *((c, +o0))=
(¢~ ((c, +)N{(s, f): FEKS}) is measurable since s— K is Borel. That
is, 7 is a measurable map.

Furthermore, it follows from (A.1) that #(s) is invariant with respect
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to the ergodic transformation 7", hence »(s) is constant a.e. QED.

Completion of the proof of Theorem A.l. It follows from Lemma A.
2 and [36, Proposition 2.2] that K is weakly- % -compact convex set in L*(S,
E*). By (A.l) it is invariant with respect to 7*(g), g=G.

Define an isometric operator A in L'(S, E):

(AR)($)=pls, TOMTs) 2 L(s)

for h=L'(S, E). The adjoint operator A* is also isometric. It is easy to
see that the subspace fix A*={f€L=(S, E*): A*f=f} is closed in the
weak- * topology. A simple argument based on the correlation GCN[T]
shows that fix A* is invariant under 7*(g), g=G.

Resuming the above observations, we see that Kr=KNfix A* is a
weakly- * -compact convex m*-invariant set in L=(S, E*).

Kr is non-void since for A* (hence for the associated affine Z-action)
there exists a fixed point in the weakly- * -compact convex set K. Since G
is amenable, it possesses a fixed point in Kr. This is just the desired
invariant section for ¢* and the field s— K, and so the amenability of R is
proved. QED.
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