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The Scattering Theory for the Nonlinear
Wave Equation with Small Data, II

By

Kiyoshl MOCHIZUKI* and Takahiro MOTAI**

§ 0. Introduction

In a previous paper with the same title [7], we studied a scattering
problem for the nonlinear wave equation

(0.1) dt
zw(t)=dw(t)+f(w(t)) = Q in (x,t)^R"xR.

Here n>2 and ^ = 27=i 31,. For purposes of illustration, let f ( w ) =
Alwl^w (A^R,p>I). It was then proved that the scattering operator
exists on a dense set of a neighborhood of 0 in the energy space if p is
restricted to satisfy

(0.2) p>2 and

- 2n(n-l) ~n-l'

The lower bound y(n) of p is smaller than those obtained in Strauss
[10] and Klainerman [6], and it is expected to give a critical power. On the
other hand, (0.2) is too restrictive. For it contradicts (0.3) in case of high
space dimension (w>5). The main purpose of the present paper is to
eliminate this restriction. Namely, in this paper we shall extend our
previous results to all p satisfying (0.3).
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For the existence of the scattering operator, it is necessary to solve the
Cauchy problem for (0.1) with — °o initial time. Let Wo~(t) be a solution of
the free wave equation

(0.4) 3t
2w(t}-Aw(t)=§ in (x,t)^

Then the integral version of this problem is given by

(0.5) w(t) = w»-(t}- [*
J-oo

where H=J—A in Lz(Rn), or more generally, we define functions £(H) of
H as follows: Let denote the Fourier transformation and S""1 be its
inverse. Then

)u = 9-l{£(\£\u(£)} in S ' (tempered distribution) .

Let 1 \\e be the energy norm defined by

(0.6) l

where \\u\\p (p>l) is the usual Lp-norm. Let Hs'p (s<=R, p>l) [resp. Hs'p

(s> — n, p>l)] be the Sobolev spaces which are the completion of Com(Rn)
with norms

(0.7) \\u\\s,p = l(I + H2y/2u\\p [resp. \\u\\' s,P=\\Hsu\\p] ,

and let

(0.8) V= Vs
d,p^{u(t}^Ct(R ; Hs>*} ; ||W||,=sup(l + UI)1

where

/ A n N 2(np-l} n + 1 n-l A , / ,(0.9) q= v , s=— --- 2~ and rf = (n-

We consider the integral equation (0.5) in this space V. Then a
contraction mapping principle is applicable, and we have a unique solution
w(t)^ V, which also satisfies

(0.10) \\w(t)-wQ-(t)\\s,g-+Q as f ->-oo .

For the purpose of the scattering theory, however, (0.10) is insufficient.
What we like to show is

(0.11) IMO-wfCOIU-'O as /-*-oo.

In [7] we treated (0.5) in the space Vi?9, where q and d are given above.
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In this case (0.11) directly follows from (0.5) since we have the embedding
HltQ^>L2p. However, to construct solutions in V\,q, we require (0.2) which
guarantees a Lipschitz continuity of f(w).

In the present case, the embedding Hs'q£-*L2p is no longer expected to
hold, instead we shall follow the method of Strauss [10], where (0.11) results
from the energy inequality

(0.12) [

Our main problem thus turns out to show this inequality. It does not come
directly from the integral equation (0.5). So, we return to the differential
equation (0.1) and apply an approximate energy method. The double
convolution mollifier due to Ginibre-Velo [2] will give a convenient approx-
imation of f ( w ) .

The paper is organized as follows : In § 1 we summarize our results in
Theorem. A proof of Theorem is given through the following three
sections. In § 2 is shown the existence of solutions. Energy estimates of
solutions are obtained in § 3. Finally, in § 4 the proof is completed.

§ 1. Assumptions Theorem

Throughout the paper, the nonlinearity f(w] is real- valued and is
required to satisfy

(Al) f(w)^C(R) and /(0)=0.

(A2) \f'W\^C\w\'-1 with p satisfying (0.3).

Under these conditions, our results are summarized in the following
Theorem.

Theorem. Let {#', </>-}<= Hl'2xL2 and

(1.1) wQ~(t)

Then there exists a 8>Q with the following properties.
(a) If Wo~(t)^V=Vs

d,q and \Wo~lv<S, then there exists a unique
solution w(t)^ of (0.5) which also satisfies

(1.2) IMk^~5~l|M>o~||y •
6

(b) w ( t ) satisfies the energy inequality
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(1.3) \\w(t)l2+f F(w(x, t))dx<\\w0-me
2 for

J R

rw
where F(w) = I f(u)du, and

Jo

(1.4) \\w(t)-w0-(t)\\e^Q as *-»-«>.

(c) There exists {<f>+, </>+}<= Hl-2xL2 such that

(1.5) wb+(0s=cos{flif}#+ + fi"lsi

belongs to V and satisfies

(1.6) |wb+(OI.=I«*~(OI. for

and

(1.7) lui(t)-w0
+(t)\\e^Q as t

The correspondence S: (<j>~, </>"}-» {0+, </>+} defines the scattering opera-

tor.

Remark 1.1. If {#-, <T}e{#1+s'9x#••«}n{Hl!'"XL""}, we have {#',

r}e//1>2xL2 and M;0"(O^F.

Remark 1.2. The conditions {<6", ̂ ^H^xL2 and w*r(/)e F imply
{0-, </>-}^Hs-qxHs-1'". In fact, we have <j>- = wQ-($)^Hs'q and </>~^L2c+

H*-1'* (cf., Proposition 2.3 (i) of § 2).

§ 2. Existence and Uniqueness of Solutions

We begin with well known results for the elementary solution H~l sin
{Ht} of the free wave equation (0.4).

Proposition 2.1 (Lp-Lp' estimates), (i) Let2<>q<co and 1/q + lk'

= 1. Then we have for </>&Co°(R"),

(2.1)

where s and d are given in (0.9).
(ii) Let 2<q<2(n + I)/(n-l). Then

(2.2)

where —b= —

See Pecher [8], Theorem 2.2 for a proof.

Proposition 2.2 (LP-LP estimates). Let Kq«x>. If |l/<?-l/2|<
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l/(n — 1), we have

(2.3)

(2.4)

See Peral [9], Theorems 1 and 2 for a proof.
Our main tools will be the following Sobolev embedding theorem :

Proposition 2.3, (i) Let Kp<q<o° and s, t^R. If l/p-
q — t/n, then we have

(2.5) Hs^^H^g .

(ii) If I/p—s/n=I/q — t/n, then we have

(2.6) H^c^H^q .

(iii) If Kp<co and s>0, then we have

(2.7) HS>P(^LP n Hs>pc^Hs'p .

Here A^B means that A is continuously embedded in B.

Proof, (i) and (ii) are well known. See e.g., Tribel [11] § 2.8, Bergh-
Lofstrom [1] Chapter 6 and Hormander [4] Theorem 4.5.3 for a proof. On
the other hand, (iii) is proved by use of the Mihlin multiplier theorem. For
details, see Bergh-Lofstrom [1] Theorem 6.1.6. D

Let h(x)^ Co°(Rn} be a non-negative, even function satisfying

fRh(x}dx = l. Put

JHh(jx)
\

3(x) ; = oos

where S(x) is the Dirac function. For u^.Lp (^1), we denote by hj * u
the convolution of hj and u :

(hj * u)(x)= I hj(x-y}u(y)dy .
J JK

For each — oo< j<oo and j&N(J{<x>} we consider the integral equa-
tion

(2.9) wj*(t)=hj - wo(t)

where
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(2.10) wo(t)

and

(2.11)

Note that (2.9) coincides with (0.5) if wo(t) = wo~(t)9 a=-oo and ; = oo.
In this section we treat the solvability of (2.9) in the space V— Vs,g

with q satisfying the following conditions:

1 s ^ I ^ 1(2.12)
'q n pq

(2.13) -l-J-^J^
q n pq

(2.14) —<d<l,
P

where s = n + l/q-n-l/2, d=(n-I)(l/2-l/q^, Hq'=l-Ilq and

(2.15)
q q n

Lemma 2.4. (i) Conditions (2.12) ~ (2.14) are equivalent to

/ o i / A ^ 2(np — 1) /. n — 1 \ ^-, p , ^
(2.16) g<^ \j_-i * I1 -- ^ — P)q>l-— and q> (n+l \ 2n I n (

and are satisfied by the pair (q, p) given in (0.3) and (0.9).
(ii) (2.15), (2.12) and (2.13) imply the embeddings

(2.17)

(2.18)

Proof, (i) As is easily seen, (2.12) ~ (2.14) are reduced to the follow-
ing three inequalities :

(2.19) -Ar^— , —-—£^7 and ±<d ,pq q q n pq p

from which (2.16) follows. The lower bound r(n) of (0.3) comes from the
first and third inequalities of (2.16). On the other hand, the upper bound
(n + $)/(n — 1) of (0.3) is obtained by the first and second inequalities of
(2.16). The rest of assertion (i) is obvious.

(ii) (2.17) and (2.18) follow from (2.5) and (2.6), respectively. D

Remark 2.5. The second inequality of (2.13) and the first inequality of
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(2.14) yield the condition

The number p(n) is known to be the critical power for global existence of
solutions of (0.1) (see John [5] and Glassey [3]). Of course we have p(n)<
r(n).

Lemma 2.6. For any p>l and u, v^Lpp
f we have

(2.20) ll/Xw)-/X*<C(||^^

where C>0 is independent of ;'ejVU{oo}. Moreover,

(2.21) l/X«)-/(«)ll/>-»0 as ;->oo.

Proof. By (A2), the Young inequality and the Holder inequality we
have

\\fAu)-fj(v)\\P<\\f(hj * u)-f(hj * v)\P

<C(\\hj * umihj * vU-l)\\hj * (u-v}\\PP

proving (2.20). Similarly, we have

IMu)- f(u)\\P< C\\u\\/p-
l\\hj - u-u\\Pf, + \\hj - /(w)-/(«)||p ,

from which (2.21) follows. D

Combining (2.1) and (2.20), we can prove the

Lemma 2.7» Under conditions (2.12) and (2.13)

(2.22) ||//

C>0 zs independent of ;'

Since s^O, we can apply (2.1) and (2.17) to obtain

(2.23) ||//

We put $=fi(ii)—fi(y) in this inequality. It then follows from (2.20) and
(2.18) that
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'+IHU^^

Thus, we have (2.22). D

We are now ready to prove the following

Proposition 2.8. Let {<£, ̂ Je/J^xL2 and wQ(t) be defined by (2.10).
There exists a &>0 independent of -oo^cr<oo and j^N(J{co] with the
following properties: Let w0(t)^V and IW|j^3(5i/4, where V is the
Banach space (0.8) defined for q satisfying (2.16). Then there exists a unique
solution Wjff(t)& V of (2.9), which also satisfies

(2.24)

Proof. For u(t)G V put

(2.25) 0jffu(t)=hj * wM- rH-lsm{H(t-r)}Mu(r))dr .
jff

We then have from (2.22)

By (2.14)

rU-r|-
Jff

Hence it follows that

(2.26) P*

Noting (Al) and \\hj * Wo\\Stg^\\Wo\\stgt we have similarly

(2.27)

Now choose Si >0 very small to satisfy 2CSip~1 = l/2 and put B(3i)={u
V ; ||w||K<<5i}. Then for u, v^B(Si) we have from (2.26) and (2.27)

(2.28)

(2.29) ll^/Ml^lkollr+vl4
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If WQ is chosen to satisfy ||wo||y^35i/4. These show that each <j>f gives a
contraction mapping on B(Si). Hence there exists a unique fixed point
wj

a(t}^B(di\ which solves (2.9).
(2.24) is obvious from (2.29). D

§ 38 Energy Inequalities

In this section we use Proposition 2.2 and Proposition 2.1 (ii) to obtain
energy inequalities corresponding to (0.12) of each solution wf(t)^ V of
(2.9). To this end we require the condition I<p<(n + 3)/(n — 1). So, in
the following the pair (<?, p) is restricted to satisfy (0.3) and (0.9).

Lemma 3.1. (i) For any l>0, j^N and

(3.1)

if r>l is chosen to satisfy l/q =
(ii) For any £>0, j^N and u,

(3.2) \H*fj(u)-H*fAv)\P<C\H*hAr(^

if p>l and r>l are chosen to satisfy l/q = l/r + llqf — 1.

Proof, (i) is the so called Young inequality.
(ii) By (i) and (2.20) we have

u)-f(hj - v)

C\\H*hj\\r(lhj * ul/^ + lhj * vl^\\hj *u-hj* v\\Pq>

Thus, the embedding (2.18) yilds (3.2). D

Lemma 3.2,. Let {#, </>}^(Hlt2nLq)xL2. Then we have for any j

(3.3) hj * wo(t)=cos{Ht}hj * <f> + H-lsin{Ht}hj * 0

and

(3.4) dt{hj * wQ(t)}=-Hsin{Ht}hj * (/> + cos{Ht} hj * ^ in Lq .

Proof. (3.3) is obvious if we note {0, ̂ jel/xL2 in (2.10). To show
(3.4), let us first put
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Then by the mean value theorem

7i(?)= f r8r)H2cosJo Jo

Thus, from (2.4) of Proposition 2.2 and (3.1) with p=q it follows that

as

Next put

T)

Then from (2.3) of Proposition 2.2 and (3.1) with p=2 it follows that

as v-*0.

Hence, we see that (3.4) holds true. D

Lemma 3.3. Let a^R and j-e-N. Then for wf(t)^ V of Proposition
2.8 we have

(3.5) wf(t)t=LCt\R:Lq),

(3.6) dtwf(t) , Hwf(t)& Ct
l(R : L2) n Ct(R : H1*2) .

Further, we have the differential equation

(3.7) dt
2wf(t)-4w/(t)+Mwjff(t))=Q in L2 .

Proof. We put

- jf 'c

Applying (3.2) with ^=<7, u = wf and t; = 0, we have
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+\i\ f1 f I f'c\t-T+ ee'r)\\H2fAwf(T})\\qdT\de'dd
Jo Jo Jff

-»0 as !?-»().

Since w f ( t ) satisfies (2.9), this and (3.4) show

(3.8) 3tWia(t) = - Hsin{Ht] hj*<f> + cos{Ht}hj * <f>

- f'cos{H( t - r)}/,-( w/( r))rfr in L" .jff

from which (3.5) follows.
Next choose p=2 and l/r = l/g + l/2 in (3.2). Then

and it follows that

(3.9) fAwjff(t))^Ct(R:Ht>2) for any l>0.

Applying this and Lemma 3.2 to (2.9), we obtain (3.6).
Finally, (3.7) follows from (3.6) and (3.9). D

Lemma 3e4» (i) We have the embedding

(3.10) Hs>qc^Lp+1

(ii) For each —OO<,G<OO and j^NU{°°} we have

(3.11)

(iii) Let a<=R and j^N. Then

(3.12) ~

where ( , )z denotes the inner product of L2.

Note that the double convolution mollifier (2.11) is usefull in obtaining
relation (3.12) (see Ginibre-Velo [2]).

Proof, (i) The first inequality of (2.12) and the second inequality of
(2.13) are reduced to the condition



782 THE SCATTERING THEORY

(3.13) — -- ̂ <-^—<-i-.
q n p + 1 q

This gives the above embedding.
(ii) (3.11) directly follows from (3.10) and (2.24) if we note the Young

inequality \hj* wf(t)\\P+l<\\hM\wf(t}\\P+i.
(iii) Let us consider

j * wf(t + v))-F(hj * wj*(t))}dx

By the mean value theorem

F(hj * w

h being even, this implies that

- e)wi
a(t)){wf(t + ti-

7J J 0 J "

Applying the Holder inequality, we then have

jf <#{l/

x

Hence, noting (3.5) and (3.2) with p=q', we can let ^-*0 to obtain (3.12).D
We can now prove the

Proposition 3.5. Let a&R and ;'€EJV. The following relation holds
for any

(3.14) \\wj
a(t)V+ RF(hj * wf(x,



KIYOSHI MOCHIZUKI AND TAKAHIRO MOTAI 783

= \\hj * w0(a)\\e
2+ f F(hj * hi * m(x, a})dx .

J K

Proof. By Lemmas 3.3 and 3.4 (iii) we can show

F(h, * w/(x,

which proves (3.14) since we have wf(o) = hj * WQ(O). D

Next we let ;'-»°° in (3.14).

Lemma 3.6. For ;=oo and -co<$<co we denote w<f(t) = wm
ff(t).

Then w«(t}tE:Ctl(R:S'} and

(3.15) Hwff(t)=cos{Ht}H<f> + sin{Ht}</>- f si
o/cr

(3.16) dtw
s(t)= -sin{Ht}H<J>+cos{Ht}</>- f'cos{H(t-r)}f(wa(r))dr .

Jff

Proof. (3.15) is obvious. To show (3.16) we consider the functional
(wo(t), ?)2 in ?e 5 . Since /fy, ^eL2, it follows that

Next put

- f\cos{H(t-r)}f(wff(r», £),</r .
0/<T

Then by an argument similar to Lemma 3.3, we have

dddd'

where q' (=qlp) is given by (2.15). Since
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this shows that

d I ft

——( / H~ sin\H(t — T)}f(wff\T))dT. %
dt w*

=(f*caa{H(t-T))f(w*(T))dT, r)2-

Summarizing these results, we obtain (3.16). D

Lemma 3.7. Let a^R. We have for each

(3.17) \\w/(t)-wff(t)\\P+i->Q as

Proof. By (2.9)

w/(t) — wff(t)=hj * Wt(t) — wt(t}

— I H~lsiiJff

Since w0(t)<=Hs'q<^>LpJrl by (3.10), it is obvious that

ll/,-i(/)IU.-+0 as ;^oo.

To estimate /«(/) we use (2.2) of Proposition 2.1 with q = p + \. Then

and (2.21) with p=(p + l)/p and the Lebesque dominated convergence
theorem show

i^O as ;'-»<».

For 7,-z(0 we have from (2.2) and (2.20)

Here in the last inequality we have used (3.10) and (2.24).
Summarizing the argument, we see the following : For any £>0 there
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exists a ;'o>0 such that

\\wja(t)-wff(t)l+l

for any j^jo. Hence, by the Gronwall inequality we have

6

(3.17) is thus proved. D

Proposition 3.8e Let a^E. The total energy of wff(t) is estimated as
follows :

(3.18) \\wa(t)l2+fRF(wa(x,

<\\wo(a)\\e
2 + [F(WO(X, a)}dx for

Jte

Proof. The Holder inequality, (3.10) and (2.24) show that

If . {F(h^u>S(ty)-F(w°(ty)}dx
\JK

as ;'->oo and

I f {F(A, * A, * w0(o}}-F(w,(a))}dx
\J K

as ;'-»oo. Thus, we can let ;'->°o in (3.14) to obtain

(3.19) lim||«;/(OI.2+ f F(wa(x, t))dx
j-*QQ J JK

= \\w0(ff)l
2+ ( F(wo(x, a))dx .

J R

On the other hand, we have from Lemmas 3.6 and 3.7

(3.20) Hwj*(t)->Hwff(t) in S' .

Further, we have from Lemmas 2.6 and 2.7

(3.21) dtwjff(t)-*dtw
ff(t) in S'.

In fact
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\\8thj * w0(t)-dtm(t)\\2<i\\hj * H<t>-H<j>l2+\\hj * ^-

and for any fe <5 .

(3.19)^(3.21) show that as ;->oo

(3.22) Wjff(t)-*wff(t) weakly in the energy norm.

Combining (3.19) and (3.22), we obtain (3.18). D

Finally, we let a-+ ±00 in (3.18).

Lemma 3.9. We have for any t^R,

(3.23) \\wff(t)-w±00(t)\\s,g-»Q as a-*±oo.

Proof. Using the argument of Proposition 3.6 of [7], we have

for e satisfying 0<£<dp — 1 (C being the constant given in the proof of
Proposition 2.8). Since C{||wtf||/"1 + ||«;±"||/"1}<l/2l this implies (3.21).D

Proposition 3.10. The total energy of w±00(t) is estimated as follows :

(3.24)± lk±"(/)ll«2+ L F(w±co(x,t))dx<\\wQme
2 for

JR

Proof. As in the proof of Proposition 3.8, we have

fRn {F(wff(t))-F(w±-(t))}dx ^Cd + UD-^lMbl/lw^O

and

\f RF(wM}dx<C\\wM\\^ .

Thus, letting a-* ±00 in (3.18), we obtain

(3.25) lim sup\\wff(t)\\e
2+ f F(w±m(t}}dx<\\wM\\e2 .

d"-»±o° JR
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With this inequality, the rest of proof of (3.24)± is same to the above
Proposition 3.8. D

§ 4. Proof of Theorem

Let t/o(0, tG.R, be the unitary group in the energy space Hlf2xL2

defined by

(4.1) Uo(t){ul9u2} = \

This Uo(t) gives the solution of the free equation (0.4). Namely for w(t)
of (2.10) we have

(4.2) [m(t)9 dtw(t)}=Uo(t){4, </>} .

Lemma 48 1. (i) Uo(t) (t=t=Q) is continuously extended to the map
Hl-9'xLqf-*H8-<lxH8-1-g and we have

(4.3) ||t/0(0{Wl, W2}l»«xH-^^C(U|"<l+U|"6)||{ttlf W2}|Ui.«'xL«' .

(ii) Uo(t),t&R, is continuously extended to the map Hs*qxHs-l'q-»

(4.4) t/o(0f/o(f '){«i, U2}=U*(t + t'){ui, u2} (r^O, /4-f^O) .

Proof, (i) (4.3) easily follows from (2.1) and (2.2).
(ii) By Proposition 2.2 we have similarly

||tf0(0{«l,W2}|U.-i*x^^

which implies the first assertion. (4.4) is proved as follows : For any [u\,
wzje//1'*' x Lq', [fa - ui, hj * u2}^{H^f x Lqr] n [H1'2 x L2} and converges as
/->oo to [uiy Uz] in H1'q'xLq'. Then by (i) and the first assertion of (ii)

{wi-Aj*t t i ,«2-^*«2}->0 in Hs

u l f u 2 n

and we have (4.4). D

Now we note {0, #}£#••* xtf*-1-' and {0, /(w^OWe/f^'xL^' (see
Remark 1.2 and Lemma 2.4). Then by means of the above lemma, we have
from (2.9) and (3.16)

(4.5) {«;±€8(0,
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(f£0) in Hs-l>qxHs-2*q, and further

(4.6) U0(-t){w±00(t:

(t^O) in cS'x 5' since we have Uo( — t)Uo(t){(f>, </>} = {</>, $} in Hl

Proposition 4. 2. Wz /wzt;g

(4.7)± \\w±00(t)—wo(t)\\e-^0 as t-+±o°.

Proof. By (4.6) and (2.22)

Note that

and

(4.9) f „ F(w±c°(x,t))dx-*Q as <-»±oo
JR"

by (3.11). Then the energy estimates (3.24)± and (4.8) imply

(4.10) U£-t){io±-(t),dtw
±-(t)}-+{4,j} weakly in Hl-2xL2

as /-> ±00, and we have using again (3.24)± and (4.9)

Combining this and (4.10), we conclude the stroftg convergence (4.7)±.n

Proof of Theorem, (a) We put

(4.1D a=-i-&,

where d\ is given in Proposition 2.8. Since {#", </>~}^Hl'2xLz and ll^cf IU
<5<35i/4, (0.5), i.e., (2.9) with wQ(t) = Wo~(t)1 a= — co and y=oo? has a
unique solution w(t) = w~°°(t)^ V. (1.2) is also proved in Proposition 2.8.

(b) The energy estimate (1.3) is proved in (3.24)- of Proposition 3.10,
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and (1.4) is known in (4.7)- of Proposition 4.2.
(c) We put

(4 = 12) {#+,r} = {tf-,

where w(t) = w~co(t) given above. We then have from (4.6)

(4.13) {0\r)^U(-0{M

By the argument of the proof of Proposition 4.2 we see that {0*, (/>+

x L2. Moreover, we have

wo+(0 = wf (0- rH-lsm{H(t-r)}f(w(T))dr^ V ,
J-co

and hence by (2.27)

where W(0 is given by (1.5). Thus, w(t) in (4.13) coincides with the
solution w+0°(t)^V of (2.9) with WQ(t) = wQ

+(t), a=+co and j=°° con-
structed in Proposition 2.8. In this sence, (1.7) is already known in (4.7)+.

Finally, if we let f-> -oo in (3.24)+ with Wo(t) = wQ^(t)f then it follows
from (1.4) and (4.9) that

On the other hand, if we let t-> + 00 in (1.3), then it follows from (4.7)+ and
(4.9) that

||u;o+(0)||e
2<|ko-(0)|ie

2.

These prove (1.6), and the proof of Theorem is completed. D
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