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On the Rigidity of Iloncornpact Quotients

of Bounded Symmetric Domains
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Takeo OHSAWA*

Let X »R be a differentiate family of complex manifolds, lei o be
a point of B and lei X be the special fibre TT~I(O). For ^ny tangent vectoi
at o, the infinitesimal variation cf the complex str-.!Ct\re of X is defined by
Kodaira and Spencer [18] as an elment of Hl(X, (9), whe/e 6 denotes the
sheaf of the germs of holomorphic tangent \ eclors oi A". In cr>se X if.
compact and Hl(X, ©) = 0, It follows that one can Sud C3 neghbourhooa U
3o such that 7T~1(p) = X for any ^ £7 ; in other words X is (locally) rigid
(cf. [18]). In this spirit, Calabi and Vesentlnl [10] has shown chat X is r°g:c!
If X Is compact and its universal covering space is biholorrorphic to an
Irreducible bounded symmetric domain of dimension. >2, applying rhe
harmonic theory developed by Bochner [6], Kodaira [17] and Nakano [20],

The purpose of the present article Is to extend Calabi-Vesentmi's
theorem to nonconipact manifolds whlcii arise in the theoiy of generalized
automorphlc functions (cf SIegel[24] and Baily-Borel [4]). Guf main
result Is as follows.

Let X he a complex manifold whose universal covering
space is biholomorphic to an irreducible bounded symmetric domain. If the
covering transformation group of thai covering is arithmeiic in the sense of
Borel, then Hl(X, 0) = Q except for the cases where the universal covering is

either of type (I)m,m'y w + w'<4, (1)2,3, (7)3,2, (77)OT, m<4, (III)m, m<4,
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(ffl)m, m<3, or

Corollary. Let X be as above (with the same exceptions). Then X is
analytically rigid (see § 3 for the definition).

For the proof of the theorem we observe first of all that H(2)(X, 0)=1

0, i.e. the vanishing of the L2 cohomology with respect to the metric induced
by the invariant metric of the symmetric domain. Our next, of course
main, task is to prove the bijectivity of the natural homomorphism from
Hfa(X, 6) to H\X, 0). By taking the duals, the "obstructions" to be
killed turn out to be lim H(n

2}
n~k(X\K, (9*) for k = l, 2, whose vanishing can

K dUX

be verified within the framework of Andreotti-Vesentini [2] and Horman-
der[15], once we know that X is hyper (n — 2)-concave with respect to the
invariant metric. For the proof of the hyper (n — 2)-concavity, we rely on
the compactification theory of Pyatetskii-Shapiro [22], Baily-Borel [4] and
Ash-Mumford-Rapoport-Tai [3]. The fact we need is the existence of an
ideal sheaf supported on the boundary which has a nice Fourier-Jacobi
series expansion at every point.

The author thanks to Professor J. Jost for sending him a very stimulat-
ing article [16] from which the present research started.

§ 1. Notations and Preliminaries

Let (X, ds2} be a Hermitian complex manifold of dimension n, and
(E, h) a Hermitian holomorphic vector bundle over X. The following
notations shall be used throughout this paper.

Cp'q(X, E) : ={E-valued C°° (p, <?)-forms on X]

Lp*q(X, E) : ^{E-valued square integrable (p, q)-forms on X}

Lpi£(X, E) : ^{.E-valued, locally square integrable

(p, <7)-forms on X]

C$'q(X, E) : = {f^Cp>q(X, E) ; supp

Lfrq(X, E) : ={f^Lloqc(X, E) ;

Hp-q(X,E): ={/eC^(X,£); df=Q}/{gS=Cp'"(X, E)} ;
l ( X , E) such that g=
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, E) : = {feLt>-"(X, E) ; df^Kg&L^X, E) ;

3«eLp-'-1(X, E) such that 0= 3«}

, £) : = {f^C0
f'9(X, E) ; df=Q}l{g^a-"(X, £) ;

X, E) such that g= du} .

Let x be any point of X. Then, by a theorem of L. Hormander (cf.
[15], Theorem 4.2.2), \vn\H&"(U, £)=0 for a>0, where C7 runs through the

neighbourhoods of x.
Since a locally square integrable function / is holomorphic if and only

if <3/=0, vanishing of the local Lz cohomology as above implies that there
exist canonical isomorphisms ;

Hf'"(X, £) = {/eLfe?(X, E) • a/=0}/{<76ELfe?(X, E) ;

^eLfeT'CX", E) such that 0= du}

Hf'"(X, E) = (f^a'"(X, E) ; df=0}/{gGLp
0'"(X, E) ;

3«eL^«-1(-X', £) such that 0= ^} .

Hence we have the following exact sequence :

(1) lim WW/ir, E) - > //cf -«(X, £) - » /f&'CX, £)

where /f runs through the compact subsets of X.
Therefore we have

1.1. // limH&?-l(X\K, E) = 0 and limH&q(X\K, E)=Q, then
K K

We are going to state a sufficient condition for limH(2}q(X\K, E) to
vanish, which is to be verified for the quotients of bounded symmetric
domains.

For that purpose we need to fix several notations used in differential
geometry and present a fundamental Inequality which includes a well
known inequality due to Nakano [20] and Calabi-Vesentini [10] as a special
case.

Let * : CP'9(X9 E) - > Cn-q'"-p(X, E) be Hodge5s star operator.
Then, the (formal) adjoints of the exterior differentiations d, d and 3
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acting on the scalar forms are expressed as — * J ^ , — * 9 S and — # d # ,
respectively, where we put * w = * u. We denote d*=— % d % , d*=— #9
* and 9*= - * 9 # . Note that 9* operates on ®Cp'q(X, E) as well as 9,

/>,<?

since d*(fu}=fd*u for any holomorphic function / and C°° differential form
u. We shall identify 9* with its maximal closed extension to ®Lp'q(X,/>,<?
E). The adjoints of the operators 9 and 9* on ©Lp-q(X, E) will be

P,q

denoted by 3* and dh, respectively. The operator ( 9 + dh)
2 is known to be

function-linear (cf. Wells [25]). For any differential form 9 with values in
Hom(E,E), or values in the trivial bundle, let e(8) denote the wedge
multiplication by 9 from the left hand side. The adjoint of e(6) will be
denoted by e(0)*. Let CD be the fundamental form of the metric ds2. We
put A : =e(o))*. Since (3+3/,)2 contains no differentiation, it is expressed
as e(@h), where 0h^Clrl(X, Hom(EJ E)), 0h is called the curvature form
of (E, h).

Let S and T be two homogeneous linear operators on the space
@Cp-q(X, E), We put [S, T] : =ST~(-I)stTS, where s-degS and / =
p,<*
degT. The complex Laplacian DA is defined as [ 9, 9**]. We put CL : =
[d*, d*].

Proposition 1»2 (Jacobi's identity).

[[S, T], U]-[S,[T, U]] = (-m[S, U], T] ,

where t = degT and w = degf/ .

The proof is left to the reader.

From now on, we assume that (X, ds2) is a KahJer manifold.

Proposition 1.3 (Kahler identity).

For the proof, the reader is referred to [25].

Substituting S= 9, T = A and U = dh into Jacobi's identity, we obtain

Since [9, 9^] = (9 + 9^)2, the above equality is interpreted as
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(2) nH-nk = [^i:le(0h\ A] (Nakano's equality[20]).

If we put U = e(6\ 6^C^q(X, Hom(E, E)), instead of putting U = dh,
we obtain

(3) J=i[d*,e(0)]-[d,[A,e(e)]] = [ e ( d 6 ) , A ] .

If 9 is of type (1, 0), [e(0\ A] = Si:ie( 0)*. Hence the equality (3) becomes

(4) [3*, e(6)] + [d, e(B)*] = [-S=ie(de), A] .

Let /, g^Lpibl(X, E). We denote by </, g> the pointwise inner product

of / and g. For any open set DdX we put (/, g)D = I </, g>dv, dv : the

volume element, whenever the right hand side converges, and ||/||r> : =

(/,/)/>.
Proposition 1.4. Let D be a domain in X with C°° boundary and let

<l> be a C°° function on X with D={x^X ; </>(x)>0}. Then,

(5) y*+ 1 dt\2d**f\\l+ \\Stdf\\i

for any f^CS'"(X, E) satisfying */A 3^=0 on 3D.

Proof. We have

B- dhe(<fi)d*-d*e(</>)dH

3 - e(9</>)d* +

by(2) and (4).
Since ^=0 on 3D, by Stokes' theorem

for any f^CS-q(X,E). If />=», then 3^A/=0 and 3^/=0. Hence, for

, f )D
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), A]f, f)D + ([ 9, e( 5»*]/, f)D .

Moreover, if * / A d < A = 0 on 3D, then (3~e(3»*/, f)n = (e( 9 </>)*/, dh*f)D.
Thus we obtain

whence

), A]f, f)D-\\f\\D2 ,

for any f^C$'q(X, E) satisfying */A d</> = 0 on 3D.

Remark. In case D = X, (5) was obtained in [21]. If we put <p= const.
and let ^-»°o, then we obtain Nakano-Calabi-Vesentini's inequality on X.

By a theorem of Gaffney [12], Proposition 1.4 immediately implies the
following.

Theorem L50 Let (X, ds2} be a complete Kahler manifold of dimen-
sion n, (E, h) a holomorphic Hermitian vector bundle over X, and D an
open subset of X with C°° smooth boundary. For a fixed integer q, suppose
that there exists a C°° function $ : X - >R with D =
satisfying the following properties :

a) There exist A>\ such that

r> on D,

for any f^Cn'q(X,E).

b) <P + \d<I>\2<B on D, for some fi>0.
Then H(

n
2}

q(X, E)=Q. More presicely, for any f<^L?i?(X, E) with df=
0, one can find u^L7(i?~1(X, E) such that

du=f and IM?><^^||/||2z>.

Definition. (E, h) is called ^-positive if there exists A>0 such that

<if--le(&h)Af, />>A</, /> for any f^Cn'q(X, E).

The notion of 1-positivity of (E, h) was first esiablished by S. Nakano
[20]. He showed that 1-positivity is equivalent to that OH naturally defines
a positive definite quadratic form along the fibers of TX®E (the so called
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Nakano positivity).

Definition,, A smoothly bounded open subset DdX is said to be

hyper ^-convex at a boundary point p^dD if there exist a neighbourhood

t/B/> in X and a C°° function <p\ U >R with UnD = {x^U\ <p(x)<0]

such that, for any C°° (w, #) form / on U,

<^fi:le(dd<p)AfJ>>c<f1f> for some c > 0 .

D is said to be hyper ^-convex if it is hyper ^-convex at every boundary

point.

The notion of hyper ^-convexity is first due to H. Grauert and O.
Riemenschneider [13]. It is easy to verify that the above definition is
equivalent to their definition except for the regularity of the boundary,
which is not so important for our purpose.

Theorem 1.5 is now paraphrased by using the above terminology.

Theorem 1.6. Let (X, ds2) be a complete Kahler manifold of dimen-

sion n, (E, h) a q-positive vector bundle over X, and DdX a hyper q-

convex open subset whose boundary is compact. Then H&f*(D, E) = 0.

Definition,, A complete Kahler manifold (X, ds2) is called hyper q-

concave if X is exhausted by an increasing family of compact subsets
{Kj}™=\ such that X\Kj is hyper ^-convex for every ;'.

Combining Theorem 1.6 with Lemma 1.1, we obtain the following.

Theorem 1.7. Let (X, ds2} be a complete Kahler manifold of dimen-

sion n and (E, h) a Hermitian holomorphic vector bundle over X. Let k be

an integer such that (X, ds2) is hyper q-concave for q>k and (E, h) is q-

positive for q>k. Then H^P(X, E) = 0 for q>k + I.

§ 20 Hyper g-concavity o
of Bounded Symmetric Domains

Let M be a complex Hermitian manifold. M is called a Hermitian
symmetric space if for every point x^M there exists an involutive

automorphism (i.e. isometric, as well as holomorphic) sx which has x as an
isolated fixed point. If M is a Hermitian symmetric space, then the

Hermitian manifold M decomposes as
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where Mo is the quotient of a complex vector space with a translation
invariant metric by a discrete group of translation (such a space is called
of euclidean type), and Mi (i=J=Q) is an irreducible and non-euclidean
Hermitian symmetric space (cf. Helgason [14] and Wolf [26]). A non-
compact factor Mi (i^=0) is called of noncompact type. The classification
of the irreducible Hermitian symmetric spaces D is found in [11]. They
are given as follows according to the notation of [5], and are simply
connected bounded domains in Cn equipped with the Bergman metric, (cf.
[7] or [23]). In what follows we shall call them irreducible bounded
symmetric domains.

Type Im.m>: D= Um(m + m')/U(m)x U(m'\ the space of complex mx
mr matrices Z such that !&') — *ZZ is positive definite.
Type Ilm : D = SO*(2m)/U(m), m>2, the space of complex, skew-
symmetric mXm matrices Z such that I(m) — tZZ>Q.
Type Him : D = Sp(m, R)/U(m\ the space of complex, symmetric mx
m matrices Z such that I(m)~ZZ >0.
Type IVm: D = SOm(m + 2)/SO(m)xSO(2), m>3, the space of mxl
matrices Z, satisfying l + \tZZ\2-2tZZ>Q , tZZ<l.

TypeV:D=Ee3/Spm(W)xSO(2\ dimD = 16.
TypeVI: D = E7

3/E6xSO(2), dimD = 27.
The equalities D= Um(m + m')/U(m)x U(m'}, etc. should be read;
Um(m + m') operates transitively on D as a group of automorphisms and
the stabilizer of some point x&D is U(m)x U(m'\ etc.

Let D be an irreducible bounded symmetric domain. From the above,
D = G(R)/K, where G(R) is the group of real points of a connected alge-
braic matric group G defined over Q, simple over Q, such that the
topological identity component G(R)° is isomorphic to, and shall be
identified with the connected component of the group of holomorphic
automorphisms of D, and K is a maximal compact subgroup of G(R). A
subgroup rcG(J?)°n G(Q) is called arithmetic if F satisfies [r : Ffl G(Z)]
< oo and [ G(R)° H G(Z): r n G(Z)] < oo. An arithmetic subgroup r is said
to be neat if the group FF*C C\{0} generated by the eigenvalues of the
elements of F is torsion free. Note that such a .T is a fortiori torsion free.

Definition,, A Siegel domain of the third kind is a domain S c cm+£+k

of the form

{(z, u, t); lmz-ReLt(u, u}^ V,
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which is equivalent to a bounded domain. Here z^ Cm, u^ C&, t^Ck, V

is a nondegenerate cone in Rm, F is a bounded domain in Ck, and Lt is a
vector-valued nondegenerate semihermitian form (i.e. Lt = Lt° + Ltl, where
LtQ is a Hermitian form and Lt

l is a symmetric bilinear form) with domain

Cm and range C£ which depends differentiably on /.

By XF : £ »F we denote the natural projection. A one-to-one trans-
formation of a Siegel domain of the third kind S having the form z >
2+a(u , t\ u > u + b(t\ t > t is called a parallel translation of S. The
group of parallel translations of <S will be denoted by A.

Let Z) be a bounded symmetric domain and F an arithmetic subgroup
of the automorphism group D. Let <S be a Siegel domain of the third kind
biholomorphic to D, and let 9 : D > £ be a biholomorphic map. We say
that the fibration TTF°<P: D >F is jT-rational if: (1) the factor space
9*(A)/Fr\9*(A) is compact and (2) the subgroup of F consisting of the
fibration preserving automorphisms induces a discrete subgroup F(F) of
automorphisms of F. By an abuse of notation, we also regard F as a
group of automorphisms of <S via 9, and identify e.g. A/FC\ A with 9*(A) I

F n 9*(A). Let Ao be the set of parallel translations of the form z > z + a,

a^R, u >«, t *t. Then APir is a commutative group with m

generators, more accurately AQ 0 F is a lattice for AQ, since F is arithmetic
and the fibration is jT-rational. Let D* be the set-theoretic union of the
domain D and the domains F that appear as the bases of F-rational
fibrations (D is also regarded as a base). The action of the group F is
naturally defined on the space D* (see the following diagram).

D-

We denote by PF : F > F/F(F) the natural projections. Clearly,
F/r(F)cD*/r for any base F. The following is due to I.I. Pyatetskii-

Shapiro [22] and Baily-Borel [4].

Theorem 28L D/F has a compactification D/F as an irreducible nor-

mal analytic space such that there exists a one-to-one map c : D*/F » D / F

such that, c\Fjr(F} is an isomorphic embedding onto a locally closed
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analytic subset of D/F. The topology of D/F satisfies the following prop-
erty : Let x^c(F/F(F)). Then, for some compact subset WdC^f the
closures of the images of the sets {(z, u, t)^S ; Imz — ReLt(u, u)^ V + Vo,
u^W, t^T] under t constitute a system of neighbourhoods of x. Here v0

and T run through V and the neighbourhoods of pF~l(x) in Fy respectively.

In what follows we shall identify D*/F with D/F by the above theorem
whose proof we omitted because of its length. Let x^F/F(F)<^.D*/F be
any point. Then holomorphic function / around x are described by the
Fourier- Jacobi series

where x runs through the lattice AC.Hom(AQj R) which is the dual lattice
of 4) n Fc A over Z. We note that 6% are nothing but the sections of a line
bundle -C x over a family of complex tori (cf. [3] p.318). A description of
JL% is as follows.

The invariance of / under A fl F shows :

6x(u + b ( t ) , t )

= 6*(u, f)exp2;r/i:l<*,

-2^lLt(u, bW-S^LtWt), b(t))-a(u, t)> ,

if the transformation z - >z + a(u, t), u - >u + b(t}, t - >/ belongs to F.
Note that a(u, t) is uniquely determined by b(t] modulo zlo fl F. Hence the
right hand side of the above equality may well be expressed as
0z(u, t)ex,b(t)(u). The action of JHT on C*xF is well-defined and the
line bundle X x is defined on the family of complex tori C^xF/J flT - >F
as Cx C * xF modulo the fo l lowing action of Ar\F : (s, u,
t) - >(ex,b(t)(u)s, u + b(t), t).

Proposition 2020 If F is neat, then there exist an ideal sheaf 3
supported on U F/F(F) and a convex set CFC V* = {p^Hom(AQ, R) ; p(v)

>0 on F\{0}} for each base F, such that

(1) f^Jxt=if= 2
xfECFnA

around
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(2) -£x\xF-i(t) is very ample for any x^CrHA and

Proof. See [3] p.323 Proposition 5 (cf. also p.318).

Now we turn to the question of hyper ^-concavity of the manifold D/F
in case F is torsion free. We may assume that F is neat in virtue of Borel's
theorem which states: every arithmetic subgroup of automorphisms of D
contains a neat subgroup of finite index (cf. [9]). Let F be any base, xe
F/F(F) and UdS be an open subset of the form

{(z, u, t)^ S ; lmz — ReLt(u, u)^ V + VQ, u& W, ££= T},

where fo, W and T are as above. It is easy to see that the Bergman metric
dss of <S satisfies an estimate;

5 /, = ! P P~

_J duqdUc,
<A2(T,u)-

on U. Here we put <Im^> : = inf|Im2r +1 and A\(t, u), A2(t, u) are posi-

tive continuous functions on Wx T.

Let /=(/i, • • • , fd) be a system of generators of J x around x. Then, for

a suitable choices of VQ and T, / is defined on U. We put ^ : H/l2- Then

d d < / > x = d f / \ t d f . By (1) and (2), 39^* dominates asymptotically ^xdsr2

near x. Thus from (3) it follows that the eigenvalues Ai(y)>°°'>Ae+m+k(y),

y^U, of the Levi form <J—ldd(/>x with respect to dsl satisfy :

(4) Ay(y)>0 for any /

and

(5) li
y-

since <Im^> >oo as f/ shrinks to x.
From (3) one can find a C°° partition of unity {pa} of the space D*/F

such that \dpa\ are bounded on D/T.
Therefore, patching the functions 4>x and the constants, say 1, we

obtain a C°° defining function ^ of the boundary U F/F(F) on D*/!"1 such

that the domain [y^D/F ; $(y}<e] is hyper (^H-l)-convex for sufficiently
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small e. Here q=maxk.

According to the classification table of the bases in [23], p.ll4~p.H8,
the maximal dimensions of F(=f=D) are as follows.

Im,m'(m<rri): (m — l)2 if m = mf or m=l, m2 otherwise.

IVm

V :8.

VI : 10 .

Thus we obtain the following.

Proposition 2,3 Let D be an irreducible bounded symmetric domain
of dimension n. If D is one of the fallowings, then D/F is hyper (n
— 2) -concave for any torsion free arithmetic subgroup F of automorphisms
of D.

Im,m>(m<m'} : m=l and m'>3, m=2 and m'>4, or m>3 .

IIm : w>4 .

Him : m>3.

V, VI .

§ 3. Proof of Theorem

Let X be a complex manifold of dimension n whose universal covering
D is biholomorphic to a bounded domain which appears in the list of
Proposition 2.3. Let ds2 be the metric on X that is induced by the Bergman
metric of D. We know already that X is hyper (n — 2)-concave. In order
to be able to apply Theorem 1.7 we need to know the (n — 2)-positivity of
the tangent bundle of X which we denote by Tx. The curvaure of Tx has
been calculated in [8] and [10] to which we owe the following.

Proposition 3eL Let (X, ds2) and D be as above. If we assume
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moreover m-Hm'>4 in case D is of type Im,m', then the dual of the bundle

(Tx, ds2} is (n — 2) -positive.

Proof. See [10], Table 1 in p.499.

By Andreotti- Grauert's theorem (cf. [1]), Hk(X, 3) is finite dimen-
sional for any locally free analytic sheaf 9" over X if £ = 0, 1. Hence,

dimHl(X, 6)=dimH?-n-l(Xy TX*) = Q if X satisfies the condition of
Proposition 3.1.

Thus we have accomplished the proof of Theorem.

A consequence of Theorem is the rigidity of X.

Definition. A complex manifold X is said to be analytically rigid if,
for any complex analytic family n : 3C - >B with n~\o) = X for some o^

B and a compact subset Kdx~l(o\ there exists a neighbourhood U^K in

3C and a biholomophic map U - » x(U)x(U r\7r~l(o)) such that n°r]~l is
the projection to the first factor.

Similarly as in the compact case we have the following criterion for
the local rigidity.

Theorem 3*2. Let M be a complex, manifold of dimension m. Suppose

that M is (m — I) -concave, i.e. there exists a C°° function <p : M - *R such

that the subsets [x£=M ; <p(x)>c] are relatively compact for any c>ini<p

and J—Idd<p has at least 2 positive eigenvalues outside a compact subset of

M. Then M is analytically rigid in the above sense if Hl(M, ©) = 0.

Proof. Similar as in [19], Theorem 3.2.

Clearly every hyper (n — 2)-concave manifold is (n — l)-concave. Thus
we obtain our corollary stated in the introduction.
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