Asymptotic Expansions of Distribution Solutions of Some Fuchsian Hyperbolic Equations

By

Cesare PARENTI* and Hidetoshi TAHARA**

Introduction

In [3] a class of Fuchsian hyperbolic operators has been considered and a general result was given concerning the structure of distribution solutions defined in a full neighborhood of a point of the characteristic hypersurface t=0. The operators treated in [3] are strictly hyperbolic for $t\neq 0$.

Our aim is to consider in this paper the more general case where the operators are strictly hyperbolic only for t>0. For some results in this direction, see Bernardi [1]. In this Introduction we state our main result in a particular, but typical, example.

Consider the following operator:

(0.1)
$$P = (t\partial_t)^2 - t \sum_{j=1}^n \partial_{x_j}^2 + \alpha(t, x) t\partial_t + \sum_{j=1}^n \beta_j(t, x) t\partial_{x_j} + \gamma(t, x)$$

defined on some neighborhood Ω of the origin in $\mathbb{R}_t \times \mathbb{R}_x^n$ (the coefficients are supposed to be in $C^{\infty}(\Omega)$).

We explicitly remark that the results contained in [3] cannot be applied directly to the operator (0,1), since P is hyperbolic only for t>0. Denote by $\rho_1(x)$, $\rho_2(x)$ the roots of the indicial equation

(0.2)
$$\rho^2 + \alpha(0, x) \rho + \gamma(0, x) = 0$$

and denote by \mathscr{D}'_+ the set of all germs of distributions u(t, x) defined on some $\Omega' \cap \{t > 0\}$, with Ω' an open neighborhood of (t = 0, x = 0). Then we have the following result.

Communicated by S. Matsuura, July 15, 1986.

^{*} Department of Mathematics, University of Bologna, Bologna 40127, Italy.

^{**} Department of Mathematics, Sophia University, Tokyo 102, Japan.

Theorem. Suppose that:

$$\rho_1(0), \ \rho_2(0) \notin \frac{1}{2} \mathbf{Z}; \ \rho_1(0) - \rho_2(0) \notin \frac{1}{2} \mathbf{Z}.$$

Then:

i) Every $u \in \mathcal{D}'_+$ for which Pu = 0 has the asymptotic expansion as $t \rightarrow 0+$:

(0.3)
$$u(t, x) \sim \sum_{j=1,2} \left[\varphi_j(x) t^{\rho_j(x)} + \sum_{k=1}^{\infty} \sum_{h=0}^{k} (L_{j,k,h}(x, \partial_x) \varphi_j(x)) \times t^{\rho_j(x)+h/2} (\log t)^{h} \right]$$

for some unique germs of distributions $\varphi_1(x)$, $\varphi_2(x)$ defined near x=0, where the $L_{j,k,h}(x, \partial_x)$ are linear differential operators (with smooth coefficients) depending only on P.

ii) Conversely, for every germs $\varphi_1(x)$, $\varphi_2(x)$ there exists a unique germ $u \in \mathcal{D}'_+$ satisfying Pu = 0 and having the asymptotic expansion (0.3) as $t \to 0+$.

The precise meaning of the expansion (0,3) will be defined in Sect. 3.

The example (0.1) is a particular case of the class of operators we will consider. Actually we shall prove that asymptotic expansions as (0.3) hold for solutions of equations of the following form:

$$Pu = \sum_{i+|\alpha| < m} a_{i,\alpha}(t,x) (t \partial_i)^j (t^{1/k} \partial_x)^\alpha u = 0, \quad t > 0,$$

where k is a positive integer (in the case (0.1) k=2). For precise definitions, see Sect. 1.

It is worth to mention that asymptotic expansions like (0,3) were established first in [5] for C^{∞} -solutions on t>0. The possibility of passing from C^{∞} to distribution solutions relies on two essential results: an extendability theorem, which is proved in Sect. 2, and the local representation formula proved in [3].

§ 1. Class of Operators

We consider operators P of the form:

$$(1.1) P = \sum_{j+|\alpha| \le m} a_{j,\alpha}(t,x) (t\partial_t)^j (t^{1/k}\partial_x)^{\alpha}$$

defined on some box $[0, T[\times U \subset \overline{R_t^+} \times R_x^n]$ where U is a neighborhood

of x=0 and $0 < T \le +\infty$; m and k are positive integers.

We shall make the following assumptions on P:

- i) $a_{m,0}\neq 0$ on $[0, T[\times U]$.
- ii) For every $j, \alpha, a_{j,\alpha} \in C^{\infty}(]0, T[\times U) \cap C^{0}([0, T[\times U)$

and has the following expansion

$$(1.2) a_{j,\alpha} \sim \sum_{l=0}^{\infty} a_{j,\alpha,l}(x) t^{l/k}, \text{ as } t \longrightarrow 0+,$$

for some $a_{j,\alpha,l} \in C^{\infty}(U)$, $l \ge 0$. The expansion (1.2) means that for every $N \in \mathbb{Z}_+$ and for every $h \in \mathbb{Z}_+$ we have:

(1.3)
$$t^{h-N/k} \partial_t^h \left[a_{j,\alpha}(t,x) - \sum_{l=0}^N a_{j,\alpha,l}(x) t^{l/k} \right] \longrightarrow 0$$

in $\mathscr{E}(U)$ as $t \rightarrow 0+$.

When k=1, the expansion (1.2) is equivalent to say that $a_{j,\alpha} \in C^{\infty}$ ([0, $T[\times U)$.

iii) For every $(t, x, \xi) \in [0, T[\times U \times (\mathbb{R}^n \setminus 0), \text{ the polynomial}]$

$$\lambda \longrightarrow \sum_{j+|\alpha|=m} a_{j,\alpha}(t,x) \lambda^{j} \xi^{\alpha}$$

has m real distinct roots $\lambda_1(t, x, \xi), \ldots, \lambda_m(t, x, \xi)$.

We denote by $\Phi_{1/k}^m([0, T[\times U)])$ the class of all operators as P. For any $P \in \Phi_{1/k}^m([0, T[\times U)])$ we define the indicial polynomial by

(1.4)
$$I_{P}(x;\rho) = \sum_{i=0}^{m} a_{i,0}(0,x) \rho^{i}.$$

The roots of $I_P(x; \rho)$ will be denoted by $\rho_1(x), \ldots, \rho_m(x)$. We observe that the change of variables $(t, x) \to (t^{1/k}, x)$ transforms operators P in the class $\Phi_{1/k}^m$ into operators $\tilde{P} \in \Phi_1^m$ and we have the identity

(1.5)
$$I_{P}(x; \rho) = I_{P}(x; \rho/k)$$
.

In Sect. 2 we shall consider only the case k=1 and we need operators defined in a full box neighborhood $]-T, T[\times U \text{ of } (t=0, x=0)]$ and satisfying conditions i) \sim iii) on $]-T, T[\times U]$. We denote by $\Phi_1^m(]-T, T[\times U]$ the class of such operators and remark that every $P \in \Phi_1^m(]-T, T[\times U]$.

§ 2. Extendability Results

In this Section we shall prove some preliminary results to our

main theorem.

Theorem 1. Let $P \in \Phi_1^m(]-T, T[\times U)$ and suppose that the roots $\rho_j(x), j=1,\ldots,m$, of the indicial polynomial satisfy the condition:

(2.1)
$$\rho_i(0) \notin \{-1, -2, \ldots, -n, \ldots\}, \quad j=1, \ldots, m.$$

Then, for every distribution $u \in \mathcal{D}'(]0, \varepsilon[\times \omega)$, with ω a neighborhood of x=0 and $]0, \varepsilon[\times \omega \subset]0, T[\times U, \text{ for which } Pu=0 \text{ on }]0, \varepsilon[\times \omega, \text{ there exists a distribution } v \text{ such that :}$

- 1) v is defined on some neighborhood $]-\varepsilon', \varepsilon'[\times \omega' \subset]-T, T[\times U]$ of the origin and Pv=0 on $]-\varepsilon', \varepsilon'[\times \omega']$.
 - 2) $v|_{\mathbf{10},\epsilon'[\times\omega']} = u|_{\mathbf{10},\epsilon'[\times\omega']}$

The proof will follow from some lemmas.

Lemma 1. Let $P \in \Phi_1^m(]-T, T[\times U)$ and let $u \in \mathcal{D}'(]0, \varepsilon[\times \omega)$ be as in the statement of Theorem 1. Then there is a distribution $w \in \mathcal{D}'(R_t \times R^n)$ such that:

- i) supp $(w) \subset \overline{R_t^+} \times R_x^n$.
- ii) $w \mid_{0,\epsilon'[\times\omega']} = u \mid_{0,\epsilon'[\times\omega']} for some neighborhood <math>0,\epsilon'[\times\omega'\subset]0,\epsilon[\times\omega]$

Lemma 2. Let $P \in \Phi_1^m(]-T, T[\times U)$ and suppose that the roots $\rho_j(x), j=1,\ldots,m$, of the indicial polynomial satisfy the condition:

(2.2)
$$\rho_j(x) \notin \{-1, -2, \ldots, -n, \ldots\}, j=1, \ldots, m, x \in U.$$

Then, for every $f \in \mathcal{D}'(]-T, T[\times U)$ with $\operatorname{supp}(f) \subset \{t=0\}$, there exists a unique $g \in \mathcal{D}'(]-T, T[\times U)$ with $\operatorname{supp}(g) \subset \{t=0\}$ such that Pg=f on $]-T, T[\times U]$.

We now show how the two lemmas imply Theorem 1.

Proof of Theorem 1. Given u as in the statement, let $w \in \mathscr{D}'(R_t \times R^n)$ be as in Lemma 1. Put $\bar{u} = w \mid_{1-\epsilon', \epsilon'[\times \omega']}$ and let $f = P\bar{u}$. Then $f \in \mathscr{D}'(] - \epsilon', \epsilon'[\times \omega']$ with $\operatorname{supp}(f) \subset \{t = 0\}$. By shrinking ω' and taking into account (2.1), we can suppose that condition (2.2) holds for every $x \in \omega'$. Application of Lemma 2 yields a distribution $g \in \mathscr{D}'(] - \epsilon', \epsilon'[\times \omega']$ with $\operatorname{supp}(g) \subset \{t = 0\}$ and Pg = f. By defining

 $v = \bar{u} - g$, the theorem is proved.

We now prove the lemmas.

Proof of Lemma 1. By a modification of P outside a neighborhood of the origin we can suppose that $P \in \Phi_1^m(]-T, T[\times \mathbb{R}^n)$ with constant coefficients $a_{j,\alpha}$ for |t|+|x| large enough. By using a bounded domain of dependence argument and partial hypoellipticity of P for $t \neq 0$ we can suppose that $u \in C^{\infty}(]0, \varepsilon[; \mathscr{D}'(\mathbb{R}^n))$ and Pu=0 on $]0, \varepsilon[\times \mathbb{R}^n]$.

We now prove that for every $K \subseteq \mathbb{R}^n$ there exists a positive number a such that:

(2.3)
$$t^a < u(t, \cdot), \varphi(\cdot) >_{\mathscr{Q}'(\mathbb{R}^n) \times \mathscr{Q}(\mathbb{R}^n)} = O(1), \text{ as } t \longrightarrow 0+,$$

uniformly with respect to bounded sets of $\varphi \in \mathcal{D}(K)$.

It is easy to show that property (2.3) implies the extendability of u and hence the lemma.

Now let us fix $K \subset \mathbb{R}^n$. By a cut-off argument we can find a distribution $v \in C^{\infty}(]0, \varepsilon[; H^{-\infty}(\mathbb{R}^n))$ such that Pv = 0 on $]0, \varepsilon[\times \mathbb{R}^n$ and u = v on $]0, \varepsilon[\times K$.

Now, following [2; p. 185], define

(2.4)
$$v_j^{(h)} = (t\Lambda)^{m-h-j+1}(t\partial_t)^{j-1}v, h=1,\ldots,m, j=1,\ldots,m-h+1,$$

where $\Lambda = (1+|D_x|^2)^{1/2}$.

The vector $\vec{v} = (v_1^{(1)}, \ldots, v_m^{(1)}, v_1^{(2)}, \ldots, v_{m-1}^{(2)}, \ldots, v_1^{(m)}) \in C^{\infty}(]0, \varepsilon[; H^{-\infty}(\mathbb{R}^n)^N), N = m(m+1)/2$, satisfies a first order system on $]0, \varepsilon[\times \mathbb{R}^n]$:

$$(2.5) I_N t \partial_t \vec{v} = t A(t, x, D_r) \vec{v} + B(t, x, D_r) \vec{v},$$

where:

i) $A(t, x, D_x)$ is an $N \times N$ matrix of classical pseudodifferential operators of order 1 (depending smoothly on $t \in [-T, T]$ and satisfying uniform estimates on (x, ξ)). The principal symbol of A has the following form

(2.6)
$$\sigma_{1}(A) (t, x, \xi) = {m \left\{ \left[\overbrace{A'(t, x, \xi)}^{m} \right] \bigcup_{N-m} \right\} N - m},$$

where the matrix $A'(t, x, \xi)$ has the roots $\lambda_j(t, x, \xi)$, $j=1, \ldots, m$, as eigenvalues.

ii) $B(t, x, D_x)$ is an $N \times N$ matrix of classical pseudo differential operators of order 0 (depending smoothly on $t \in [-T, T]$ and satisfying uniform estimates on (x, ξ)).

For any a>0, define $\vec{v}_a=t^a\vec{v}$; then \vec{v}_a satisfies the system:

(2.7)
$$\begin{cases} \mathscr{P}_{a}\vec{v}_{a} = 0 & \text{on }]0, \varepsilon[\times \mathbb{R}^{n}, \\ \mathscr{P}_{a} = I_{N}t\partial_{t} - tA - (B + aI_{N}). \end{cases}$$

To prove (2.3) it will be enough to show that there exists $a_0>0$ such that:

(2.8)
$$t < \vec{v}_a(t, \cdot), \ \vec{\varphi}(\cdot) >_{n-\infty < n} = O(1), \text{ as } t \longrightarrow 0+,$$

uniformly with respect to bounded sets of $\vec{\varphi} \in H^{\infty}(\mathbb{R}^n)^N$ and $a \ge a_0$.

For the adjoint system $\mathscr{P}_a^* = -I_N t \partial_t - tA^* - (B_* + (a+1)I_N)$ and for every $s \in]0, \varepsilon[$, consider the following Cauchy problem:

(2.9)
$$\begin{cases} \mathscr{P}_{a}^{*}\vec{\phi}_{s}=0 & \text{on }]0, \varepsilon[\times \mathbf{R}^{n}, \\ \vec{\phi}_{s}|_{t=s}=\vec{\varphi}\in H^{\infty}(\mathbf{R}^{n})^{N}. \end{cases}$$

Since for t>0 \mathscr{P}_a^* is a symmetrizable hyperbolic system (see e.g. [6]), we know that (2.9) has a unique solution $\vec{\psi}_s \in C^{\infty}(]0, \varepsilon[; H^{\infty}(\mathbb{R}^n)^N)$.

For every $(s, S) \in \mathcal{A} = \{(s, S) \mid 0 < s < S < \varepsilon\}$ from the identity

$$0 = \int_{s}^{s} \langle \mathscr{P}_{a}\vec{v}_{a}(t), \vec{\psi}_{s}(t) \rangle dt - \int_{s}^{s} \langle \vec{v}_{a}(t), \mathscr{P}_{a}^{*}\vec{\psi}_{s}(t) \rangle dt$$

we get the relation:

$$(2.10) s < \vec{v}_a(s), \vec{\varphi} > = S < \vec{v}_a(S), \vec{\psi}_s(S) > .$$

To prove (2.8) it is enough to show that for any $k \in \mathbb{Z}_+$ and any bounded subset $\mathscr{B} \subset H^{\infty}(\mathbb{R}^n)^N$ we have

(2.11)
$$\sup_{\substack{(s,S)\in \mathcal{A}\\ \vec{\phi}\in \mathcal{B}}} ||A^k \vec{\psi}_s(S)|| < \infty$$

($||\cdot||$ means here the L^2 -norm).

We prove (2.11) by induction on k. Denote by $R(t, x, D_x)$ an $N \times N$ matrix of classical pseudodifferential operators of order 0 (depending smoothly on t and satisfying uniform estimates on (x, ξ)) such that:

- i) $\sigma_0(R)(t, x, \xi)$ is a symmetrizer for $\sigma_1(A^*)(t, x, \xi)$.
- ii) $R = R^*$.
- iii) There exists a $\gamma > 0$ for which $(R\vec{\psi}, \vec{\psi}) \ge \gamma ||\vec{\psi}||^2$ for every $\vec{\psi} \in L^2(\mathbb{R}^n)^N$ and any $t \in [0, \varepsilon]$.

(For the existence of R see e.g. [6]).

To simplify notation we write $\vec{\psi}$ instead of $\vec{\psi}_s$. We have:

$$(2.12) t \frac{d}{dt} (R\vec{\phi}, \vec{\psi}) = -t ((RA^* + AR)\vec{\psi}, \vec{\psi}) - ((RB^* + BR)\vec{\psi}, \vec{\psi})$$
$$-2(a+1) (R\vec{\phi}, \vec{\psi}) + t \left(\left(\frac{d}{dt} R \right) \vec{\phi}, \vec{\psi} \right)$$
$$\leq Ct ||\vec{\phi}||^2 + 2||RB^*|| ||\vec{\phi}||^2 - 2(a+1) (R\vec{\phi}, \vec{\psi})$$

for some C>0 independent of $\vec{\psi}$ and $t\in]0, \varepsilon[$. Taking into account property iii) of R, from (2.12) we obtain

(2.13)
$$t \frac{d}{dt} (R\vec{\phi}, \vec{\phi}) \le \frac{C}{\gamma} t (R\vec{\phi}, \vec{\phi}) + \frac{2}{\gamma} ||RB^*|| (R\vec{\phi}, \vec{\phi}) - 2(a+1) (R\vec{\phi}, \vec{\phi}).$$

Choose $a_0 > 0$ such that

(2.14)
$$a_0 + 1 - \frac{1}{\gamma} \sup_{t \in [0, \varepsilon]} ||RB^*(t)|| > 0.$$

Then for every $a \ge a_0$ we obtain from (2.13)

(2.15)
$$\left(t\frac{d}{dt} - \alpha t + \beta\right) (R\vec{\phi}, \vec{\phi}) \le 0$$

with $\alpha = C/\gamma$, $\beta = 2(a+1) - \frac{2}{\gamma} \sup_{t \in [0,\epsilon]} ||RB^*(t)|| > 0$. Inequality (2.15) is equivalent to

(2.16)
$$\frac{d}{dt} \left(e^{-\alpha t} t^{\beta} (R \vec{\psi}, \vec{\psi}) \right) \leq 0.$$

Integrating from s to S we get

$$(R(S)\vec{\psi}_s(S), \vec{\psi}_s(S)) \le e^{-\alpha(s-S)} \left(\frac{s}{S}\right)^{\beta} (R(s)\vec{\varphi}, \vec{\varphi})$$

and finally, by iii),

$$||\overrightarrow{\psi}_{s}(S)||^{2} \leq \frac{1}{\gamma} e^{\alpha \varepsilon} \sup_{t \in [0, \varepsilon]} ||R(t)|| ||\overrightarrow{\varphi}||^{2},$$

which proves (2.11) for k=0.

Suppose now that (2.11) is proved up to k-1. Then it is easy to show that $\Lambda^k \vec{\psi}_s$ satisfies the following Cauchy problem:

(2.17)
$$\begin{cases} (\mathscr{P}_{a}^{*} + t[A^{*}, \Lambda^{k}]\Lambda^{-k}) \Lambda^{k} \vec{\psi}_{s} = -[B^{*}, \Lambda^{k}]\Lambda^{-k+1}\Lambda^{k-1} \vec{\psi}_{s}, \\ \Lambda^{k} \vec{\psi}_{s}|_{t=s} = \Lambda^{k} \vec{\varphi}. \end{cases}$$

Since $[A^*, \Lambda^k] \Lambda^{-k}$ and $[B^*, \Lambda^k] \Lambda^{-k+1}$ are of order 0, proceding as above we obtain

$$(2.18) t \frac{d}{dt} (R \Lambda^{k} \vec{\psi}, \Lambda^{k} \vec{\psi}) \leq C_{k} t ||\Lambda^{k} \vec{\psi}||^{2} + 2||R B^{*}|| ||\Lambda^{k} \vec{\psi}||^{2}$$

$$-2 (a+1) (R \Lambda^{k} \vec{\psi}, \Lambda^{k} \vec{\psi}) + C'_{k} ||\Lambda^{k-1} \vec{\psi}|| ||\Lambda^{k} \vec{\psi}||^{2}$$

$$\leq C_{k} t ||\Lambda^{k} \vec{\psi}||^{2} + (2||R B^{*}|| + \delta C'_{k}) ||\Lambda^{k} \vec{\psi}||^{2}$$

$$-2 (a+1) (R \Lambda^{k} \vec{\psi}, \Lambda^{k} \vec{\psi}) + \frac{C'_{k}}{\delta} ||\Lambda^{k-1} \vec{\psi}||^{2}$$

for some $C_k, C_k' > 0$ (independent of $\vec{\psi}$ and $t \in]0, \varepsilon[$) and for every $\delta > 0$. By choosing δ small enough and $a \ge a_0$ we get

$$(2.19) \qquad \left(t\frac{d}{dt} - \alpha_k t + \beta_k\right) (R\Lambda^k \vec{\psi}, \ \Lambda^k \vec{\psi}) \leq \frac{C_k'}{\delta} ||\Lambda^{k-1} \vec{\psi}||^2$$

for some $\alpha_k, \beta_k > 0$.

By multiplying both sides of (2.19) for $e^{-\alpha_k t} t^{\beta_k}$ and integrating from s to S we get

$$(2.20) (R(S) \Lambda^{k} \vec{\varphi}_{s}(S), \Lambda^{k} \vec{\varphi}_{s}(S)) \leq e^{-\alpha_{k}(s-S)} \left(\frac{s}{S}\right)^{\beta_{k}} (R(s) \Lambda^{k} \vec{\varphi}, \Lambda^{k} \vec{\varphi})$$

$$+ \frac{C'_{k}}{\delta} \frac{1}{S^{\beta_{k}}} \int_{s}^{s} e^{-\alpha_{k}(\sigma-S)} \sigma^{\beta_{k}-1} ||\Lambda^{k-1} \vec{\varphi}_{s}(\sigma)||^{2} d\sigma.$$

Since

$$\frac{1}{S^{\beta_k}} \int_s^s \sigma^{\beta_k - 1} d\sigma \leq \frac{1}{\beta_k},$$

from (2.20) we obtain

$$(R(S) \Lambda^{k} \overrightarrow{\psi}_{s}(S), \Lambda^{k} \overrightarrow{\psi}_{s}(S))$$

$$\leq e^{\alpha_{k} \epsilon} \left(\sup_{t \in [0, \epsilon]} ||R(t)|| ||\Lambda^{k} \overrightarrow{\varphi}||^{2} + \frac{C'_{k}}{\delta \beta_{k}} \sup_{\substack{(s, S) \in \Delta \\ \alpha \in \mathscr{B}}} ||\Lambda^{k-1} \overrightarrow{\psi}_{s}(S)||^{2} \right).$$

By induction the above inequality implies (2.11). The proof of Lemma 1 is completed.

Proof of Lemma 2. Let $f = \sum_{j=0}^{N} f_j(x) \otimes \partial_t^j \delta_t$ and $g = \sum_{j=0}^{N} g_j(x) \otimes \partial_t^j \delta_t$ be two distributions with f_j , $g_j \in \mathscr{D}'(\omega)$, $j = 0, \ldots, N$, $N \in \mathbb{Z}_+$, $\omega \subset U$. We remark that the operator P can be decomposed as

$$(2.21) P = I_P(x; t\partial_t) - tR(t, x, t\partial_t, \partial_x)$$

for some differential operator R with smooth coefficients.

Taking into account the identities

$$(2.22) (t\partial_t)^j\partial_t^l\delta_t = (-1)^j(1+l)^j\partial_t^l\delta_t, j, l=0, 1, \ldots,$$

it is easy to see that the equation Pg=f is equivalent to the following triangular system:

(2.23)
$$\begin{cases} I_{P}(x; -(N+1))g_{N} = f_{N}, \\ I_{P}(x; -N)g_{N-1} = f_{N-1} + L_{N-1}(g_{N}), \\ \dots \\ I_{P}(x; -1)g_{0} = f_{0} + L_{0}(g_{N}, g_{N-1}, \dots, g_{1}) \end{cases}$$

where L_j , $j \ge 0$, are linear differential operators depending only on P.

Under condition (2.2) system (2.23) is uniquely solvable in $\mathcal{D}'(\omega)$. The proof of the lemma is now a trivial consequence of this remark.

§ 3. Asymptotic Expansions

In this Section we prove the main result of this paper.

Let $P \in \Phi_{1/k}^m([0, T[\times U)])$ and denote by \mathscr{D}'_+ the set of all distributions defined on some open subset $]0, \varepsilon[\times \omega \subset]0, T[\times U, \omega]$ being a neighborhood of x=0. Then we have the following theorem.

Theorem 2. Suppose that the roots of the indicial polynomial of P satisfy the condition:

(3.1)
$$\begin{cases} \rho_{j}(0) \notin \frac{1}{k} \mathbb{Z}, & i, j = 1, \dots, m, \\ \rho_{i}(0) - \rho_{j}(0) \notin \frac{1}{k} \mathbb{Z}, & i \neq j. \end{cases}$$

Then:

i) For every $u \in \mathcal{D}'_+$ with Pu = 0 there exist uniquely determined germs

of distributions $\varphi_j(x)$, $j=1,\ldots,m$, defined near x=0, for which the following asymptotic expansion holds as $t\to 0+$:

$$(3.2) \quad u(t,x) \sim \sum_{j=1}^{m} [\varphi_{j}(x) t^{\rho_{j}(x)} + \sum_{l=1}^{\infty} \sum_{h=0}^{l} (L_{j,l,h}(x,\partial_{x}) \varphi_{j}(x)) t^{\rho_{j}(x)+l/h} (\log t)^{h}],$$

where the $L_{j,l,h}(x, \partial_x)$ are linear differential operators (with smooth coefficients) depending only on P.

ii) Conversely, for every germs $\varphi_j(x)$, $j=1,\ldots,m$, there exists a unique germ $u \in \mathcal{D}'_+$ satisfying Pu=0 and having the asymptotic expansion (3.2) as $t \to 0+$.

Before proving the Theorem we make precise the meaning of the asymptotic expansion (3.2).

If $u \in \mathcal{D}'(]0, \varepsilon[\times \omega)$, we can suppose that $\varphi_j \in \mathcal{D}'(\omega')$, $j=1,\ldots,m$, for some neighborhood of the origin $\omega' \subset \omega$. Since Pu=0 on $]0, \varepsilon[\times \omega]$, by partial hypoellipticity we have $u \in C^{\infty}(]0, \varepsilon[;\mathcal{D}'(\omega))$. Moreover, by condition (3.1) and shrinking ω' if necessary we can suppose that the roots $\rho_j(x)$ are smooth functions of $x \in \omega'$.

Now the definition of (3.2) is the following one. For every a>0 there exists $N_0>0$ such that: for every $N>N_0$ and for every $p\in \mathbb{Z}_+$ we have

$$t^{-a}(t\partial_{t})^{p} \{u(t, x) - \sum_{j=1}^{m} [\varphi_{j}(x) t^{\rho_{j}(x)} + \sum_{l=1}^{N} \sum_{k=0}^{l} (L_{j,l,k}(x, \partial_{x}) \varphi_{j}(x)) t^{\rho_{j}(x) + l/k} (\log t)^{k}] \} \longrightarrow 0$$

in $\mathscr{D}'(\omega')$ as $t \to 0+$.

Proof of Theorem 2. Let $u \in \mathcal{D}'(]0, \varepsilon[\times \omega)$ satisfy Pu=0 in $]0, \varepsilon[\times \omega]$. Consider the change of variables $\chi(s,x)=(t=s^k,x), s>0$. By the remark in Sect. 1 the operator P is transformed to $\tilde{P} \in \mathcal{P}_1^m$ and we can actually suppose that $\tilde{P} \in \mathcal{P}_1^m(]-T, T[\times \omega], T=\varepsilon^{1/k}$. Then the distribution $\bar{u}(s,x)=\chi^*(u)$ satisfies $\tilde{P}\bar{u}=0$ on $]0,T[\times \omega]$. Application of Theorem 1 yields the existence of a distribution $v \in \mathcal{D}'(]-T', T'[\times \omega']$ such that $\tilde{P}v=0$ on $]-T',T'[\times \omega']$ and $v=\bar{u}$ on $]0,T'[\times \omega'] \subset]0,T[\times \omega]$.

Now we use Theorem 2 in [3] and can represent v in the following form:

(3.3)
$$v(s,x) = \sum_{j=1}^{m} \left[\int_{s+1}^{s \rho_j(y)} r_j(s,x,y) \varphi_j(y) dy + \int_{s-1}^{s \rho_j(y)} r_j(s,x,y) \psi_j(y) dy \right]$$

for some germs φ_j , ψ_j , $j=1,\ldots,m$, of distributions defined near x=0, uniquely determined by v. To obtain (3,3) from Theorem 2 in [3] we use the fact that $k\rho_j$, $j=1,\ldots,m$, are the roots of the indicial polynomial of \tilde{P} (see Sect. 1) and note that hypothesis (3,1) is equivalent to the hypothesis in Theorem 2 in [3]. The kernels $r_j(s,x,y)$ are suitable distributions defined near s=0, x=y=0, satisfying the following conditions:

(3.4) 1)
$$\sup (r_i) \subset \{(s, x, y) \mid |x-y| \le M |s|\},$$

2) WF
$$(r_i) \subset \{((s, x, \sigma, \xi), (y, \eta)) \mid \eta \neq 0, |x-y| \leq M|s|, |\sigma| \leq M|\eta|, |\xi+\eta| \leq M|s||\eta|\}$$

for some M>0.

Furthermore, by the construction performed in [3] it follows that every r_i has an asymptotic expansion of the following form as $s \rightarrow 0$:

$$(3.5) r_j(s,x,y) \sim \delta(x-y) + \sum_{l=1}^{\infty} \sum_{|\alpha|=0}^{l} (c_{j,l,\alpha}(x) \, \partial_x^{\alpha} \delta(x-y)) s^l$$

for some C^{∞} -functions $c_{j,l,\alpha}(x)$ defined in a common neighborhood $\tilde{\omega} \subset \omega$ of x=0. The meaning of the expansion (3.5) is the following (noting that $r_j \in C^{\infty}(]-T', T'[; \mathcal{D}'(\tilde{\omega} \times \tilde{\omega}))$ as a consequence of (3.4), (2)): For every N, $h \in \mathbb{Z}_+$ we have

$$s^{-N}(s\partial_s)^h[r_j(s,x,y)-\delta(x-y)-\sum_{l=1}^N\sum_{j=1}^l(c_{j,l,\alpha}(x)\partial_x^\alpha\delta(x-y))s^l]\longrightarrow 0$$

in $\mathcal{D}'(\tilde{\omega} \times \tilde{\omega})$ as $|s| \to 0$.

By restriction to s>0 we obtain from (3.3)

(3.6)
$$\tilde{u}(s,x) = \sum_{j=1}^{m} \int_{s}^{k\rho_{j}(y)} r_{j}(s,x,y) \varphi_{j}(y) dy.$$

By using χ^{-1} and the expansions (3.5) we get (3.2) for u(t, x). The uniqueness of the φ_j in (3.2) is proved as follows.

Suppose that for some distributions $\psi_j(x)$, $j=1,\ldots,m$, defined on some neighborhood $\omega' \subset \omega$ of x=0 we have

$$(3.7) \qquad 0 \sim \sum_{j=1}^{m} \left[\psi_{j}(x) t^{\rho_{j}(x)} + \sum_{l=1}^{\infty} \sum_{h=0}^{l} (L_{j,l,h}(x, \partial_{x}) \psi_{j}(x)) t^{\rho_{j}(x)+l/h} (\log t)^{h} \right].$$

We have to show that $\psi_i = 0$ near x = 0 for every j.

We can obviously rearrange the $\rho_j(x)$ in such a way that

(3.8)
$$\operatorname{Re} \rho_{1}(0) = \cdots = \operatorname{Re} \rho_{k_{1}}(0) < \operatorname{Re} \rho_{k_{1}+1}(0) = \cdots$$
$$= \operatorname{Re} \rho_{k_{1}+k_{2}}(0) < \cdots < \operatorname{Re} \rho_{k_{1}+\cdots+k_{\nu-1}}(0)$$
$$= \cdots = \operatorname{Re} \rho_{m}(0)$$

and decompose accordingly $\{1,\ldots,m\}=I_1\cup I_2\cup\ldots\cup I_{\nu}$ (disjoint union). We may assume that there exist real numbers $m_1< m_2<\cdots< m_{\nu-1}$ such that

(3.9)
$$\begin{cases} \sup_{j \in I_h} \operatorname{Re} \rho_j(x) < m_h < \inf_{j \in I_{h+1}} \operatorname{Re} \rho_j(x) \\ \inf_{j \in I_h} \operatorname{Re} \rho_j(x) + 1/k > m_h \end{cases}, x \in \omega', h = 1, \dots, \nu - 1.$$

From (3.7) we obtain

$$t^{-m_1}(t\partial_t)^{p} \left[\psi_1(x) t^{\rho_1(x)} + \dots + \psi_{k_1}(x) t^{\rho_{k_1}(x)} \right] \longrightarrow 0$$

in $\mathscr{D}'(\omega')$ as $t \to 0+$ for any $p \in \mathbb{Z}_+$. By taking $p = 0, 1, \dots, k_1-1$ we get

$$(3.10) t^{-m_1} \begin{bmatrix} 1 & \cdots & 1 \\ \rho_1 & \cdots & \rho_{k_1} \\ \vdots & & \vdots \\ \rho_1^{k_1-1} & \cdots & \rho_{k_1}^{k_1-1} \end{bmatrix} \begin{bmatrix} \phi_1 t^{\rho_1} \\ \\ \\ \phi_{k_1} t^{\rho_k} \end{bmatrix} \longrightarrow 0$$

in $\mathscr{D}'(\omega')$ as $t\to 0+$. Since the matrix in (3.10) is invertible (by (3.1)) we get $\psi_j t^{\rho_j - m_1} \to 0$ in $\mathscr{D}'(\omega')$ as $t\to 0+$ for $j=1,\ldots,k_1$. By condition (3.9) we conclude that $\psi_j = 0$ on ω' for $j=1,\ldots,k_1$. As a consequence, $L_{j,l,h}(x,\partial_x)\psi_j = 0$ on ω' for every l and h and for $j=1,\ldots,k_1$. Hence (3.7) is reduced to

$$0 \sim \sum_{j=k_1+1}^{m} [\phi_j(x) t^{\rho_j(x)} + \sum_{l=1}^{\infty} \sum_{h=0}^{l} (L_{j,l,h}(x, \partial_x) \phi_j(x)) t^{\rho_j(x)+l/h} (\log t)^h].$$

Using the same procedure as above we conclude that $\psi_j=0$ on ω' for $j=k_1+1,\ldots,k_1+k_2$, and so on. Thus, part i) in Theorem 2 is proved.

To prove ii), let $\varphi_j(x) \in \mathcal{D}'(\omega)$, $j=1,\ldots,m$, and define

(3.11)
$$v(s, x) = \sum_{i=1}^{m} \int_{s+1}^{k\rho_{j}(y)} r_{j}(s, x, y) \varphi_{j}(y) dy.$$

By Theorem 2 in [3] it follows that $\tilde{P}v=0$ on some box]-T', $T'[\times \omega' \ (\omega' \subset \omega)$. By defining $u=(\chi^{-1})^*(v|_{(s>0]})$ we obtain $u \in \mathscr{D}'_+$, with Pu=0, having the asymptotic expansion (3.2).

To prove uniqueness we observe that if two distributions u_1 , $u_2 \in \mathcal{D}'_+$ satisfy $Pu_1 = Pu_2 = 0$ on some box $]0, \varepsilon[\times \omega]$ and if they have

the same asymptotic expansion (3.2), then u_1-u_2 satisfies $P(u_1-u_2)=0$ on $]0, \varepsilon[\times\omega]$ and it is extendable as a C^{∞} function in t up to t=0, i.e. $u_1-u_2\in C^{\infty}([0,\varepsilon'[\,;\mathscr{D}'(\omega'))]$ for some box $[0,\varepsilon'[\,\times\omega]\subset [0,\varepsilon[\,\times\omega]]$ Furthermore, u_1-u_2 is flat at t=0. Hence, application of the local uniqueness results of [2,4] yields that $u_1=u_2$ in a smaller box.

Thus, Theorem 2 is proved.

§ 4. Examples and Remarks

- (1) The result stated in the Introduction is a consequence of Theorem 2.
- (2) Let $P \in \Phi_{1/k}^m(\mathbb{R}_t^n \times \mathbb{R}_x^n)$. A consequence of our proof in Sect. 2 is that any distribution u defined in an open subset of $\mathbb{R}_t^n \times \mathbb{R}_x^n$ near a point $(0, x_0)$ of $\partial(\mathbb{R}_t^n \times \mathbb{R}_x^n)$ which satisfies Pu = 0 is extendable as a distribution in a full neighborhood of $(0, x_0)$. Moreover, if the coefficients of P are smooth up to t = 0 and if the roots $\rho_j(x)$ of the indicial polynomial satisfy the condition $\rho_j(x_0) \notin \{-1, -2, \ldots\}$, $j = 1, \ldots, m$, then u can be extended as a distribution solution \bar{u} of $P\bar{u} = 0$.
- (3) Under the hypotheses of Theorem 2 we can define "boundary values" of a solution u of Pu=0 by taking the leading coefficients $\varphi_1, \ldots, \varphi_m$ of the asymptotic expansion (3.2) of u.
- (4) Let us consider the Fuchsian hyperbolic operators of weight $m-h \ge 0$ considered in [3]:

$$P = t^h P_m + t^{h-1} P_{m-1} + \cdots + P_{m-h}$$

By combining the results in [3] with the arguments in Theorem 2 one can prove that every local distribution solution u of Pu=0, defined in some box $]0, \varepsilon[\times \omega]$, has an asymptotic expansion of the form:

$$\begin{split} u &\sim \sum_{j=0}^{m-h-1} [\phi_{j}(x) \, t^{j} + \sum_{l=1}^{\infty} (\mathcal{L}_{j,l}(x,\,\partial_{x}) \phi_{j}(x)) \, t^{j+l}] \\ &+ \sum_{j=1}^{h} [\varphi_{j}(x) \, t^{\rho_{j}(x)} + \sum_{l=1}^{\infty} \sum_{i=0}^{l} (L_{j,l,i}(x,\,\partial_{x}) \varphi_{j}(x)) \, t^{\rho_{j}(x)+l} (\log t)^{i}], \end{split}$$

as $t \to 0+$, for some germs of distributions $\phi_0, \ldots, \phi_{m-h-1}, \varphi_1, \ldots, \varphi_h$, provided the non trivial roots of the indicial polynomial $\rho_1(x), \ldots, \rho_h(x)$ satisfy the conditions: $\rho_j(0) \notin \mathbb{Z}$, $j=1,\ldots,h$ and $\rho_j(0)-\rho_{j'}(0) \notin \mathbb{Z}$ for every $j,j',j\neq j'$.

(5) The example $P = t \partial_t^2 - \Delta_x + \alpha \partial_t + \sum_{j=1}^n \beta_j \partial_{x_j} + \gamma$ is not included in our classes and has been already treated by Bernardi [1].

Acknowledgements. This work was accomplished while the first author was visiting the Department of Mathematics of the University of Tokyo, whose kind hospitality he would like to acknowledge here.

References

- [1] Bernardi, E., to appear.
- [2] Bove, A., Lewis, J. E. and Parenti, C., Cauchy problem for Fuchsian hyperbolic operators, *Hokkaido Math. J.*, 14 (1985), 175-248.
- [3] ———, Structure properties of solutions of some Fuchsian hyperbolic equations, Math. Ann., 273 (1986), 553-571.
- [4] Bove, A., Lewis, J. E., Parenti, C. and Tahara, H., Cauchy problem for Fuchsian hyperbolic operators, II, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34 (1987), 127-157.
- [5] Tahara, H., Singular hyperbolic systems, V. Asymptotic expansions for Fuchsian hyperbolic partial differential equations, J. Math. Soc. Japan, 36 (1984), 449-473.
- [6] Taylor, M., Pseudodifferential operators, Princeton Univ. Press, Princeton N.J., 1981.