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Asymptotic Expansions of Distribution Solutions
of Some Fuchsian Hyperbolic Equations

By

Cesare PARENTI* and Hidetoshi TAHARA**

Introduction

In [3] a class of Fuchsian hyperbolic operators has been con-
sidered and a general result was given concerning the structure of
distribution solutions defined in a full neighborhood of a point of
the characteristic hypersurface ¢=0. The operators treated in [3] are
strictly hyperbolic for ¢=0.

Our aim is to consider in this paper the more general case where
the operators are strictly hyperbolic only for t>>0. For some results
in this direction, see Bernardi [1]. In this Introduction we state our
main result in a particular, but typical, example.

Consider the following operator :

0.1) P=(td)*—t gl 0+ (t, )13+ 33 B;(t, 2)E0, +7 (2, %)

defined on some neighborhood £ of the origin in R,XR? (the coe-
flicients are supposed to be in C=(2)).

We explicitly remark that the results contained in [3] cannot be
applied directly to the operator (0.1), since P is hyperbolic only for
t>0. Denote by p;(x), p,(x) the roots of the indicial equation

(0.2) P+a (0, x) p+7(0, x) =0

and denote by 2 the set of all germs of distributions u(¢, x) defined
on some 2'N {t>>0}, with 2" an open neighborhood of (¢t=0,x=0).
Then we have the following result,

Communicated by S. Matsuura, July 15, 1986.
* Department of Mathematics, University of Bologna, Bologna 40127, Italy.
** Department of Mathematics, Sophia University, Tokyo 102, Japan.



910 CESARE PARENTI AND HIDETOSHI TAHARA
Theorem. Suppose that :

£1(0), 0,(0) e%z; 01(0) — p,(0) GE%Z-

Then :
1) Every u€ D', for which Pu=0 has the asymptotic expansion as
t—>0+:

0.3 4D~ T[0T 3 Liaals 2)0,(3)
% tﬂj(x)+k/2(log t) h]

for some unique germs of distributions ¢,(x), @,(x) defined near x=0,
where the L;,,(x,0,) are linear differential operators (with smooth coeffi-
cients) depending only on P.

ii) Conversely, for every germs ¢ (x), @;(x) there exists a unique germ
ue 2, satisfying Pu=0 and having the asymptotic expansion (0.3) as
t—0+4,

The precise meaning of the expansion (0.3) will be defined in
Sect. 3.

The example (0.1) is a particular case of the class of operators
we will consider, Actually we shall prove that asymptotic expansions
as (0.3) hold for solutions of equations of the following form:

Pu= 3> a;,(t,x)(t0)7 (¢¥*d)u=0, >0,

jtlal<m
where k is a positive integer (in the case (0.1) k=2). For precise
definitions, see Sect. 1.

It is worth to mention that asymptotic expansions like (0.3) were
established first in [5] for C~-solutions on ¢>0. The possibility of
passing from C= to distribution solutions relies on two essential results :
an extendability theorem, which is proved in Sect. 2, and the local
representation formula proved in [3].

§1. Class of Gperators

We consider operators P of the form:

(1.1 P= 3 a,,(tx) (t9)7 (¢17*3,) =

jtlal<m

defined on some box [0, T[ X UC R} x R, where U is a neighborhood
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of x=0 and 0<<T'<+o0; m and k are positive integers.
We shall make the following assumptions on P:
1) a,o#0 on [0, T[xXU.
ii) For every j,a, a;,=C~(0, T[LxXU) NC([0,TLxXU)

and has the following expansion

oo

(1.2) ;. a~ 2 A0 (x) 8% as t—0+,

for some a;,,€C~(U), [>0. The expansion (1.2) means that for
every N&Z, and for every hEZ, we have:

N
(1.3) NG g, (8, %) — 3 a0 (%) 8/5] 0
1=0

in & U) as t—0+.
When k=1, the expansion (l.2) is equivalent to say that a; ,&C*~
([0, TEx D).
iii) For every (¢, x,&) [0, T[ XU x (B"\0), the polynomial
A—— 3 a4, 0)¥E"

itlal=m
has m real distinct roots 4,(¢, x, &),...,4,(t, x,&).
We denote by @7,([0, T[XU) the class of all operators as P,
For any P€®7,([0, T[ XU) we define the indicial polynomial by

(1.4) In(x30) =3 0,000, )

The roots of Ip(x; p) will be denoted by o,(x),..., p.(x). We observe
that the change of variables (¢, x)— (¢:¥* x) transforms operators P in
the class @7, into operators Pe®r and we have the identity

(1.5) Is(x50) =Ip(x; 0/K).

In Sect.2 we shall consider only the case k=1 and we need operators
defined in a full box neighborhood 1-7,T[XU of (¢=0,x=0) and
satisfying conditions i)~iii) on -7, T[XU. We denote by @7(]-T,
TLxU) the class of such operators and remark that every Pe®p
([0, T[ X U) has an extension Pe®r(]-T, T[ xU).

§2. Extendability Results

In this Section we shall prove some preliminary results to our
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main theorem.

Theorem 1. Let Pe®pr(]-T,TLXU) and suppose that the roots
0;(x), j=1,...,m, of the indicial polynomial satisfy the condition :
2.1 ;0 eE{-1,—-2,..., —n,...}, j=1,...,m.
Then, for every distribution ucs 2’(]0,¢[ Xw), with @ a neighborhood of
x=0 and ]0,e[ XwC]0, TL XU, for which Pu=0 on ]10,e[ Xw, there
exists a distribution v such that :

1) v is defined on some neighborhood 1—¢’,e'[ Xw'C]1—T,TLXU of
the origin and Py=0 on ]—¢’,e'[ Xw'.

2) v ‘]0.5'[><o.|'=u I]O.a/[xa)/ .
The proof will follow from some lemmas.

Lemma 1, Let PeOr(]—T,T[XU) and let uc2’'(]0,¢[ Xw) be
as in the statement of Theorem 1. Then there is a distribution we
2' (R, XR") such that:

i) supp(w) cR}xRr.

1) @ |j.eixer=U|10.etxar JOr some neighborhood 10,¢'[ X’ C]10, e[ X w.

Lemma 2. Let Pe@r(1—T,T[XU) and suppose that the roots
0i(x), j=1,...,m, of the indicial polynomial satisfy the condition :
2.2) o;(x)&E{—1,—-2,...,—n,...}, j=1,...,m, x€U.
Then, for every feD'(1—T, TLXU) with supp(f) C {t=0}, there exists
a unique g€ D' (1-T,T[XU) with supp(g) C {{=0} such that Pg=f
on 1-T,T[xU.

We now show how the two lemmas imply Theorem 1.

Proof of Theorem 1. Given u as in the statement, let we
2’ (R, XxR") be as in Lemma 1. Put @=w |i_¢/.¢(xor and let f=P#. Then
fe2’'(1—¢,¢'[ Xo') with supp(f)C{t=0}. By shrinking »’ and
taking into account (2.1), we can suppose that condition (2.2) holds
for every x€w’. Application of Lemma 2 yields a distribution
g2’ (]—¢,¢'[ Xo’) with supp(g) C {{=0} and Pg=f. By defining
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v=#—g, the theorem is proved.

We now prove the lemmas.

Proof of Lemma 1. By a modification of P outside a neighborhood
of the origin we can suppose that P®y(] -7, T[ X B*) with constant
coefficients a;, for |{|+]|x| large enough. By using a bounded
domain of dependence argument and partial hypoellipticity of P for
t#0 we can suppose that u=C~(]0,¢[; 2'(RB")) and Pu=0 on
10, e[ X R~

We now prove that for every K€ R" there exists a positive number
a such that:

2.3)  <ult, ), () > g, 0m pam =0(D), as t—0+,

uniformly with respect to bounded sets of o= 2 (K).

It is easy to show that property (2.3) implies the extendability
of u and hence the lemma,

Now let us fix K€R". By a cut-off argument we can find a
distribution 0&€C= (10, [ ; H~=(R")) such that Pv=0 on ]0,¢[ X BR* and
u=v on ]0,e[ XK.

Now, following [2; p.185], define
(2.4) o=@ M1e,) N, h=1,...,m, j=1,...,m—h+],
where A= (1+ |D,|H Y2

The vector 7=@",..., 0L, 02, ...,02,, ..., €C=J0, ¢[ ;
H~=(R"Y), N=m(m+1) /2, satisfies a first order system on ]0, e[ X B":

(2.5) Iytd,0=tA(t, x, D,)v +B(¢,x,D,)7,

where :

i) A(,x,D,) is an NXN matrix of classical pseudodifferential
operators of order 1 (depending smoothly on ¢{&[—T,T] and satis-
fying uniform estimates on (x,£)). The principal symbol of 4 has
the following form

m

m { A,(t: Xy E) E]
(2.6) 0,(4) (¢, x,8) = S N —
| O O }N—m

N—m
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where the matrix A4’(t, x, £) has the roots 1;(¢, x, &), j=1,...,m, as
eigenvalues.

ii) B(t,x,D,) is an NXN matrix of classical pseudo differential
operators of order 0 (depending smoothly on te[—7,7T] and satis-
fying uniform estimates on (x,£)).

For any a>0, define 7,=t ; then 7, satisfies the system:

(P 0,=0 on 10,¢[ X R",

2.7
@D g —140,—td— (B+aly).

To prove (2.3) it will be enough to show that there exists a,>0
such that:

2.8) E<TL (1, 2, B()D>,m m=0(1), as t—0+,
uniformly with respect to bounded sets of g H>(R" " and a>aq,.

For the adjoint system £}=—Iy0,—tA*— (By++ (a+1)Iy) and for
every s&]0,¢[, consider the following Cauchy problem:

*$,=0 on 10,e[ xR,

@.9) [g,
) $s|i=s=¢EH~(R”)N'

Since for t>>0 £ is a symmetrizable hyperbolic system (see e.g.[6]),

we know that (2.9) has a unique solution gZ,EC”(]O,e[;H”(R")N).
For every (s,8) €d={(s,8) |0<s<S<e} from the identity

0=Sj<%5,(t), J,<t>>dz—§f<5., (), P2Gu(0) >dt

we get the relation :

(2.10) 5T, (5), 3> =8<T,(S), §,(5)> .

To prove (2.8) it is enough to show that for any A€Z, and any
bounded subset Z CH=(R")"Y we have

@11 sup [144,(8)]|<oo
veB
(J| || means here the LZ-norm).

We prove (2.11) by induction on k. Denote by R(¢ x,D,) an
NXN matrix of classical pseudodifferential operators of order 0
(depending smoothly on ¢ and satisfying uniform estimates on (x, £))
such that:
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i) ao(R) (¢, x,&) is a symmetrizer for ¢,(4*) (¢, x,§).
ii) R=R*.
iii) There exists a y>0 for which (Rgl—;, gZ) ZrlngIlz for every
g L2(R)Y and any t[0,¢].
(For the existence of R see e.g.[6]).

To simplify notation we write ¢ instead of ¢,. We have:
2.12) t%(RgZ,J)=-t((RA*+AR)J,¢3—((RB*+BR)$,;Z)
—2(a+1) (RG, 9) +t(<dit1z>$, 7)
<Ctlig|P+2||RB*|| |||P—2 (a+1) (RS, §)

for some C>0 independent of gZ and t€]0,¢[. Taking into account
property iii) of R, from (2.12) we obtain

@19 5 Bh P < 1(Rg, G+ 2IRBI(RG, )
—2(a+1) (R, §).

Choose a>>0 such that

2.14) "“““;‘,Z}%}E}”RB* 0 1>0.

Then for every a=>a, we obtain from (2.13)

d - -
(2.15) (td—t——at+ﬁ>(R¢, @) <0

with a=C/r, ﬁ:Q(a+1)-% sup [IRB® (5)[[>0. Inequality (2.15) is
tel0,e

equivalent to
2. 16) d%(e-a'zﬂ(RsZ, &) <.
Integrating from s to § we get
R($)§(S), $.(5)) <L) R© P
and finally, by iii),
19 [F< - sup IR IFIF

which proves (2.11) for £=0.
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Suppose now that (2.11) is proved up to k—1. Then it is easy
to show that /1”(2, satisfies the following Cauchy problem:
(P2+HILA®, £14°) 46, = —[B*, #A+47G,,

Akgz;s |t=s =/1k9-5-
Since [4*, 4¥]47* and [B*, 4]47**! are of order 0, proceding as
above we obtain

(2.17)

@.18) 10 (RAG, 4G) <Cll4G|P+2AIRB*| |47
—2(a+1) (RAG, 449) + G4 |14
<CullGIP+ 2IIRB*||+3CD 1461
~2(a+1) (RA, 24G) + Sh a1

for some C,, C;>0 (independent of gZ and t=]0,¢[) and for every
6>0. By choosing 6 small enough and a>a, we get

@19 (t-d -t R, 2 <Sade

for some a;, 8,>0.
By multiplying both sides of (2.19) for ¢ “¥i" and integrating
from s to S we get

(2.20) (RO £G,S), £4,) <™ (3R £, £)

! S a0~ - e
+& —Slﬁ—kge KOG 4G (o) |1

Since

]. Ss ﬂk—l 1
A Ve L
8% Js B

from (2.20) we obtain

(R(S) £4,(S), £'4,(S))

aLe - C’ 17
S k( R t Ak 2 k Ak 1 A 2>.
e ég‘%ll @ 1 4%|| +——5‘3k (j;gdll O (S ]
oER

By induction the above inequality implies (2.11). The proof of
Lemma 1 is completed.
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N N
Proof of Lemma 2. Let f=3% f;(x)®00, and g=73 g;(x)Q30,; be
1=0 =0
two distributions with f;, g;€ 2’ (w), j=0,...,N, NeZ,, ocU. We
remark that the operator P can be decomposed as
(2.21) P=1Ip(x;t0,) —tR(¢, x,t0, 0,)
for some differential operator R with smooth coefficients.
Taking into account the identities
(2.22) (t8) 7’00, = (—1)’(A+D70,, j,1=0,1,...,

it is easy to see that the equation Pg=f is equivalent to the following
triangular system:

Ip(x; —(N+1)gv=Ffn,
In(x; —N)gy-1=fn-1+Lya(gw),
(2.23) ---------------------------------------------

.............................................

.............................................

Ip(x; — D go=fo+Lo(gn, gn-1, - - - » &>
where L, j>0, are linear differential operators depending only on
P,
Under condition (2.2) system (2.23) is uniquely solvable in
2'(w). The proof of the lemma is now a trivial consequence of this
remark.

§3. Asymptotic Expansions

In this Section we prove the main result of this paper.

Let Pe®y, ([0, TLXU) and denote by 2 the set of all distribu-
tions defined on some open subset ]0,¢[ XwcC]0,T[ XU, o being a
neighborhood of x=0. Then we have the following theorem.

Theorem 2. Suppose that the roots of the indicial polynomial of P
satisfy the condition :

060 &1 Z, ij=1,...,m,
3.1 1
Pi(o) "Pi(o) GE?Z, i¢j=

Then:
1)  For every u€ D'y with Pu=0 there exist uniquely determined germs
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of distributions ¢;(x), j=1,...,m, defined near x=0, for which the
Sollowing asymptotic expansion holds as t—04 :

+(x)

(3.2) ult, x) ~§1[¢j<x> £

() +1/k

T+ 2 Lo 006,600 log %],

where the L;,,(x,0,) are linear differential operators (with smooth coeffi-
cients) depending only on P.

ii) Conversely, for every germs ¢;(x), j=1,...,m, there exists a
unique germ u€ D', satisfying Pu=0 and having the asymptotic expansion
8.2) as t—0+.

Before proving the Theorem we make precise the meaning of the
asymptotic expansion (3.2).

If ue 2’(J0,¢[ Xw), we can suppose that ¢,€ 2’ (0, j=1,...,m,
for some neighborhood of the origin w’Cw. Since Pu=0 on ]0,¢[ X o,
by partial hypoellipticity we have u»€C~(]0,¢[ ; 2'(w)). Moreover,
by condition (3.1) and shrinking ’ if necessary we can suppose
that the roots p;(x) are smooth functions of x€w’.

Now the definition of (3.2) is the following one. For every a>>0
there exists No>0 such that: for every N>N, and for every pEZ. we
have

ORI ~i1 [0, (%)t
+§1 hlgo(L,-.z.h(x, 3)0; ()t (log 1) ¥} —0

in 9 (@) as t—>0+.

Proof of Theorem 2. Let uc 2'(]0,¢[ Xw) satisfy Pu=0 in ]O0,
¢[ Xw. Consider the change of variables y(s, x) = (t=s*x), s>0. By
the remark in Sect. 1 the operator P is transformed to P=®} and
we can actually suppose that Pe@p(]—T, T[ Xw), T=é"*, Then the
distribution #(s, x) = y* (u) satisfies Pz=0 on ]0, 7T X . Application
of Theorem 1 yields the existence of a distribution v€2’'(]—T",
T’'[ X®") such that Po=0 on ]—T", T'[ X’ and v=a on 10, T'[ X’
c]0, T X w.

Now we use Theorem 2 in [3] and can represent v in the follow-
ing form :

3.8 ot 0 =Z I n 65,500,y + (7,65, 5,00, ) )
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for some germs ¢;, ¢, j=1,...,m, of distributions defined near x=0,
uniquely determined by v. To obtain (3.3) from Theorem 2 in [3]
we use the fact that kp;, j=1,...,m, are the roots of the indicial
polynomial of P (see Sect. 1) and note that hypothesis (3.1) is
equivalent to the hypothesis in Theorem 2 in [3]. The kernels
r;(s, x, y) are suitable distributions defined near s=0, x=y=0, satis-
fying the following conditions :
3.4 D suppr)C{lsx) ]| [x—y|<M]s]},
2) WF(r) c{((s,%08), (3n)| n+0,
lx—p|<Mlsl, lo|<Mlnl, |§+9I<M]s||nl}

for some M>0.

Furthermore, by the construction performed in [3] it follows that
every r; has an asymptotic expansion of the following form as s—0:

(3.5 nsHN~GE) L T Cna®) B x—))s!

for some C~-functions ¢;,,(x) defined in a common neighborhood
®Cw of x=0. The meaning of the expansion (3.5) is the following
(noting that 7,€C~(]—T',T'[; 2'(@X®)) as a consequence of (3.4),
2)): For every N, heZ, we have
N I
sTN(s0) [, (s, %, y) —0(x—p) _1_21 léo(‘:i.l.u (x) 050 (x—»))s']—0
in 2 (@Xd) as |s|—0.

By restriction to s>>0 we obtain from (3.3)

(3.6) (s, %) = igs’“’f‘”n(s, % 2)0:(9)dy.

j=1
By using x™' and the expansions (3.5) we get (3.2) for u(¢x).
The uniqueness of the ¢; in (3.2) is proved as follows.
Suppose that for some distributiens ¢;(x), j=1,...,m, defined on
some neighborhood @' Cw of x=0 we have

()

(3.7 0~jZZ:1[¢f(x>t”f +l§ hzio(L,,l,,,(x, 34, (x)) " (log £)1].

We have to show that ¢;=0 near x=0 for every j.
We can obviously rearrange the p;(x) in such a way that
(3.8 Re 0,(0) =---=Re p; (0) <Re p; +:(0) =---
=Re Ok +t, (0) <---<Re pk1+-~-+kv_1(0)
=--=Re 0,(0)
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and decompose accordingly {1,...,m} =I,U/l,U...UI,(disjoint union).
We may assume that there exist real numbers m;<m,<---<m,_, such
that

sup Re p;(x) <m, < inf Re p;(x)

(3.9) =% i€lh4 , x€w’, h=1,...,v—1.
inf Re p;(x) +1/k>m,
jelh

From (8.7) we obtain

(z)

£ (£0,) [ by (x) 7

in 2'(0’) as t—>0+ for any pEZ,.
By taking p=0,1,...,%k—1 we get

o, (%)
dedb gy (0T ]——0

T TRRR 1 ‘r ot
Aol ------------------ pkl

(3.10) I : —0
P p::“l gb,,ltpkl

in 2'(0’) as t—0+. Since the matrix in (3.10) is invertible (by

(3.1)) we get ¢t >0 in 2’(0’) as t—0+ for j=1,...,k. By
condition (3.9) we conclude that ¢;=0 on @’ for j=1,...,%. As a
consequencé, L;.4(x,0,)¢;=0 on @’ for every [ and % and for j=
1,..., k. Hence (8.7) is reduced to

0~ i [, (x) tpj(z)+§ "ZL:D(Lj,l.h(x, ax)¢j(x))tpj(x)+l/k

i=ky+

(log )*].

Using the same procedure as above we conclude that ¢;=0 on
o’ for j=k+1,...,k+k;, and so on. Thus, part i) in Theorem 2
is proved.

To prove ii), let ¢;(x) €2’ (w), j=1,...,m, and define

F’j(J’)

(3.11) vmm=iw.nmmw%an

j=

By Theorem 2 in [3] it follows that Py=0 on some box ]—77,
T'[Xw’ (0'Cw). By defining u= (") *(@|>y) we obtain ue P,
with Pu=0, having the asymptotic expansion (3.2).

To prove uniqueness we observe that if two distributions u,
u,€ D'y satisfy Puy=Pu,=0 on some box ]0,¢e[ X and if they have
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the same asymptotic expansion (3.2), then u;—u, satisfies P(u;—u,) =0

on ]0,¢[ Xw and it is extendable as a C™ function in ¢ up to t=0,

i.e. uy—u,&C=([0,¢'[; 2'(0’)) for some box [0,¢'[ Xw’' C[0,e[ Xw.

Furthermore, u;—u, is flat at t=0. Hence, application of the local

uniqueness results of [2,4] yields that u;=u, in a smaller box.
Thus, Theorem 2 is proved.

§4. Examples and Remarks

(1) The result stated in the Introduction is a consequence of
Theorem 2.

(2) Let Py, (Rf xR". A consequence of our proof in Sect. 2
is that any distribution u defined in an open subset of R; X R} near
a point (0,x,) of 0(R;} X Rr which satisfies Pu=0 is extendable as
a distribution in a full neighborhood of (0,x,). Moreover, if the
coefficients of P are smooth up to (=0 and if the roots p;(x) of
the indicial polynomial satisfy the condition p;(x) & {—1, —2,...},
j=1,...,m, then u can be extended as a distribution solution # of
Pg=0.

(3) Under the hypotheses of Theorem 2 we can define “boundary
values” of a solution u of Pu=0 by taking the leading coefficients
¢1, . ..,9, of the asymptotic expansion (3.2) of u.

(4) Let us consider the Fuchsian hyperbolic operators of weight
m—h=>0 considered in [3]:

P:thPm+th_1Pm_1+"'+Pm...)|.

By combining the results in [3] with the arguments in Theorem 2
one can prove that every local distribution solution u of Pu=0,
defined in some box ]0,¢[ X, has an asymptotic expansion of the
form :

m—h—1 oo

U~ JZ;,O [¢;(x) 87+ lZ (Z;.1(x, 0,) ¢, (%)) 7*1]

=1

h 0j(x) = 2 0 +1 ;
LR 4T T (L 06,(0)8 7 log 7],

as t—>0+, for some germs of distributions ¢g, ..., Pu_p1, C1y.e., Pny
provided the non trivial roots of the indicial polynomial p,(x),...,
os(x) satisfy the conditions: p;(0)&Z, j=1,...,h and p;(0)—
0;:(0) &Z for every j,j’, j#j’.
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(5) The example P=t6?—d,+a6,+i B8;0..+7 is not included in
i=1 4

our classes and has been already treated by Bernardi [1].
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