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Continuous Dependence on the Initial Condition
of the Solution of a System of Differential
Equations with Variable Structure
and with Impulses

By

A. B. DISHLIEV* and D. D. BAINOV**

Summary

In the paper an initial value problem is considered for a system of ordinary diffe-
rential equations with variable structure and impulses. Sufficient conditions are found under
which there exists a solution of such system for i=7, where 7, is a real constant Sufficient
conditions are presented for continuous dependence of the solution of the initial condition.

§ 1. Introduction. Statement of the Problem

In this paper we study dynamic processes that are subject to short
time perturbations during their evolution, and as a result, the evolution
law changes. The period of the perturbation effect can be neglected,
therefore they are regarded as “momentary”, i.e the perturbations are
of an impulse type. Such processes are described by systems of ordinary
differential equations with variable structure and with impulses.

The investigations of systems of differential equations with variable
structure (without impulses) also called “systems with switchings”,
“tempestuous systems” etc. were originated in the works by T. Vogel
[11—1051(1953) that have descriptive character. The theory of the
variable structure systems finds its further development in the
papers by A.Myshkis and Chohryakov [6] (1958), A. Myshkis and
Parshikova [7] (1972) etc. In these systems there is a change in the
right hand sides when the trajectory reaches give set defined in the
phase space and called “critical set” (also “switching curves”, “dis-

Communicated by S.Hitotumatu, July 28, 1986.
* Higher Institute of Chemical Technology, Sofia, Bulgaria.
**% University of Plovdiv, Paisii Hilendarski, Plovdiv, Bulgaria.



924 A.B.DisHLIEV AND D. D. BAINOV

continuity curves” ets.). In the present paper the critical set consists
of a countable set of hypersurfaces located in the extended phase
space and there is a change of the structure when the integral curve
meets some of these hypersurfaces.

The qualitative theory of systems with impulses (without variable
structure) has been developed quite recently. The first papers in this
field are V.Milman and A.Myshkis [8] (1960) and [9] (1963),
A.Samoilenko [10] (1961) etc. In this paper we consider an initial
value problem for a system of differential equations with variable
structure and with impulses so that the impulses appear at the moment
when the integral curve meets some of the given hypersurfaces. Such
systems (without variable structure) are considered in [11].

The first paper in which systems of differential equations with
variable structure and with impulses are considered is by D.Bainov
and S. Milusheva [12] (1985). We note that in [12] the right hand
side of the system is chosen among two functions.

Before the formulation of the problem considered in the paper
we present a short description of these systems. We say that a system
of differential equations with variable structure and impulses is given
when the following set of mathematical objects and relations between
them defined for every i=0,1,... is present:

1) A set of hypersurfaces
g;:t=t;(x), t€R, x&D, ¢))

where D is a domain in R*

2) A set of functions a;: D—R called “switching functions”.

3) A set of functions /;: D—R" called “impulse functions”

I,(x) =0, x€D.
4) A set of functions f#:S—R" a€R, where S= {(¢, x) ; t >7y, xE D}.
5) Systems of ordinary differential equations

B 0, <i<ea, @

where the points z; are the only moments at which the integral curve
of the system of differential equations with variable structure and
with impulses meets some of the hypersurfaces (1); s; is the index
of the hypersurface which is met by the integral curve at the moment
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7, i.e. the equality ¢, (x(7;)) =1, s=0 holds (generally i#s); the
parameter a is defined by the equality

a=a,(x(z)). 3
6) The equalities
Ax (&) | =, =5 (z;+0) —x () =1, (x(z)), (€))

which describe the impulse perturbations.

This paper considers an initial value problem for the above system
of differential equations with variable structure and impulses with the
following initial condition

x(1e) =x0, xED. ©))

For convenience we introduce the notation:

x;=x(t), x;r=xi+1;i(xi)a i=12,....

We shall describe the integral curve of the problem considered.

Let the point P, with current coordinates (#, x(¢)) be the mapping
point of the processes described by the problem (2)-(5). The mapping
point starts its motion from the point (7o, %)) and moves along the
integral curve of the problem (2), (5) where a=a,(x,) untill the
moment 7;. At the moment 7; the point P, meets the hypersurface
o, (we shall prove later on that 5;=1). At the moment 7, it jumps
momentary from the position (r, x;) to the position (z;, x{) and starts
to move along the integral curve of the system (2) with initial
condition x(z;+0) =x; where a:asl(xl), The motion is continued
till the moment 7, at which the mapping point P, meets the hypersur-
face 0., where there is a new jump and a change of the motion law
(i.e. a change of the right hand side of the system (2)) etc. If after
a jump the point P, hits again the hypersurface from (1) then there
is no second jump at this moment.

The curve, along which the point P, moves is called integral curve
of the system of differential equations with variable structure and
with impulses (more exactly the motion of the point P, described
above is done along the integral curve of the problem (2)-(5)).
The law according to which this motion is realize is called solution
of the system. The solution is a piecewise continuous function with
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discontinuity point of the first type at which it is continuous from
the left.

In the sequel we denote by (¢, x(t)) the integral curve of the
problem (2)-(5), and with x(¢, t*, x*) the solution of the system with
variable structure and impulses with initial condition x (z*, ¥, x*) =x*,
Let ||-|| be the Euclidean norm in R* and p(4, B) be the Euclidean
distance between the nonempty sets

A’BCR"3 'Qi= {(tyx);ti—l(x)<t<ti(x), xED}: i=1323"'

Each constant greater than 7z, will be denoted by 7.
Along with the problem (2)-(5) we consider the following initial
value problem

de* =18 (t, x*) <t <z}
dt —J m\" ) i —=Li+D

A (1) | _ =T, (x* (1)), i=0,1,...,

x*(fo) =x(;k, X;ED,
where ¥, i=1,2,... are the moments at which the integral curve
(t, x*(@)) = (t, x(t, =f, x¢)) meets hypersurfaces from (1), z5=1, m;
is the index of the hypersurface which is met by the integral curve
(t,x*(¢)) at the moment ¥, my=0 and f=a, (x*(c})).

As before we denote x!=x*(c}), x!"=x!+1I, (x}), i=1,2,...

Definition 1. We say that the solution x(¢, 7o, x,) of the problem
(2)-(5) depends continuously on the initial conditions for 7,<t <7,
if for every two positive numbers ¢ and » there exists a number
0=0(, ) >0 such that if |lx;—x§||<C0 then ||x (¢, 7o, x0) —x (¢, Tg, x5) ||<l6
for 7,<t<T and |t—7z,|>p i=1,2,...

In the present paper sufficient conditions are obtained under which

the solution x (¢, 7, x;) depends continuously on the initial conditions.

§2. Auxiliary Results

In the general case it is possible the integral curve to meet
infinitely many times one and the same hypersurface from (1). This
effect is called “beating”. If beating appears it is possible the sequence
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of impulse moments to have a condensation point, i.e. the solution
of the problem (2)-(5) to be not continuable for every ¢t>>7,. Therefore
it is necessary to require additional restrictive assumptions which
eliminate the effect of beating.

We say that the conditions (A) are fulfilled if the following con-
ditions hold for :=1,2,...

Al, The functions f% a=R are continuous in S and Lipschitz
continuous with respect to x in D uniformly in t>>7, with respective
constants K;, which do not depend on a.

A2. The following inequalities hold:|| (¢, x) ||I<M,; for (¢, x) €S,
a R, where the constants M; are positive and do not depend on «.

A3. The integral curve (¢, x(¢)) of the problem (2)-(5) does
not leave the set I XD, where

[7e, +c0), if the meetings of (¢, x(¢)) with the hypersurfaces
I= are a finite number r,

[0, @), otherwise, a=lim ;.

A4. The functions ¢; are Lipschitz continuous with respect to x
in D with respective constants

L<min(1/M;_,, 1/M;}), M,=M,.
A5. The following inequalities hold
ti(x+1,(x)) <t;(x), x€D.
A6. For x&D the following inequalities hold
To=to (%) <ty (x) <tp(x) <... (©)

Theorem 1. Suppose that the conditions (A) hold. Then the integral
curve (t,x(t)) meets each of the hypersurfaces at most once.

Progf. From the conditions Al and A3 existence and uniqueness
of the solution of the problem (2)-(5) follows for t&1.

If the integral curve (f,x(¢#)) does not meet any hypersurface
from (1) for t&1, then the theorem is proved. Suppose that there is
at least one meeting between (¢,x(¢)) and the hypersurfaces (1).

We shall show that s;#s,4, 1=1,2,... (s; is the index of the
hypersurface which is met by the integral curve (f,x(f)) at the
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moment 7;). Assume the opposite, 1. e. there exists an index £ such
that s,=s;4,. Since for 7,<t<rt,,, the solution of the problem (2)-
(5) coincides with the solution of the integral equation

t
s =5t +{ fi60x0)dr, )
®
then, according to the condition A2 for ¢t=7,,; we get from (7)
”xk+1“‘x:||SMsk(Tk+1“Tk)- (8)
Taking in consideration conditions A5 and A4 we find

Tk+1_fk=tsk+1(xk+1) —is, (x3) Stsk(xkﬂ) —tsk(x:)

1
M

SLskak+1—x;H<

o541 — x4ll,
k

which contradicts (8).

We show that s;<ls;;, 1=1,2,... Assume the opposite, i.e. there
exists an index £ such that s,>s,,;- Let ¢’ be an arbitrary point
satisfying the inequalities 7,<{t’<{r,,;. Consider the function ¢(¢) =
t—t,(x(t)) in the interval t'<¢<r,,;. From the condition A6 we get

(x(t441)) =0. 9
Using consequently the conditions A4 and A2 we find
p(e) =t/ —1, (x(+) =t/ =1y (1, (x(c)) —1, (x(z)) (10)

1
M
From the inequalities (9) and (10) and since the function ¢ is con-
tinuous for 7'<t<r,,, it follows that there exists a point 7”, 7,<t'<
"7,y such that ¢(z") =0, i.e. 'r"=t,k(x(r”)). Hence the integral
curve (¢4, x(t)) meets the hypersurface o, at the moment z“, which

©(Th11) =Th+1_tsh (x (th41) ) <Tp1— t’k+1

>tl—1,—

llx(z") = || 27" — 74— (v —7,) =0.

contradicts the method according to which the points z; are defined
(see point 5 of the definition of a system with variable structure
and with impulses).

Thus, Theorem 1 is proved.

We say that the condition (B) holds when the following condi-
tion is satisfied :

B. lim¢;(x) =400  uniformly in x&D.

{00
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Theorem 2. Suppose that the conditions (A) and (B) hold. Then the
solution of the problem (2)-(5) is defined for t>r,.

Proof. Since the solution of the problem considered is defined for
tel, then if the moments 7; are finite number the proof of the
theorem is trivial. Suppose that the integral curve meets infinitely
many hypersurfaces from (1). Then in order to prove the theorem it is
sufficient to show that lim r,= + oo, According to Theorem | we have

i—o0

§51<5,<..., l.e. lim s;= +oco, hence, using the condition (B) we get

1—>00

limr;=lim ¢, (x;) = +oo. (I

i—>c0 i—>c0

This proves the theorem.

Theorem 3. Suppose that the conditions (A) hold and
,x())eg, '=.

Then the integral curve (t,x(¢)) meets at least one hypersurface of
(1) meeting first the hypersurface o

Proof. Suppose that for t>r’ the integral curve (¢, x(¢)) does not

meet a hypersurface from (1). Then for {>>7’ the following inequality
holds

t<t:(x(2)). (12)
Really, if we suppose that there exists a point 7*>7’ such that
*>1,;(x(7*)), then for the function ¢(¢) =¢,(x(¢)) —¢ defined for >7’
it holds ¢(z*)<{0. Taking into account that the point (z’/, x(z")) €8,
we get ¢(r’)>0. This implies that there exists a point t&[7’/, 7¥]
such that ¢(r) =0. The latter means that the integral curve (¢, x(¢))
meets the hypersurface ¢; at the moment ¢, which contradicts the
supposition,
From (12) using the conditions A4 and A2 we obtain

1=t (x(0") <t:i(x(8)) —t:(x (")) <LiM;, (t—1"),
i. e. the inequalities hold

t< t(x(z)) —LM,; v’

[=LM,, =0 =const.

The last inequality contradicts the fact that (12) holds for ¢>7’
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(containing the case t>>6).
Suppose that the first hypersurface met by the integral curve
(¢, x()) for t>t’ is ¢, and the meeting realises at the moment 7, i. e.

L(x (") =7". (13)
Suppose that £<i—1. Consider the function ¢() =t,_;(x(t)) —t
defined in the interval z’<¢<t". Since (z/,x(z’)) €£; then

o (") <0. (14)
From (13) and the condition A6 we obtain
p(t") =t (x(z")) —t"=t, 1 (x(z")) — £, (x (")) >0. (13)
From the inequalities (14) and (15) and since the function ¢ is con-
tinuous for 7’'<t<7" it follows that there exists a point 7°, /<{t'<t”
such that ¢(z") =0 which contradicts the fact that the first hypersurface
met by the integral curve (¢, x(¢)) for t>7’ is a,.
Assume that £>i. Consider the function ¢(¢) =¢;(x(¢)) —t defined
in the interval 7'<¢<7". Analogously to (l14) and (15) we find

e(t) >0, ¢(z") <0 from where we again come to a contradiction.
Suppose that k=i—1. Then from the condition A2 we get

[lx (z") —x () ||[<M;_, (" —7"). (16)
From the condition A4 and from t">t,_;(x(z")) the following in-
equality holds

1

o=t <t (x (7)) =ty (x () <M~_1

(7” - T') 9

which contradicts (16).
This proves Theorem 3.

Corollary 1. If the conditions (A) hold then s,=1.

§ 3. Main Results

We say that the conditions (C) are fulfilled if for i=1,2,... the
following conditions are satisfied :

Cl. The functions I; are continuous in D.
C2. The inequalities ¢,(xf) #7,, £=1,2,... hold.
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C3. The functions «; are continuous in D.

C4. The functions f* depend continuously from the parameter a
in §, i. e. for every positive number ¢ there exists a number d;=0d,(e) >0
such that if |a—p|<{d then ||f#(¢, x) —f4(¢, x)||<le uniformly in §.

Theorem 4. Suppose that the conditions (A) and (C) and the inequal-
ilies T, <T<t, are satisfied.

Then for every two positive numbers € and 7 there exists a positive
number 6=0(e, ) >0 such that if ||xo—x&||<0 then

a) |lx(®) —x* @) [|<re, 7o<t<T, |t—7,|>7;
b) la—p|<e,

where v is a positive constant and a=a,(x;), B=a,(xf).

Progf. Let the inequality 7;<z{ hold. We assume first that the
inequalities zF<T<{z; hold (we prove later on that if the point x§
is sufficiently close to x, then these inequalities are fulfilled). Let e
and % are arbitrary positive constants, For 7,<¢<r; the functions x
and x* satisfy the following equations respectively

t
%0

x() =x0+S a(c, x(0))de,  x*(1) =xg<+S' Fh(e, % (2) ) de.
to
Substracting the sides for t&[r, ;] we get the estimate
[ () =% (8) nsnxo—x:t|+§;|1f3<r, x(@)) —f3(z, 2 () |lde
13 24 @) A e, 22 @) .
From the last inequality, taking into account the condition Al we get
@~ ONSlro— 811+ | Kl () —#(0) e an

+ (ri—70) sup [[f§(z, x*(0)) —f3(z, x* () ||.

rOSrs-zl

From the condition C4 it follows that there exists a number §,=4,(¢) >0
such that for |a—pf]<(d, the following inequality holds

sup || f3(z, #*(7)) —fE(z, x*(0)) [|<le. (18)

rOSZSrl

Since a=ay(x;) and B=a,(x) and taking advantage of the condition
C3 we come to the conclusion that there exists a number ,=4,(5,) >0
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such that if ||x,—x#||<0, then |a—pf|<Cd,. Let 0;=min(e, 6,). Then, if
|lxo—x5]|<<d; then (18) holds and the following inequality holds as
well

Hoeo— x5 || <le. (19)
From (17), (18) and (19) we get

Il (8) — % (2) || <e+ <rl—ro>s+S' Klx(@) —x*(@) |ldr,  7o<t<ry.
%0

Using the Bellman-Gronwall inequality we find the estimate
llx (&) —x* () || <e(1 +7,—70) exp (Ko(T1—70) ) (20)
L<e(1+Dexp(KT) =re, 7o<t<7y
According to Corollary 1 s;=m;=1. Hence
4
la—tf | S|n—t&* @) |+ [6H6* () —f |
= [t1(x)) =6 (x* (7)) [+ [81(x* (7)) —ta(x]) .
From the last inequality, the conditions A2 and A4 and from the
inequality (20) for ¢=7, we obtain
Iy =78 | SLyllx (7)) —2* (2 [+ Lallx* (z) —x* (z1) |
_<_L1T15+L1MDITI Tl Is

which yields the following estimate

Ly
et | < re @D
From the inequalities (20) and (21) we obtain the estimate
ey — 2 [| <oy — 2 (2 ||+ ||2* (7)) —2* (71 || (22)
k| — Tl
<re+M|n—f| = l—LlMo

Using the inequality (22) we get

[ —af ¥ S|y — 28 |+ |1 (e0) — L () ] (23)
S q=Far s+ L) —LED .

According to the condition Cl there exists a number J,>0 such
that if ||x;—x;]|<<d, then
[y (xy) — I () [|<le (24)
From the inequality (22) it is seen that there exists a number
05=05(8,) >0 such that if ||xo—xg||<ds then ||x;—x;||<ld, which yields
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(24). Then from (23) and (24) we get the estimate
1+TI-L1MOE.

+__ ket
”xl xl ” S l '—‘LIM() (25)
From the inequalities (21) and (25) we conclude that
[l (z3) — a8 || <l (7F) — 2|+ — 23] (26)

LM 14+79— LM
< Vi n—taMo . o
SToLM T T I-LM, TF

The functions x, x* satisfy the equations in the interval 7}<t<T':

x@=x) +{ 2@, @ =+ { A @)a, @)
b 1
which imply
Il == O NIl e) =711+ {1736 20 ~fi e, 2% s
1

t
+{ s @) = A @) e,
B
Using the estimate (26) and the condition Al we find
t
@ =@l <re+ | Kk @ = @ llde (28)
1

+(T—7) Sup IS5 (z, x* () —f1(x, * (@) ], oi<e<T.
7 <z<T
According to the condition C4 there exists a number 08;=dg(e) >0
such that for |a—p|<d;,

sup. 3z, x*(0) —fi(z, x* (1)) [|<e. (29)
7 <

If the number [|x,—x§|| is sufficiently small then from (22) it follows
that the number ||x;—x{|| can become smaller than an arbitrarily
fixed positive constant. Taking into account that in the equalities
(27) a=a;(x;) and B=a,(x{) then from C3 it follows that there exists
a number 06;,=0,(0;)>0 such that if ||xo—x¢||<d; then |a—pB]<d..
The last conclusion implies (29). From (28), (29) and the Gronwall-
Bellman inequality we obtain the estimate

[lx () —x* () || <e(rp+ T —1f) exp (K (T —1f)) (30)
Ze(r,+T)exp(KiT) =re, 7<t<T.

From the inequalities (20) and (30) it follows that if the number
[lxo—x¢'||<<0s=min (3}, 0y, . . ., J7) then
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e (@) —x* D) ||<re, w0<t<ry, of<t<T, y=max(n, 7). (3l)

Taking into account the inequality (19) we come to the conclusion
that there exists a number J,>0 such that if [[xo—x{||<d, then
|7y—7f |<<». The last inequality and (31) imply

@ —2*@|I<re, 7<t<T, [t—7|>7.

Finally we show that the assumption in the begining of the proof
that <7<t} is not essential. Really, from the inequality (21) and
since 7,<<T<t, if the number |[x,—x¢|| is sufficiently small the in-
equality holds 7y —0,<<T —7y, i.e. 77T (We note that in the proof
of (21) the assumtion from the begining of the proof is not used).
Taking into account that the set A=R"“\Q$2 is closed and the set

B={(t,x); x=x(t), t§<<t<T} is closed and bounded and ANB=¢
we conclude that p(4, B) =0,,>0.
Assume that zF<{T. Then analogously to (30) we get the estimate

[l (8) —x*(8) [| <e(rpt+75 —1f) exp (K (v5 — 7))
<re, of<t<r.
The last inequality implies that if the number ¢ is sufficiently small
then ||x(z§) —x*(z5)||<0,, which yields that the point (z3, xJ) eQ,.
Hence the integral curve (¢, x*(¢)) does not meet a hypersurface from
(1) at the moment zF. The last conclusion contradicts the manner
on which the points ¢} are defined. Hence the inequality 3 >7 holds.
Let 7,>7¢. We show that if the point x¢ is sufficiently close to
the point x, then the integral curve (¢, x*(¢)) does not meet a hypersur-
face from (1) for t#<{t<{r;. Clearly, since the point (7, i) does not
belong to the closed set 4 then
p((7y, 1), A) =&>0.
Analogously to (21) and (25) we obtain the estimates
LM,

Ly ekt 1+71
< 1M ) Hxl X1 ”< LMO &

Assume that for 7y<t<{z, the integral curve (f,x*(¢)) meets a hy-
persurface from (1), i.e. it holds 7§<(zr;,. Then taking into account
that the function x* for 7<{t<r; satisfies the second of the equa-
tions (27) we find the estimate

ML
|25 — x| <My (27 — 1) <M (7 — 1) <L 171

T—LM, ©
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We estimate the distance between the points (7}, x{) and (zf, x5),

p((ty, %), (5, %5)) < (my—7f) +laf — a8 Ff| + [l T — x5 ]|
<L171+ 1 +71— LMo+ MLy, e
1—-L,M, )

From the last inequality it follows that if the point ¢ is sufficiently
small which means that the point x§ is close to the point x, then the
following inequality holds

p((ty, %), (75, %5)) <e .
The last inequality means that the point (7, %) €8, i.e. it does
not belong to a hypersurface from (1). This contradicts the manner
according to which the moments v} are defined. Hence the integral
curve (t,x*(¢)) does not meet a hypersurface from (1) for <t <r,.

The further considerations are analogous to the case 7,<tf.
Thus, Theorem 4 is proved.

From Theorem 4 we obtain the following corollary :

Corollary 2. Let the conditions (A) and (C) hold and there exist a
number K such that v,_<t;<<t,<t,;<tps1

Then for every two positive numbers e, 1) there exists a point 6=0(e, n) >0
such that if |lx(ty) —x*(t)[|<<d and |a, (x) —a, (xF) <0 then:

a) llx(®) =x*OI<re, 0<t<t; [t—74|>7;
b) Iask+1(xk+1) —ask+1(x:+1) | <le;
¢) The integral curve (t,x*(8)) for t,<t<t, meets the hypersurface o,

only where y is a positive constant.

Our principal result of the work follows:

Theorem 5. Suppose that the conditions (A), (B) and (C) hold. Then
the solution of the problem (2)-(5) depends continuously on the initial
condition for ,<t<T.

Proof. According to the equality (I1) limz;=-+oc0 from which
follows that for 7,<¢<7T the integral curve l(t,x(t)) meets a finite
number of hypersurfaces of (1) i.e. 7,<{7;<...<7,<T<7;4;. Intro-
duce the notation ¢;= (r;+7,4,)/2, i=1,2,..., p—1, ty=74, t,=T. Let
e and 7 are arbitrary positive numbers.

According to Corollary 2 there exists a number 6,>>0 such that
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if [|lxo—=xg|[<0; then: 1) the integral curve (¢, x*()) for ¢,<t<t,
meets the hypersurface ¢, only and once only; 2) the inequality holds
[l (&) —x* () ||<e for t,<t<t, |t—7;|>7n; 3) the inequalities hold
|l (t) —x*(¢)]|<0, and |a;(x;) —a;(xf) |<0, where the constant 4,
will be specified further on. According to Corollary 2 there exists a
number J,>>0 such that if ||x () —x*(¢,)||<0, and |a;(x;) —a;(x}) | <0,
then:1) the integral curve (¢, x*(¢)) for t,<t<t, meets the hypersur-
face o, only (that one which is met by (¢,x(¢)) at the moment 7,
as well) and once only; 2) The inequality holds ||x(¢) —x*(¢)]||<le for
4 <t<t, |t—1,/>n; 3) the inequalities hold |[|x(¢,) —x*(t,)[|<<d; and
|a52(x2) —aSZ(x;‘) | <0 where d; will be specified further on etc.

We set 0,,;=¢ and determine the numbers 9, 0,_,, .. ., 0; sequentially
so that the above conditions to be satisfied. Let d=min (0,0, ...,05).
Then if ||xo—=x¢||<0 then the inequality holds |[|x(¢) —x*(¢)[|<e for
7,<t<T and |t—7;| >7.

Theorem 5 is proved.
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