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with Support on a Curve

By

M. G. M. VAN DOORN* and A. R. P0 VAN DEN ESSEN*

§ Oo Introduction

081. In [9] (see also [2], [4]) Kashlwara proves the following

Theorem,, Let X be a complex analytic manifold and Y a closed

submanifold. Let i:Yc—>X be the inclusion. Then the direct image functor

i+ establishes an equivalence between the category of &^-modules and the

category of &> x~
m°dules with support contained in Y0

What happens in case Y is no longer smooth, but only a closed
subvariety? Following [8], [5], [12], [11] one defines the ring 2 (Y)
of differential operators on YB In case Y is non singular this definition
coincides with the usual one, i.e. the subalgebra of Endc(0y) generated
by 0Y and Derc ( 0y).

Bloom [5], [6], Vigue [12], Bernstein a. o. [1], and recently Smith
and Stafford [11] in the algebraic case, investigated these kind of rings
and showed that in general they fail to have some nice properties
such as being left or right noetherian0 However, as already Bloom
and Vigue noticed, in case Y is a curve the situation is more pleasant.
Investigations have culminated in a nice THEOREM of Smith and
Stafford ([11], Th. B.). Let X be an affine curve and n:X-*X the
normalization. Assume TT is injective0 Then 2 (X) is Morita equivalent
to 2 (X) 0 It goes without saying that X is non-singular, hence & (X)
is well known. (See e.g. [3]). Using this we are able to modify
Kashiwara's theorem as follows,,
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Theorem. Let (X, 0) be an irreducible germ of a curve in (C7n, 0) .

Then the category of @ x ^-modules is equivalent to the category of 3fn^-

modules with support contained in X.

Oo 2. In this paper we take a ringtheoretic point of view. 0 n is

the formal (resp. convergent) power series ring in n indeterminates

over k, an algebraically closed field of characteristic zero (respBC7)0

pC On is a prime ideal of height n-l. Our aim is to prove that the

category of Sn-modules with support F(p) is equivalent to the category
of @ ( f l j -p) -modules and thus to the category of ^-modules.

In §1 we collect some facts concerning differential operators over

a commutative ^-algebra. In §2 we introduce the functors which

are going to establish the required equivalence. We derive a

necessary and sufficient condition for the equivalence to hold. In

§3 we investigate "distribution" modules, i. e. @ ( 0B/p) -modules with

support at the origin. We exhibit the equivalence for these modules.
In §4 we use Kashiwara's theorem for the regular case and the result
of §3 to obtain that the afore mentioned condition in §2 is fulfilled.

§5 contains an application. We show that for irreducible /e 02= &

the left S-module Of/ 0 is simple. (Cf [13], [15]).
We like to thank Prof. S. P. Smith for the many valuable dis-

cussions during his short stay in Nijmegen. Much of the formalism

and facts of differential operators as in §1 we learned from him.

We also like to thank Prof. A8 H. M. Levelt for encouraging us to

work on this subject.

§ 1. Generalities on Differential Operators

1. 1. Let A be a commutative A: -algebra. Throughout this paper
k will denote an algebraically closed field of characteristic zero. Let

M and N be .4-Modules. One defines @n
A(M, N), the space of k-

linear differential operators from M to N of order <n, inductively

by 3^(M,N)~Q and for n>0

)\[0,a]^@n
A-l(M,N) for all a^A] .

Put SA(M9N)~ ®n
A(M,N).

n=0

) is a A-subalgebra of End*(M)B



Sn-MODULES WITH SUPPORT ON A CURVE 939

&A(M,N) is a 3f A(N) — £i A(M} bimodule. The module action is

given by composition of maps. We refer the reader to the paper
of Smith and Stafford [11], §1, where a nice survey of results on

differential operators is given. The reader may also consult [8] or

[10].

1. 20 We would like to add the following observation :

Let M be an A-module of finite presentation.

Then ®A(M, TV) = Hom^(M, 2 A(A, TV)) as A-module s,

where the A-module structure on @ A(A9 TV) is the one coming

from the right @ A(A) -structure.

The short proof runs as follows :

0J(Af, TV) = HomA(P*A®M, TV) =

where Hom^Pj, TV) is formed by viewing P\ as an ^4-module through

the left action of A. (See note below.) HomA(P^?TV) is considered

as an ^4-module through the right action of A on PA. As M is
finitely presented we may apply [7], §1, Prop. 8a and conclude

lim @n
A(M,N)=HomA(M,lim HomA(P;|, TV)).

n n

Note. Let A®A— ?->A be the multiplication map a®b\ - >ab. Set

JA = Ker 11, Pn
A = A(^)A/Jn

A
+l. P\ has two structures of an ^-module.

Namely multiplication on the left, giving the "left" structure and

multiplication on the right, giving the "right" structure,, (See e0 g0

[8]). Observe that in case the P\ are projective ^-modules of finite
type, then @ A(A, TV) =TV(x)SAG4) and ® A(A) is a flat .4-module.,

A

This occurs for example if A is a regular /t-algebra of finite type

or when A = (9 „.

!„ 30 Due to the absence of an appropriate reference we mention

the following : (See also [11], end of §4)

Let Id A be an ideal, then (by induction on the order of an oper-

ator)

®A(A, A/I) cC{0eHom4U, A/I} |0(/») =0} .
n=l
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Hence 3 A(A, A/I) Slim HomA(A/I», 3A(A9A/f))

In particular, if mdA is a maximal ideal such that k = A/m, then
as one easily verifies by induction on n :

3A(A9 k) s{0eHom 4 C4, *) |0(mn) = 0}
»=i

= lim Homk(A/m", k) .
n

Hence in case A is a noetherian, local A; -algebra with maximal ideal
m such that A/m = k, then, according to [7], exercise 32 of §1,
3A(A9 k) is a dualizing module for A. So in particular 3A(A9k) is
the injective hull of the ^4-module k. (This fact was kindly pointed
out to us by S. P. Smith) .

Note that we are considering 3A(A9A/I) as an ^4-module through
it's right 3 (A) -structure.

1. 4. To finish this section we fix the setting for the rest of the
paper. Let n^N, n^pO. 0:=ffn+l denotes the formal (resp. conver-
gent) power series ring in the indeterminates x9 xi9 . . . ,#» over k (resp.
C) . 0 1 denotes the formal (resp. convergent) power series ring in
the indeterminate t over k (resp. C) . (9 0 denotes the formal (resp.
convergent) power series ring in the indeterminate x over k (resp. C) .

m~(x, Xi, . . ., xn} denotes the maximal ideal in 0. Let £c 0 be a
prime ideal of height n such that #€£. -4:— 0/P is a local ring of
dimension 1 with maximal ideal m = m/p. The normalization of 4,
i. e. the integral closure of A in its field of fractions, is 0 1.

In the sequel we will identify 0 /m = k = A/m, k=0i/t0i. We
fix once and for all some canonical maps

n . 0 - »^ r . ̂  - ^^ f . ̂  - ^f,

With T7C = T.

We have

where I ($3) =the idealizer of pS in
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See [11], 1.6 or [5], [10], [12]. The identification arises as follows.
If De0 such that J9(t>)cp, then nD(V) = 0. Hence it induces a
A-linear map D:A-*A such that nD=D7rtt In fact Z5e^C4). Note
that 1.2 implies that, at least as left & (A) -modules, 3 (A) = & G

1.5. Morita equivalence,, One has the @ (A) — @i bimodule P:=
®A(@I,A), which is isomorphic to a right ideal in 2lm Hence P is
projective and a generator, because gl. dim ^1=l. The rings 2 (A)
and &i are Morita equivalent if the natural map P(>?) 0 j-^4, />®/

i
»-»/>(/) is surjective. (See [11], p rop 0 3 0 3) 0

As P is a left Of 04) -module we only need verify that 1 is in the
imagCo That is the case ; arguing as in [11] we get Ann^( 0^/A) D

tNffl9 for some N^N. Put p= Il(td-j) then />(*'') =0, all je {1, . . .,

N-l], p(tN) = (N-l) I tN a n d 7 1 ( l ) = ( - l ) ( - 2 ) o o e o (-JV+1), thus

So S04) and ^: are Morita equivalent. The functor N*-»N (X)
S>(A)

P from Mod-^(^4), the category of right &> (A) -modules, to Mod
-^i, the category of right Sj-modules, is an equivalence of catego-
ries. The inverse functor is M i->Hom^ (P, M) . Similarly JVH->Hom^M)

(P,N)=P* (X) A^ gives an equivalence between S(^4)-Mod, the
@(A)

category of left 2 (A) -modules and ^j-Mod, the category of left
^r-modules. One has P*:=Hom^M)(P, 2 (A)) = 3 A(A, 0 J . The
reader is referred to [11], §2, 3 for the details,,

Remark, Let (X, 0) C (C7"? 0) be a germ of a curve0 Let wiX— >
-Y be the normalization According to [11], Tha 30 13 : If # ^(0) =1,
then ^jfijr-i(0) is Morita equivalent to ® XfQa Now # Tr'^O) ^number
of the irreducible components of the germ (X, 0) . Hence in case (X9

0) is an irreducible germ of a curve, @X.Q ̂ s Morita equivalent to
Sc> (See also [12], II).

§28 The Theorem

2a 1, As we mentioned in the introduction we want to compare
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^-modules with support on F(p) and 2 {A) -modules. Let Modp-S
denote the category of right ^-modules M such that, considered as
0 -module supp(Af) cF(p). It is a full abelian subcategory of Mod-
S, which is closed under extensions. In case A is regular, i. e. V
(p) is non-singular, the ^4-module A®@ can be given the structure

o
of a left 3 (A) -module. (See e. g. [2], [3]). This enables one to
define inverse images of S-modules. Now A®@ = S> Q( 0, A) and it

o
is not difficult to show that the above mentioned left & (A) -module
structure on ^4(x)^, in case A is regular, coincides with the usual left

0
3 (A) -module structure on 30(09A). This motivates the following

Definition. Bi=&ff(09A).

B is a 3 (A) -3 bimodule and as we already saw, supp0(£) cF(p),
where B is considered as an 0 -module via the action of @. More-
over the natural inclusion

lim Hom0( 0 /p", N (x) E) « - *N (g) B
- > 9 (A)

is an isomorphism for all
So N (X) B is a right S-module with supp(7V (g) B) cF(J>).

^U)

This justifies the following

Definition. i+ : Mod-^ (A) ->Modr 3, N^N (g) B0

, M).

We make the following observations :
- i+ is a left adjoint of i+.

- i+ is left exact ; z+ is right exact.
- If MeMod,-^, M^O, then i+(M)=^0, because i+M=Hom0( 0 /\>,

M).

2. 2 Theorem,, z+ defines an equivalence between the category of right
@ (A) -modules and the category of right 3 -modules with support on V

(W.

In the remainder of the paper we shall be mainly concerned with
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the proof of this theorem. In fact the theorem follows directly from

proposition 2 and the corollary to proposition 5. As a first step we

have

Proposition 1. i+ is an exact, faithful functor a

Proof. We want to prove that i+ is an exact functor. Or what

amounts to the same B is a flat 2 (A) -module. Now as we already

saw jB^lim BM where Bn'.—Hom(9( 0/pn
? B) . By induction on n we

show that each Bn is a projective left 2 (A) -module. This certainly

implies the flatness of B.

B1 = Hom0(0/^ B)=Hom&(@/$@, ®/$2) =2 (A), hence projec-

tive. For each n^N we have an exact sequence of 0 -modules

pn/J)n+le - , ff /pn+1 - ^ Q /^

which gives rise to an exact sequence of left 2 (A) -modules

Now t)n/pB+1 is a (9 /^-module of finite type. Hence we have a sur-

jection

and an injection

Horn, (p»/p"« B)' - »0 Hom^C (P /fc 5) =

So Bn+l/Bn may be identified with a submodule of 0 S (^4) . Because
1=1

& (A} is Morita equivalent to ^l5 gl. dim 2 (A) = 1. This implies

that every submodule of a projective 2 (A) -module is itself projective.

So Bn+l/Bn is a projective left 2 (A) -module and we have a split

exact sequence

Bn< - >5rt+1 - »>Bn+l/Bntt

By induction on n, Bn+l is a projective left 2 (A) -module. We can

say even more, namely B^B1©B2/510B3/J320. . . . So B,= ^ (A) is

a direct sum factor of 5 and this implies N (X) 5 = 0 iff TV^O, Hence

z+ is faithful.
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Our aim is to show that i+ defines an equivalence of categories.
Now Modp-^ is closed under extensions in Mod-^5 hence we should
have

, i+tf) SExt^ (A)(#U), N) =0, all

We claim that this is also sufficient. Let us first mention the exis-
tence of natural transformations 5 7 : ! — n+i+, e:i+i+— >1? arising from
the adjointness of i+ and i+

a

Proposition 2. Assume Ext^CB, i+N) = 03 for all N^Mod-^(A).
Then i+ is an equivalence of categories,

Proof. Let TV be aright 3f (A) -module. Because gl. dim
N has a projective resolution of length 1

PI€ - »P0 - »Na

Applying i+i+ we get a commutative diagram with exact rows

J =0

Now ^(Pi) and ^(P0) are isomorphisms, [7], §6, Prop. 7. Hence
y ( N ) is an isomorphism. Hence rj is an equivalence. Furthermore we
have for any M^Mod-0 a composition of maps

Since 7](i+M) is bijective, i+s(M) is bijective. Hence f+(Kers(M)) =0,
implying Kers(M)=0 because Kere(Af) is a submodule of i+i+M,
hence Ker e(M)

Consider

i+i+M<»M - »Goker

Applying i+ yields an exact sequence

i+i+i+M^»i+M - >i+Coker s(M) - >Exri*(5, i+i+M) =0.

Hence i+Coker e(M) =0, because z+e(Af) is surjective. Now if Me

r^, then Coker e(Af) eModp-S and so it follows then Coker
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This proves that e(Af) Is an isomorphism for ail MeModj,-^0

20 39 So we see that a necessary and sufficient condition for i+ to
be an equivalence is the vanishing of the Ext^(fi, i+N)0 Later we
will see that it suffices to show Ext^ (B9 B) = 0 for all &e {1, „ „ „, TZ} „
Even &e{!52} sufficesa

§3, The Module ^(A,*)

3. 1. Before we proceed, we focus our attention on a 2 (A) -module
with support {m}, namely @A(A,k)0

We already mentioned in the introduction (1.2) that, for A-
Modules of finite presentation, one has an isomorphism of ^-modules
®A(M, N) = HomA(M, @ A(

It follows immediately that

This means that we have a bijective map

which is ^4-linear8 It is straightforward to check that for all
^0((9,k)) is the ^-linear map

Hence 0 is a right @ (A) -linear isomorphism,,

3o20 Let Ic.0 be an ideal containing p and /=//p the corre-
sponding ideal in ^4. Then

(A) ) =

Applied to 7 = m this gives

The faithfulness of i+ and the fact that ^o(O^k) is a simple right

S-module imply then that also &(A)/T&@(A) is a simple right
-module. Hence the natural map

is injective. The surjectivity is established by the following



946 M.G.M.VAN DOORN AND A. R. P. VAN DEN ESSEN

Lemma 1. @A(A,k) is a simple right 3 (A) -module,

Proof. Consider the canonical map

Clearly this map is non zero and hence injective because a1/ta1

is a simple right ^-module. It remains to show the surjectivity.

According to 1.5 P®P* = a(A).
i

Hence 1 = £] />a<?a (for some finite set /), with pa^P=@A(@l,A),

qa(=P* = S>A(A,&1), for all ore/.

Now let e^2>A(A,K). Then Op^g^G^k), for all «e/, and

Corollary. i+i+(^A(4, A)) S0A(4, *).

3.3. Remark. In case of a right ideal Id a (A), 1= (A^ . . . ,

(^4) one finds a right ideal / C a such that

One may argue as follows. Choose a finite presentation of a(A)/I9

i. e. an exact sequence

a (A) m-^-*@ (A) — »a (A) //.
Apply i+ and recall that ^=^/p^;the map «+(«) lifts to a map

a: Q)m->& to give a commutative diagram with exact rows

a/Ima

and
Furthermore Im &= (Dl9 . . ,9 DJ a with icD — Ap, alii. So
and D{ induces A^^(A). One concludes

where /=
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§4, The Modules Ext'i(A,JS)

4.1. Let us now attack the problem of proving Ext^(5? i+N) =0
for all right 2 (A) -modules N.

As noted before such a module TV has a projective resolution of
length 1

/V_>P,—»tf.

Applying i+i+ one finds a commutative diagram with exact rows

i+i+pl8 - n+i+P0-?-»i+i+N
t t t(1) UCPX) UCPO) Uwo

PI€ - > P0 - >, tf

and long exact sequences

(2) Ex4 (B, i+P0) - >Ex& (B, i+N)

For a projective right 2 (A) -module P the obvious map

P (x) Ext^(55 B) - >Ext^(5, P (x) 5)
3 (A) 3>(A)

is an isomorphism. ([7], §63 Prop. 7).
It follows that i](N) is injective, establishing again that i+ is

faithful. Furthermore

(3) Goker ?(#) =Coker a =
, J5)

Observe that Ext^(5,jB), k^ {1, . . . , ra}3 has a left and aright 3(A)-
module structure. Because we are only interested in the left one,
we prefer to write Extfc(-4, B) instead of Ext^(555)0 [Note that
Ext&U,fi)=ExrifcCB,-B) ;this uses A®@ = ®0( 0, A) =B and the fact

o

that 3 is a flat 0 -module. [7], §6, Prop. 8. ]
For notational convenience we introduce the left 2 (^4) -modules

The previous observations (2) and (3) can be reformulated as:

Coker
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(4) Po ® Ck - »Ext|»(£9 i+N) - >Pi 0 Ck+l - »P0 ® Ck+l

3> '(A) ®(A) 0U)

are exact sequences.

4. 2, Our aim is to prove Ck = Q for all k^ {19 . . . , n] and thereby

establishing Ext^(£, i+N) =0 for all Ae {19 . . . , n] . The first result to

this end is the following proposition, whose proof is postponed till

the end of this section. We are still considering Ck = Ext%(A, B) as a

left & (A) -module. In particular Ck inherits the structure of an A-

module. We discard the other ^-module structure. Note that in

forming ExtJC4, 5)> B is viewed as an 0 -module through it9s right
^-module structure.

Proposition 3. suppA(C") c {ml , all /e {1, . . . ,«} .

The proposition emphasizes that the left 2 (A) -modules Cl are

supported on the singular point {fit} .

Before we proceed we need a technical

Lemma 20 Let p<=P* = @A(A, 0J, m^N, tm<=@(A). There exist

9 N^N such that tNp = qtm,

Proof, By induction on the order of p.

- p<=@*A(A, (P1)=HomAU, 00. Take q=p, N=m.

- p^3'F(A9 00. Then ip,tm1^®d
A(A, 00-

Hence there exist geP*, N^N such that tN[p,tnf]=qtm. It
follows tNptm-tN+mp = qtm, and thus tN+mp= (tNp-q)tm,

Proposition 4. Let /e {1, . . . , n} . Assume Torf M)(^A (-4, *),<?') =0.

Then C' = 0.

Proof, Let / e { l 9 . . 0 , ? z } and put C = Cl. Assume to the contrary

that C^O. It implies P* (X) C4=00 Hence there exist ^<EP*9 c<=C,
r 9 (A)

such that p(g)c3=0. According to proposition 3 some power M of m

annihilates c. Choose m^N big enough such that tm^mMc:@(A)0

(This is possible because AnnA( (Si/ A) 4=0) 0 By lemma 2 we can find

2<EP*9 N^N such that tNp = qtm,



0H-MODULES WITH SUPPORT ON A CURVE 949

It follows that tN(p®c}=qtm®c = q®tmc = ®.
We arrive at the conclusion that P* (x) C contains a non-zero

9 (A)
element which is annihilated by t. A contradiction9 because

Ker(f . ,P* ® C)=Tor1(^1/^1,P* (x) C) =Torf ™(9A(A9 A), C)
SU) 0U)

which by assumption vanishes8

So we are reduced to prove that all these To^ 5s vanish. This
is the content of

Proposition 5e For all Ze {1, . . . , n] Torf ™(&A(A, t), CO =0.

Proof* By induction on /„

,*), C1)=Coker

by the corollary at the end of §3.
Assume the proposition has been proven for 1, . . . , /.
By the previous proposition Cl = 0. Applying the long exact sequ-

ence (4) with k = l we get

Torf ™(9A(A, A), Ci+1) =Extl®(B, i+@A(A, k))

because @0(@,k) is an injective ^-module. (See 1.3).

Corollarjo Ext^(55 i+N) =0, a// Ze {1, . . . ,«} , a// We Mod-

4e 3a Proof of proposition 3D Let /e {1, „ .., n}. We have to show
that suppA(CO C {m}. Now A is a local ring with only two prime
ideals, (0) and ms We need only show that (0) £supp(Cz). Now

Furthermore

0 & *
so it is a right 2 ($„) -module and we are done if we can show
that

In fact we will prove that for any right 0,= ^[3, 3b . . . , 3B]-module
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M with supp(M)cF(p0p)

Ext^(0,/p0wAf)=0, all Ze {!,..., n}.

By a suitable change of coordinates we can manoeuvre ourselves into
the following situation (Normalization theorem. See [3], Ch. 3, 30 22) :

(i) #€P (this we already assumed from start).
(ii) p contains an element fi such that /xe 00[#i] is an irreduc-

ible Weierstrass polynomial in xim

(ui) Let A^L @Q be the discriminant of flm p contains elements
/ 2 5 - - " ? / n ? such that for any ie {2, . . . , «} fi = Axi — Ti, for some T^e

0o[*i].
(iv) W4=(fl9...,fJ.
(v) Notice that zf £p ; hence %®,= (/l5 . . . , /„ ) and (/l5 . . . , /„)

is a regular sequence in p 0 „.
(vi) 3,-(/f-) e ^-P^p, L e. 3,.(/,.) is a unit in 0, for all ie {1, . . . ,

,)=0, if i>j i , j e { l 5 e . 8 ? ^ } e

By induction on d one proves

Sublemma. Let M be a right 0»,[dl5 . . . , d ̂ -module with supp(Af) c

l9...,fj.
Then (/l5 . . . , /J is an M-coregular sequence.

[The reader is referred to [7], §9, No. 6 for the definition of
coregular sequence.]

Proof of sublemma. By induction on d (jfl5 . . . , f^~i) is an M-co-
regular sequence. We need to verify that right multiplication by fd is
surjective on M/:-Ker(/1)Mn. . . . . HKer (fd^ M. Put /:=/„ d:=dd.
The right ^p[^]-module M' has supp(M') cF(/)e

Let HzeAf . Some power N of / annihilates m, i. e. mfN = Q. Hence
0 - mfd = (mdf- mNd (/) ) fN~\

By induction on N we may assume that mdf—mNd(f)=mQf, for
some m0eAf7. Hence m= (md — m^ (Nd(f))~lf, because d(f) is a unit
in 09.

It follows that (/b . . . 3/n) is M-coregular for any right ^-module
M with supp(M)cF(p0p) .
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Hence for any such module

Ext^( 0,/p0w W) = #.-i((/i, . . . , /„), M) =0,

for all / e ( l , . . . , w } , according to [7], §9, No. 7.

Remark. No doubt the reader familiar with the theory of 3>-

modules will have recognized this proof as one for a special case of

Kashiwara's theorem. (See e.g. [4]).

4 48 Remark. Let Y be an affine non-singular variety over k, an
algebraically closed field of characteristic zero.

Let X * >Y be a closed sub variety of dim ^=1.
Assume that the normalization map TT : X - >X is injective,, Then

Mod^ — ̂ (Y), the category of right & (Y) -modules with support
contained in X, is equivalent to

Of course the "same" proof as above applies: Put B~&0(Y)(0 (Y),
0 (JQ) as in §2. Note that in case X is non-singular, B corresponds

to the sheaf & X-»Y.
Put i+i=— (X) £, z+:=Hom^(y)(jB, — ), a pair of adjoint functors.

#(*)

®(X) is Morita equivalent to 3 (X) ([9],Th. B), which achieves
that i+ is faithful and exact.

By Kashiwara's theorem (See [2], [4]) Ext^(7)(5, 5) =Exti(y)( 6?
(X),B)=iCl, to be viewed as a left ^ (X) -module, is, for Z=t=0, sup-
ported at the singular points of X.

Write ^4:=0 (JO,JT:=0 (X) . Let ^ eZ be a singular point, corre-
sponding to a maximal ideal m in A, As TT is injective, let m be the
unique maximal ideal of A, which is above m0 Identify k = A/m =
A/m. The ^(Z)-module @A(A, k} has support = {m} . As in lemma
1 one obtains 3 A(A, k} =Hom^M)(P, ®A(A, A ) ) , where P=®(X9X)
is the bimodule establishing the Morita equivalence. One derives

that 0-Coker i)(9A(A, A)) =Torf M)(^x(^ *), C1) =Torf U)(^^(4 A),
P* ® C1).

SU) _

Now /2:=^4lir is a regular local ring, whose maximal ideal m^- is
a principal ideal ; say tA- = mA^.

Then 0-Torf ™(® (R)/tS (R), P:®C\,), which means that C1.
^(C1)^ the stalk at x, has no ^-torsion. But then C1

n=0, because
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support (Cl
m) d {mAm} . By induction on l:Cl

n = Q.

4.5. Let f^Q2 be irreducible and let M be a right ^
with supp(M) cF(/), i. e. M/ = 0.

Then the corollary to proposition 5 implies that Ext^2(59 M) = 0.

Hence the right multiplication by / on M is surjective.

§50 An Application

The application we have in mind is to show the following prop-
osition. We will not dwell on its meaning but refer the reader to
[13] or [15].

Proposition 6. Let /e 02— 0 be irreducible. Then Of/ 0 is a simple
left 2 -module.

Proof. There exists a ^-linear involution on ^, transposition of
differential operators, determined by (i) a* = a, all a^ 0 ; (ii) 9-= —
919 all i; (iii) (PQ, ) ' = Q,'P', all P, Q,e0. Clearly this involution turns
every left ^-module M into a right one, denoted by M\ and vice
versa.

This involution induces a ^-algebra anti-isomorphism

Furthermore, there exists a ^-algebra isomorphism

induced by the map: for all £><E/(/S), D^>D\ where D'
is the unique element such that Df=fD'.

Composing both maps gives a ^-linear involution on @ (A) , which
turns A into a right 2 (A) -module, provisionally denoted by A*. It
is straightforward to check that

Because A is a simple left Sf (A) -module (as 3f (A) is Morita equiv-
alent to ^j), it follows that A* is a simple right @ (A) -module.
Hence (Of/0)* is a simple right ^-module, implying that Of/0
is a simple left ^-module.
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Remark, The above proposition is obtained independently by S0

P. Smith [14] by a quite different method.
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