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Abstract

The notion of symmetric states is extended in such a way as to include the description of
non-translation invariant mean field systems. A complete characterization of such states is
given by means of non-translation invariant product states.

§ 1. Introduction

A wellknown theorem [1, 2] characterizes the symmetric measures on
an infinite product of copies of a compact Hausdorff space JC, where a
measure is called symmetric if it is permutation invariant.

The theorem states that every symmetric measure can be written in a
unique way as a convex combination of (symmetric) product measures.
This theorem means that a symmetric measure, or equivalently all the
correlation functions corresponding to it, can be described with few param-
eters, namely a measure on the measures on JC. This situation generalizes
in an natural way to the non-commutative case : it has been shown by
St^rmer [3] and Hudson and Moody [4] that the same theorem holds for
symmetric states on an infinite tensor product of C*-algebras.

Symmetric states occur in statistical mechanics as equilibrium states
of permutation invariant mean field models on a lattice (e.g. the Ising Weiss
model, the strongly coupled B.C.S. model, the Dicke maser model, "-°[5,6]).
The decomposition theorem for such states together with correlation ine-
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qualities [7] are in fact the main tools which allow to prove the existence
and uniqueness of the limiting Gibbs state and to reduce the problem to the
study of the gap equation [8].

There are, however, interesting mean field models (such as the discrete

B. C. S. model, the continuous B. C. S. model, the H.Y.L. model [9], •••) for
which rigorous proofs of the validity of the gap equation method of
computing the equilibrium state don't exist yet [10, 11].

A common feature of these models is that their hamiltonians split as a
sum of a permutation invariant mean field part and a free part which

transforms in a simple way under permutations. The aim of this paper is
to provide, at least at the level of classical lattice systems, a decomposition
theorem for a class of states which transform under permutations as
equilibrium states of the mean field models just mentioned. Such states

can of course also be used to give a simple description of systems with
temperature gradients or with random fields.

§ 2. Preliminaries

In this paper only classical lattice systems are considered. As the
geometry of the lattice is irrelevant for our results the points of the lattice
are simply enumerated by N. To each site i^N a particle with
configuration space cJC is attached, where J£ is a fixed compact Hausdorff

space.
Let Ad N be a finite set then JCA is the configuration space of the

subset A and J^A = C(JCA), the continuous J?-valued functions on JCA, are
the observables of the region A. Clearly, for /hcy!2C N there is a natural

embedding of J^AI in J^A* which allows to consider JlN = C(JCN) as algebra
of quasi-local observables as it is the uniform closure of UA^N^A.

S will denote the group of local permutations of elements of N.

Clearly, any p^S induces by transposition an automorphism of JlN again

denoted by p :

P(f}(x}=f(p(x}} and p(x)(i)=x(p(i)),

Consider now a 1-body potential (f> : N-*JlN : *'-> 0,-e J^}. The aim of

the paper is to characterize the states p. of J^N (the probability measures on
J(.N) which satisfy the following symmetry requirement :
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(1)

where

(2)

A state p. satisfying (1) will be called ^-symmetric. Remark that one
recovers the usual notion of symmetric state when A$=§. Equation (1)
would also precisely be the D.L.R. equation [12] for trivial local
hamiltonians HA=2if=A<f>i if one would consider a larger class of transfor-
mations on JlN than the local permutations. Indeed, such permutations
don't yield information about the behaviour of the state on perturbing JC
(the internal degrees of freedom of the particles).

As the potential $ is not translation-invariant one should impose some
growth condition on 0 in order to avoid phase transitions which are due to
the non-translation invariance [13]. We will therefore assume that 0 is
uniformly bounded :

(3)

§ 3. #- Symmetric Product States

We first determine the ^-symmetric product states and we show that
they are two by two disjoint if the condition (3) is satisfied.

Proposition IILL Let XKEN& be a ^-symmetric (product} state of
J^N, where each of the & is a probability measure on JC, then there exists a
probability measure JJL on JC such that

(4) ^(dx)= -, jc
Mexp(-0,-))

Proof. Choose z'e{2, 3, • • •} and let p be the permutation

1 i
i 1

For /e Jlw it then follows from the ^-symmetry of x ,ejv^,- that

//*(/)= X AoO
jf=N
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- x

By normalisation

l =

It is now sufficient to put

to get (4). •

We now recall a theorem of Kakutani that characterizes absolute
continuity for product measures.

Theorem II. 2 [14], Let XI^N^I and XieNVi be product probability
measures on JCN such that for i^N, & is absolutely continuous w.r.t Vi :
3 a non-negative Vt measurable function // such that

Then X & is absolutely continous, respectively disjoint, w.r.t. x i>t accord-
ieN ieN

ing to whether

(5)

is convergent or divergent. •

Lemma III. 30 Let A be a probability measure on a measure space Q,
o)-*f(a))^R+ a measurable function on Q and QidQ a measurable subset of
Q then :

(6)

Proof. One has by the Schwartz inequality :

[ ' A(do))f1/2(a))= f A(da)}fll2(a)}+ fA(dco)fl/2(a))
Jn Jtii J

1/2
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2/ r
( f
\JQ\

112

Q\fi

Therefore

r r / r x1/2/ r \1

X(dw)fw(w) f A(da)fl2(co) + (l- f A(dw)) / »)/(a>)Ja _ ^ JQi _ \ Jai _ / \Ja\Qi _ /a \ i /2 —
A(d<u)f(a>))

Let now a, b and c belong to R+ then the function

reaches its supremum at x = (b2c2/a2) where It attains the value (a2/c
+ b2)112. Putting now

a= f
jQ

( Cl-L

c=f
Jfil

the lemma follows. S

Proposition III. 40 The ^-symmetric product states are two by two
disjoint if

Proof. Let v be a probability measure on J(. and choose a non-
negative 2A measurable function / such that v(/) = l. The measures p. and
y, where iJL(dx) = v(dx)f(x), x^J(, will be unequal iff there exist measura-
ble sets 0i, 02CJC such that

(7) ess inf
y i e C y . y2eu 2

By Proposition III. 1 and Theorem III. 2 we have to show that

/ON W, __ >/(/"2exP(-^f)) \_
W M1 (^/expC-^^mKexpC-^O))1'2/"

if (7) is satisfied.

,00
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We now apply for each i£=N Lemma III. 3 with Q=JC, Q\=0\\J 02

and

Denoting by x^flJaJ^, the characteristic function of °U one finds :

_/ i /y(*Oi
I1 I i/(exp(-#,))

))8 \V /2

p(-0z-))//

2

(for

/1/2(y2))2zc)lu(5<^
4

1 ,ff^k(/1/2(^)~/1/2(^^

where by (7) and the uniform boundedness of <j> 3 can be chosen indepen-
dent of i. Therefore (8) is satisfied.

§ 4. Decomposition of #• Symmetric States

Lemma IV. 1. Let a=(ai)i=i^N and b=(bi)i=i,...,N belong to (R+)N,
N=l, 2, -

Av=atbj i,j=l,-,N

and

r=\\a\\\\b\\-<a\b>

then

(9)
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is a positive matrix on RN.

Proof. If 7=0 and (a,-)*=i.~,Ar^=0 then there is a A>0 such that bl = Xai

i=l, • • - , N. [An], considered as a linear operator on CN , is A\\a\\2 times the
orthogonal projection on Ca and therefore positive on CN and hence on RN.

If 7^0 then a and b are linearly independent in CN and it is sufficient
to show that

is a positive operator on CN where

By an explicit computation however it is easy to check that the lowest
eigenvalue of the rank 2 operator a®b + b®a is precisely —7. 0

The next lemma is the main result needed to characterize the extreme
^-symmetric states.

Lemma IV. 2. Let <f> be a uniformly bounded I- body potential and let
JLL be a ^-symmetric state of

Suppose that

is such that p(A)r\Ao=Q and p(A)C\A=e

then

(10)
i(=A iep(A)

Proof. Let A = {ii,—,ir} and p(A) = { j i , - ~ , j r } where p(i*)=jk9 k=l,
-, r.

Denote by & the measure // restricted to cJ{i}. As 7=sup,-||0»||<oo we
can always choose a strictly increasing sequence {n\, nz, ~°} in
N\Ao\JA\Jp(A) and ̂ .e^JC, A/I) such that ||#.||̂ 7 and

(11) 2 Ltti(dy)(<i>n*(y)-<f>-(y))2<<x>.
k «/cA

Let now yl* = {w<*-i)r-n, W(*-i>r+2, •••,«*}, ^=1, 2, ••• and define local per-
mutations pk, Qk^S by
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l\
Pk={

\ 2 '"r n(

•
n(k~l)r+l n(k-l)r+2 '"Hkr Jl °a° Jr

For Mc:N finite we will use the shorthand notation

By the ^-symmetry of p. one has for

(12)

We now apply Lemma III. 1 with the choice

to obtain that

(13) 2c

where
\l/2/ N \ l /2

(14)

Multiplying both sides of (13) with the positive function
+ <f>(p(A))) and taking the expectation with respect to n one finds by (12) :

(15)
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But

<A%||||/||2exp(47r)/X7(AO).

Now for z = (xi, -, ZrJeJC" and y=(yi, -, yr

/2

0<

\ l /2

l/2

:, y)
/

= n exp( -<t>«(xi}- #.(y*)))
\i = l /

// N r \

2 nexp(-2^,,_lir+,U!-) + 2^»U!-))\\A = li = l /

( ^ r \

2 II exp( - 2#»,.-1,rtl(y*) + 2#.(y*))A = li = l /

^ r

- 2 neXpC-^n^nrJjJ.O+^oo^.O
A = l z = l

1 N ( T

<^-exp(2rr) 2 ( IIexp(- ^nc*-i,r+,U«
Zw A = 1\Z = 1

r \2

- IJexp(- <t>n(*-l>r+l(yi) + <f>-(yi)) )
I — 1 /

x

Using the shorthand notation

one has

and by convexity of the exponential function

\a7l\ < I - 0oo(xz-) - 0»(*_i,r+I(
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We then estimate :

(fli-ar-l)2=

Using the ^-symmetry of JJL one has

where A*I is the measure p. restricted to <JJU}. It finally follows that

which is by (11) uniformly bounded in N. The lemma now follows by
taking the limit N-+°o in (15). •

Corollary IV. 3. Let <f> be a uniformly bounded I- body potential and
let p. be a ^-symmetric state of J!>N. Suppose that there exist two finite
subsets Ai and Az of N such that A\ r\A2=0 and ^AIUAZ = ^AI X juA2 where for

AdN VA = V\JIA.
For any two subsets M\, Mz of N such that MiC\M2=% and #(Mi)<

#(Ai) i=l, 2 one has

Proof. One can without loss of generality assume that §(/li)< (A2)
and that #(Mi)=#(At) i=l, 2.

Consider now any g^JLMl and r^<? such that r(Mi)cM2, r2=id and
r=id on N\(Mi\Jr(Mi}}. By Lemma IV. 2 one has then for all A^R :

(16) 0<M(^-^XK^)-^exp(^(M1Ur(M1)))) .

Choose now ̂ eiP such q(M\}=A\, <2r°r(Mi)cyl2, #2=id and ^^id on N\N
where N=Mi(J r(M2)(JAi(jQ9r(Mi). Defining p=q'r*q one has p(A\)
C/12, ^2=id and />=id on N\(Ai(Jp(Al)).

By ^-symmetry and using again Lemma IV. 2

(17) v((g-A)(r(g)-A)exv(t(MiUr(MM =

• r(g) - A)exp(Q(<P(Ml U r (MO)) + <t>(N) -
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= f((q(ff) - ti(P -q(ff)- -OexpM/li U />UO) + 4>(N\(A,

-q(4(N\(Mi\Jr(Mi))))))

< p((q(g) -

x exp(2#(7V\(yl1

Choosing now

the right-hand side of (17) vanishes as ^/iiu/i2 — P-AI x /^2. But this means by
(16) that also HMI\JM* = l*MiX HM*.

We now arrive at the main result of this paper.

Theorem IV. 30 Let 0 be a uniformly bounded I- body potential The
set of (^-symmetric states of Jt>N is a simplex whose extreme points are the
^-symmetric product states.

Proof.
i) Suppose that y. is a ^-symmetric product state which can be
decomposed as

/^M + (l-/0^2 0<,K1

and fjti,fjt2 ^-symmetric states of J^N. We have to show that 1*1 = p.2= p..
For any f^JLA,AcN finite and for any £<E£P such that AHp(A)=& it

follows from Proposition III. 1 that

X(/ - ti(p(f) ~ ̂ )exp( t(A U p( A)))) = 0

where

Therefore it follows from Lemma IV. 2 that for /=!, 2

) = 0

which means that also the & are product states and hence coincide with p..
ii) Suppose that p. is a ^-symmetric state of J^N which is not a product
state.

As supzll^zIK00 we can choose a strictly increasing sequence
{HI, W2, •••} in N such that
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exists p. a.e.
Furthermore, we denote for AdN finite by <&»(;!) ̂ .T^JC^, p) the

function

As /^ is not a product state of J^N it is possible to find finite subsets A\
and A2 of N, Air\A2=0 and #e J^, and /e J^2 such that

and one can assume without loss of generality that

(19) 0</<exp(-2#U2)sup||0z-|) .

Define now for r = l, 2, ••• states HT of cJljv by :

where qr^$ is such that ^r
2=id, ffrC/l2) = {H<r-D#M2)+i ; •", »r#M«>} and

^r^id on N\(A2(jQr(A2)). Let /A» be a weak*-limit point of the vr and let
{n, r2, •••} be a sequence in JV tending to °o such that

By construction //« is ^-symmetric and for h^. C(J(N\A2) one has

-</>„( A*)))

_ t -"

which implies that
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and for h

Putting h=g it follows from (18) that v<*,=t p.. On the other hand by (19) :

;f

XT) A

and therefore // cannot be extremal ^-symmetric.
The fact that the ^-symmetric states are a simplex Is now an immedi-

ate consequence of Proposition III. 4.

In order to conclude this section the following remark on the condition

should be made.
One can only expect Theorem IV. 3 to hold If ^-symmetric product

states are two by two disjoint. Moreover one would like to have such a
decomposition not only for <f> but for all multiples /?<^»5 0< @< °°, of 0 which
corresponds to the whold range of temperatures if one studies ^-symmetric
equilibrium states.

The necessary and sufficient condition on ^ In order that /^-symmetric
product states be two by two disjoint for all 0< ff< °° turns out to be : Vxi,
X2^ JC3 a strictly increasing sequence {n\, nz, •••} in N and opens

0i, 02cJC with a ^ e O f , i = l , 2 ,

such that

1 N

(20) lim-Tn—~^T SUp 2 \4>nl\X\)— <f>nt\X2)\=Q .
N NmN x ieO, xz^o2f=i

This condition essentially means that ^-symmetric product states will fail
to be disjoint only because some points in JC almost don't contribute to the
state because their potential energy Is too high. A proof of Theorem IV.
3 similar to that in Section IV breaks down If uniform boundedness of <f> is
replaced by the condition (20), although some partial results Indicate that
the condition (20) Is a good candidate to replace the uniform boundedness.
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