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The Uncertainty Principle and
Hypoelliptic Operators

By

Yoshinori MORIMOTO*

Introduction

Let P be a differential operator of second order with coefficients
in C°°(Rn), that is,

j.k j

We assume that

1ajk and bj are real valued,

X! 0jt(*)£j?ft^0 f°r any
Let log A be a pseudodifferential operator with symbol log<Cf!>o As
a criterion for P to be hypoelliptic in Rn the author has given the
following in [8] (see also [6]) :

Theorem A, (Corollary 2 in [8]) // for any e>0 and any com-
pact set K of Rn there exists a constant CEiK such that

(3) 11(log A)u\\2<e Re(P^w)+CE ,*|Mi2
? iieCrCK),

then P is hypoelliptic in Rn. Furthermore^ we have

(4) WF Pv = WF v for v^@'(Rn)0

Though more general criteria than Theorem A were given in [8]
and [9], in the present paper we shall restrict our consideration to
the application of this theorem to some class of degenerate elliptic
operators of second order. To verify the estimate (3), it is convenient
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to employ "the uncertainty principle" mathematically formulated by
FefTer man-Phong [2] and Fefferman [1],

This paper consists of two sections. In Section 1, we slightly
modify the result in [23 Section 2] (, see Theorem B in Section 1).
In Section 2 we study the hypoellipticity of infinitely degenerate
elliptic operators by using Theorems A and B.

We mention that only the simplest parts of arguments in [1]
and [2] are used here. One might expect to characterize the operators
satisfying (3) by means of much deeper arguments in [1] and [2],

The author wishes to thank gratefully Prof. T. Matsuzawa for
valuable discussions.

§ 1. The Uncertainty Principle

Let ^ be 0<C*<1. We consider a symbol of the form a(x, f) =
1? \2*+V(x)9 x^Rn, where V(x) is a non-negative measurable func-

tion and depends on a large parameter AO>0, that iss V(x)=V(x,
M). (In the next section we shall employ the case when V(x) =g(x)

Let R = R(M) be a non-decreasing function of M such that R
oo as M~ »oo. Let ^ denote a set of boxes

(5) 5= {(*,«€=**; \Xj-x0j\<d/2, |£,-£w | <£3-V2}

for all (#o, £0) ̂ R2n and all <5>0. Clearly, the volume of 5<E^ is
equal to 1.

Theorem B9 Assume that there exists a c^>0 such that for any

(6) m({(x,^^B;a(X^)>R})>c,

where m(. ) denotes Lebesgue measure. Then we have

( 7 ) || \DX N|2+ (7(*)fi, tt) ̂ '/ZINI

where c'^>Q depends only on c and n.

For the comparison of Theorem B with the original version in [2,
Section 2] we set the following corollary though we shall not use it
throughout the present paper.

Corollary. Let V(x) belong to C°°(R^) and satisfy
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(8) \D«VW

Assume that for some e>0 and £>0 we have R>cM*, Then the estimate
(7) still holds when the hypothesis (6) is replaced by

(9) mln max a(x,%) >Ra
JSe<r (*,f)eB

For the proof of Theorem B In the case ^=1 we use the follow-
ing lemma given by Fefferman [1] :

Lemma 1. Assume that V(x) >0? measurable on a cube Q, in Rn.
Suppose that there exists a c^>0 such that

(10) m({x^(i; F«>'(diam 0-2}) >£ |QJ*

Then for u^C1 we have

(11) \ [\[7uW \*+V(x) I if 00 |2}^>^(diam Qr2{ \u(x) \2dx.
JQ JQ

The constant c'^>0 depends only on n and c0

In the Main Lemma of [1, p0 146], it Is assumed that V(x) is
polynomial and ( AvQ F) > (diam Q) ~2

0 The proof in [1] Is still valid
under the above hypotheses.

For the case 0<^<1 we need the following two lemmas : The
first Is a modification of Lemma 1.

Lemma 2, Assume that V(x) >09 measurable on a cube Q in Rn
a For

a 0<O<O9 suppose that there exists a c>0 such that

(10)' m({x<=Q

Then for u&C1 we have

(11)' \ {|«(*) -

V(x) \u(x) I2^>c'(diam Q,)-2 \u(x) \2dx.
Q JQ

Proof of Lemma 2. Note that

{'" W ~
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where c depends only on n. Using this formula instead of the
similar one in the proof of the Main Lemma of [1]9 we can obtain
the desired estimate. The detail is omitted. Q. E. D

Lemma 3. For 0<^<1 we have

where c depends only on 2 and n. (See [11]).

Proof of Theorem B. Let QXQ be a cube in /?", that is,

(12) QXQ={x<=Rn; \Xj-xOJ\^8/2} for some x0GR*98>Q.

If d = 2~2nl/2(2/R)1/2* it follows from (6) that

In fact, this is obvious if we consider a box (LcQX{f; | f / |<f l~ 1 / 2

(R/T)l/2*} belonging to #. Let [Qj] be a partition of .ff; such that
each Qj is a translation of QXQ with <5 = 2~2rc1/2(2/jR)1/2;i. Note diam

QJ = 2-ln1»(2/R)w. When i=l, in view of (13) we have (7) by
Lemma 1 because || \DX \u\\2= \\{7u\\2. Note that

\ dxdy>'£\ dxdy,
jRnxRn j J Q . X Q .

Then, the estimate (7) for the case 0<^<C1 also follows from Lemmas
2 and 3. Q. E. D.

Proof of Corollary. It follows from (9) that we have

(14) maxQ V(x)>R/2
XQ

for any (^defined by (12) with d= 2'2nl/2(2/R")l/2* ( = 30). Setting

F(y)=V(d0y + X o ) , by (8) we have

\D«F(y) \<C'aM
2R-laW<C^M2-*lal/2\

Fix a large integer N such that eTV^^y and set

\a\<N

Then for some C0 independent of M we have
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(15) |FOO-P(j;)|<Co
on a unit cube (£0= {jy ; | jy/ |<l/2}.

By (14) and (15) we have maxgoP>jR/4 when M Is large enough.

Since P is polynomial of order N, we have maxQo |FP|<C maxQo|P|,

where C depends only on N and n. In view of (15) and F>0 we
have maxQo P = maxQQ\P\ if M is large enough. If P(yQ) =maxQQP

and if QQ is a subcube of (£0 such that jy0^CLo, then for jyeQji we

have

P 00 >P 0>o) ~ m a x , \VP\\y -yQ \

Hence, there exists a subcube Qji of Q,o such that P(y) >R/B on Q,o
and \QJo \ >CQ for a constant c0 depending only on n and TV. Using
(15) again, we have V(x) >R/16 on some subcube Q'x of Q^ with

I Q ^ I / I Q ^ ^co if M is large enough. So, for any Q^ defined by (12)
with d = dQ we have the similar formula as (13). Q. E. D0

§ 2. Hypoelllptlc Operators

Let PQ=PO(X,}>, DJ be a differential operator of second order with
C°° coefficients of the form

(16) P0=a(x,y,D,,)+g(xl)b(x,y,DJ) in R" = R? X R*y
2,

where A;= (#', x") e^?"Jx /?*J. We assume that a(x9 y, Dx} and b(x9y,
are strongly elliptic with respect to x and jy, respectively, that is,

Re fl(*,js£)>*!ie|2 for (x,y)^R« and large

Re b(x,y,nf) >c2\r}\2 for (x, y} ^Rn and large

where ^ and c2 are positive constants. Furthermore we assume

r gu\Q) =Q for any integer j>0
( " } (and g(x')>0 for x'^Q.

The conjunction of Theorems A and B gives the following :

Proposition 1. Let P0 be the above operator and assume (-4-1) and
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G4-2). Furthermore, assume that g(x'} satisfies

(17) lim |*'| |log£(*')l=0.
x'-»0

Then PQ is hypoelliptic in Rn,

Remark 1. The theorem is nothing but Theorem 1. 1 of [7],
where we employed a primitive method in place of Theorems A
and B.

Remark 2. As atypical example of P0 we have jD

in R3. The theorem for this example under a little stringent assump-
tion on g was proved by Kusuoka-Strook by using the Malliavin
calculus (see Theorem 8.41 of [4]). For this example, it was proved
in [4] and [5] that if g(x^) =g( — xj and g is nondecreasing in R+
then (17) is necessary for the hypoellipticity.

Remark 3. If g=exp(-l/|*' | f f), <7>0? then (17) means <j<l.

Proof of Proposition 1. By Theorem A it suffices to derive (3) for
P0. Since our consideration is local on a fixed compact set K, by
modifying g outside of K we may assume g(x') >c0^>0 for |#'|>1.
It follows from (A-l) that for some constant C we have

(18) C(Re (P 0«, iO+IMI 2 )

where ti, = & (x, rf) is the Fourier transform of u with respect to y. Set
V(x') = g ( x ' ) 1 37 12. We shall show that for any integer £>0 there
exists a Affe>0 such that

(19)

>c(k

for KGEC0~(/0) if \r]\>Mk,

where £>0 is a constant independent of k and |^|. The estimate
(3) easily follows from (19). Instead of x' and |^|, write x and M,
Use Theorem B with ^=10 We shall check (6). In view of (17), for
any k there exists a rft>0 such that
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(20) -log g(x) = I log g(x) I < 1/(10*( |* |) for \x \ <rko

Take a large Mfe>0 such that

rk>(Wk log Af») "J.

When M>Mk we have

(21) V(x)>M for \x\>Tk.

Set R = R(M) = (k log M)2 and note that

(22) FOO =Af exp{log M- |log *(*) |}
>M exp{log M-l/(lOk\x\)}>M

if (10^)-1/2< |*|<r, and M>Mko

Inequalities (21) and (22) show that for Q^0 defined by (12) with

d>(8R)~l/2 we have

(23) ra({*e(i,; 7(

From this we see that (6) holds for Be^ with 3>(8/?)~1/2. On
account of the term |f |2? (6) is trivial for others

The above discussion can apply to more degenerate elliptic op-
erators than PQ . For example :

Corollary0 Proposition I is still true when g(x'} is replaced by g(x')

Proof, As in the proof of Proposition 13 we write x and M instead
of x' and \y\. Let Q.*0 be a cube defined by (12). For any Q,x

where sin (I/ x\) vanishes at least with two different values of |#|,

we have

(24) m({^ea,0 ;s in2( l /k |)>l/2})>|^0 l /40

For others Q^0 in {\x\<T} with o>(&R)-1/2 we have

(25) m

because sin t>2t/n for Q<t<K/2, Here cn^>0 depends only on ne

Noting (23) 3 from (24) or (25) we see that (6) holds even when
V(x) = g(x) sin2(l/ \x |) M2

a Q0 Ee De
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We can give a more pathological hypoelliptic operator. Let PI

be a second order differential operator of the form (16) with g(x') =

f(\x'\) for f^C°°(R+). We assume that /(O vanishes on a Cantor
00

set E with measure 0 defined as follows : Set E = IQ\^Jlh where /0 =j=i
[0, 1], /x is an open interval with length 1/3 whose center is 1/2,

Here 72 and /3 are open intervals with length (1/3)2 whose centers

coincide with the centers of each connected component of /0\/i?

respectively. Furthermore, / 4 , . . . 5 / 7 are open intervals with lenghth

(1/3)3 whose centers coincide with the centers of each connected
3

component of /0\W /,-, respectively. We define open intervals 7y in

this manner, recursively. On each /,-= ( — a + b, a + £), J>1, we set

/(0=exp{(-l/ |*+fl-A| ') + ( - l / | f -a - f t | f f )} and we setexp(-l /
(U- l | ° ) for (l ,oo), where 0>0.

Proposition 2. L££ Px fe a second order differential operator of the

form (16) with g(x') =f(\x'\) for f€zC°°(R+) defined above. We assume

(-4-1). // OO<1 *A*w P! is hypoelliptic in Rn.

Proof. Recall Remark 3 of Proposition 1, that is, that the con-

dition (17) is equivalent to <7<1 when g(x') — exp( — I/ \x | f f ) . Noting

the definition of the Cantor set E we can easily check the condition

(6) of Theorem B, as in the proof of Proposition 1. The detail is

omitted. Q. E. D.

The assumption (A-l) can be also weakened. Assume that

,Dx) = -±X*j and

where Xj (resp. Yj •) are real vector fields in Rn
x
l (resp. R"2) for every

fixed jyGjR"2 (resp.tfe.fi!*1). In place of (A-l) we assume that

(A-l)'

For any fixed y^Rn
y
2 (resp. x^R*x

l) the vector fields Xi9...,

Xr (resp. Y l 5 . . . , Ys) and their repeated commutators span the

tangent space at each point in R^1 (resp. Ry
2).

and
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(B)

For any fixed y GE Rn
y
2 the vector fields X1,.. . , Xr and their

repeated commutators of order up to I span the subtangent

space T(Rn
x/

1) at each point in Rn
x
l.

Proposition 30 Let P2 be a differential operator of the form (16) a

Assume that (-4-1)', (-4-2) and (B) . If g(x") satisfies

(26) Urn |*T/(l+1)|logg(*') |=0.
*'-»0

then P2 is hypoelliptic in Rn.

Proof, It follows from (A-l)' and (B) that for a &>0 we have

(27) C(Re(P2 M,I I ) + \\u\\2)

instead of (18). Indeed, this is a direct consequence of Hormander's
classical theorem in [3] and its sharp version given in [10] and [2].
In place of x and |^ *, write x and M. Set V(x) =g(x)M2

a Then
the proof of the proposition is reduced to show that for any integer
A:>0 there exists a Mfe>0 such that

(28)
>c(k log
if M>M^

For the proof of (28) it suffices to apply Theorem B with X=\/
(/+!). Similarly as in the proof of Proposition 1, the condition (6)
easily follows from (26). Q,0 E0 B.
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