On a Stability Theorem for Local Uniformization in Characteristic p^*

By

Т.Т. Мон**

Abstract

A 2nd numerical d is bounded under blow-ups.

Introduction

In [H, p. 123] Prof. H. Hironaka pointed out: "The point is that the associated Tschirnhausen polynomial undergoes the same law of transformation as the original polynomial under permissible blow-ups". For the notion of Tschirnhausen polynomials, or equivalently the approximate roots, the reader is referred to [A-M 1 & 2], [M] or [H]. As established by Prof. H. Hironaka the local uniformization problem in characteristic p>0 is to use monoidal transformations to resolve the singularity of an algebroid equation of the following form over $k[[x_1, \ldots, x_n]]$

$$z^{p^e} + \sum_{i=1}^{p^e} f_i(x_1, \ldots, x_n) z^{p^e - i} = 0$$
 with ord $(f_i) \ge i$.

A specially important case is the following purely inseparable equation which is the topic of this article,

$$z^{p^e}+f_{p^e}(x_1,\ldots,x_n)=0$$

where $f_{p^e}(x_1, \ldots, x_n) \in k[[x_1, \ldots, x_n]]$ and $f_{p^e}(0, \ldots, 0) = 0$. After some monoidal transformation the above equation will be transformed to

$$z^{p^{\theta}} + (\prod_{i=1}^{n} x_{i}^{m_{i}}) F(x_{1}, \ldots, x_{n}) = 0$$

Communicated by H. Hironaka, October 14, 1986. Revised March 31, 1987.

^{*} The research of this work was done with support of N.S.F.

^{**} Mathematics Department, Purdue University, W. Lafayette, IN. 47907, U. S. A.

satisfying the characteristic p condition that the leading form of $(\prod_{i=1}^{n} x_i^{m_i}) F(x_1, \ldots, x_n)$ is not contained in $k[[x_1^{p^e}, \ldots, x_n^{p^e}]]$. The following proposition has been established by us and will be published elsewhere.

Proposition A. If ord $F(x_1, \ldots, x_n) = 0$ then after finitely many blow-ups, the above singularity at the origin will have a smaller multiplicity. However, it can be shown that ord $F(x_1, \ldots, x_n)$ may increase in general. This is a serious blow to the hope that ord $F(x_1, \ldots, x_n)$ will eventually drop to zero after monoidal transformations, and even open up the possibility that ord $F(x_1, \ldots, x_n)$ may increase indefinitely and thus a counter example to resolution may be constructed! It is the purpose of this article to establish the following theorem :

The Stability Theorem. Let $d = \text{ord } F(x_1, \ldots, x_n)$. After a permissible blowup, along a residually rational valuation v of the function field, say factor out x_1 , and let $\tilde{F} = x_1^{-d}F$. Then ord $\tilde{F} \le d + p^{e-1}$ and successive permissible blow-ups will not increase ord \tilde{F} beyond the bound $d + p^{e-1}$ (in fact, $d + p^r$, see below) until it drops to d or less.

We wish to express our deep thanks to Prof H. Hironaka for his kindness and enlightening guidances on this important problem of mathematics.

§1. A Proof of the Stability Theorem

Let k be an algebraically closed field of characteristic p and $R = k[[x_1, \ldots, x_n]]$, the power series ring of n variables over k. Let

$$z^{p^e} + (\prod x_i^{m_i}) F(x_1, \ldots, x_n) = 0$$

be a purely inseparable equation to be resolved with $F(x_1, \ldots, x_n) \in R$, Let $d = \text{ord } F(x_1, \ldots, x_n)$ and

$$F(x_1,\ldots,x_n) = F_d(x_1,\ldots,x_n) + \text{higher terms.}$$

If $m_i \ge p^e$ then we may replace z by z/x_i and cut down m_i by p^e . Moreover, a translation of the form $z \rightarrow z+g$ will remove or change the p^{e} -th power part of $(\prod x_{i}^{m_{1}}) F_{d}(x_{1}, \ldots, x_{n})$. We shall keep these two operations in mind.

Our basic assumption is $(\prod x_i^{m_i}) F_d \notin \mathbb{R}^{p^e}$ and $0 \le m_i < p^e$. Let v be any residually rational valuation given. We shall make the following definition and convention.

Definition. An ideal P is said to be a permissible center if there is a system of parameters $\{y_1, \ldots, y_n\}$ such that (1) all x_i 's with $m_i \neq 0$ are among them, (2) a part of them generate P, (3) $f \in P^d$ where d = ord F. Note that if $P = (y_1, \ldots, y_s)$ then the leading form F_d of F is a homogeneous polynomial of degree d in the leading form of $\{y_1, \ldots, y_s\}$. We assume that $\{y_1, \ldots, y_n\}$ is $\{x_1, \ldots, x_n\}$.

Convention. After making a choice of the order of n variables as x_1, \ldots, x_n , then in the monoidal transformation we always factor out the x_i satisfying the following conditions: (1) x_i is in the center P of the permissible monoidal transformation; (2) $v(x_i) = \min \{v(\alpha): \alpha \in P\}$; (3) the integer i is the minimal integer satisfying condition (2). With such an x_i , the monoidal transformation will be of the following form:

$$\begin{array}{ccc} x_i = \bar{x}_i \\ x_j = \bar{x}_i \bar{x}_j & \forall j < i, \ x_j \in P \\ x_k = \bar{x}_i (\bar{x}_k + \alpha_k) & \forall k > i, \ x_k \in P \\ x_i = \bar{x}_i & \forall x_i \notin P \end{array}$$

where $\alpha_k \in k$.

To simplify our notation we may assume that i=1, namely, $x_1 \in P$ and

$$v(x_1) \leq v(x_j) \qquad \forall x_j \in P.$$

Moreover we shall use the subdivision of the set of variables $\{x_1, \ldots, x_n\} = \{x_1\} \cup X \cup Y \cup Z$ where

$$X = \{x_i : x_i \in P, i \neq 1, m_i = 0 \text{ or } v(x_i) > v(x_1)\}$$

$$Y = \{x_j : x_j \in P, j \neq 1, m_j \neq 0 \text{ and } v(x_j) = v(x_1)\}$$

$$Z = \{x_i : x_i \notin P\}.$$

Note that for $x_i \in X$, if $v(x_i) = v(x_1)$, then we may let $x_i^* = x_i + \alpha_i x_1$ with $v(x_i^*) > v(x_1)$. Since the corresponding $m_i = 0$ then such a translation

Т.Т. Мон

will not change the form of $\prod x_i^{m_i} F(x_1, \ldots, x_n)$ i.e., it will not affect the basic condition that $\prod x_i^m \cdot F_d(x_1, \ldots, x_n) \notin \mathbb{R}^{p^e}$. So we may assume $v(x_i) > v(x_1)$ for all $x_i \in X$. Note that $F_d(x_1, \ldots, x_n)$ is independent of x_i , $\forall x_i \notin Z$ because P is a permissible center.

Thus the monoidal transformation will be of the following form

$$\begin{array}{ccc}
x_1 = x_1 \\
x_i = \bar{x}_1 \bar{x}_i & \forall x_i \in X \\
x_j = \bar{x}_1 (\bar{x}_j + \alpha_j) & \forall x_j \in Y \\
x_l = \bar{x}_l & \forall x_l \in Z
\end{array}$$

where $0 \neq \alpha_j \in k$. For the following discussions we will introduce Hasse derivations $\{d_y^{(a)}\}$ as

Definition. Let S be a commutative ring, f(y) in S[[y]] and $f(y+t) \in$ S[[y, t]]. In the expansion

$$f(y+t) = f(y) + \sum_{a \ge 1} f^{(a)}(y) t^{a}$$

the operation $d_y^{(a)}(f(y))$ is defined to be $f^{(a)}(y)$.

The following proposition is easy.

Proposition 1. We have

- (1) $d_y^{(1)}$ is the usual derivation and $d_y^{(a)}$ is linear over S.
- (2) $f(y) \in S[[y^{p^r}]] \setminus S[[y^{p^r+1}]] \Leftrightarrow d_y^{(1)}(f(y)) = \ldots = d_y^{(p^r-1)}(f(y)) = 0$ and $d_y^{(p^r)}(f(y)) \neq 0.$
- (3) $d_y^{(p^r)}$ is a nonzero derivation on $S[[y^{p^r}]]$.

Proof: We only prove (2), the rest being easy. Note that $d_y^{(j)}(y^s) = C_{s,j}y^{s-j}$ where $C_{s,j}$ is a binomial coefficient. For the part \Rightarrow , it follows from binomial expansion that $D_y^{(1)}(f(y)) = \ldots = d^{(p^r-1)}(f(y)) = 0$. Let s be the minimal integer such that $a_s y^{sp^r}$ appears in f(y) where $a_s \neq 0$ and $p \nmid s$. Then $d_y^{(p^r)}(a_s y^{sp^r}) = sa_s y^{(s-1)p^r} \neq 0$ and other terms are either zero or with exponents $> (s-1)p^r$. Thus $d_y^{(p^r)}(f(y)) \neq 0$. On the other hand, for the part \Leftarrow , let

$$f(y) \in S[[y^{p^1}]] \setminus S[[y^{p^{r_1+1}}]]$$

for some r_1 . It is easy to see $r_1 = r$ by what we just proved. Q. E. D.

968

Proposition 2. Let k be a field of characteristic p, $y^m \varphi(y) \in k[y^{p^r}] \setminus k[y^{p^{r+1}}]$ and $0 \neq \alpha \in k$. Let deg $\varphi(y) = d^*$, $(y+\alpha)^m \varphi(y+\alpha) = \sum a_i y^i$, $c = \min\{i:a_i=0, p^{r+1} \nmid i\}$. Then $c \leq d^* + p^r$.

Proof: Let $\varphi(y) = y^n \cdot \varphi^*(y)$ with $\varphi^*(0) \neq 0$. Then we have $p^r \mid (m+n)$. Without losing gernality we may assume n=0, $p^r \mid m$, and $\varphi(y) \in k[y^{p^r}]$. It follows from our Proposition 1 that $d^{(p^r)}$ is a derivation on $k[y^{p^r}]$. Thus we get

$$d_{y}^{(p^{r})} = d_{y+\alpha}^{(p^{r})}$$
 on $k[y^{p^{r}}]$

and

$$(y+\alpha)^{m-p^r}, y^{c-p^r}|d_y^{(p^r)}((y+\alpha)^m\varphi(y+\alpha)).$$

Moreover, the right hand side is a polynomial of degree $\leq d^* + m - p^r$. Since $\alpha \neq 0$, $(y+\alpha)^{m-p^r}$ and y^{e-p^r} and are coprime. Then we have

$$m-p^r+c-p^r\leq d^*+m-p^r$$

or

$$c \leq d^* + p^r$$
.
Q. E. D.

The blow-up with a permissible center P of $f(x_1, \ldots, x_n)$ will transform $(\prod x_i^{m_i}) F(x_1, \ldots, x_n)$ to the following

$$\bar{x}_1^{\bar{m}_1} \prod_{x_i \in X} \bar{x}_i^{m_i} \cdot \prod_{x_j \in Y} (\bar{x}_j + \alpha_j)^{m_j} \prod_{x_l \in Z} \bar{x}_l^{m_l} (F_d(1, \ldots, \bar{x}_2, \ldots, \bar{x}_j + \alpha_j, \ldots,) + g)$$

where $\bar{m}_1 = m_1 + \sum_{x_i \in X} m_i + \sum_{x_j \in Y} m_j$ and $g \in I$ = the ideal generated by $\{\bar{x}_1, \bar{x}_1: x_i \in Z\}$. Suppose $\bar{m}_1 \neq 0$ (p^e). Then in the product

$$\prod_{x_j\in Y} (\bar{x}_j + \alpha_j)^{m_j} \cdot (F_d(1, \ldots, \bar{x}_i, \ldots, \bar{x}_j + \alpha_j, \ldots) + g)$$

we consider the terms which do not involve \bar{x}_1 and \bar{x}_l for all $x_l \in Z$. They will not be cancelled by terms in g and have order $\leq d$ in \bar{x}_l 's and \bar{j} 's.

Hence we may rewrite the transform of $\prod x_i^{m_i} F(x_1, \ldots, x_n)$ after throwing away p^e -th power terms as

$$\bar{x}_1^{\tilde{m}_1}\prod_{x_i\in X} \bar{x}_i^{m_i}\prod_{x_l\in Z} \bar{x}_l^{m_l}(\tilde{F}_{\tilde{d}}(\bar{x}_1,\ldots,\bar{x}_n) + \text{higher terms}).$$

Naturally we have $\tilde{d} \leq d$. Thus our stability theorem is proved in

the case that $\overline{m}_1 \not\equiv 0(p^e)$. For our convenience we shall call this case Possibility (I).

From now on, let us assume $\overline{m}_1 \equiv 0(p^e)$. Due to our basic assumption that

$$\prod x_i^{m_i} F_d(x_1,\ldots,x_n) \notin R^{p^e} = k[[x_1^{p^e},\ldots,x_n^{p^e}]]$$

and $\overline{m}_1 \equiv 0(p^e)$ it follows that

$$\prod_{x_{i} \in X} \bar{x}_{i}^{m_{i}} \prod_{x_{j} \in Y} \left(\bar{x}_{j} + \alpha_{j} \right)^{m_{j}} \prod_{x_{l} \in Z} \bar{x}_{l}^{m_{l}} F_{d}(1, \dots, \bar{x}_{i}, \dots, \bar{x}_{j+d_{j}}, \dots)$$

$$\notin k[\dots, \bar{x}_{i}^{p^{e}}, \dots, \left(\bar{x}_{j} + \alpha_{j} \right)^{p^{e}}, \dots, \bar{x}_{l}^{p^{e}}, \dots, \right]$$

$$= k[\bar{x}_{2}^{p^{e}}, \dots, \bar{x}_{i}^{p^{e}}, \dots, \bar{x}_{j}^{p^{e}}, \dots, \bar{x}_{l}^{p^{e}}, \dots].$$

So there is an \bar{x}_s such that

$$\Pi \bar{x}_i^{m_i} \Pi \left(\bar{x}_j + \alpha_j \right)^{m_j} \Pi \bar{x}_l^{m_l} F_d(1, \ldots, \bar{x}_i, \ldots, \bar{x}_j + \alpha_j, \ldots)$$

$$\notin k[\bar{x}_2, \ldots, \hat{x}_s, \ldots, \bar{x}_j, \ldots] [\bar{x}_s^{p^s}].$$

If $\bar{x}_s = \bar{x}_l$ for some $x_l \in Z$, i.e. $m_l \neq 0(p^e)$ then clearly the leading form of $\prod \bar{x}_i^{m_i} \prod (\bar{x}_j + \alpha_j)^{m_j} \prod \bar{x}_l^{m_l} F_d$ coincides with $\prod \bar{x}_i^{m_i} \prod \bar{x}_l^{m_l}$ times the leading form of $(\prod (\bar{x}_j + \alpha_j)^{m_j} F_d)$, which is not in $k[\bar{x}_2^{p^e}, \ldots, x_j^{p^e}, \ldots]$ and ord $\prod (\bar{x}_j + \alpha_j)^{m_j} F_d(1, \ldots, \bar{x}_i, \ldots, \bar{x}_j + \alpha_j, \ldots) \leq d$. Thus our theorem is proved in this case. We shall call this case Possibility (II). Henceforth we may assume that $m_l \equiv 0(p^e)$ for all $x_l \in Z$.

Let r be the nonnegative integer such that $\prod x_i^{m_i} F_d(x_1, \ldots, x_n) \in R^{p^r} \setminus r^{p^{r+1}}$. Then clearly its transformation belongs to $(k[\bar{x}_1, \ldots, \bar{x}_n])^{p^r} \setminus (k[\bar{x}_1, \ldots, \bar{x}_n])^{p^{r+1}}$.

Note that $\prod x_i^{m_i} F_d(x_1, \ldots, x_n) \in k[x_1^{p^r}, \ldots, x_n^{p^r}]$. If $p^r \nmid m_i$, then we may factor out more x_i from $F_d(x_1, \ldots, x_n)$. So, if necessary, we may assume that

$$p^r | d =$$
ord $F_d(x_1, \ldots, x_n)$.

Remark: In other words, ord $F_d(x_1, \ldots, x_n)$ may be taken to be less than or equal to $[d/p^r]p^r$ in the numerical discussions below.

We shall assume that for a particular \bar{x}_s

$$\Pi \bar{x}_i^{m_i} \Pi \left(\bar{x}_j + \alpha_j \right)^{m_j} \Pi \bar{x}_l^{m_l} F_d(1, \ldots, \bar{x}_2, \ldots, \bar{x}_j + \alpha_j, \ldots)$$

$$\notin k[\bar{x}_2, \ldots, \hat{x}_s, \ldots, \bar{x}_j, \ldots] [\bar{x}_s^{p^{r+1}}].$$

For the remainder of the proof we will consider two possibilities;

970

(III) $\bar{x}_s \in X$ or (IV) $\bar{x}_s \in Y$.

Possibility (III): Note that

$$\Pi x_i^{m_i} \Pi x_j^{m_j} F_d(x_1, \ldots, x_i, \ldots, x_j, \ldots)$$

$$\notin k[x_1, \ldots, \hat{x}_s, \ldots, x_j, \ldots] [x_s^{p^{r+1}}] \Leftrightarrow \Pi \bar{x}_i^{m_i} \Pi (\bar{x}_j + \alpha_j)^{m_j} F_d(1, \ldots, x_i, \ldots, \bar{x}_j, \ldots)] [\bar{x}_s^{p^{r+1}}].$$

Let

 $\Pi \bar{x}_{i}^{m_{i}+n}(h(\{\bar{x}_{j}\}))$

be a term in the expansion of $\prod \bar{x}_i^{m_i} F_d(1, \ldots, \bar{x}_i, \ldots, \bar{x}_j + \alpha_j, \ldots)$ with $\bar{x}_i \in X$ as variables and $k[\{\bar{x}_j; x_j \in Y\}]$ as coefficients. Note $p^{r+1} \nmid (m_s + n_s)$. Then clearly we have

ord
$$h \prod (\bar{x}_j + \alpha_j)^{m_i} \leq d - \sum n_i$$

Thus we have established the non-increase of the order of F. Note that in all previous discussions the order of F will not increase.

Now let us recall Proposition 2 for the discussion of Possibility (IV). In the following expression let $\bar{y}_s = \bar{x}_s + \alpha_s$.

$$(\bar{x}_s + \alpha_a)^{m_s} F_d(1, \dots, \bar{x}_i, \dots, \bar{x}_j + \alpha_j, \dots)$$

= $\bar{y}_s^{m_s} F_d(1, \dots, \bar{x}_i, \dots, \bar{x}_j + \alpha_j, \bar{y}_s, \dots)$
= $\sum \bar{y}_s^{m_s} g_I(\bar{y}_s) \prod_{j \neq s} \bar{x}_j^{n_j}$

where $I = (n_1, \ldots, n_j, \ldots)$ and $g_I(\bar{y}_s)$ is a polynomial in \bar{y}_s . We have at least one I such that

$$\bar{\boldsymbol{y}}_{s}^{m_{s}}\boldsymbol{g}_{I}(\bar{\boldsymbol{y}}_{s}) \in k[\bar{\boldsymbol{y}}_{s}^{p^{r}}] \setminus k[\bar{\boldsymbol{y}}_{s}^{p^{r+1}}]$$

Say, $\bar{y}_s^{m_s}g_I(\bar{y}_s) \in k[\bar{y}^{p^r}] \setminus k[\bar{y}^{p^{r+1}}]$. Moreover we have

deg
$$g_I(\bar{y}_s) + |I| \le d$$
 (in fact, $[d/p^r]p^r$. See Remark)

where $|I| = \sum n_i$. Now make the substitution $\bar{y}_s = \bar{x}_s + \alpha_s$ and expand the polynomial. It follows from Proposition 2 that in the expansion there is a term \bar{x}_s^c such that

$$p^{r+1} \nmid c, c \leq \deg g_I(\bar{y}_s) + p^r \leq d - |I| + p^r.$$

Moreover, it is easy to see that

- (1) the total degree of $\bar{x}_x^c \cdot \Pi \bar{x}_y^{n_j}$ is at most $d + p^r$ (in fact, $\lfloor d/p^r \rfloor \cdot p^r + p^r$. See Remark.)
- (2) $c \ge p^r, p^{r+1} \nmid c.$

Т.Т. Мон

Now we shall collect the polynomial in terms of \bar{x}_s as follows :

$$(\bar{x}_s + \alpha_s)^{m_s} F_d(1, \ldots, \bar{x}_j + \alpha_j, \ldots)$$

= $\sum h_i(\ldots, \bar{x}_i, \ldots, \bar{x}_j, \ldots) \bar{x}_s^i$

Then we have by (1) that

(3) ord $h_c \bar{x}_s^c \le d + p^r$ (in fact, $[d/p^r]p^r + p^r$. See Remark).

Now multiplying it with the remaining $(\bar{x}_j + \alpha_j)^{m_j}$, we conclude easily that

ord
$$\prod_{j\neq s} (\bar{x}_j + \alpha_j)^{m_j} h_c \bar{x}_s^c \leq d + p^r$$
.

Hence we have the following statement.

Statement: In the possibility (IV) after we blow-up the permissible center P, let ord $\tilde{F}=d_1$, then \tilde{F} has a term A with

- (i) ord $A \le d + p^r$ (in fact, $[d/p^r] \cdot p^r + p^r$. See Remark)
- (ii) $\operatorname{ord}_{\bar{x}_s} A = c \ge p^r \text{ and } p^{r+1} \nmid c$
- (iii) $d_1 \leq \text{ord } A \leq d + p^r$ (in fact, $[d/p^r]p^r + p^r$. See Remark).

The interesting thing is that now \bar{x}_s is an X-kind of variable due to the fact that m_s becomes zero. Furthermore, we shall use our Convention and call \bar{x}_s the last variable.

Let us assume that $d_1 = \operatorname{ord} A = d + p^r$. We may request that c is the largest one satisfying conditions (i), (ii) and (iii) in the leading form of \tilde{F} . Let us examine the further blow-ups. There are two cases: (1) $v(\bar{x}_s)$ is the only minimal. (2) $v(\bar{x}_s)$ is not the only minimal. In the first case, we have to factor out \bar{x}_s and do it without any translation. Due to the existence of the term A, the order of \tilde{F} will drop at least by c which is $\geq p^r$. Hence the order of \tilde{F} will drop to $d' \leq d$. Our proposition is proved in this case.

In the second case, we simply note that if by factoring out \bar{x}_1 (which is not \bar{x}_s) and then translating (i. e., replace \bar{x}_s by \bar{x}_1 ($\bar{x}_x + \alpha_s$)) the order of \tilde{F} will not increase (c. f. Possibilities (I), (II) or (III)). If the order of \tilde{F} drops by further blow-ups, we may assume that $d_1 = \operatorname{ord} \tilde{F} < [d/p^r] \cdot p^r + p^r$ from the very beginning.

Let us assume $d < d_1$. Then the following inequality

$$d \leq d_1 \leq [d/p^r]p^r + p^r$$

implies

972

 $p^r \nmid d_1$.

Let r_1 be defined by

$$p^{r_1} | d_1$$

 $p^{r_1+1} \not\mid d_1$.

Then $r_1 < r$. We conclude easily that the new bound for ord \tilde{F} after blow-ups will be

$$d_1 + p^{r_1} < d + p^r$$
.

Repeating the above argument, we establish that $d + p^r$ is the upper bound for orders for all successive blow-ups until the order becomes less than or equal to d. Q. E. D.

References

- [AM1] S. S. ABHYANKAR AND T. T. MOH, Newton-Puiseux expansion and generalized Tschirnhausen transformation I, Journal für die reine und angewandte Mathematik, 260 (1973), 47-83.
- [AM2] _____, Newton-Puiseux expansion and generalized Tschirnhausen transformation, II, Journal für die reine und angewandte Mathematik, 261 (1973), 29-53.
- [H] H. HIRONAKA, Idealistic exponents of singularity, "Algebraic Geometry," Johns Hopkins Univ. Press, 1977.
- [M] T. T. MOH, On two fundamental theorems for the concept of approximate roots, J. Japan Math. Soc., 34:4 (1982), 637-652.