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Polynomial Growth or Decay of Eigenfunctions of
Second-order Elliptic Operators

By

Jun UcHivAMA*

§ 0. Introduction

In this paper we shall study the asymptotic behaviors as |x|—>cc
of the not identically vanishing solution u(x) €H%.(£2) of second-
order elliptic equation in an unbounded domain 2= {x| |x| >R}
CcR"

1,5=1

+ (g1 (%) +g2(x))u(x) =

where the matrix (a;; (x)) is uniformly positive definite, b; (x) (1<i
<n) and ¢, (x) are real-valued functions, and ¢,(x) is a complex-
valued function. In case a;; (x) =0,; (Kronecker’s delta) we state the
main parts of the assumptions: there exist some constants a, 8, 7, »
satisfying 8, >0 and 2-28<y<{min {2, 2a} such that

lim sup 7*7%[73,q,(x) +7¢:(x)

7—>00

= Z(——-h/—l b, <x>)a,,<x>( FV=T by Juo)

U { g o) 5L 1B 10,

where B(x)=(atb,-(x)—3,-b,~(x)) is an nXn matrix. Moreover there
exist some constants 0<{a<{l, —o0<(0;< o0, (>0, 9,<3—2 such that

S (ql)_lwlzdxéag leizdx—I-CS Pw|2dx  for any w(x) €C5(Q),
2 Q2 2
(Re[g,]) - (x) <Cr” for |x|>R,,

where (f)_(x) =max{0, —f(x)} for a real-valued function f(x). More
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detailed conditions are stated in §l. Then by Theorem 1.3 in §l
we have for any ¢>0

hm lnf Ra+max(0,dl,6z)S
R—>oo R<|x|<R+e

Moreover if a+max {0, d,, §,} <1, then u(x) €L3*(2).

This result can be recognized as a generalization of Kato [5],
Agmon [1, Theorem 3], Agmon [2, Theorems 3, 4 and 5], Ikebe-
Uchiyama [4], Uchiyama [7], Mochizuki [6], Eastham-Kalf [3,
Theorems 6.3.3 and 6.4.2] and Yamada [12] from following points
of view. [1] and [12] did not give their own complete proof. The
term a,;(x) is lacking in [5], [1], [2], [7], [3] and [12]. The term
b;(x) is lacking in [5], [1], [2] and [7]. In [5], [2], [4] and [12]
it was assumed that ¢;(x) <0 for r>R,. So they are not applicable
to atomic type many body potential treated in Example 5.3 and
Remark 5.4 in §5. In [5], [4], [7] and [6] 0, was restricted to satisfy
0,<0. Except for [1] and [3, Theorem 6.3.3], it was difficult to
treat Examples 5.1~5.8 in one theorem. But in [3] only the case
B=1 was treated. So in order to show u(x) &L%(f2), they assumed
0,<1 and d,<—1, which was needed to satisfy a--max{0,d;,d;} <1
(noting 2-28=0<y<2a). And in case 6;>1 they needed another
theorem [3, Theorem 6. 4.2], which corresponds to Example 5.1 in
§5 and [2, Theorem 5].

Here we note that [1], [2], [7] and [12] treated the critical case
2-28 <y<2a and they gave better estimates than ours under more

lu(x) |2dx>0.

strict conditions on ¢,(x) and curl b(x).

The introduction of >0 in the above assumptions can be found
in [1]. Other articles treated only the case g=1 (i.e. 2-28=0),
and are not applicable to Example 5.2 in §5. Such conditions depend-
ing on B are also found in Uchiyama [8,9,10], which deal the
exponential decay of u(x) at infinity.

In §l the Assumptions and main results are explained. §2 is the
preliminary stage of the proofs of the theorems. The identity given
in Lemma 2.8 is fully used in §3 and §4. In §5 we give several
applications of Theorems 1.3 and 1.4. Some of Examples in §5 were
also considered in [8,9,10] which showed

Em exp {R%} S lu(x) |2dx=+4+o0  for any >0,

R<|x]1<R+1
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But here for such solutions u(x) we shall show that

lim inf R/‘g
R—co R<|x|<R+1

lu(x) |2dx>0

holds, and we shall calculate p.

§1. Assumptions and Main Results

At first we shall list the notations which will be freely used in the
sequel, and are the same as given in Uchiyama [8].

Notations:

&, =&+ +E&,7, for £=(&,...,60,7=0n ..., 7)) EC";
161 = (<&, ENM for £eCr;

£=x/|x| and r=|x]| for x=(xy,...,x,) ER";

0;=0/0x; and d,=0d/0r;

D;=d,+V—1 b;(x) and D=(D,,...,D,) ;

Vf=(0.f,...,0,f) for a scalar valued function f(x) ;

div g=0,¢+ - +0,8, for a vector valued function g(x)=
(CACI R ACDE

A=A(x) =(a; (x)) is an nXn matrix ;

B=B(x) =curl b(x) =(0;b; (x) —0;b;(x)) is an nXn matrix;

(f) :(x) =max {0, £ f(x)} =0 for a real-valued function f(x) ;

suppl[f] denotes the closure of {x|f(x)=0};

C/(£2) denotes the class of j-times continuously differentiable func-
tions ;

Ce@)={f(x)| for any j=0, 1, 2,..., f€C/(2) and supp[f] is

a compact set in £} ;

L@ = (@ 1§ 17 Pdx<ool  for p21;
Ly () ={f(x)| for any compact set KCQ,S | f(x) |%dx<oo} for
k
p=1;
H™(2) denotes the class of L%-functions in £ such that all distri-
bution derivatives up to m belong to L*() ;

Hpr . (2) denotes the class of LZ.-functions in £ such that all
distribution derivatives up to m belong to L%.(2) ;

(Sm=: “&ﬂ=s>f(x)d5=Slxl:tf(x) d5—§m=sf(x)d8,
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Next we shall state the conditions required in the theorems.

Assumptions:

(AD)
(AZ)
(A3)
(A4)

(A5)
(B1)
(B2)
(CH
(G2)
(C3)
(DD
(D2)
(E)

(F)

(F1)

(F2)
(F3)

(F4)
(F5)
(GD

each a;; (x) €C*(2) is a real-valued function;

a;;(x) =a;(x) ;

a;;(x) >0;; as |x|—>o0;

there exists some constant C;>1 such that for any x€Q
and any §€C" we have

Crt1€12<4 (0 &, <G €25

0ja;;(x) =0(r™") as |x|—>o0;

each b;(x) is a real-valued function;

for any weHL.(2) we have |b;|%|w|?, |0:;|?|w|?€ L. (2);
¢:(x) is a real-valued function;

for any weHL.(2) we have |¢| |w|?€LL.(2);

for any weH}.(2) we have |[Fgq| |w|?€LL.(2);

g,(x) is a complex-valued function;

for any weH},.(2) we have |g,| |w|?eLL.(2);

2 is a domain in R" and there exists some constant R,>1
such that 2D {x| |x|>R};

there exist some constants a, 8, d, 7 satisfying 0<{0<8, >0
and some real-valued function 7(x) €C'(£) such that (F1)
~ (F5) hold.

aZ—é—r(x)—l—B for |x|>Ro;

2—2B84+0<y(x)<2—0d for |x|>R,;

lim sup 722 [rKA(x)Vq,(x), £>+7(x){A(x) %, %>, (x)

r—oo

1
+ ) (sl 1

g AW AW B AD % B A® 1<
0,0,a;;(x) =0(r*7?)  as |x|—>o0;
Vr(x) =o0(r®) as [x|—o0;

there exist some constants 0<{a<l, —o0<(6,<co and G,>0
such that for any weCy(2) we have
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S (ql)_lwlzdeaS |l7w|2dx+028 rsllwlzdx;
2 o 9

(G2) there exist some constants 6,<B8—2 and C3;>0 such that for
any |x|>R, we have
(Re[gs]) - (x) <Cy%,
where Re[z] means the real part of z&C.

Now we have the

Theorem 1.1. Let u(x) satisfy
—<D, ADuy+ (g:(x) +¢>(x))u(x) =0 in Q,
(*) julx) EHke (),
supplu] is not a compact set in 2 (closure of 2).
Let conditions (A)~(G) hold, Then we have

lim inf R“S‘ _ LIADu, £ 17+ () ) [ 11480,

R—>c0

and for any e>0

lim inf R

R->o0

+max{0,d,,8,}
A ZS Ju|2dx>0.

R<|x|<R+e

Corollary 1.2. Let u(x) satisfy (*), and let conditions (A)~ (G) hold.
If
a+max {0, d;, 0,} <1,
then we have u(x) €L*(2).

Now we shall consider the more special case under the weaker
conditions.

Theorem 1.3. Let u(x) satisfy
_<D5 Du>+ {91(96) +(Zz(x)}u(x) :0 7:” ‘Q:
(**) 1 ueHL (D),

supplu] is not a compact set in Q.

We assume (B)~(G) with a;;(x) =0;; except for (C3). Instead of (C3)

we assume
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(C3)" for any wE H}.(£2) we have |0,q,| |w|*E L (2).
Then we have

lim inf R“S' KD, £ 4 72+ (@) - [u[71dS>0,

R->00

and for any €>0

llm 1nf Ra+max(0. 61. 62) S
R0 R<|x|<R+e

|u |2dx>0.
Moreover if
a+max {0, d,, 3,} <1,

then we have u(x) &L*(Q2).

Lastly we shall consider the most special case under the weakest
conditions.

Theorem 1.4, Let u(x) satisfy

—du(x) + {g1 (x) +¢, (D) }u(x) =0 in 2,
(%) 1 ueHE(2),
supplu] is not a compact set in 9,
where 4 is a Laplacian in R*. We assume (C)~{(G) with a;(x) =0,
and b;(x) =0 except for (C3), (F2) and (F5). Instead of (C3), (F2)
and (F5) we assume (C3)’, and
(F2)" 2—2B8+0<y(x) <2;
(F5)" 0,7(x) =0(*™) as |x|—>co and
|7 —20)r(x) | < {2—7 (0 }%p (x), where p(x)=0(r*) as

|% |00,

Then we have

lim inf R“Sle:R [0, 24 2+ (g -} lu|71dS>>0,

R0

and for any ¢>0

lim inf R

a+max{0, 51,62}
R0

|u|2dx>0.

R<|z|<R+e

Moreover if
a+max{0, 9, d,} <1,
then we have u(x) €L*(92).
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Remark 1.5. (F2)" and (F5)" are weaker conditions than (F2)
and (F5). In fact y(x) =2 (constant) satisfies (F2)’ and (F5)’, and
does not satisfy (F2) and (F5).

§2. Preliminary Lemmas

In this section all the conditions (A)~(G) are assumed. And
let u(x) satisfy (¥).

Lemma 2.1. We have
(1) <A(x)% %>=1+0(l) as |x|—>oo,
(2) 0;KAXx) %, %)) =0(¢1) as |x|—>co, and
0; KA(x) %, 2> =0(r™!) as |x|—>oco,
3) 0,0; KA(x) %, 2>) =0(r*?) as |x|—>co, and
9;0; KA(x) %, 2>7V)=0(r*"?) as |x|—>oo,
@) div(A@) D) =m@—Drt+o@G™) as|x|—>o,
(B5) 9;(div(4(x) %)) =0(r*%) as |x|—>o0,

Proof. Noting (A3), (A5), (F4) and S>>0, we have the asser-
tions by direct calculations. In fact we have

A%, 2>=14+<(A—E) %, %,
where E= (9;;)is the nXn identity matrix,

V(A% #0) =X(FA) %, £>+2 " {(A—E)5— K (A—E) %, )},

D

0; ,-(<AJ%, ’e>)=“2:1{(aiajakz () 22, + (0:a3, (x)) 0, (%, %)
+(ajakl (%)) 0, (%, %)) +ay (x)aiaj (’ekfz)}s
0;%=0("") and 0,0;%,=0(r"?) as |x|—>oo,

div(d£) =(m—1)r 1 +div{(A—E) %},

0;{div(4%)} = “Z;[{a,. Oray (%)} %, + {040, (x)} 0, %,
+ {aiakl (x)}akft‘*'akz (%) 0;0,%,]. U

Lemma 2.2. For any x&2 and any §=C™ we have
CA)E, E)—<CA(x) 2, 2> [KA(x)E, 2|2
=4 (x) {£—#{A(x) £, > KA(x) &, £},
{E—#A(x) %, 2074 (x) &, 2>} >=>0.
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Proof. By direct calculation we have the assertion. [l

Lemma 2.3. There exist some constants R, >R, and C,>0 such that
Sor any real-valued function ¢ (r) €C}(R,, o0) we have

SQ¢<r>2{|Du|2+(ql>_luIZ}dxsaSQ TP ()2 4 ¢ (1)?) |u .

Proof. By (A3), (A4) and (Gl), there exist some R;,>R, and
¢>0 such that for any r>R; and any §€C" we have

(1—-) |62 <A, < (1+9) €17,
(1—e)2—(14+e)a>0.
Since u(x) satisfies (*), we have by integration by parts for ¢(r) €
Ci(Ry, )
0:ReSQ[—<D, ADu+ (g1 +42)uld (N 2u(x) dx

= SQ [#2<ADu, Du>+2¢¢'Re[{ADu, £>i]
+ % (q1 +Re[g, 1) [u|*]dx
> SQ [$2<ADu, Du>—e¢*< A%, >~ |<ADu, £>?
—e K AR, £ |u 2— ¢ {(q)) -+ (Re[g,]) -} |u|*1dx
>0 giDupar—{ [+ 92 lulr+ 6@ +Co™ lulfldx,

where we use Lemma 2.2, For any >0 let u,(x) = {|u(x) [2+9% 2
Since |u|<|u,| and u,Vu,=Re[aVu]l=Re[aDu], we have

\Vu,| < |Dul,

& (ru,(x) e HY(2),

supp[é(r)u,(x)] is a compact set in 2.

By (Gl) and limiting procedure we have for any weH(2) satis-
fying that supp[w] is a compact set in £

S (ql)_lwlzdxéag IVw]zdx—l—CZS 7w |,
2 Q2 2
Then we have
Sg () 6% |u, Izdxgagg 7 (du,) lzdx+CZS 7L | gu, |%dx
ol
S(l—l—s)aS ¢2[Du|2a’x+g 11 +e)ag?
o] Q

+C "¢ |u, [,
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Let 7} 0. Since ¢;=L},.(2) by (C2), we have by Lebesgue’s domina-
ted convergence theorem

[ @ e +9a] g71Du s
+SQ (7 (1 +6)ag?+Cyr'i¢?) |u %dx.
Then we have
| o iupan<cd o™ g 67 pupias,

where C;={(1—¢)2— (1 +&)a} 'max {C,+Cs e (1 +e) (1 +a)}. There-
fore we have

(o 0Dul+ @ wax<c§ ™97 ulan,

where C,=Cs5+ (1 +¢)aCs;+max {C,, e (1 +¢)a} >0. O

Lemma 2.4. There exists some constant Cs>0 such that for any real-
valued function {(r) €C'[R,, o) satisfying

g rmax(ﬁl.ﬁz)c(r) 2 lu(x) |2dx <°°7
|xl>R1
S &) ulx) [Pdx<oo,

|x!>R1

lim infg
f—>o0 t<iz| <t+1

C(r)?|u(x) |"dx=0,
and for any R>R, (where R, is the one given in Lemma 2.3), we have

S L) {|Dul*+ (q) _ | ul? dxsceg (P ey |y |2
[x]>R+1 R

121>
+ csg 22 |u |%dx.
R<|z|<R+1

Proof. For any R>R; and t>R+2 we choose &z (r) €Cy(R, 1)
satisfying &x(r) =1 for R+1<r<t—1 and 0<&x(r) <1 for R<r<t.
At the same time we can assume that there exists some constant C;>0
such that for any R>R;, t>R+2 and r>R, we have |é%(r) | <G,
Then by Lemma 2.3 we have for any R>R, and ¢t>R+2, noting
Er(r) =0 for R+1<r<t—1,
C)2{|Dul®+ (g0 - |ul?}dx

SR+1<I:! <t-1
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sSg (D)2 {1Du 2+ (g) - |u |3 dx

IA

C‘*S,, O (D) (Bl +ERLDY |u|%x

IA

048 (Tmax{dl.62)cz+2clz) Iu |2dx
R<z|<t

+2(:4c;{g 2 |2a’x+S Cultds).

R<|z|<R+1 t-1<l]z| <

Letting t—co along the suitable subsequence and letting C;=max
{2€,, 2C,C% >0, we have the assertion. ]

Definition 2.5. For real-valued functions p(r) €C*(R,, ), f(x)
eCY(2) and g(x) €CY(2), let

v(x) =e*Pu(x),
ki(x) = — {p (N} XA (x) %, £,
ky(x) =p" (r){A(x) %, 2>+ 0" (r)div {4 (x) 4},

Ft;p, f,0) = SMJ Fx)<A(x) %, £>(2€A(x) %, 2> |<ADo, £>|?
—<ADv, Dv>— (g, +ky) |0|% +g(x) Re[<ADv, £>5]1dS.

The meaning of F(t;p, f,g can be cleared by Lemma 2.8.

Lemma 2.6. We have for t>R,

F:o, f0) =62”(”S | [f(x) (2 KADu, £>|2—<A%, £><ADu, Du)}

+ {20" K A%, 2>+ g} Re[{ADu, %>a]
+ {2fpK A%, 22+ (g0’ — fq) <AZ%, 2D} |u|?]dS.

Proof. Noting Definition 2.5 we have the assertion by direct
calculation. ]

To prove Lemma 2.8 we use the following.

Lemma 2.7. Let w, dwe L. (2), where 0w is the derivative in the
sense of distribution. Then for any t>R,, S £awdS exists (by choosing
|x]=t

suitable representative for w, if necessary), and we have for any t>s>R,
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S aiwdx=g aéiwdS—S .0dS.
s<lzl <t |x]=t Ixl=s

Proof. See Eastham and Kalf [3, p.239]. U
Lemma 2.8. For any t>s>R, we have

F(t;p, f,8) —F(s;p f,8
- SKM [2Re[<ADy, V fX ADv, #51+ (g—{AV f, #>

— fdiv (A%)}<A%, £>71|[<ADv, > >+ {2r ' fXAZ, £
+g—<AVf, 2>— fdiv(A4%)} {<ADv, Dv>
—<{A%, 7>V |<ADv,#>|% + 2~ f {|ADv |2—< A%, £>XADv, Dv>}
+2fRe[{({A4ADu,V>4) Dv,#>] — f Re[ (%, 4V >A) Dv, Dv>]
—2fRe[V—14ABAz, (Dv— %A%, >~ ADv, £>) >7]
+2fRe[KADv, £>q,0] +Re[{ADv, Vg>o] + {(g—<AVf, &>
—fdiv(4%))q,— KAV q,, %> +gRe[q,]} |v|*1dx
+ SMQ [40'f|<ADv, 251742 (fk,+g0") Re[<ADs, £57]
+ {(g—< AV f, £>— fdiv (A%)) ky— ATk, £+ gks} |0 ]71dx.

Proof. v(x) EH%OC(ERO) (, where Eg= {x| |x|>Ry},) given in Defini-
tion 2.5 satisfies
—<D, ADv>+20 (r){ADv, %>
+ {(q1(x) +k1 (%)) + (g2(x) +k2(x)) }o(x) =0

for r>R,. Noting (AD), (A2), (B1), (B2), (Cl), (C2), (C3), (DD)
and (D2) we apply Lemma 2.7 to

0 =ReS [—<D, ADv>+20<ADv, >+ {(q1+ky) + (ga+k2)} 4]

s<lzi<t
X [2f (x){ADv, %>+ g(x) 5]dx.
At the same time we note
D;D,—D,D;=\—1{8,(x) —d,b;,(x)},
2Re[<{D,Dw, ADw>] =8,(ADw, Dw>) —{(8,4) Dw, Dw>,
{ABA#, >=0.

Then we have the followings :
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—-2ReS <D, ADs) fCADy, i>d

s<|x]|

——2({ =\ )sKKaDs 2 1us
|z] =t lzl=s
+S . [2Re[<ADy, FfXADw, £51+2f(|4Do "
— |<ADv, #y|?) +2fRe[{({ADv, V' >A) Dy, £)]
+2f {,' kil=1 (ADU) ,-J?kaHD,'Dlv} ]dx,

ZRCS g tf{ kZ'::l (ADv) ;%ya, DD} dx
={ 1K APy <ADy, DoY) — K (<4, A7) Do, Doy
s<|z| <t
—2fRe[V—1{ABA%, (Dv— #{A%, )" ADv, %)) >7]1dx,

(& 47> AD, DoY) ds
s<|xl<t

= =\ ) sas 24Dy, Didas

—S AT, 2 fdiv (49)}<ADs, Dopds,

2ReS (g + k) o f<ADv, £5dx

s<lxzl<t

= (S —S ) f[KA%, £ (1 +ky) |0 ]S
|z =¢ 1zl =s
B Ss<lx! <t [ {<A7‘f’ .?2> +fle (AJ?)} (91+/€1)

+ AV @4k, ) [ol'd, ~Re{ <D, ADopeo d

s<lzl<t

:-(SH —S Y2 Re[<ADv, £551dS
x| =t lx]=s
+S __ [Re[<ADy, 7g)0] +(ADs, Dodldx.
s<lxzl <t
So we have the assertion.

Definition 2.9, Let
G(x;0) = (2a—7(x))<{A%, £)7* [{ADv, £> |24 (2—71(x)) {<ADv, Dv)
—{A#, #>71[<ADv, £) |3 +2rRe[{ADv, 7 ({A%, £>71) Y ADv, £>]
+2{<A%, £~ |ADv|*—<{ADv, Dv}}
+2r{A%, #)"'Re[{ ({ADv, V'>A) Dv, £>]
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—r{A%, #>'Re[{({%, AV>A) Dv, Dv)]
—2¢A%, 2> 'Re[V—1<{ABAx, (Dv— %A%, )" ADy, %)) >7]
+92r{A%, > "Re[{ADv, £>qv] + (a—1) gy(x) r 'Re[<{ADv, %>7]
+Re[<ADu, Vgopo] + {g,(x) Re[gq,] —7<A4%, 2> KAV q,, £)
-1} v l%
where
& (x) =a—7(x) +r{A%, 2> 'div (4R) +r{AV ({A%, 2>7V), £).

The meanings of G(x;v) and gy(x) given in Definition 2.9 can
be cleared by the following. The choice of f(x) and g(x) given in
the following are the same given by Mochizuki [6].

Lemma 2. 10. we have
(1) for t>s>R,
F(t;p,<{A%, 2>7r% go(x) 7o) — F (s 0, A%, £>7r%, go(x)r27Y)
=S G Giw) +4prCA%, 27 KADs, 2 P
~1's—2lx{r<‘o”-i—rp'<A92, £>7Mdiv (4%) + g’} Re[{A Do, #)7]

+<A%, 25 {y (x) p%+2rp'0" — 1AV (A%, £>71) , %)
+ 200" + g0’ A%, £>Mdiv (42)} |v [2]dx,

(2) gx)=n+a—1—y(x)+o0(l) as ix|—co,
(8) FVgo(x) =01 as |x|—>oo.

Proof. Noting Definitions 2.5, 2.9 and Lemma 2.8, we have (1)

by direct calculation. (2) and (3) are also obtained by >0, (A5),
(F5), Lemma 2.1 and Definition 2. 9. ]

Lemma 2.11. There exist some constants C3>0 and R,>R, such
that for any r>>R, we have

G (x;0) 2Cs([<ADv, £ |2 +1r%72 {0 |?)
and for any t>s>R, we have
F(t:;0, <A, )7, go(x)r*™Y) — F (5350, CA%, 2>77%, go(x)r*™Y)
zcgg re-1[ [(ADo, £5 |2+ |y |?]dx,

s<|zl<t

Proof. Noting Lemma 2,10, we have only to show the former
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part of the assertion. In the sequel ¢(r) (i=1,2,...) means a posi-
tive function for r>>R, which tends to 0 as r—>oco. Noting (Al)~
(A5), Lemmas 2.1, 2.2, and 2.10 and inequality

KA )&, 7> | KA &, VKA () g, )2 for any x€8,§,7€C™,
we have the followings:
2rRe[<ADy, V ((A%, £>7) )}ADv, £] > —¢ (r) (ADv, Doy,
2 {<A#, £#)71| ADv |*—{ADv, Doy} = —&,(r)<4Dv, Do),
2r{A%, £)"Re[(K4Dv, V' »A) Du, 5] > —¢5(r) CADv, Do,
—r{A%, #>"Re[{ ({#, AVYA) Dv, Dvy] > —e,(r) {ADv, Dv},
—2{A%, #)"'Re[V—1<{ABAx, (Dv— #{A%, £ ADv, %)) >7]
>—2|v|<A%, 2> ABAx, BAx )Y A(Dv— % (A%, £)"'ADw, £)),
(Dv— %A%, 2>~ ADv, £)) Y?

> __2_1‘%;‘)_ {<ADv, Doy—< A%, £5~|<ADv, £> |3
RS AP
gy A% K ABAx, BAx) ol
<A, 25 Re[<ADy, £349) = — S5 B <3, 85 [<ADo, £
—%Lgéi—gm, 7 g 013

(e —1) ggr 'Re[{ADv, £30] > —r=8 A%, 2>~ |<ADv, £>|?
—47 a—1)2 g |7r*~% A%, %> v |,

Re[<ADuv, Vgy7] = —e;(r) {<ADv, Duy+1*2p |},

goRe[g,] = — m@‘m, %> rg, IZ_"‘Q%@‘M, £ 1&g |2

By (F), (F1), (F2), (F3), and Lemmas 2.1 and 2.10, there exist
some constants ;>0 and R,>R, such that for any r>>R, we have

2 —1(x) ——ff’jr—‘(%—r-ﬁ—;ei (1) =CC,,

2100 — 2T — 5 2cC,

—| 7<A%, 2>KAV gy, 2> +7(x) g
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+ A4 gt
20 —7(x)
)
e CA%, 2> % ABAx, BAx)
—4 Y a—1)?|gy | KA%, £)rF2—e5(r) r¥#~2

- 20T a5, oo o2 G

<AJ‘(:‘, ’e>_1 !qu |2

-+

where C; is the one given in (A4). So, by Definition 2.9 and <{ADy,

Do) =< A%, £>7|{ADv, £) |*+ {{ADv, Dv)— (A%, £>71|<{ADv, £>|%, we
have the assertion. O

Remark 2.12. Under the assumptions in Theorem 1.1 we have
also G(x;0) 2Cs(|Dv|*+ 7*#2|v|?). But considering the proof of
Theorem 1.4, we formalize the statement given in Lemma 2,11,

Lemma 2.13. For any constant [>27'(2—lim inf 7(x)) =>0/2>>0,

there exists some constant R;>R,(, where R, is the one given in Lemma
2.11,) such that for any t>s>R; and any m=>1 we have

F(t;mr', (A&, 257, go(x)r*™Y) > F(simr', {A%, 2>7r%, go(x)r1),

Proof. Let

p(r)y =mr',  f(x) =CA%, )7 g(x) =go(x)r*7%,
Then we have
40'r{A%, 2> |<ADv, > |2=4mir'{A%, £>7* |<ADv, %> |3,
2(rp" +rp’ (A%, 2> div (A%) +go0") Re[{4Dv, #>7]
=2milr' I — 1 4+r{A%, #>7'div (4%) + g} Re[{4Dv, £>7]
> —mlr'{A%, £>71|<ADv, 2> |?
—mir' ¥ A%, 2> {{— 1 +7{A%, 2> 'div (4%) +g} v %
7074210 0" —ro* AV (CA%, 2571, 2D+ gop” +200' (A%, £)>7Mdiv (A7)
=mAH? 221+ (x) —2—r{AV ({AZ%, £>7Y), 2D}
+ gimlr'=?{l—1+7r<{A%, £>~'div (4%)}.

By Lemmas 2.1 and 2,10, there exists some constant R3=>R, such
that for any r>>R; and any m>1 we have

mirt (20 +7(x) —2 —r{AV ({A%, 2571, £5)
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+g{l—1+7¢A%, £y~'div (4%))
— A%, 2 {I—1+1<A%, 2>~ div (4%) + g5} 2>0.

So, by Lemmas 2.10 and 2,11, we have the assertion. O

§3. Proofs of Theorem 1.1 and Corollary 1.2

In this section we assume Assumptions (A)~(G). And let u(x)
satisfy (*). Keep in our mind that we intend to prove Theorem 1.1
by contradiction.

Lemma 3.1. If

lim inf R“S [1<ADu, £ |2+ {r2+ (g) _} |u|?]dx=0,

1%]=R

then we have for any m>0

(o PLDul (14 @) ) fuld<oo,
x> 0

R

lim inf RmSlxl:R[IDum {1+ (g0 _} lu|2]dS=0.

Progf. We have only to prove the former part of the assertion.
At first we show

(T) . S, - [rm5+a—1 |<ADu, x> |2+r<’"+2)‘5+“'3|u|2]dx<00
*i>XKp

for m=0,1,2,...,by mathematical induction. By Definition 2.5 and
Lemmas 2.1 and 2.10, there exists some constant C;>0 such that
for any t>R, we have

F(t;0, A%, )7, go(x)re 1)
=zﬂSm=t [2¢A%, £5-'|<ADu, £> |*~<{ ADu, Du>
+ g Re[<ADu, £>@] —q, |u|?1dS
<Cu{ [IKADu, £ 17+ {72+ (g -} |ul?1S.

lxl=¢

Then by assumption we have

lim inf F(¢;0,<{A4%, £>7r%, g (x)r*~1) <0.

t—>o0
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Therefore, letting t—oo along the suitable subsequence in Lemma
2. 11, we have for any s=>R,

CsS [r*t [<ADu, £ |2+ [u|*]dx < — F (530, {A%, £)7'r%, gor® ™),
1%]>s

which shows that (1) holds for m=0. Now we assume that (T)

holds for m. Then by above inequality, Definition 2.5 and Lemma
2.8 we have for any t>R,

ngt s(m+1ns—1djg [r*~1|<ADu, > |24 a+28-3 |y |2] dx
Ry

12| >s

t
< —S sVELR (550, (A%, £>7r%, gor* ) ds
Ry

=S rmr0B+a-1[¢ A Dy, D>+ gy |u |2 — g "Re[{ADu, £>i]
R2<|I|<f
—2{ A%, £>7|{ADu, > |*]dx
=F(t ;0, 0’ r(m+1)/9+a—1) —-F(RZ;O,' 0, r(m+1)ﬂ+a—1)
__S r(m+1).3+a—l[2<Ax"., "2.>—1 [<ADU, )2> 12
R2<lx!<t
+ {2+ (m+1)B+a—1}r*Re[<{ADu, #>@] +Re[qg,] |u|2]dx.
Noting f>0, (G2), Lemmas 2.1 and 2.10, and (?) for m, there
exists some constant C;,>>0 such that for any {>R, we have
_S r(m+1)ﬂ+a—1[2<A’2., "2.>—1 |<ADu, x'.> |2
Ry<lz<t

+ {go+ (m+1) f+a—1}r'Re[<4ADu, £)a]+Relg,] |u|*1dx
SS] TR BT AR, £ (g (m 1) b= 1524 Cor 2] u
* 2

SCIOS y(m+2)8+a-3 Iu !zdx<oo,
lx|>R2

By Definition 2.5. we have
F(t : O, 0, r(m+1)@+a—1)

S2—1S [rmﬁ+a ]<ADu’ x‘> Iz+r(m+2)ﬁ+a—2 |u IZ]dS.

|x1=¢
Then by (1) for m, we have
lim inf F(z;0, 0, rm+bete1) <0,

t—>o0

Therefore
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4 oo>Sw s(m+1)ﬁ—1dsg [ra—-l |<ADu, £> |z+ra+za-3 lu|?]dx
1x|>s

Ry
S S
(m+1)B
which shows that () holds for m+1. Letting in Lemma 2.4 {(r)
=r"2 and noting (1), we have the former half of the assertion. []

S (r(m+1)ﬁ__R;m+1)ﬂ) [ra—l |<ADu’ ’2> |2+rd+2ﬂ—3 Iu lZ]dx’
121> Ry

Lemma 3.2, Let

lim inf R"‘S _LI<ADu, 25 P+ -2+ (g -} [u|1dx=0.

R—oo x|

Then for any 0<I<B and any m>0 there exists some constant R, >R,
(, where R, is the one given in Lemma 2.11) such that for any t>s>
R, we have

e"“lglxl=t<A£, 5l IzdS_<_e"‘"Slxl=s<Aae, £ |u|%S.

Proof. For 0<I<B and m>0 let a(r) =27 (mir'+n). By Lemma
2.1 there exists some constant Rs=>R, such that for any r>R; we
have n>r{A%, £)"'div(4#£). Then for any t>s>R; we have by integra-
tion by parts

<§, | ~§ e g, £ luis
x|=t |xl=s
=S ™ [2Re[<ADu, £5@] + {mir'-'C A%, £>+div (4%)} |u|*1dx
s<|z| <t

szg'em’drs [Re[<ADu, £5] +7-'a (r)<A%, £ |u |2]1dS.

|xl=7
So we have only to show that there exists some R,>R; such that
for any ©>R, we have

S| . [Re[{ADu, 2>a] +rta(r)<{A%, £ |u|?]1dS<0.

For p(r) =a(z)log r and g(r) =r~%® we have ¢*Pg(r) =1, ¢*g(r) o’ (r)
=r7la(r), &) +2g()p' (r) =0, k(x)=—a()r XA% %> and k,(x) =
—a(t)r X A%, ) +a(r)r'div(4%) by Definition 2.5. Therefore by
Lemmas 2.6 and 2.8 we have for #;,>7>R;

(.., ReADu, 2311+ r-tae) <%, 25 1u171as



PoLYNOMIAL GROWTH OR DECAY OF EIGENFUNCTION 993

=F(t;;a(z)log r,0,r %) —F(r;a(r)log r, 0, r 2®)
=S 72 [ ADv, Do>+ {gi+ Re[g]} [o|?
<|x| <ty
+a()r?{r div(Az) —{AZ%, £>—a(t){A%, >} |v|*]dx

t
= —S s7 @O UE (s5a () log 1, (AR, )7, gr* ™)

4

+2Casf+ﬂ‘zg (A%, #5 |0 |%dS) ds,
o

1%]
+ S r2©[2{A%, £>"1|{ADv, £) |2+ gyr—'Re[{ADv, 7]
<|x]| <t1

+ {Re[g,] +a()r2(r div(4x) —<4%, £>)
+2Cyr* XK A%, %)} |v|?]1dx,
where C; is the one given in (G2). By (G2), Lemmas 2.1 and

2.10, and 0<7/<B, there exist some constants R;=>R; and Cy; >0 such
that for any r>t>R; we have

2K Az, 2>71|[<ADv, 2> |*+gr'Re[{ADv, %>7]
+ {Re[go] +a(x)r2(r div(4x) —<Az%, £>) +2Cr*X A%, £} |v |2
> (—871glr X A%, > +2CL A%, £>rF2— (Re[g,]) -
+a()r2(r div(4%) —<A4%, #))} |v|?
> (271Cyr*2—Cyr'=?) | 0] 2>0.
Noting for £,>s,>R;

(S —S YrtE=2 A 2> |0|%dS
lzl=t, izl=s;

re+8-2[2Re[ADv, £>0] + {div (4%)

+ (a+B—2)<A4%, £>r"} |o|*]dx,
we have by Lemma 2. 10 for #, {,>s, >t >R;
F(ty;a(v)log r, A%, £>7r%, gor*™1) —F (sy;a(z)log r,{A%, 2>7r%, gr=D)
+203(S —S Yret5-2 Az, £ v |%dS
5=ty Jisi=s,

UG (x;0) +4a(r){A%, 2> |[<ADv, £ |?

Ssl<|x| <t2
+2a () r g+ 1< A%, £>7'div (A%) — 1} Re[{ADv, £7]
+a(r)<A%, 2or 2 {(y(x) =2 —1<AV (A%, £>7Y), D) a(z)
—go+rgl A%, #>7'div (4%)} |v |2+ 4Cr*'Re[{ADv, £)7]
+2C0K A%, #> {r<{A%, > div (A%) +a+B—2} 2|0 |?]dx.
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Noting 0<{I/<{8, Lemmas 2.1, 2,10 and 2,11, there exist some con-

stants R;>max {R,, Rs} and Cp,,>0 such that for any r>t>R, we
have

G(x:;0) =Cer® 2|02,

2a(r)r~ {gy+1{A%, £>'div (4%) — 1} Re[KADv, £>7]

> —a(r){A%, 2> |[{ADv, > |2—Cp,r'~2|v|?,

a(z) A%, 2or 2 {(r—2—1r<AV (A%, £>7Y), £>) a(z)

— g+ 718k A%, 2> 1div (4%)} |v|?

2 _012721—2 'vl 2’

2CK A%, #) {r{A%, £>7'div (4%) +a+B—2}r’~2|0|2> —Cprf 2|0 |?,

4Cy* 'Re[{ADv, £>7]1 > —a(z) A%, 2>~1 |{ADv, 2> |*—Cr* %" |v |2
There exists some constant R,>R,>R, such that for any r>t>R, we
have

C?-2— G =2=1 — Cpy (=2 4122 4 1A-2) >0,

Therefore for any #,>>s,>t>R, we have

F(ty;a(r)log r,{A%, £)7'r, gr*™) +203§| 7ot A%, %) |v|%dS

xl=t,
>F(sy;a(r)log r,{A%, £)7r%, gr*™?) +203S ret =K A%, % |v|%dS.
lzl=s;

By Lemmas 2.1, 2,6 and 2. 10, for r>R, there exist some constant
Ry>R, and C;3>>0 such that for any ¢ >R, we have

F(t:a(@log r, <Az, 57172, gg==1) +203§ rot8-2( 4z %> |o |%dS

1zl=t,

scmt;““ﬂg [ [<ADu, £ [+ {r*2+ (g1) _} |u|21dS.

12l =ty

Therefore by Lemma 3.1 we have

lim inf [F(t;;a(r)log r, A%, 2>, gr")

ty—>o

+203S re+8-2{ A2, 2> v |24S] <O.

1zl=t,

So for any s;>t>R, we have

F(s;;a(c)log rKAz%, £, gre™?) +2C'38 r =K A%, £ v |2dS <0,

l‘l=51
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and then for any #,>7>R, we have

SI _ [Re[<ADu, £>T]+a(e)rK 4%, 2> |u ’ldS
x =t1

>{  [Re[<ADu, )01 +a()ras, £>1u 4s.

Letting ¢,—co along the suitable subsequence, we have, by Lemma
3.1., for any 72>R,

S] _ [Re[<ADu, £ +a()r 44, #> u[71dS 0. O

Lemma 3.3. If

lim inf R“S _TIKADw, & 4 72+ (g0} [ [71dS =0,

I=]

then for any 0<I<8 and any m>0 we have

SI >R emrl[lDulz“‘ {1+ (g0 -} |u]?]dx<oco,
x|> 0

Proof. We apply Lemma 3.2 replacing m wfth m+2. Then for
any r>R, we have

!
S |u |2dSS C'14e—(m+2)r y
lzl=r

where C14=e(”‘“)RiS |u]?dS>0. Then we have
lxl=R4

1 1 ° 1
S et |y | 2dx Se(’"“)R“S lu lza’x—{—CMS e " dr<loo,
1212 Ry Ry

Ryp<lzI <Ry

. 1. .
Letting {(r) =¢"™?" in Lemma 2,4, we have the assertion. O

Now we can prove Theorem 1.1,

Proof of Theorem 1.1, At first we shall prove the former half of
the statement. If we assume that the statement is false, we have

lim inf R"‘S’ _LKADu £ 77+ (@) -} Ju 1S =o.

R—>o0

By (F) and (F2) we can choose a constant ! satisfying 0<{270<
271(2—liminf 7(x))<!<f. By Lemma 2.12 we have for any ¢>s>
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R, and any m>1
F(t;mr', {A%, £>7r%, gor*™) > F(s;mr’, KA, 2072, gr®™Y).

By Lemmas 2.1, 2.6 and 2,10, for m>1 there exists some constant
Ry>R; such that for any >R, we have

F(t;mrt, {A%, 2>, gr*1)

ge@m“"’g [<ADu, £> 2+ {1+ (g _} |u|71dS.

lz]=t
So by Lemma 3.3 we have
lim inf F(¢;mrt, A%, £>7'r*, gor*™1) <0,

t—>o0

and then we have for any s>R; and any m=>1
F(s;mr', {A%, £>7r%, gr*™*) <0.
Since supp[«] is not a compact set in £ by (*), there exists some

constant R;;=>R; such that S A%, %> |u|?dS>>0. By Lemma 2.6,

1#1=Ryp
¢~ 2RO F (Ry;mr', A%, £>7%, gr*™") is a quadratic in m, whose coeffici-
ent of m? is QZZR%*“‘?S A%, £>|u|?dS>0. Therefore there exists

1#1=Ryg
some constant my>1 such that

F(ng H morl,<A5c‘, J'C'>'lr“, gor“'l) >0,

which is the contradiction.

Now we shall prove the latter half of Theorem 1.1. Let ¢>0.
We take &;(r) eC}(R, R+¢) satisfying &;(r) =1 for R+ (¢/3)<r<R
+(2¢/3) and 0<L&;(r) <1 for R<r<R+e. Moreover we can admit
that there exists some constant Cjs>0 such that for any R>R, and
any 7>R we have |[§;(r) |<C;. Let o=max{0,0,d,} >0. By the
conclusion of the former half of Theorem 1.1, there exist some con-
stants C;,>0 and Ry; >R, such that for any R>R;, we have

R+2e/3)
CIGR""“”S_S r==%r,

R+ (e/3)

CoR<|  [IKADL &+ 24 () ) u s,

12|

Then by (A4), Lemmas 2.2, 2,3, —¢<0 and —o+max {d;,d,} <0,
we have for any R>Ry,



POLYNOMIAL GROWTH OR DECAY OF EIGENFUNCTION 997

R+(2e/3)

C%GR_Q_‘TS Clsf—a—udf,
R+(e/3)
< rLIKADu, 2517+ {r*+ (q) -} |u|*1dx
R+(e/3) <|x| <R+(28/3)
<a (Ex ()7L | Du P+ (g0 - u [1dx
R<iz|<R+e

+S =72 |u |%dx
R<|xl <R+e

gcgcgg O g o | ogrz o

R<|x|<R+e

+2(—06/2)%2-7 |u Izdx+S r=o-2 |y |%dx

R<|x|<R+e

scug lu |%dx,

R<|2|<R+e
2
where C; is the one given in (A4) and Cl7=CfC'4<l+2 f5+—0§—>—|-1>
0. O
Proof of Corollary 1.2, By Theorem 1.1 there exist some con-

stant C;z;>0 and some integer Ny=>R, such that for any integer N>
N, we have

S lu |2dx>CIBN—a—max(0,dl,62) >C13N_1
N<Iz|<N+1 - -
Then we have
N N
S lu 2dx= 3 g u|dx>Cy 3 1Y,
No<l|z|<N+1 n=Ng Jn<|x|<n+l n=Ng
and then S |u|%dx = oo, 0
112 Ry

§ 4. Proofs of Theorems 1.3 and 1.4

In this section we assume (B)~(G) replacing a;;(x) with 0;; except
for (C3). Instead of (C3) we assume (C3)’. Let u(x) satisfy (**),
In this case we use the following.

Lemma 4. 1. Let w, d,we L} (), where 0,w is the derivative in the
distribution sense. Then for any t>R,, S w dS exists (by choosing
!

%)=t

suitable representative for w, if necessary), and for any t>s>R, we have
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S 0,w a’x=(S g— Yw dS——S (n—=Drw dx,
s<|x|<t lx|=t¢ |zl =5 s<|xz| <t

Proof. See Lemma 4.1 of Uchiyama [11]. ]

Remark 4.2. If a;(x)=0;; and if we assume (C3)’ instead of
(C3), then Lemma 2.8 with a;(x) =0;; also holds. In fact by (C3)’
we have f(g,+4) [v|% 0,{f(q1+k) |v|} €LL(2), and then by Lemma
4.1 we have

2ReS (g1 + k) o< Do, #>dx
<t

s<|x|

= ={ @k ras
lx|=t |z =s

‘gs<.x.<, [{8.f+ (n—=1)rf} (@ +F) +£0,(qu+k) T o dx.

Now we can prove Theorems 1.3 and 1. 4.

Proof of Theorem 1.3. Since Lemma 2.8 with a;;(x) =0;; is also
true by Remark 4.2, we can follow the proofs of Theorem 1.1 and
Corollary 1.2, ]

Proof of Theorem 1.4, Since Lemma 2.8 with a;;(x)=0;; and
b;(x) =0 is also true by Remark 4. 2, we have for :>>s>R, by Definition
2.9 and Lemma 2,10

F(t;p, 1%, gr*™Y) —F(s;p, 1%, gr*™Y)
=S . r* UG (x;0) +4p'r | 0,02+ 2{rp" + (n—1) p’ + 0"} Re[70,0]
s<|x| <t
+ {r(x) 02+ 2rp"0" + 200" + (n —1) gop'r 7'} |v|]dx,
where
S(x)=a+n—1—7(x)=0(1) as |x|—>oo,
G(x:0) = (2a—7(x)) [8,0 ]2+ (2—7(x)) (|Fv|*— |9,2|%) +2r Re[ (3,0) g,]
+ (a—1) ggr~'Re[30,0] + Re[{Fv, P g,7]
+ {gRelg:] —rd,q1—7 () g1} 0|2
By (F2)" and (F5)’ we have
<VU, Vg0>= (argO) 6,v+<(17—:26,)v, (V—:?a,)go>,
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3,%=0(""1) as |x|—>oo,
| (P —%0) 8| =1 —20)7(x) |<2—rx)p(x) for r>Ry,
p(x)=0(@*1) as |x|—>co0,

So we have

Tal>—2amr® 5 e 1+ (/2) 2
2r RC[(arv)%U]Z 1_{_(”/2) Iarvl 20’—7’(.?6) quzlzlv!a

(a—1D)gr'Re[00,0] = —r* |00 |2—47(a—1)2| g |7* 2|0 |3
Re[<Vv, Vg o]l = —e(r) {10012 +72[v]%} — 2~y ) {IFv|*— |3,0]%,
aRelg;]> — p2ar(

i 2,2
T AR P

By (F), (F1) and (F3), there exist some constant C;,>>0 and R;,>
Ry such that for any r>R;, we have

90—y (x) — 28T s () >,

14 (9/2)

_ 1+7] 120 __A-1(p__1\2 2,8-2
{rarql+r(x)ql+*—————2a_r(x) lrqx |} —47 (@ —1)?| g |*r
ey (r) %2 — loi:é_;,(ﬂ |go |22

201972’5'2.

So for any r>R;, we have
G(x;0) ZC {00 |2+ |0 |3,

which corresponds to Lemma 2.11. Therefore we can follow the
proofs of Theorem 1.1 and Corollary 1.2, O

§ 5. Examples

In this section we give several applications of Theorem 1. 3. Let u(x)
satisfy (**), where (**) is given in Theorem 1.3. In the sequel we
treat special b;(x), ¢:(x) and g¢,(x) in (**). So it is easy to check
that all assumptions (B), (C)’, (D) and (E) are satisfied, where (C)’
is the condition given by a replacement (C3) with (C3)" in (C). So
we are mainly interested in checking (F) and (G). In (F) we
choose 7(x) as a constant function, and we rewrite its constant
as 7y again. After checking that (F) and (G) hold, we have by
Theorem 1.3
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(#) lim inf R*

{ |u(e) x>0,
R-oo R<|xzI<R+1
where

#=a+max {09 51’ 52} ’
and a, 6, 6, are the ones given in (F) and (G). Here we note that
the choice of « in (F) has some freedom. The smaller we choose a,
the better results for ¢ we have.

Example 5.1. In (**) let
g1(x) = —h(x) +V(x) —4,
g, (x) =0 (r%?1) as r—oo,
bi(x) =0a
where h(x) is a positive continuous homogeneous function of degree
6>0, V(x) is a real-valued function satisfying
#) V(x) =00 and 9,V (x) =0(°!) as r—oo,
and 2 is a real constant.
Note 70,q; + ;< — {0 +7r—0(1)}’min A(x). So f=2"1(2+6) >0 and
lxl=1
min {2, 2a} >r>2—-28=—0 satisfy (F). 0,=60>0,=(0/2) —1=5—-2
satisfy (G). Then in (#) p>60/2 is arbitrary. Moreover if 0<(6

<2, we have u(x)&L?(2). Compare with Agmon [2, Theorem 5]
and Uchiyama [8, Example 5.2].

Example 5.2, In (**) let
(%) =—h(x) +V(x),
7:(x) =0 (rP71) as r—oo,
b;(x) =0,
where h(x) is a positive continuous homogeneous function of degree
—2<0<0 and V(x) is a real-valued function satisfying (4#).

In this case §=271(246) >0 and min {2, 2a} >y>2—28= —§ satisfy
(F), and 0>0,=0>0,=(0/2) —1=—2 satisfy (G). Thenin (§) p>
—(0/2) is arbitrary and u(x) €L*(2). Compare with Agmon [I,
Theorem 4 without its proof] and Uchiyama [8, Example 5.2].



POLYNOMIAL GROWTH OR DECAY OF EIGENFUNCTION 1001

Example 5.3. In (**) let
@1 (%) =hy (x) —hy(x) +V (x) =2,
72(x) =0(r’) as r—oo,
b (x) =0,

where %;(x) is a real-valued homogeneous function of degree —y>
—2 satisfying

(###) there exist some constant 0<a<{l and C>0 such that for any
w(x) €Cy(2) we have

S |y ()] |w<x>:2dxsa§ |Vw<x>|2dx+cg pRaxto.=1) |1y (x)| 2d,
2 2 fol

hy(x) is a real-valued continuous homogeneous function of degree 6,
V(x) is a real-valued function satisfying (##), and 1 is a real con-
stant. Here we do not assume that h,(x) has a constant sign.

If A,(x) is positive, 0>max {0, —y} and o=(6/2) —1, then in (%)
p>(y/2) 40 is arbitrary, since $=271(2+46) and 20>y >2—-28=—0
satisfy (F) and 6,=0>d,=(0/2) —1=8—2 satisfy (G). So if h,(x)
is positive, —2<y<2, max{0, —y} <0<1— (3/2) and o¢=(0/2)—1,
then u(x) €L*(2). On the other hand if y>0, 2>0, <0 and o=
—1, then in (#) p>7/2 is arbitrary and u(x) €L*(2), since B=1,
2a>y>2—-28=0,0,=0 and 0,=—1=8-2 satisfy (F) and (G). Com-
pare with Uchiyama [8, Example 5.6 and Remark 5. 3].

Remark 5.4. We note that

hx)== 3 S+ 5

<iSN T;  1Si<isN Ty

is a homogeneous function of degree —1, does not have a constant
sign and satisfies the condition (###) given in Example 5.3, where
¢;, ¢; are positive constants, n=3N, x=(xV,..., ™M) eR¥, xP R’
r;=1|x?] and r;=[x® —xV|,

Example 5.5. In (**) let n=2 and
g1 (x) =cr®+V (x) —2,

g.(x) =0(r) as r—oo,

b(x) = =g b f @), b(x) =g f1),
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where V(x) is a real-valued function satisfying (##), f(r) =7 or f(r)
=(1+47)? by#0, ¢, 4, 0, g, § are real constants.
Noting

|B()x 1= Bl () +2/ ()}

we have the followings:

(i) If ¢<0, 0>max{0, 2(6+1)} and o=(68/2) —1, then in (¥)
p>0/2 is arbitrary, since B=2"1(2+6)>0, 2>r>2—-2=—60 and «a
>v/2 satisfy (F), and 0,=0>0,=c=(0/2) —1=8—-2 satisfy (G). So
if ¢<C0,2>60>max{0,2(0+1)} and ¢=(0/2) —1, then u(x) &L*(2).

(ii) If 0=2(0+1)>0, o=(8/2) —1 and b+4c¢<0, then in (¥)

y>%[2 —0—(2+0) {1+b5(4c) 1}V?] 40 is arbitrary. In fact for any

¢ satisfying (2—28=—0<) %[2 — 60— 2+6) {1+8(4c) V7 <r<%[2

— 0+ (2+6) {1 +b3(4c) Y] (<2), we have ¢(0+7) +2L_77};b5(5+

2)2<0, which shows that §=2"1(246), r given above and 2a>y satisfy
(F). 6,=0>0,=(0/2) —1=8—2 satisfy (G). So if 0<0=2(+1)<
2014 {1 +b3(4c) V2] [3— {1 +b3(4c) 1}¥?] 7 and o= (6/2) — 1, then u(x)
&L Q).

(i) If 60<<0, o=0=—1 and 42>4% then in (#) y>—é—[l —{l—

b%(42) 7'}¥?] is arbitrary and u(x) €L?(£2). In fact for any 7 satisfying
(2—28=0<) 1—{1—=8(42) "} V2<p<l+ {1 —b2(42) "1} 2(<C2), we have
_T'H_%_T %b§<0, which appears in (F). (F) is satisfied by =1,
7 given above and 2a>y. (G) is satisfied by §,=0 and 0,=—1=
B—2.

Gv) If <0, 6<<—1, 6=—1 and 2>0, then in &) p>0 is
arbitrary and u(x) €L%2(2). In fact B=1, 0<y<<2 and 2a>y satisfy
(F) and 06,=0 and d,=—1=8-2 satisfy (G). Compare with
Uchiyama [10, Example 7].

Example 5.6. In (**) let =3 and
g1 (x) =cr’+V (x) =2,

g2(x) =0(r) as r—oo,

b () = =g buef (1), ba() =2 b (), () =0,
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where f(x) =r®(x}+x2)%72, by#0, 6>—1, 8, ¢, 0, ¢ are real constants
and V(x) is a real-valued function satisfying (##). The condition
0’>—1 is imposed to satisfy (B2).

Noting

|B(x) x 2=—i—b§(x§—|—x§) (ro.f+2f 2=%b§ (B8 +2) 22 (324 x2) 1,

we have the same results as Example 5.5 (i)~ (iv), where we re-
place 0 with 6+0’. Compare with Uchiyama [10, Example 10].

Example 5.7. Let N>1 be integer, ¢, c,;, ¢, by#0, 9,9, 6, 0 and
2 be real constants. And in (**) let n=3N and

) =— 3% S+ ¥ SiuiV(x) -2

1<i<N 7; 1<i<y<N 7¥,;

q.(x) =0(r) as r—oo,
bru-a () = —boxsa fu (), baa () = L botaaf, (), bs () =0,

where f,(x) =77 (0'>—1) or f,(x) =r"(x_,+x4_)%% (6>—1) and
V(x) is a real-valued function satisfying (##).
Since

max {si+ - +sy st +sh =1, 5,20, 1<i<N}
=max {N'=%?, 1}  for >0,

we have

B xP= 8y & (hootahon) (31,267

1
3

bi(0+0'+2)? > (dp+xi) f7,
1<:<N

lim sup ro2 D 5 (6, xfi) r? =max {N7Y, 1},
r—>c0 1<i<N

lim sup r~2¢'*V ZN (i_p+a2_ )" =max {N~°, 1}.

7200 1<:<

Noting Remark, 5.4, we must choose 2—-28<y=1<2 in (F), and
we have the followings:

(i) If¢<0, 6>max {0,204+ +1)} and 6= (6/2) —1, then in (%)
#>é+a is arbitrary. In fact §=2-1(2+-6)>0 and min {2, 2a} >7=

1>2—-28=—0 satisfy (F), and 6,=0>0,=0=p—2 satisfy (G). So if
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<0, L>0>max {0,206+ +1)} and 6=(60/2) —1, then u(x) &€L*(2).

(ii) If 6=20+0¢+1)>0, o¢=(0/2)—1 and 16c(0+1)+
b3(0+2)2max {N~%¥, 1} <0, then in (%) p>%+0 is arbitrary. In fact
the choice of a, 8, 7, 0, 6, given in (i) also satisfies (F) and (G) in
this case. So if —é—>0=2(5+5’+1)>0, 6= (0/2) —1 and 16¢(f+1) +
b3(6+2)2max {N-%, 1} <0, then u(x) &L*(2).

(i) If <0, 6+0"=0c=—1 and 42>b max {N~%, 1}, then in (%)
p>1/2 is arbitrary and u(x) €L%(2), since =1, 2a>r=1> 2-28
=0 satisfy (F) and 8,=0>0,=0c=—1=8—-2 satisfy (G).

(iv) If <0, 0+0'<<—1, 6=—1 and 2=0, then in (&) p>1/2
is arbitrary and u(x) &€L?(2), since =1, 2a>y=1>2—-28=0 satisfy
(F), and 06,=0 and 0,=0=—1=8-2 satisfy (G). Compare with
Eastham-Kalf [3, Example 5. 3. 3, p. 134] and Uchiyama [10, Example
11].

Example 5.8. In (**) let

+V(x)4+o(@™)—2 as r—oo,

000) + gy () = 202

bi(x) =03
where >0, b#0 and 2>0 are real constants, and real-valued func-
tion V(x) satisfies (##) with 6=0.
We shall show that u(x) &L?(2), if 2>27a[ {a®+46*}2—a]. For
simplicity let b=+7a (z>0) and 1=va® (v>>0). And let

() == (1-9) 2222 4y () gt

sin 2ar

. +o(r™) as r—oo,

g, (x) = *zas

where —oo<(s<{co is a parameter., Let a=g=1, 6,=0, 0,=—1=
B—2 and 2—-28=0<y=2—t<2a=2 (0<t<2), which satisfy (G). If
(F) holds for some —oo<ls,<loo and 0<£,<<2, then ux=1 satisfy (#)
and u(x) €L*(2). In order to show that (F) holds for some —oo
<sp<<oo and 0<¢,<<2, it is enough to show

inf{H (s, t) | — co<ls<{o0, 0<t<2} <0,

where
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H (s, t) =a™lim sup[rd,q:(x) + (2—8)q:(x) +¢7 [rg(x) I’].

Now we calculate H(s,t) as follows.
H(s, ) =1in}> sup %%+ vt — %% {cos 2ar F (1 —s)tr 1572} 2
-l—rt ‘(”1 —s) %72 —2v]
[P (1 =) =2y, if t<rs? |1 = =L
2t |1 —s | +vt—2v, if t>e?|1—s|%

H(s,t) is continuous in (s,¢) R X (0,2), and there exists some (s,
t;) ERX[0, 2] such that #,=cs?|1—s5 |7 and H (s, t,) =inf {H (s, t) |
>rs? |l —s |7l 0<t<?2, s€R}. Noting %% '+¢ (1 —s5)%72>2r|1 —s|
for (s,t) €eRx(0,2), we have

inf [H(s, 1) |sER, 0<t<2)
=inf{e2s% 1 +vt +t (1 —5)%2—2w|seR, 0<i<2}.

Here we have

2% bt 4+t (1 —5)2572—2v

=512 {us? + (1 — )2} [2 —vs? {us?+ (1 —5) 7} 712
+1732% (v + 1) {ps?+ (1 —5)2) Hs— (v+1)71}2
+i2 s+ (1 —9)% W+ D) He2—v(+ D],

Then inf{H(s, ¢) |s€R, 0<;<{2} <0 is equivalent to z2<»(v+1), which
leads to 1>>271a[ {a®+4b%)2—q].
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