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Curves In P3 Whose Ideals Are Simple
in a Certain Numerical Sense

By

Mutsumi AMASAKI*

Introduction

For a curve X in P3 (see Notation), we define the basic sequence
of X to be the sequence of positive integers (a',n^ ..., na',na+l,..., na+b)
(4>0) which satisfies the three conditions described below, and denote
it by B(X) (see [2;§!]).

( I . I ) a<nl<n2<"'<na,nl<na+1<na+2<"'<na+b, where (na+l9...,
na+b) is empty if b = 0.

(I. 2) Let Jx denote the ideal sheaf of X and set

nl if n>m>0
(n — m) lm\

0 otherwise

Then

(I. 3) Let L be a generic line in P3 not meeting X. Then

where rest denotes the restriction map.

The condition (1. 3) may be exchanged for the following one ;
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(I. 3)' Let Xi, x2, #3j #4 be the homogeneous coordinates of P3 chosen

sufficiently generally. Then the deficiency module

has a minimal free resolution of the form

b rl rO

j=l i=l l i=l

as an S-module, where S = k[#3, #4] and e{ (1 <i<rh j = 0, 1) are
integers (see [2; §2]).

Generally, it is not easy to determine the basic sequence of an

arbitrary curve or to decide whether or not a given basic sequence

actually corresponds to a curve of some good nature (smooth, ir-

reducible etc.). In this paper we treat the second problem in the

case where B:=B(X) takes the simplest form, a<ni<~-<na<na+l<

•••<na+t<a+l, and prove an existence theorem for smooth irreducible

curves with such basic sequences. When B fulfills this condition,

we say that B is neat.

Theorem (1.4)e A neat basic sequence B is realised by a smooth

irreducible curve in P3 such that the cohomology of its normal bundle vanishes

in degree one, if B satisfies one of the following conditions.

1) B=(a',aa;ab) with 0<b<p(a),

3) B=(a;aa;(a + iy) with Q<b<p(a-l),
4) B=(a;ac, (a-fl) f l- c ; (a+1)5) with l<c<a-l,Q<b<a-2,

5) B=(a;a",ae, ( f l+l ) 6 ~0 with l<c<b-l<a-3,

where p ( n ) =[w/2] (n — [w/2]) and [#] denotes the integral part of x,

A curve with neat basic sequence is a curve of maximal rank (see

(1.11)), so it is natural to expect that the basic sequences of the

curves given by Ballico-Ellia in [5] are neat. This is verified

at least in two cases; in particular the cases (a\aa\ab) with

<6< ( f l~2 )P

and (a; (a + l )° ; (a + 1)6) with

3(a-l) :~J"J 6a
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correspond to smooth irreducible curves (see (1.12)). On the other

hand, by the works on protectively Cohen-Macaulay curves [9] and

arithmetically Buchsbaum curves [1], [2], [3] and [7 ;§ 5], we know

a lot of smooth irreducible curves having neat basic sequences which

satisfy Q<b<a/2 (see (1.13)). In view of these facts the theorem

above has been worked out with the aim of widening the known

range of existence0 The result, however, gives only a partial answer

and the problem still remains open.

In each case, the proof of the theorem consists of two steps. In

the first step, we construct a reduced singular curve which has a given

neat basic sequence and whose support is a connected union of lines,

starting with a projectively Cohen-Macaulay singular curve X0 such

that B(Xo) = (a', aa) and then removing suitable lines from it. In the

second step, with the help of the criterion for the smoothability of a

singular curve due to Hartshorne-Hirschowitz [10] and Sernesi [12],

it is shown that the curve obtained in the first step is flatly smoothable

in P3. In our case, we need cumbersome computations of polynomials

to verify the conditions in the criterion, for the geometric method as

in [10] or [12] cannot be applied,,

Each singular curve appearing in the course of the proof has

only plane singularities, but their multiplicities are larger than two in

most cases. If we prefer only nodes as singular points, we can deform

the curve flatly in P3 over an irreducible parameter space so that

it becomes a union of lines, no three of which meet at a point. This

enables us to get new smoothable stick figures (see [10], (7. 1) and

(7.2)).

In this paper we do not at all discuss the fundamental but subtle

problem whether or not integral curves with the same neat basic

sequence form an irreducible open subscheme of Hilb(P3), because

the answer is not obtained except in few simple cases where it is

known to be affirmative.

Notation

The ground field k is of characteristic zero and algebraically closed.

We mean by the word curve an equidimensional complete scheme

over k of dimension one without any embedded points,, The
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polynomial rings k\_xl^ x2, #3, #4] and £[#3, #4] are denoted by R and

S respectively, where xl, x2, x3, #4 are the homogeneous coordinates

of P3. The ideal sheaf of a curve X in P3 is denoted by Jx. We

set Ix = @H°(Jfx(n^c:R, M(X) =®H1(jFx(n» and M'(X) =
n n

, k). The notations of [2] and [3] will be used freely.

§ 1. Numerical Properties and Known Examples

Let B=(a',nl9...9na',na+l9...,na+i) (a>l,b>Q) be a sequence of
positive integers. We will call its three sections divided by semicolons
the head, the body and the tail in order and refer to the subsequence
(fl;«i, . . . , wa) as the principal part of B. The head is denoted by
a(B) and the number 6, which we call the size of the tail, by b(B).
In the case b(B)=Q,B consists of the principal part only. We put

(1.1)

- 1 — ~a(a- 1) (a-5) +^-± n,-(fi,— 3) -^
b L 1=1 j=i

and call deg (B) and gen(B) the degree and the genus of B re-
spectively. When B is the basic sequence of a curve in P3, they
coincide with its degree and arithmetic genus (cf. [2 ; Remark 1.9]).

Lemma (1.2). With the notation above, put B'= (a;nl9..., 7za_x ,

na + l',na+i,..., na+b) and B" = (a\nl9..., na;na+1,..., na+bj n) for a

positive integer n. Then

1) deg(-B') = deg (B) +1, gen (B') =gen(B) + n.-l.
2) deg (B") = deg (5) -1, gen (B") - gen (5) - (n -1) „

Definition (1.3). We say that a sequence of positive integers
(ami,..., na',na+i,..., na+b) (0>1,£>0) is neat or is a neat basic
sequence if it satisfies the inequalities a<ni<-~<na<na+l<">*<na+i,<
a+1.

We begin by establishing some numerical properties of neat basic
sequences. First, the formula (1.1) yields
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"1) =ia(a+l) +a-m
0.4)

gen(0;0m, (a+l) c~m) = -^-(0—1) (a — 2) (2,2 + 3) + (a— 1) (a — rri)
b

for 0>1, 0<?n<00 Let g be a nonnegative integer. Since

-m)=gen(a;am+\

(1.5)

(cf. 1) of (1.2)), the function gen(a;am
3 (a + l) f l-m) (a>2,0<m<a)

increases strictly according as m decreases or a increases, with
gen(2;22)=0. There exist therefore integers a ^ m ^ n satisfying a>23

0<m<<2 ? 0<w<0 — I such that

(1.6) g=gen(a',am, (a + l ) a~m) +^5

which are determined uniquely by this condition. With the use of
these integers, we define the neat basic sequence B<g> associated with
g to be

(0;am+n~~f l, (a-f l)2 a~m~"; (a + l)a~n~1} if n^Q, \

(a +1; (a 4-1) '+»+»+1, (a + 2) a-l~m~n; (a +1) "-/+1, (0 + 2) <

if ^^0, ;

where / = min(0 — m — n, m + l). It can be verified directly that

Note that

0.7) deg (B<gQ+n>) = deg (B^) +1

for all w 3^o = gen(a;a'n? (fl + l)3""1) satisfying a>2? 0<m<a and l<n
<fl —1. Given a neat basic sequence B, we define next(B) by the
following rule ;

1) in the case B=(a;a*',am, (a + l ) b ~ m ) with 0<m<b, set next(B)
= (a;a\(a+ir-l',am~l, (fl+l)^6"1""1), where / = min(a5m)3

2) in the case B= ^;am
5 (a+l) f l -m ; (a + 1)5) with 0<m<X i>0,

set next (B) = (a +1; (0 +1) z+m+2
3 (a + 2) «-'-»-i; (a -h 1) ft-/+m

9 (a + 2) fl-"z-1),
where l = min(b-\-m^ a — m — 1).
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Direct computations show that deg (next ( B ) ) = deg(£) +1, gen(next

Lemma (1.8). L££ Bl and B2 be neat basic sequences.
1) B1 = B2 if and only if degCBi) =deg(52) awe/ gen (50 = gen (52).
2) //deg(51)>deg(B2), gen^) =gen(52) fl«rf a(B1)=a(B2), then

b(B1)>a(Bl)-2.

Proof. 1 ) For a sequence B=(a',nl9 . . . ,na', na+l , . . . , ftfl+&) of positive
integers, the polynomial

=i *• j=i

coincides with (* + 3 V (deg (5) • x + I - gen (5) ) (cf. [2 ; Remark 1.9]),

where (x ) = x ( x — l ) •••(x — m + l)/m\ (m>0). Suppose 5 is neat.

Since (x\ = (x} for A:>m>0, we find that KB(a- 1) = -#{j |wa+y =

a+l (l<j<b)},KB(a')=l+^{i\ni = a (l<i<a + b ) } , KB(n)>0 for n>a,
and in particular a = 1 + max {x | KB (n) < 0, n e Z} . The assertion follows
from this immediately.

2) If 5X and 52 satisfy the hypothesis, we can apply next( )
successively, starting with B2, to get a neat basic sequence B such
that deg(5)=deg(jB1)-l, gen (B) -gen (5X) and a(B)>a(B1). We
have B1 = next(B) by 1), so that a(E) =a(BJ=a(next(B)) and

-2 by the definition of next(B).

Proposition (1.9). 1) For each pair of integers (d,g) (g>0,
d>deg(B<g>)) there exists a unique neat basic sequence with degree d and
genus g.

2) A neat basic sequence B with nonnegative genus g satisfies the inequality

deg(5) >deg(jB<lf>) except in the case where g = 0 and deg (B) < 2.

Proof. 1) Apply next( ) successively, starting with B<g^ and use

1) of (1.8).
2) Let g be a nonnegative integer which has the expression (1.6)

and B a neat basic sequence such that gen(5) =g. Suppose a(

If a>3, we must have by (1.5) and 2) of (1.2) that
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while if a = 2, then a(E) =1 and the condition Q<g= gen (B) implies

that g=n = Q, m = 2 and degCB)<2. Therefore a (B) > a, in the case

or deg(B)>3. If deg (B)<deg (B<ff>) in this case, then B<# =

for some neat basic sequence B' satisfying a<ta(B')<a(B<^<a-^r\.

Since 0<b(B<g>) <a- 2, we find by (1. 8. 2) that a (5') =£*(£<*>), namely

0(J3')— fland a(B<g>) = 0+1. But this leads to a contradiction in the

following way. We may write B' = (a;am\ (0 + l)a-m /; (a + 1)6') with

0<m'<a, 4'>0. Since £ = gen(B') = gen (a ; am', (0 + l)a-w/) -a6x and g

has the expression (1.6), we find m>m' and (a — \}(m — m')—abf=n

by (1.5). This implies a(m — m'—b') = (m — mf) -\-n with 0 < ( m — m') +

w<C2fl, therefore 77z = 7w /, w =6'= 0 or m — m'—b = \, a = m-\-n — m' <m-\-na

Hence a(B<g>) must coincide with <2 by the definition of J5<ff>. We

thus have deg(B) >deg(5<ff>) except in the case where £=0 and

degCB)<2.

Remark (1.10). With the use of (1.4) and (1.7), one can prove

the inequality

for g = gen(a°,am, (a + l)a~m)+n, a>3, Q<m<a, Q<n<a-l, The coef-

ficient of g is a strictly decreasing function of a (0>3) and takes

the values 2, 10/11, 15/26, — for a = 3,4,5, — . Therefore, if g> l l

(or a>4), we have ^r + 3>deg(5<g.>). This relation holds also for

smaller values of g as seen by the following table of deg(B<g.>)0

a

g

deg (£<,>)

0

3

2

1

4

2

5

3

6

4,5

7

3

6,7

8

8,9

9

10

1

11

0

4

12, 13, 14

11

15,16,17

12

Now we pass on to a description of known examples of smooth

irreducible curves with neat basic sequences. Recall that a curve X

in P3 is said to be of maximal rank if it satisfies A°(«/"^(w)) X

=0 for all integers n (see [5]).

Lemma (1.11). A curve X in P3 has maximal rank if and only if

= Q or b>l, a<na+j<a+l for all j(l<j<b), where a = a
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b=b(B(X)) and na+l, . . . , na+b denotes the tail of B(X).

Proof. If i = 0, X is protectively Gohen-Macaulay and
= 0 for all n (cf. [2 ; Remark 1.5] and [9]). Suppose b>\. Since
M' (X) has the minimal free resolution

©SK-2] - >©5[?za+,-2] - *M' (X) - >0
1=1 y=i

as an S-module induced from (*) by duality (see Introduction), we
have

(1. 11. 1)

and X is of maximal rank if and only if na+b— 2<a — I, that is if and
only if a<na+,<a + l (\<j<b} by (I.I).

Thus a curve with neat basic sequence is automatically a curve
of maximal rank. Let d,g be integers which satisfy rf>deg(jB<g>)5

g>0 and let B be the unique neat basic sequence such that deg(5) —d^

=£. Put a = a ( B ) 9 b=b(B).

Example (1.12). Suppose d>g+3, g>0 (see (1.10)). By [5],
there is a smooth irreducible curve X of degree d and genus g

having maximal rank such that hl (0 *(!)) =0. Let KB(x) and KBmW
be the polynomials defined as in the proof of (1.8). We have

KB(n) =KB(X)(n) =(Wg" 3)-A°((P^(iz)) for n>la Since a-l=max

{n \KB(ri) <09 n&Z} and X is of maximal rank, we see a ( B ( X ) ) =aa

1) If all the entries of B coincide with a, then h l ( J f x ( a — 2)) =
-JSTB(f l-2)=A,A1(^(w))=0 for n>a-l and f f ( S x ( a ) ) =KB(a) =
a + b + l. This implies first that the tail of B(X) is a* by (1.11.1)
and then that B(X) =B, It follows from the inequalities d>g+3, g>Q
and the formula (1. 1) that

-(*-3) (fl + 2) <i<-(«-2) (
J b

2) If all the entries of the body and the tail of B coincide with
a + l9 then hl(J?x(a-l)) = -KB(a-V=b,h1(Jfx(n»=Q for n>a,

h°(Sx(a))=KB(a)=l and A°(^j r (a+l) ) =JPB(a+l) =a + 6 + 4. In this
case the entries of the tail of B(X) must be fl+1, therefore B(X) =Ba

The inequalities d>g+3, g>Q imply
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(a- 1
3(0-1)

If #B(a)=2, we find similarly that B(X)=Be

3) In the remaining cases, the size of the tail of B(X) cannot

be determined in an obvious manner,, So far, we can only say that

B(X) = (a;am\ (a+l)a'm/ ian\ (a+1)6'-*') with m' + n' + l = KB(a), bf>b

and bf — «' = hl (J^x (a— 1)) , though it is natural to expect that B (X) =Ba

For a generic X, this is perhaps true0

Example (1.13). If B satisfies one of the following conditions, it

is realised by smooth irreducible curves0

1) b = 0 [7; Theorem 2.5],

2) b = l [1 ; Proposition 40 4] (cf. Appendix),

3) B=(a',aa\ab) (0<26<0) or B= (a;am, (a 4- l)a~m; (a + 1)6) (0<

2b<a-m) [2; Theorem 4.4], [3 ; Corollary, 20 6] , [7 ; pp0 125-126]

(cf. Appendix) .

Remark (1.14). 1) In 3) of (1.12) we can show in fact that

m'>2 if w'>0, which means that B(X) is neat at least in the case
KB(a) = 3. The proof of this, however, requires subtle consideration

on the relation matrices ^23 ^3 (cf° [2 ; § 1] and [3 ;§!]), so we omit
the detail

2) When d is small as compared with g, it may occur that there

are many kinds of curves of maximal rank with the same degree d

and genus g. For instance, set

for 0<r<(/>+!)/6, 0<?<min(fl-/> + r, (a - 2p + 4r) /6) and

for 0<r</?/6, 0<?<min(fl-/> + r-l, (^-2^ + 4r-20)/6)3 where a

and /? are sufficiently large fixed integers. They are all realized by

smooth, irreducible and arithmetically Buchsbaum curves with

which have maximal rank by (1.11) (for the proof see [4]). The

basic sequences jBo.o and J5o.o represent distinct irreducible components

H(^o.o) and Hfl B (5S.0) of Hilb(P3) (see [3 ; pp. 776, 778] for notation)

and probably curves with B'qir (resp. 5J.r) belong to H(5J,0) (resp.
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Hfl.B. CBS.o)) (cf. [2 ; § 5]). There may be other possibilities of curves
of maximal rank with the above (d, g) , but here we won't go further
in this direction.

§ 2. Preliminary Results

Let («,-),•£! and (j8,-)^i be sequences of elements of k\{Q] such
that a^aj, &=£& for i=£j and set

y. =Xl- aiX3 , £,. = *2 - &*4

for all i>l. Denote by P] (resp. Pj) the point of P3 defined by
^i=x2 = x^ = 0 (resp. zs = Xi = x3 = Q) and by Lu the line passing through
P] and P?, i.e. LiJ = ProjR/(vi9 zi). Let a be a positive integer.
We associate with a finite subset ^4 of the double indexing set
{(i,j) | l<i<fl , l<j<fl} the curve W L{ , with reduced structure,

(t.j)eA

which we will denote by Z(-4). There is a neighborhood of Z(A)
in P3 covered by the open sets U] (l<i<a) and C7? (l<j<fl)
which are defined to be the complements of the divisors

*i(nj>,)/j>.. = 0 (l<i<«) and ^2(f[^)A, = 0 (l<j<fl)
1=1 1=1

respectively. Put A\= ( l \ ( i , l ) eA], A2,= [I \ (/, i) e^} and let |4{|
(/ = 1,2) denote the number of the elements. We set

F}=yi/xl9 F2
i=zi/x2

and

for

where G{ = 1 if -4| = # (/ = 1,2). Then

(2.1) ^zoDl^C^GD^^. (f =

Since Z(-4) is a local complete intersection, its normal sheaf

is locally free with local trivializations

(2.2) AWs . CFD*0^nzol) - (CD*
(/ = 1,2, \<i<d), where (Fj)*, (G-)* denotes the dual basis associated
naturally with Ff ,G- 8
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Proposition (2. 3). NZ(A} is the direct sum of the line subbundles

and QJ oi) defined by the conditions

a <;./<:«)

Proof. We have £/* n U] ftZ(A) = <j>, U2, ft E/J 0 Z(4) = ^ for i *y and
/> ftZ(A) ^0 if and only if (i, j) e.d, in particular no three

distinct U',ftZ(Ays have nonempty intersection. Furthermore, if
(z',j) e-4, then U\r\V]r\Z(A) =LU\{P], P*},JE;A} and ie4J, therefore
both

J./) and
4?

vanish nowhere on U1, ft U* ft Z (A) . It follows from this that (G*)*
and (F*)* (resp. (F})* and (GJ)*) (l<z'<a, l<j<a) can be patched
together to form a line subbundle QJw) (resp. QJM)) of A^ZM) and we

have #zcA)=Q.zoo@(lSoo.

Let ^4' be a subset of A,

G'}= ( n *,) Aix/ ' , G'?= ( n 7,) /4A/ ' and #! = G|/G'{ (/ = !, 2)

for l<i<a. The line bundles Ozwo and OIuo are connected to
and Olu) by the following exact sequences (cf. [12; (5. 1)]) ;

(2. 4) 0 - >OJu>®^2

(2. 5) 0 >Qz(A') >Q,Z(A') IZW

where

z : P\ - >Z(A') the inclusions ( l< i<f l ) , and 9^^ is induced by
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the natural map ^zu)/^lu)^^zuo/^lu') (/ = 1,2). Note that 0' is
an isomorphism on Z(A/)\{Pl

i\l<i<a} and that it coincides with the

multiplication by H\ at P\. The following is an easy

Lemma (2.6). Suppose that H1(dzcA))=0 and that

is surjective. Then H^QJ^/)) =0.

We will need the fundamental result on the smoothability of

singular curves observed by Hartshorne-Hirschowitz [10] and Sernesi

[12], under a slightly weaker condition. Let X be a reduced curve

in P3 whose singular points are all plane singularities. Let Nx denote

the normal sheaf of X and T\ the ^-functor as in [10; p. 100].

Proposition (2. 7). ([10 ; Proposition 1.1] and [12 ; (1. 6) Proposi-

tion]). Suppose that H1(NX)=Q and that for each singular point P of

X, the natural map H°(A^)->H°(71 |P) is surjective. Then X is flatly

smoothable in P3
0

Proof. Since the stalk of Tl
x at P is the local deformation space

of a plane singularity, a nonzero element of Tl
x\P corresponds to a

deformation which strongly smooths P. Thus the proof of [10] works

well for our case, too0

Corollary (2.8). Suppose that HHQJuo) =0 ( J=l ,2 ) and that for

each point P{ (Z= l ,2 , \<i<a),the natural map H°(Q^UO) ->H°(Q,lWo \pi)

is surjective. Then Z(A'} is flatly smoothable in P3.

Proof. Clear by T\^ ipj = QJuo |p, and #Z(A')=(iz<Ao©Q,IW

Concerning the deformation of curves with neat basic sequences,

we have the following

Lemma (2.9). Let K i f f - ^ T be a flat family of curves in P3 and

suppose that Xi=^0(o^T) has a neat basic sequence. Then B(2£v) =B(X)

for all v in a neighborhood of 0, where ££V = K~I(V) (v£ET)0
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Proof, Since X is of maximal rank, there is by upper semicontinuity

a neighborhood V of o such that Iytn-=n*(S x(n)) ] v, are locally

free with

(2.9, 1) /ff.,(8)i(0)SH^y^(w)),

(2.9.2) h°(Sf9(n»=ff(Sx(n))

for ail z;e77, «>0. Let (^;aw
9 (0+l) f l-m) (0<m<a) be the principal

part of B(X) and L a generic line in P3 not intersecting X. For each

n>Q, it follows from (2.9.1) that

is a lower semicontinuous function of v^V which satisfies

/n — a— 1

by (1.3), so <5(y, a) >TW +1, d(v^a + l)>a + 2 for all v lying in a
neighborhood FcF' of o. Since h0(JP%- (a— 1)) =0 and h0(Jf%- (0))

= m + l by (2.9.2), we have d(v, a—1) =0, d(v,a) =m + l, d(v,a+l) =
a4-2 and the principal part of B(^'v) coincides with (a\am, (a + l) a~m) .
Hence B(&J=B(X) for all yGEF by (2.9.2) and (1.2).

In the proof of Theorem (I. 4), the hypotheses of (2. 6) and (2. 8)
will be verified with the use of the lemmas below.

Let (ji) i^i be a sequence of elements of k such that fr^jv for
i^j, s and t indeterminates over k and Ui=s — f{t (i>l). Given in-
tegers 729 r satisfying 0<r<rc9 we set

r n—r

where ft ut is understood to be 1 if p^>q.
I=P

Lemma (2.11). 1) Fix n ( w > l ) . Then the polynomials gin~l}u2n_r_i
(0<r<n—2) , g^Ti^s and g^J^t are linearly independent over k,

2) Fix n (w>0). Then the polynomials g?} (Q<r<n) are linearly
independent over k.

Proof* 1) The case n = \ is trivial. Suppose that w>l and that
n-2

r=0
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with cr^k (0<r<ra). Then since HX divides all gf~l} (1 <r<n — 1)
but not go*"1', we have cQ = 0. Dividing the above relation by ui9 we
find that cr = Q for all \<r<n by induction on n0

2) Similar to 1).

For each y>0 we denote by AJ[J, f\» the homogeneous part of
&[>, t} of degree v.

Corollary (2812). Given integers m,n satisfying n>l, 0<m<n, let
Vm>n (res p. V'miK) be the linear subs pace of k\_s, t] spanned over k by
{g(

r
n-»u2n_r_l\m<r<n-2} U [g(^s, g^t} (resp. {g™\m<r<n}). Then

< n ) a n d V V g f

Proof. The inclusion V^^g^k (n>\) is obvious. If 0<m<X
the polynomial g™ divides g(?~l} for all m<r<n — l. Since n — m + 1

homogeneous polynomials grn~^u2n-r-i/g
(^ (m<r<n — 2), g(n-i^/g(m} and

g(n~i}t/g(™} of degree n— m in j1, t are linearly independent over k by
(2.11), we have Vmin=g(™}k[_s,t~\n_m. In the same way we get the
assertion for V'min (n>\, Q<m<n).

For each p (Q<p<a), let Vp (resp. V'p) denote the linear sub-
space of £[.*•,£] spanned over k by [^"^n-r-i |r>0, 2w — r— 1<X

l<^} Uw{^r1
1)-(A: + ̂  + ̂ )} (resp. {gr

w |r>0, 2n-r<a, 0<
ra=l

and put V"p=

Corollary (2.13). 1) IfQ<v <p + I, m>0, m + 2v<a, then
Vt.
2) 7/0<y<A m>05 m + 2v<a, then g(™}k[s,t]»c:Vp.

Proof. 1) Put n=m + v. The case w = 0 is trivial. If ftX), then

g?-i*s9 g?-i}t and ^"""M^-r-i (m<r<n — 2) are all contained in 7^ by
definition. Hence the assertion follows from (2.12).

2) Similar to 1).

Let m and n be positive integers and for each fi (0<fjt<n) let h^
denote a homogeneous polynomial in s, t of degree // which is not

^
divisible by any ul (l<l<m). We set h^ = H w/ (0<^<m) and consider

the ring £:=&[>, ^]/(Aw, h'n) as a A; -vector space
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Lemma (2.14). The polynomials hji,, (0<A<m- 1, Q<fjL<n — 1)
(mod(/zm, /£)) form a basis of the mn-dimensional vector space E.

Proof. Since hm and h'n are relatively prime, we have dim^E) =mn0

The assertion being obviously true for m = 1, we proceed by induction

on m. Suppose that m>l and that

(2. 14. i) s1 n^c,,,h,h;=hhm+hfhf
n

l=Q fi=Q

with c^^k and h, h' &k[s9t']. Since hx(l<X<m) are divisible by Ml5

the relation (2. 14. 1) consists of the following two parts;

(2.14.2) iNo>;=£'A; (modiO,
ft=Q

(2. 14. 3) E1 2 c^ViJuJh'^hViJuJ +£/*;

where hf=gu1+g/ with g'e&[>]. It follows from (2.14.2) that gf =09

^o,^ — 0 (0</^<72 — 1) for reasons of degree, and hence from (2.14.3)

follows that £^ = 0 ( l</ l<m — 1, Q<(Jt<n — 1) by induction. This

proves our assertion.

Suppose a > 2. Let r= {il9 . . . , im}, r= {J1? . . 0 3jf'a_^_1} (ij^^ —
?<^-2) be subsets of ra:={i 1 1 <i<a} such

that f = rfl\r. We set h\ = n w^(0<^</? + l), AJ = M / 2 (0 <//<«-/>- 1)

and £r = A [M]/(AJ+1, /£_,--!). Let ^r:^[^^]-»^r denote the natural
map. Later we will have to consider three cases ;

case 1) T={a-2p + 2l-3\ l<l<p+l] with 0<

case 2) T={a-2p] U {a-2p + 2l-l\ l<l<p] with 0 <p<l(a -l)/2],

case 3) r={a-2Z| !</</?+!} with 0

Lemma (2.15). We have AJ+1, AjAJ (0<^<j&, 0</*<a-/>-2)
(r^. F ,̂) <27zrf KT\ v/, (resp. KT\V ) fj surjective in the cases 1) <2?zrf 2)

z?z the case 3))8

Proo/. Clear by (2.13) and (2.14).
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§3o Curve with B=(a;a*',a*)

We will construct in this section a smoothable and connected
curve of the form Z(A) for each pair (a, b) satisfying a>0, 0<£<[a/2]
x (a— [a/2]) 3 which has (a',aa;ab) as its basic sequence, where [a/2]
denotes the integral part of a/2. The notation of the previous
section will be used without change, unless otherwise specified.

Given a positive integer a, let/, denote the homogeneous polynomial

(fl Z|) ( A yd (0<i<a), / the ideal (/0,/l3 . . .,/.)£ and Z0 the curve
/=! / = »+!

Proj/?//. One sees JT0 = ZU) with 4= {({, f) \ I <j<i<a}. Put
p(fl)=[fl /2](fl— [>/2]). An integer 6 (!<6</o(fl)) can be written
uniquely in the form p(a— /?) +q (1 <g<a — 2jf?—!9 0</?<[a/2])? since

P [fl/2]

p(fl)=i;(f l-2/+l)+ Z (fl-2/+l) for 0<p<[a/2]. With the help
1=1 I=P+I

of this expression, we define A(b) to be the set

for \<b<p(a) and denote Z(4(4)) by ^6 and J^(<1_^ by Y, (0</?<
[a/2]). The curve Xb is obtained practically by removing q lines
LJ+&+I.J (l<j<q) from Y^0

Lemma (3.1). We have h°(® xbnLJ+2p+l .) =fl for l<j<q and

..i/ = ^ for j

Proof a The latter is clear. To verify the first equality, consider
for each P] (resp. P?) the number of the lines passing through it and
contained in Yp, which we denote by d\(p) (resp. d] (p) ) . One sees
without difficulty that

w- A. IJ

Since P\ and PJ are all plane singularities, we get

-D =a (1 <j<g).

This lemma enables us to compute the basic sequence of Xb easily,
combined with the following
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Lemma (36 2) . ([2 ; Corollary A 03]) 0 Let X be a curve in P3 and

L a line which intersects X in a set of finite points. Suppose that B(X\J L) =

G Z ; W I , . . . , HO ; Wfl+i , . . . , w f l+5) and that hQ(0 X^L) =n with n>naa Then

B(X) — (am,rii, . . . ? na°,na+i, . . . , fta+&, w) M/J £0 a permutation of the tail.

Proposition (3*3), B (X*) = (a ; aa ; ab) and Xb is connected if and

only if Q<b<p(a)a

Proof, Since J"XQ has the free resolution

(3.3. I) 0 ( ..... /

0
with (p= ^l 2 °.

^2 0 ° -Za

0 °o ya

the basic sequence of X0 is (a;a f l)0 Apply (3.2) successively, starting

with JLQ, and we get B(Xb) = (a',aa°,ab)e For the connectedness, observe

first that

XpM=Z(AeveH)\jZ(Aodd) (disjoint union),

where Aeven= {(ij) \ both i and j are even} n^4? Aodd= {(ij) |both i

and j are odd} 0-4. The points P] and PJ (1<2<^, !<j<a) with

subscripts in the same congruent class modulo 2 are contained together

in either Z(Aeven) or Z(Aodd) and are connected by lines of the forms

Llil9Ll+2ii. If 0<£< jo(fl), then Xb contains a line L£ i J such that i&j

(mod 2), which joins the two points P\ and P] not lying in a single

connected component of Xp(a^ therefore Xb is connected0

Proposition (304)a For each m (1 <m</?(«)), write m—p(a—p} +q

set

q-l P+l a

fa+m= (iuz) (n ^+2z-2^+2z-i) ( n
for each b (Q<b<p(a)) the ideal Ix is generated by the homogeneous

polynomials fn (0<n<a + b) of degree a,

Proof, Since IXn=J? it suffices to show that Ix =IX +fa+mR for
U m m — 1

all m (1 <m<p(a}}. In fact, the hyperplane fa+m = 0 contains the lines
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Lfj whose double indices (i,j) lie in A(ni) —A\[(j+2l — l,j) \\<j<q,

l<l<p+l or q+\<j<a, 1 <l<mm(p, [(fl-j+l)/2])}, but not

Lq+2t+i,q. Since Xm\jLq+2p+1^ = Xm_1, this means that/a+M vanishes on Xm

but not on Xm^. We see therefore by (3.3) that /^ = /xm_1 +fa+mR.

The rest of this section is devoted to the proof for the smooth-
ability of Xt (0<6<|0(a)). Let us begin by describing a method to
construct global sectios of NX!> and NXo\Xl. First set

(3. 5)

and

G; c/o = (n */) / (X{H\ (p)), G? (p) =1=1
for \<i<a. By (2. 1)

(^+l<j<a-2^-l)

U (a-2p<j<a)

where b=p(a-p)+q with 0</)<[a/2], !<?<a-2j&-l. Note that

(3.6)
GJ (0) =/,/ (*{ x fl ^,) , G? (0) -/,._!/ (x!-'+1 X H

n ,), F?= a / (^2x

for l<i<a. Since ^Q has the free resolution (3. 3.1), the sheaf

xQ, ®XT) coincides with the kernel of the map

and to obtain an element of H° (JV^Q \ Xb) , we have only to compute

the kernel of the map
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Let (F*)*5 (GKO))* denote the local basis of NXo on Uir\X0 for l<i<fl ,

1 = 1,2 (see (2,2)) and Ej(/0 the sheaf ^ (A[f/!]/(F!, G|(/0, //!(/>)))

on Z6 (Z = l,0</><[i/2] or / = 2, 0</><[(fl- i + l)/2]). We have the
exact sequence (2.5) with Z(A)=XQ, Z(A')=Xb and

2P+1 2P+q+l

for l<b<ip(a). Through the identification of H°(A^o Xj) and

Ker(<9(6)) as above, a vector tv = t(Vu)Q<v<a^Ker(6(b)} corresponds to a

global section (al9az) (<7zeH°(Q^oU&), /= 1,2) of A^Q ^ = (QA0©QA0) I *&

which can be written in the form

ci (0o A!) (FJ) * +e\ (Vi/xai) (G] (0)) * on U}nXb

c* (va/x$ (Ff) * + *? (ut--i AS) (G? (0)) * on [/? H ^6

with suitable cl
i9e[^k\{Q} (/ = 1,2, l<i<f l ) (cf. (3. 6)). Furthermore,

((Tl5 <72) comes from a global section of NXb by way of (01, ^2) if and

only if o)l(a^ =0, w2(<72) =0.

In the argument below, we will use the following term0

Definition (3.8). Let X be a subscheme of XQa By a pre-normal
of X we mean a row vector v=(Vu)Q<v<a with vv^Ra (0<v<a) such that
all the components of v<p lie in Ix.

Note that a pre-normal of Yp (0<p< [0/2]) is at the same time
a pre-normal of Yp, for all p' (p<pr < [a/2]) . Set s = x2/xl9t=xjxl

and ui=^i/x1 ( i>l). Denote IYp^yaR by Dt(p) (0</?<[fl/2], />!)

and the linear subspace \f/yax[~l (mod FJ) \ f ^ D l ( p ' ) } of AJ[J, J] by

M^,(/>). We have W, (/O c M^ (/> + 1 ) and (^, Ai) ^ (P) C PT,+1 (/>) for

Lemma (3.9). L^^ p,r,n be integers satisfying r>03 2n — r<^a and
®<n-r<p<\_a/Z\e Then g(

r
n^Wa(p) (cf, (2. 10)).

Proof. In the case w^r the assertion is clear by fn£iDa(p)

If w>r, then since 0<w-r- l</>- l<[fl/2], 1 <r + l<fl-2(«-r-l) -1
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and ( r+ l )+2(H- r - l )+2<f l , the polynomial fa+ (n_r.l} (a_n+r+1) + (r+1)

defined in (3.4) belongs to DB(/0, that is g™^Wa(p}.

Lemma (3.10). 1) Suppose 0</><[>/2]. For each £ek[s,f]9 there
exists a pre-normal vl(p, £) = (vl(p, £))o^«
/or 0<y<0-l flflrf z£ (/>,£)/*! = £ (mod (FJ,

2) 77z*r£ exists, for each p (0</?<[0/2])5 <2 pre-normal wl(p) =

»za of Yp such that wl(p) =0 for 0<v<a-l and wl
a(p)/x% =

3) There exists a pre-normal w'l= (w'l)Q<v^a of YQ such that w'l = Q
for Q<v<a-l and w'\/x\=\ (modFJ).

Proof, 1) There is a polynomial /(/>,?) of Da+l(p) such that

/(Af)/^f-f (mod(^,G;(/>+l),Hi(# + l ) ) ) by (2.15) and (3.9).
Setting vl (p, f ) = 0 (0<y< f l-l) and v\(p, f) =f(p,&/ym, we get a
desired pre-normal. 2), 3) Similar to 1).

Let

and

denote the maps defined by n}(v) =Vi/x\ and ?rf(y) =^,--1/^2 respectively
for 0=(zk)os»£«.

Proposition (3.11). L^^ C ^ «^ element of k\_x2/xl^x^/xl^xjx]}a

1) TVitfrtf exist for each pair (i, p) (l<i<a, 0</?<[j'/2]), pre-normals
y, w o/ Yj satisfying 7rJ(y) = 0? TrJ(^) =0 ( l<^<i — 1)

2) There exist for each pair (i, p) (l<i<a, Q<p<[i/2~\) pre-normals
v',w' of Yp satisfying rciO/) =0, 7rJ(^x) = 0 (l<v<i— 1) JwcA that

Proof. We will prove the assertions by induction on a. The case
a=l is trivial. Assume that 0>1 and that the assertions are true
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for a— 1. Replacing a by a — 1 in the formulae which have been
described in this section, one obtains the curves, the polynomials and
the maps associated with the integer a — 1 in the same mannera We
denote them by the same symbols with ~ attached on the heads.

Notice first that Ypd YPU \J LaJ and thatj;./? C/r (0</?<[(a-l)/2])0
j=l ~

This allows us to construct pre-normals of Yp from those of Yp in a
canonical wayB In fact, for a given pre-normal 7j= (^y)o<y<a-i of Yp(0<
p<l_(a — 1)/2]), we can define a pre-normal ^=(^ y )o^ y^ f l of Yp which
satisfies 7rJ(^) = 7fJ(^) (mod F£) (0<v<a— 1) up to constant multiplication,

by setting ^v = j]vya (Q<v<a— 1), ya = 1)a-iZf Besides, the polynomials
F},G}(p) and H](p) coincide with F},GK/0 and H\(p) respectively for
each pair (i,/>) (\<i<a-\, 0</?<f>'/2])0 The assertions 1) and 2)
therefore hold for \<i<a— I by the Induction hypotheses and it
remains to deal with the case i — a. Now suppose i = a and let z;1^, £)
and wl(p) (0<jfr<[>/2]) be the pre-normals described in (3.10)
with c = C (modFJ). It suffices to set v = vl(p,^ and w = wl(p)e We
have thus proved 1) completely. Since a pre-normal of Yp is at the
same time a pre-normal of Yp+l (0</?<[^/2]), the proof above gives
also a proof of 2) for i = a^ Q<^p<\_a/Z]. When i = a and ^ = 0, we
use the pre-normal w'1 described in (3. 10) to verify 2). In this case
//l(0)=li hence the assertion is clear0

Let b=p(a-p*)+q (0<p<[«/2], 1 <q<a-2p- 1) be an integer
such that l<b<p(a)a The transposed vector of a pre-normal v of Yp

gives an element of Ker(0(4)) corresponding to a global section (^i, 0"2)

of NxQ\xb= (QlxQ@(l xj\xb as explained before. Locally, ^=^(^)°

(G-(0))* (mod H°(Jr
ulnx )) up to constant multiplication on UlnXb

(/=1,2, l< t<f l ) (cf, (3.7)), therefore we get the following result

Corollary (3.12). 1) The complex

0— H°(a V — H°(a^0 1*,) — H0(£16/^0) - > 0

is exact for 1=1, 2,
2) TTzertf exists for each pair (/, i) (/= 1,2, l<i<f l ) a ^oia/ section

of Q,xb vanishing on UljCiXb ( l<j<i i/ Z = l , i<j<a i/ / = 2),

gives a generator of Ql
Zb\l = k.
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3) tt((Ii6)=0 for 1=1,2.

Proof. We first consider the case 1=1. 1) Easy by (3.11).
2) Since ^ is locally the multiplication by H\(\i/2J) ( l<i<2/>+!)9

H\(p + \) (2p + 2<i<2p + q+l) or //}(/>) (2p + q + 2<i<a) on f / J ( l <
x<<z) (cf. §1), the assertion follows from (3. 11).

3) By the lemma below, we have H1(Q,jf(J)=0. Hence, it follows

from 1) and (2.6) that HHQAj) =0.

As for the case 1 = 2, the reasoning that we have carried out is
applicable to Qxb by exchanging the roles of (jy0 Z i , P ] , P?, U\9 £/?)

and (Za-i+i9ya-i+i9Pl-i+i9Pl-i+i9Ul-i+i9Ul-i+i) (l<i<a). Consequently
analogous results hold for Q 2

Xb as well.

Lemma (3.13). (cf. [8 ; Proposition 2]). Hl(NXQ)=Q.

For each b (0<b<p(a)) the curve Xb is therefore flatly smoothable
in P3 by (2.8). The resulting smooth curve C has the neat basic
sequence (a',aa;ab) (see (2.9) and (3.3)) and EPC/Vc) =0. It is
irreducible if and only if 0<b<^p(a). This proves Theorem (1.4) in
the case 1). The result is known well for X0 (cf. [9]).

§4, Curve with B= (a; (a+l)°; (cx + 1)5)

The method of the previous section can of course be applied to
the construction of curves with the other kinds of neat basic se-
quences, too. We will next consider curves having (a\ (a + l ) f l ; (a+ I)6)
as their basic sequences.

Notation being as before, suppose a>2 and let Xb denote the
curve obtained by removing the lines Lj+2p+lij ( l< j<^—1) and
Lg+2p+liq+lfrom Yp,where b=p(a-p)+q (0<p<[a/Z]9 l<q<a-2p-l)0

Lemma (4.1). B(Xd = (a-l',a-l;a*-1) for all b (l<b<p(a».

Proof. We have Xb_1 = Xb[JLq+2p+liq+l and B(Xb-J = (a;aa;a*~1).
Recall that the number of the lines contained in Xb_i and passing
through Pl

q+2p+i (resp. P2
q+1) is dt+2p+l(p) (resp. dl

q+l(p)) (see (3. 1. 1)).
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Since A°(0* inL f f+t f+l i,+P = (<^ we have

the exact sequence

0— > ^ ( B ) — «) — (P

(see the proof of [2 ; Proposition A.I ] ) . It follows from this that
AH^i6W)-Ofor ?z>a-l , /z1(^&(a-2))=A1(^6_ i(^-2))-4-l (see

the proof of (1.11)), A°(^(fl- l))=l and A°(^(fl)) - (a- 1) +

(6 — 1)4-4, whence the assertion.

Lemma (4.2). The curves Xb (l<b<p(a)) are connected except for
the case a~b = 4:,

Proof, Write b=p(a—p}+q as above. When p>2, Xb includes a
a a— 2

connected curve (\jLii{) U (wLt-+2>z-) \J Lq+2p+iiq which contains all the

points Pi (/=!, 2, l<i<0). Therefore Xb is connected. When p = Q, Xb
q q a

includes a connected curve (wif /) U (wLg+1 f) (resp0 ( W Lf ,-) U
a i = l ' f = l ' * = 9+2

(wL z - g + 1 ) ) which joins the points P] (l<i<q + l) and P?( l< t<g)
i = 9 + 2

(resp. PJ (q + 2<i<a) and P? (?+l<i<fl)) , as well as the line Lflil

passing through PJ and Pf8 Hence ^?6 is connected,, In the case
where p=l and <2>5, a connected curve

(wLi§l.) U (WLU) UA.xULs.sULs.i
i=5 »=5

is included in Xb and joins P- (/=1,2, i=l ,3, 5<z<fl) . Besides,
since a — 2>3, it follows from the construction that L2t2V Lai2C. Xb and

that L4i4Ul4.iC:^ or I 4 > 4U L4i2c!&D The points PJ (/=1,2, i = 2,4)
therefore lie on the connected component of X& containing P}, which
implies the assertion. The remaining case is, in fact, the exceptional
one, i.e. a = i = 4, and we see directly that X± (a = 4) is the disjoint
union of L2i2 and Lltl(j L3i3(J L4A(j L

Set

tf/*i (0<£<[(i-l)/2])

and £{(/» + !) =^(A[t/{]/(n <5l^ + l), J?!(P+D)) (/=1,2) for l<i

<a0 Then
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(p^

We have the following result similar to 1) of (3B11) concerning

and

Proposition (4.3). Let C be an element of
There exist, for each pair (i, p) (1 <f<a3 0</><[(i— l)/2], pre-normals
v,w of Yp satisfying nl(v) = xl(w') =0 (l<v<i — 1) such that

(mod/*)

Proof. Entirely similar to the proof of (30 11)0 For i = a9 use (30 9)
and (2. 15).

The assertions of (3, 12) are therefore valid for Xb also. Thus
the reasoning above gives a proof of Theorem (1.4) for the case 2)3

unless a = b = 3. Let X be the curve obtained by removing L3i2, L4i3

and L4il from Proj (R/ (y2y*yt, Z&yiy* ZiZ&y*, Z&ZsZ*))* One checks
easily that B(X) = (3;43;43) and that X is a connected union of six
Iines9 each of which meets the others in at most two points,, Hence
by [10 ; Corollary 40 2] the theorem holds for this case as well.

Remark (4.4). Let b=p(a—p)+q>2 be as in the beginning of
this section. Eliminate LL1 from Xt\jL2il and denote the resulting
curve by Xi. One sees that B(Xi) = (a — I ; a0'1 ; ab~l) and that X*
are connected. The curves Xi are smoothable with Hl(N /) — 05 soxb
they also serve for a proof of (I. 4) in the case 2) . We have adopted
Xi to make the argument as parallel as possible with the one carried
out in the preceding section.

§50 Curve with B=(aia*l(a + lD

In this and the next sections, the notation defined previously will
sometimes be altered.

Let a>l, /=(/0, /i,...,/.)/2, A and X0 = ProjR/J=Z(A) be as
in section 3B We define A(b) and Xb anew by
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for b=p(a-p-l}+q (l<q<a-2p-2, 0<p<l(a- 1)/2])9 and for

each/? (0</><[(a-l)/2]) we set Yp = Xp(a_p^0 Recall that p (a -/>-!)
=p'(a-p'-l)Jrq/ with pf=p-l, q' =a-2p' -2 for p>®. Clearly
Xb (l<b<p(a-l)) is connected and B(Xt) = (a\aa ; (a+l ) 6 ) e For
an integer /, we denote by Y] the curve Yp defined as above with
a replaced by /. If a polynomial / of R is homogeneous in both

(x l9x3) and (^25-^4) of degree m and mf respectively9 we will say that
it is homogeneous of bidegree (m^m!}0

(So 1). Let m be a nonnegative integer. For each c (0<
there is a homogeneous polynomial of bidegree (m 9 m4- l ) which vanishes on
Y2J+l\L2c+li2c+1 but not on L2c+li2c+l,

Proof, We proceed by induction on ma Set e=(TLy2iZ2i)Z-

m = 0s put z = x2. If m>!9 put z=Zi or z = z2m+i<, In the first case e
m

becomes zero on Y^m+1\w L2/+i 2/+i but not on £2«+i 2*1+1 > while in the
1=1

m-l

second case it vanishes on Y%?+l\\J L2i+l 2l+l but not on Lllo This
2=0

gives a proof for m = l. If m>29 the curve Y°.=Y^m+1n( W L,-iy)

may be thought of as a copy of Y^3
e The induction hypothesis

therefore implies that for each c (l<c<m — l) there is a homogeneous
polynomial of bidegree (m — 29m — 1) which vanishes on Y\L2c+li2c+l

but not on L2c+li2c+la Multiply it by z&2 y2m y2m+l , and we get a desired
polynomial for l<c<m— 1. In the case £ = 0 or c = m, take a suitable
linear combination of e and the polynomials thus obtained0

m

Corollary (502)0 Set em=j1(Hy2l^2l)^2m+l (m>0) 0 For each pair

(m^n) (ft>2m + l > l ) 9 there exists a homogeneous polynomial emin of

bidegree (m + l 9 m 4 - l ) which vanishes on Y2^+l^ such that

R=emmiRm

m-l
Proof. One verifies directly that em = 0 on Ylm+1\W LM+i,2/+i-

1=1
= 03 1, we are done. In the case m>29 since Y=Y2^+ln ( W
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is a copy of Y^3, there are homogeneous polynomials ec (\<c<m — l)

of bidegree (m — 2, m — 1) such that e'c = Q on Y\L2c+li2c+l and e'c^Q

on L2c+lt2c+l by (5.1). Besides, the bidegrees of em and ZiZ2ecy2my2m^yn

(l<c<m — l) coincide, therefore emifl can be obtained as a linear

combination of them0

Proposition (5. 3)9 For each triple (p,q,m) satisfying 0<m<p<

[(0 — 1)/2], 0<q<a — 2m — 1, Z/z0r0 £.mfo a homogeneous polynomial of

degree a + l vanishing on Yp which is congruent to

1=1 1=1 l=q+2m+2
a

modulo ya( H

Proof. Note that Ym^)Yp. Since Y'm~Ymn W 4/ is a copy
q+l<,j£i£q+2m+l

of Yim+1, there exists by (5. 2) a homogeneous polynomial of degree
m

2m + 2 vanishing on Y' and congruent to^+1(IIj;ff+2^?+2/)^+2m+i modulo

yq+2m}>q+2m+il>a. It is enough to multiply it by (II */) ( II yd to get
1=1 l=q+2m+2

a desired polynomial.

This time, put

(n

The definitions of Dt(p), Wt(p) (0</?<[(fl-l)/2]5 />!) and G{(#),

EKp) a = l,0<j&<[(i-l)/2] or / = 2,0^^[(fl-x)/2]) are exactly
the same as in section 3. We have

2P+2 2p+q+2-
i=2p+q+3

where b=p(a-p-l)+q (l<q<a-2p-2, 0</><[(a-l)/2]).

Lemma (5.4). Le£ />, r, n be integers satisfying r>0, 2w— r<a,

0<n-r-l<p<\_(a-l)/2-]. Then g^u,,.^ e W.+I (/>) .



CURVES IN P3 1043

Proof, Apply (58 3) with q = r, m = n—r—le

The rest of the proof for the smoothability of Xb is entirely similar
to the previous two cases. We have thus proved Theorem (1. 4) in
the case 3).

§68 CurYe with B=(a;a', (cs + l) s-e;
or B=(a;am;a*9 (

To avoid too much complexity,, we will restrict our consideration
to the case where 0<4<<2 — 2.

Let a , a f , b , b f be integers such that Q<b<a- 2, l<a'<a-2, 1<4'<
4-1, A' the set A\[(i, a- a') \a-a'<i<a] and /' the ideal in R
generated by fi(Q<i<a — a' — 1) and /•/£,_«,/ (a — a'<i<a)9 Denote
the curve

by X, and if Q<b<a-3, define Xi by

\Z(A'\{(j+\,j)\\<j<b})

Z(A'\[ r
+ ' ^J^fl-fl -

\ \U {(j + 25j) |fl-a'-l</^4 + l

(fl-fl'-1^4^fl-3)

Note that X'0 = Z(A') =Proj R/f and 5(*J) - (a-l ; (fl-l)a/,fl—'-1).
Both Zj and X are connected and B(X'b) = (a —I ; (a — l ) a ' 9 a

a~af~l; ab),
B(X) = ( a ; a a ; a * ' ( a - ± l ) b ~ b f } by (3. 2). The smoothability of X follows
from (3.11), (3.12) and the consequences of (5.4) similar to
them. As for Xi, we had better make some more points clear.
Assume a>4. Put Z>',(/0 =1^ ^yaR and W't (/>) = f//^'1 (mod Ffl

x) |

Lemma (6.1). 1) n M, e W^ (0) /or

(nMI)/M.-./e^_1(0) /or a-a'<i<a-L
1=1

2)
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Proof. 1) Clear by f^D'^0) (Q<i<a-a'-l) and //SM,<

2) We have MleW^(0) by 1). When 3<0-0'<0-l, /^, a contains
a

(II y/) , so M 2 eM^a( l ) . On the other hands if a — af=2, we have
/=3 a

=/ / and %e^(l)8 Hence j, i

We set #J=«.-.'«,-2, G'J=(n
1=1

Lemma (682)e Jjj^mg a' ^=-2, 1) T/z^r^ exists for each ?eA[.y, J] a

pre-normal v l ( g ) of X'Q such that »J(6) =0 (0<y<a-l) and vl
a(%) / x\= %

2) Tfer^ tftfwfo <2 pre-normal w1 of X[ such that wl = 0 (Q<v<a — 1)

wl
m/xl = Hl (modFl

a)0

Proof. Easy by (6.1) and (2.14).

Since the stalk of E1' /. at P- (Z= l ,2 5 l<i<fl) is isomorphic to
X X

or one of the corresponding stalks of E1
Y /XQ which appeared in Sections

3 and 55 we find by (3.11)5 (4.3), (5.4)9 (6.1), (6.2) and their

consequences that X'b is smoothable for 0<b<a — 30 The result is

known well for X'Q (cf0 [9]). This completes the proof of Theorem

(1.4).

Corollary (6. 3). For each g>0 the neat basic sequence B<g> is realised

by a smooth irreducible curve such that the cohomology of its normal bundle

vanishes in degree one.

Proof. Obvious by (I04)3since Q<b(B<gJ <a(B<g>) -2 (see Section

1).
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§ 7B Concluding Remarks

1. Stick Figures

The reduced singular curves which have been considered so far

can be deformed into smoothable stick figures (see [10; §6]) as we

will explain below. Given a positive integer a, let Ca» C.-4, ?.& £*4 (1 ^
i<d) be parameters and set

y{ = KI Ci3% ~~ Cf4#4) -Si == X2 ~~ ?»3#3 ?i4#4

for 1 <i<a0 Denote the parameter space Spec £[Ct3s Ci49 £,-3, f ,-4 ; 1 <i<0]

by T. For each pair (i,j) ( l<i<<29 l<j<a) the scheme

is a flat family of lines over T. Put

V=
I for all I<ii<i2<a, I<ji<j2<a

f dimMy)(j), , jp jO*(zO = dimkM(Zi Zi <
F!= beF ' \ t2 . '3 * 2

I j =3 for all 1 ̂ Zx^^^s^*3

Given a subset A of f( i3 j) | l<i<a, l<j<a}, we consider the scheme-

theoretic union Z(A)~( W Litj) PlPy of Ll7f|P3F as a family of

singular curves over V, Note that the fiber Z(A)0 over the point o

defined by d-a = <*,•, CM = ?i3 = 0j ?M=:^» (1<^<0) coincides with Z(A).
~ a a

Since Z(^4) is contained in the surfaces I Iv z = 0 and n ^, = 0, it
Z=l i=l

follows from the definition of V that Z(A) Is given locally by a

system of equations of the form

or

where l<i<a, ii<^i2<^* ° • <OV (r>l) and x is a suitable linear form

of # i , # 2 j # 3 5 # 4 . The family Z(^4) is therefore flat over V and the
fibers over the points of Vl are all stick figures.

Proposition (7ol). The neat basic sequences listed in (1.4) are
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realised by strongly smoothable stick figures such that the cohomologies of

their normal sheaves vanish in degree one,

Proof, Apply the above method to the singular curves appeared
in Sections 3, 4, 5 and 6. Since Hilb (P3) is locally irreducible at the
points corresponding to them, the resulting stick figures are also

smoothable.

Corollary (7.2) (cf. [10 ; Propositions 6.1, 6.2, 6.3 and 6.4]).
For each pair of integers (d,g) satisfying g>0, d>deg(B<g>), there is a

strongly smoothable stick figure with degree d and genus g,

Proof, Notice first that B<g> is included in the list of (I. 4) . Attach
lines successively to a strongly smoothable stick figure which has the
basic sequence J3<l?>, with at most two intersection points at a time
(cf. [10; Corollary 4.2]).

It will be interesting if we can prove that every neat basic sequence
with positive degree and nonnegative genus is realised by a smoothable
stick figure.

2. Deficiency Modules

Next, let us look a little bit into the deficiency module of each
smooth irreducible curve C we have constructed. It is desirable that
the equality

(7.3) hl(Sc(n))=max(l-g+dn-9 0)

(d = degree, g = genus) should hold for all rc>0, but this cannot be
checked instantly, because unfortunately the singular curves used in
the proof of (1. 4) do not necessarily satisfy the same equality be-
forehand. In the cases B=(a;aa;ab) (0<b<a-l), B=(a;(a + l ) a ;

(0<b<a),B=(a;ac, (a + \r~c; (a+1)*) (1 <c<a~ 1, c is small,
2), B=(a;aa;ac, (0 + l)6~c) (1 <c<b-l, b-c is small, 0<b

<a — 2) and in the case 0<6<3, one can verify (7.3) by deforming
the free resolutions of the homogeneous ideals of the singular curves.
We will see this carefully especially in the first case. Let
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a9n
1=(nl,.a.,na) and n2= («a+1, . . . , na+b)

denote the head, the body and the tall of 5—5(0 respectively and
let Xsing denote the reduced singular curve such that B(Xsing)=B,
which we have considered. Then Ix has a minimal free resolution

^sing

of the form

(7.4) 0

' sing

(cf. [2 ; Notation, p. 802]). By Serre duality, M' (Xsing) _n is isomorphic
to the cokernel of the map

With the help of this, the case 5 = (a ; aa ; a*) (0<6<a-l) can be
treated as follows. We have

— (/*5 fl 9 • • • 5 J?? fa+l 5 0 . - , Ja*+&) 3 ^* ~ t/j* f/2* C/4*

0 [/.* t/s*3 V5 J

1=1

^3 J

/„*,,•= (n .
1=1 f= /+2

o-i_rz)u1 ,«, , . . . ,O']
•i, ^ 2 , . . - , j».)J Lo oj'

Uz>^3, • • •

L o

f/i*J \-D(y

0

0

0

0

0
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where D(cl9 c2, . . . 3 cn) denotes a diagonal matrix with components

£1, ^2? • • • 5 cn in its diagonal. Note that these matrices are not normalised
into the forms described in [2 ; § 1]. For n=a — 2, a — 3, a — 4, the

function --firB(w)=l-g+rfw-( / l^3) (cf. (1.8)) takes the values b,

2b — a, 36 — 30+i3 so that the expected dimensions of H1(-^c(^)) are

&, max (26 — <2, 0), 0 in order0 On the other hand, direct computations

of Im(xJ show that

( b (n=fl-2)

hl(^xsing(n)}=\ b-l (n=a~3)

{ 0 (n<a-

therefore (7.3) is not true for all n>Q, if

Lemma (705)0 With the notation above, suppose that %m is surjective

and that the rows of # lie in ®R[n1-^ n2-3, ^2-3]_n5 for some
n^m

m><2 — 40 Then for any matrix X of the same size as 1* with components

in the set of homogeneous polynomials of R^ which satisfies A (%) =$(!$}

(cfa [2; Notation]) , the exact sequence (7.4) has a lifting

0 - »Ri-n
2-2~l-^-»R[-nl-l, -n2-l, -n2-\1

7* r*A 9 ~ A 1 ~

-^Rl-a, -n\ -n2]— W - > 0 ,

such that !*— ^3=C^? where C w a parameter^ R°'—R®kk\_\£l~\ and I

is an ideal in R,

Proof. Put I3*=4f+Gl Since the rows of ^2* lie in 0^[^-33
«<?n

n2— 39 ^
2~3]_n by hypothesis, there is a matrix I| of the same size as

%£ whose components are homogeneous polynomials in #1? ^2? -^3? #4

over /t[[C]] and which satisfies #.#=0, 4(#) =4(#) and 12* = 22*

(modC^)o Using 12*? define 1* by the formula in [2 ; Remark 1.8]
(cf. [6; Theorem 3. 1 (a)]).

This lemma implies the existence of a flat family

over Spec A;[[C]]. In the present case, we conclude therefore that

(7.3) is true for all ?z>0? since Hilb(P3) is irreducible in a neigh-

borhood of the point corresponding to X5ing, Furthermore, we may

assume by the above lemma that
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Af'(Q =R[a-2Ja/ImR(W) (cf. [2 ; Notation])

with a generic bx (a + 2b) -matrix W (\<b<a— 1) whose components
are linear forms in #1, *25 *3? *4 • The remaining cases mentioned above
can be dealt with almost similarly. It seems, however, difficult to
apply this method to all the other cases and we have not checked
(7. 3) fully yet.

Appeedix8 Basic Sequence and Deficiency Module

Let M be a graded ^-module of finite length. If the structure
of M is thoroughly understood, it is rather easy to construct a curve
X which has a basic sequence given beforehand, such that M(X) ~M
up to shift in grading,, Suppose that M has a minimal free resolution
of the form

(A. 1) 0 - »S[-£2]— SE-I1]— S[-£°] - *M - > 0

as an ^-module, where ei= (e{, . . . , sj ) (z' = 0, 1), 12= Of, = . . , £&), 0<£2

<••"<£& and x ^ ^ x 2 ^ x ^ x ^ are chosen generically. Given a positive
integer a and a sequence of integers n1— (nl9 . . . , na} such that
a<nl<"-<na, we set B = (a ; n1; I2) . We will assume that

(A. 2) (# + 1, e° + 2, el + l, £1 + l)-(£1-f2,m)

up to permutation with a suitable sequence of integers m= (m l3 „ „ „ ,
;?2a+ro+r). For an arbitrary graded jR-module N = Q)Nn, we denote

Ag by

(Ao3). With the notation above put

Then,

-£°]; n)

_/f2-^4-3\ , ^/?z-?zI. + 2\ , ±(n-ej-+l\
— ( Q I ~r 2.J o J " " 2 ^ 1 i J -\ ^ /+ »=1\ z /+ J=l\ l / +

mProof, Notice that ) - = , for all integers w andJ — *

m>l. The assertion follows from direct computations8
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Let 3? ( Af) denote the sheaf on P3 associated with L ( Af ) and let

g (Af) be the vector bundle of rank r0 + ^i defined by the exact

sequence

(A. 4) 0 - > t (Af) - >J?(Af)-*->0 p3[-£°] - > 0

where for each i (i=l, 2) ^f is the matrix with components in S which
represents the action of #,- on M arising from multiplication (cf. [2 ;
(2.5.3)]). Put

(A. 5) ^(£9Af) = 0p3(-a; -rc1)©^ (Af).

One sees by (A. 2), (A. 4) and (A. 5) that c, (& (B, M) ) = - E V--
t=l

Given a global section J= (^i, . . . , Ja+r0+ri) °f ^ (^j ^0 ® ^ Ps (^) > we

can therefore construct the complex
a+rQ+rj

A ( }

(A. 6) 0 - ><9 ^(-m) - >&(B, M) - - - > J? - > 0

in the usual way, where «/ C 0 p3 and locally s is understood to be

an (a + r0 + ^i + 1 ) X (a + r0 + FI) -matrix.

Proposition (A. 7) (cf. [2; §2]). // ./ defines a curve X, then

B(X)=B.

Proof. Note first that (A. 6) is exact by hypothesis. We have

M(X) ^®Hl(&(B, M) (w)) ^M
n

and

h\J (n)) =hQ(^(B, M) (n)) -/(£[-m] ; n)
=/(!! (5, M) ; n) -/(£[-!°]; n) +l(M ; n) -/(/Z[-w]; n)

by (A. I ) , (A. 4), (A. 5) and (A 0 6) 0 The assertion therefore follows
from (A.I) , (A. 3) and the characterization (I .I) , (1.2), (1.3)' of
a basic sequence.

Suppose that m= (m\ m2) , s= (s\ s2) with Jf'eH0(^ (5, Af) <g) 0 3(w''

' = l,2) and that
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9 :=Coker (0 p3 (- m1) — & (B, M))

is locally free of rank h. Then the complex (A. 6) can be reduced to
h-l

-2 A(*(s2))
(A. 8) 0 >0 p3(-m2) >^ >JP » 0 ,

which we call a reduction of (A. 6). Let J l 3J 25 • • • 5 •*« be a basis of
e

H°(^(x)d? 3(m2)), Ci (l<i<e) parameters and s—]C Cz^ a global sectionp 1=1
of ^(x)0 0 3(?rc2) on P|5 where T:=Spec i[C»; 1 <i<e]0 As is well

P3 Pr

known, if the scheme ^?cP| defined locally by the maximal minors
of s is of relative dimension 1 over T and smooth over k outside a
subscheme of codimension larger than or equal to 4 in Pf-, there is
a Zariski open set UdT such that X x T { u ] is a smooth curve for
every u^U. Here we present an interesting

Example (A09) e Let p be a primitive a-th root of unity (0>2)
and set

A =

r 1 0 - 1
P

0

c_

jO3"1 J

r 0 • • • • 0

1

o ' " ' •
L i

x3A, V2 = x2la-x,A,

i i
0

°

0 -

Since Af has the minimal free resolution

("?)
0 - »5[

as an ^-module, we have £°=(a-2)°, s1^ ((a-l)°, a"), ?2=(a+l)*.
Consider the basic sequence B=(a; (a+1)"; (fl + l ) a) . Since m=(a3°,
(a+l) f l ) and eF(55M)-^p3(-a, -(a + l) f l)e^(M) (^ = ̂ 3^,^ =

^4-4), (A. 6) has a reduction with ml= (a, (0 + l ) a ) 3 m2 = 03a~1 and
<& — $ (M) . We see that there is a smooth irreducible curve X with
B(X)=B and M(Z) ^M by the following facts0 The details are left
to the interested readers.

1) The basis of H°(<?(M)(0)) is given by the columns of the
matrix
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r-F2 -H, 0

-V, 0 -H,

0 Fi + *JD4,C] F2

where [ , ] denotes the Lie bracket.
2) The divisor Z)cP3 defined by the determinant of the 3a sections

of g (M) GZ) above coincides with the Fermat surface xl — xa
2 — x%-±-xl = Q

and is smooth.
3) This implies that g (M) is generated over 0p3 by H°((f (M) (a))

in the outside of D and that the dimension of the vector subspace
of g (M} | D ® k ( p t ) generated over k by H°(<? (Af) (a)) is 30-1 for
each ptEiD. The scheme -Y therefore fulfills the required condition
(see the proof of [11; Theorem (3.3)]).

Note that the resulting curve lies on D.
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