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§ 1. Introduction

In this paper5 all spaces are assumed to be simply connected.
The actions of the Steenrod operations over the cohomology of an

//-space have been studied from various view points,, In particular3

Thomas [8] determined the action of the squaring operations over
the mod 2 cohomology of a finite //-space with primitively generated
mod 2 cohomology,, Lin [5] also proved the similar result by using
a different method. The result of Lin is stated as follows:

(1.1) (Lin [5;Th. 1]) Let X be an H- space. Suppose that the
mod 2 cohomology Hopf algebra H*(X',Z/2) is finite and primitively
generated. Then for any primitive class x of dimension 2an — l with n^O
mod 2 and ra>2, we have that

Sq2"x = Q and x = Sq2°y for some

where Sq{ is the i-th squaring operation,

On the other hand, we can not get the corresponding result to
(1.1) for an odd prime p. In fact, any odd sphere Sftfc'1 localized
at an odd prime p is an //-space (cf. [1]). However, if X is a
homotopy associative //-space, then under some suitable conditions we
can get the similar result to (1.1) about the action of the mod 3
reduced power operation &* over H* (X °, Z/3) .
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Let X be a homotopy associative //-space, and let c :
be the natural inclusion, where P3X is the projective 3-space of X
(Stasheff [7;Def. 13]). Then the classes in the image of at*:H*(P3X;
Z/3)-»H*(ZX;Z/3)=H*-l(X',Z/3) are called ^-primitive, where
o:H*(SX\Z/3}-*H*-l(X\Z/3) is the suspension isomorphism. If
H*(X',Z/3) is generated by ^-primitive classes as an algebra, we call
H*(X;Z/3) Arprimitively generated. Let P3//*(Z;^/3) be the
module of all ^-primitive classes in H*(X;Z/3), i.e., P3H*(X;Z/3)

= Imctt*. Then the main theorem of this paper is stated as follows:

Theorem 1. 2, Let X be a homotopy associative H-space. Suppose
that the mod 3 cohomology algebra H*(X;Z/3) is finite and A$- primitively
generated. Then for any positive integer n with n^O mod 3 and w>3, if

(1.3) P3H^at-l(X;Z/3)=0 for t>n-l,

then we have that

The assumption (1.3) in the above theorem cannot be dropped.
In fact, we give an example in §7 to show that (1.3) is required.

Theorem 1. 2 is deduced from a purely algebraic result.
Let JB* be an augmented graded algebra over Z/3. Then we

denote the augmentation ideal of B* by B*, and we define /)'/?* for

inductively by

D1B* = B* and DiB^ = B^ - D

Let $0 be the mod 3 Steenrod algebra and let g?n be the n-th
mod 3 reduced power operation. Then B* is called an unstable left
j/-algebra if J5* is an augmented graded algebra over Z/3 with left
action of s/9 such that the Cartan formula and the following unstable
conditions hold:

0>»x = Q if dim x<2n, and 0>*x = x* if dim x = 2n.

Then we have the following

Theorem 1.4. Let

H* = A*/D*A*, A* = Z/3[xl9 — ,*J, dim xt: even.
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Suppose that H* is an unstable left ^/-algebra* Then for any positive

integer n with n^O mod 3 and ra>3, if

(1.5)

then we have that

where QH* = H*/DH*(DH* = D2H*') is the indecomposable module of H*.

H* in the above theorem is called a truncated polynomial algebra
over {#!, • • • , #fc} of height 4, and it is denoted by T4[xb •••9xk~]m

Theorem L 2 is proved from Theorem L 4 by using the following

Proposition 1. 6. Let X be the one in Theorem 1. 2. Then for the
natural inclusion t : ZXdP^X to the protective 3-space P-^X of X, there
are even dimensional classes {yi\\<i<k\ and an ideal S in H*(P3X°,Z/3)

so that

, t*(S) =0, m(P,X',Z/^/S = T\yl, ».,X], and

S A (*i,-,**

Thus, in particular, //* = T'4[jJ1, • • • , jyj is an unstable left ^/-algebra,
and 0e*:QHZn^>P3H

2n~l(X',Z/3) is an isomorphism for any n>\.

We apply Theorem 1.4 for //* = T'4[^i, •-, y^\ in Proposition 1.6.
Then, by Proposition 1.6, (1.3) implies (1.5), and hence Theorem
1.2 is proved from Theorem 1.4.

In the rest of this paper, §§2-6 are devoted to prove Theorem 1. 4
and Proposition 1.6, and we give some examples in §7 to show that
the condition (L 3) in Theorem L 2 is required. To prove Theorem
1.4, we give four propositions. Two of them are proved in §3. The
others are proved in §5 by using particular generators for H* which
are given in §4. Finally, in §6, we prove Proposition 1.6.

§20 Reduction of Theorem 1.4

In the rest of this paper we assume that //* is the augmented
graded unstable left j/-algebra in Theorem 1. 4, where j/ is the mod
3 Steenrod algebra. Hereafter we use the following notation for any
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a>0:

(2. 1)

Then we have the following

Lemma 2.2. </(«) >3rf(a + l) for all a>Q,

Proof. This is clear if d(a+l)=Q. While if rf(fl+l)>0, then

.w.+u = QH*.*d(,+i>^Q9 and so d (a) >3d (a + 1) by (2.1).

q0 e. ds

Now consider the following statements Si(a9m) ( l<i<4) for a>0

and m>0:

Si(a,m): For any positive integer n with n^O mod 3 and n^>3, if

n>m, then

S2(a,m): For any positive integer n with n^O mod 3 and n^29 if

n>m, then

Sz(a,ni): For any positive integer n with n = l mod 3, if n>m, then

S±(a,m): For any positive integer n with n = l mod 3 and ^^>93 if

n>m, then

Then we have the following

Lemma 28 3e / /m<4, S{(a^m) is equivalent to iS"f(fl, 4) for l<i<3.

If m<103 St(a9m) is equivalent to 5"4(a, 10).

Proof. It is clear that Si(a9m) is equivalent to ^(fl, 4) for any

m<4, and S^(a^m) is equivalent to S^(a9 10) for any m<100 Further-

more, by the unstable condition, we have that ^aQ^H2'z<l—Qa Thus
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Si(a,m) with m<4 is also equivalent to 5,-(fl, 4) for i = 233a

q. e. d0

Now Theorem 1. 4 is a consequence of the following propositions:

Proposition 2.4 Let a>Q, Suppose that if a>l then there are m{

and Hi for any Q<i<a — I so that S3(i, m^ and S±(i^n^ are true. Then
S^a.m} is true for any m with m>max {[W(0)/3fl] +2? (

Proposition 20 5, Let a>Q, Suppose that Sl(a,t) is true for some t.
Furthermore suppose that if a>l then there are m{ and nt for any 0<i
<a—l so that 53(f, m^ and S^i^n^ are true. Then S2(a^m) is true for
any m with m>max {(^ + 2)/39 (mt- + 2)/3a-l'? (wl + 2)/2-3fl- i}.

Proposition 2B 68 Let a>Q. Suppose that S2(a^t} is true for some
ta Furthermore suppose that if a>l then there are m{ for any 0<i<a—l
so that Sz(i,m?) are true. Then Sz(a^m) is true for any m with

Proposition 20 70 Let a>0. Suppose that S^a^t) and S2(a, s) are
true. Furthermore suppose that if a>l then there are m^ for any 0<i<a—l
so that 6*4 (i, m^) are true. Then S4(a, m) is true for any m with

, (ml-H-2)/3c-I'-2}0

Then Theorem L 4 is proved as follows.

Proof of Theorem I, 4 from Propositions 2, 4-7. First we prove that

(2.8) ^(fl, [rf(0)/3f l]+2) is true for all a>Q,

Next we prove that

(2.9) rf(0)>[rf(0)/3fl] for any a>0.

Then, by Lemma 2. 23 we have rf(a) =-[rf(0)/3fl]? and Theorem 1.4
follows since it is equivalent to Si(a,d(d) +2) for all a>Q,

To prove (2. 8) we put for a>Q that
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Then, by simple calculations, we have the following inequalities:

n(a)>(m(a)+2)/3 for a>Q,
m(fl)>max{(w(t) + 2)/2-3fl-', (m(t) + 2)/3fl-'-2} for
n(a) >max{(n(i) + 4)/3"', (m(i) + 2)/2-3fl-'} for
m(a)>(w(i)+4)/3 f l- ' for a>i>0 if m(<2)>5,
4>Oz(i)+4)/3 f l-' for fl>t>0 if m(d)<^
m(a)>n(d)+2 for a>0 if m(a )>I l , and
lO>n(a)+2 for 0>0 if m(a)<10.

Thus Propositions 2. 4-7 give the following implications :

>S8(*, n (n) +2) =*S4(a, ?TZ (a) ) — »- .

Here we notice that if m (a) > 5 (or > 1 1 ) then we get Si (a, m (a) ) by
Proposition 2.4 (or S 4 ( a 9 m ( d ) ) by Proposition 2.7, resp). While if
m(a)<4: (or <10) then we get Si(a, 4) by Proposition 2.4 (or
S4(<23 10) by Proposition 2D 7, resp.), and hence we get S 1 ( a ^ m ( a ) )
(or S^(a^m(d)}^ resp.) by Lemma 2.3.

Now (2.9) for a = Q is clear. So we assume (2.9) for all a<b — l
, and we prove it for a = b.

If d(b-l)<2, then d(b) >Q = id(b- 1)/3] >[</(0)/3*] by (2.9) for

Next, if rf(i-l)>2 and rf(ft-l)=0 mod 3, then by definition we

have Q±QH4'f~l™-l> = QfH*'*m-™s>m Thus we have d(b) >d(b-l)/3>
[rf(0)/36] by (2.1).

Finally suppose that d(b — 1)>2 and d(b — 1)^0 mod 3. Since
2d(b-l) ^0 mod 3, 2</(A-l)>3, and 2d(b-l) >id(0)/3b-lj +2 by (2.9)

for fl = i-l, ^(A-l, [6/(0)/36-1]+2) implies that O^a^4'3*'1^"1^

^3&"1a//4'36"1(d(i-1)-1). In particular, QH*'f~l<*<*-l>-»*0. Thus, if rf(ft-l)
= 1 mod 3, then by (2.1), we have d(b) > (d(b~\} -l)/3 = [d(A-l)
/3]>[^(0)/36]. While if d(b-l)=2 mod 3, then 2(rf(i-l) -1) =£0
mod3, 2(rf(i-l)-l)>3, and 2(rf(i- !)-!)> [rf^/S6-1] +2 by (2.9)
for a = b-l. (We note that rf(6-l)=2 mod 3 implies that rf(6-l)>

5.) Thus, also S^b-l, [rf(0)/36-1]+2) implies that

- - l w - » - * \ Sod(b) > (d(b-\) -
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Thus we have (2.9) for all a>Q, and Theorem 1.4 is proved.

q0 e. do

§ 3o Proofs of Propositions 2e 6 and 20 7

In this section we prove Propositions 2. 6 and 2, 7.

Proof of Proposition 20 6. Let ?z = l mod 3 with n>m. Then, S2(a,t)

implies that

Here9 for n=l and 45 the unstable condition implies that £P*aQH2'*a = Q

and 0>3*QH™ac:0>2«aQH^a = Q. So we assume that n>7. Thus also
^ t) implies that

Now we use the following relations given from the Adem relation:

(3. 1) for j= l ,2 , and

^"=S«*^3X- (^-e^) if m^O mod 3*+1,

Then we have that

where w,. = 3B-I'(« + 2) -2. Then since S^m,} implies ^

for i<a— 13 we have ^3a(£/:P3an = 05 and 53(fl, m) is true. q. e. d.

Proof of Proposition 2.7, We use the similar method as above.

Let n = l mod 3 with n>m and ra>9. Then S^a.t) implies that

Next we use S2(a,s) to get that Q/f2'3^ ^3aQ9//
2'3a(-2)c &

and hence
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Thus, we have that

c Z^-i^3#2'3'*'-

by (3. 1), where ni = 3fl-'(72 + 2)-2. Then since S4(i, mf) Implies that

^H^d'Ej^^DH^ for i<fl-l , we have ^H^^^^^^DH^,

and Si(a,m) is true8 q. e. d.

§4 Particular Generators for if*

In this section we give particular generators for //*. First we

prove the following

Lemma 4. 1. .L^ M* £e a yz/zzte dimensional graded vector space over

Z/p, where p is a prime. Let f: M*-»M* be an endomorphism of degree

d with fq = 0 for some ?>09 where fq = f°-f (q fold) and f°=id. Then

there is a homogeneous basis (&={y(t<>u', i) U>0, w>0 ? t-\-u<q — 19 l<z"
<r(t + u)} for M* so that

f(y(t,u\i»=y(t + \,u-\\i) for u>l, and f(y(t, 0; i)) =0,

where r is a certain integer valued function of non-negative integers,

Proof. Put M* = Af*/Ker /• Then / induces an endomorphism
/ : M*— »Af* of degree d with fq~l = Q. So we can prove the lemma by
induction on q. The details are left to the reader,, q, e0 dn

By using the above lemma? we give particular generators for H*a

Lemma 4020 Let H* be the algebra in Theorem 1.4. Then for any

r>09 there is a system of algebra generators &= [xl9 • • • , xk} for //*
(i.e., H* = T*l_xl)-',x1^), such that the following conditions hold:

If P^XiGDH*, then P^X — XJ for some x

9*x~&*xiGiX implies x~x^9£.

Proof. Put M* = QH* and f=^. Then M* together with /
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satisfies the conditions In Lemma 4. 1 since Q,//* is finite. Let ®/ be
the basis for Af* given In Lemma 40 1. We choose any representatives

*(0,*;i)etf* for y(Q,t\i)^M. Put x(t,u;i) = (0>*Yx(Q,t + u\i) for
t>!0 Then x ( t , u ° , i ) Is a representative for y(t, u\i) , and #"= {#(£,« ;i)}
Is a system of algebra generators for //*. Clearly, #" satisfies the
desired properties0 qa eB d.

§ 5. Proof of Propositions 2e 4 and 20 5

In this section we prove Propositions 20 4 and 20 5. To prove them
we fix a system of algebra generators 9E for //* given in Lemma 4Q 2
for r = a, and express all element in //* as a polynomial of S°.
Then, for any u^H* and for any monomial v of «3T, v Is said to be
contained In u provided that the coefficient of v In u Is not zero,, In
this case we denote that v^u.

First we prove Proposition 20 4,

Proof of Proposition 2, 4. First we note that if n Is great enough

then QH2'3°n = Q. Thus Si(a,rri) Is true for great m. So we prove
that S^m) Is true for m>max f[rf(0)/3 f l] +25 (mi + 2)/3fl-t"9 (w,- + 2)/
2°3 f l~ f} under the inductive assumption that Si(a,m + l) is true=
Furthermore if m + l<4 then Si(a,m) Is equivalent to Si(a,m + l) by
Lemma 20 3e So we assume that m>30

Let n be an integer with n^O mod 3 and ft>m3 and let x^^ be
a generator with dim x = 2°3ana (n>m implies n>38) Then by the

unstable condition and (3.1), we have that x*= 0f*a*x='£li£a0
f*laix

for some Q^G:^ and so

(5.1) *3e^3j;,. for some y.^H2^*'*1*-* with i<a0

First suppose that

x^^aya for some

Then ^(fl^ + l) implies that ya=0>*ay'tt + da for some

and d'a^DH*. Also ^(a, m+1) implies that X=^3y«-fC for some
(n-2) and d"a<=DH*. Thus, by using (3.1), we have that

+^3V.=S^^^
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Thus for any case in (5. 1)5 we have that

for some j.e//*3'«fl~l'+1»-» with i<a-l and for some da(=DH*0

Next we use S ^ ( i 9 n t ) to get Py^J^^yDH*. Thus we have

x^^^di for some d^DH* with i<a. This means that

(5.2) x^^Wi for some w^H2'^^'^^ (i<d), or

(5.3) jce^,- for some t^H***'**-* (i<d).

First consider the case of (5.2). If i<a — I then ^ 3V^ £],<;,•

&*DH* by S,(i,n{). While if i = <z then wa^H^a(n-» = DH^a(n-» by
(2.1) since 3fl(^- 1) >3f l(m- 1) >3fl([rf(0)/3a] + 1) >rf(0) +1. Thus

(5.2) implies x^^^DH*, and so (5.3) holds in any case.

Now S3(i,mi) implies that ^'^eZ)//* for i<fl — 1. So we have

x^<p*a£a for some £ae//2'3<z, and hence x=&*ax' for some x'^SE by
the definition of ^. This proves that Si(a,m) is true since ^ gives
a basis for Q,//*. q. e0 d.

To prove Proposition 2. 5, we prepare the following

Lemma 5040 Let a and n be non-negative integers with n^O mod 3.

Let x^& be a generator with dim * = 2-3 f lfl and &*x=y^£. Then
under the assumption of Proposition 2.5, if n>m then x2 is not contained

in ^ufor any u^H^a(n~l\

Proof, Suppose contrarily that

x2<=0>zau for some

Then? by using (3. 1), we have that

Now y2^(l^i<z-(^
ix)(^2'^a-ix) by dimensional reason. So we

have that
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ye^'ii,- for some ^//^cs'-W^) with ;<a_i,

Then 54(i, «,) implies that ^u^^j^^DH*, and so we have that

jje^V- for some w.^H2'*®*'^*™-® with i<fl-l .

Then S3(z, wz f-) implies that ^w^DH*, and this is a contradiction.

Thus #2 is not contained in &*"u for any u^H^a(n~l\ q. e. d.

Now we prove Proposition 2, 50

Proof of Proposition 2. 5, By the same reason as in the proof of

Proposition 2. 49 we have only to prove that S2(a,m) is true for m>

max {(£ + 2) /3, (mt- + 2) /3a~\ (w£ + 2) /2-3fl"1', 4} under the inductive

assumption that ^( f l j^w + l) is true.
Let w be an integer with n^O mod 3 and n>m^ and let x^& be

a generator with dim x = 2-3an. If &*ax^DH*, then ^x

in QH*. So we assume that

Now we use the same method as in the proof of Proposition 2. 4

to get (5.2) or (5.3). Here we notice that we use Sl(a^t) to show

that ya=&*aya + d'a and 5 2 ( f l ,m+l) to show that &*ay'a= &2*a y"a + d"a

(d"a^DH*} instead of Sl (a, m + 1 ) . Then we use S^i, ?z f) and Lemma

5.4 to get (5.3). Thus by using the same method as in the proof

of Proposition 2.4, we have x—^z°xf for some A/e«3T9 and hence

&*x= (&*yx'= &™a(2x'} + E;<a-i^
3VX (r^ ^) by (3. 1). Finally

we use S3(i9m^ to get that gP^fjt'^DH* (i<a—l) and hence

^3^//2.3
anc:^2.3^//2.3fl(re-2)o This proves that S2(a,m) is true since %

gives a basis for Q//*. q. e. d.

§ 68 Proof of Proposition 1. 6

Let X be the homotopy associative //-space in Theorem 1. 2, and

let P3H*(X',Z/3) be the module of all ^-primitive classes in H*(X\

Z/3). Then we have the natural inclusion e : P3H*(X;Z/3) cP//*

, where PH*(X',Z/3) is the module of all primitive classes
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in H*(X;Z/3). Let p : PH*(X;Z/3)-+QH*(X;Z/3) be the natural
projection. Since H*(X;Z/3) is ^-primitively generated, ps is an
epimorphism, and so is p. Thus the natural projection p#: PH*(X\
Z/3) -*QH*(X', Z/3), which is the dual of p, is a monomorphism, and
so the Pontrjagin product on H#(X',Z/3) is commutative by [6 ; 4.
20]. This implies by Zabrodsky [9 ; 3. 2 (d)] that H*(X\Z/S) is a
free algebra. But since H*(X;Z/3) is finite, it is an exterior algebra
generated by finitely many odd dimensional classes, and hence p is an
isomorphism by [6; 4. 21]. Thus e is also an isomorphism, and we
have the following

Lemma 6.1. H * ( X ; Z / 3 ) = A ( x l 9 - 9 x k ) ,

where x{(l<i<k) are A ̂ -primitive odd dimensional classes.

Now we can prove Proposition 1. 6 by the same method as Iwase
[4].

Proof of Proposition 1.6. Let PtX be the projective £-space for
X(t = 29 3), and let c2 : IXdP2X and c3 : P2XdP3X be the natural
inclusions. Then the composition c3c2 is equal to the inclusion e : IX
dP3X in §1. Now we have the following diagram (see [4]):

H* (P3X; Z/3)

where a£ and ^8,- are Z/3-module homomorphisms of degree i and
— i, respectively, with ^lal (u) = — ft* (u) = —fjf(u) + \ (g)w + u® 1 and
$2a2(u®v) = — /2*(w)®y4-z/(X)/2*(y). We notice that af1 is the suspen-
sion isomorphism <?„ Since Xi^H*(X',Z/3) are ^-primitive, we have

with dimj^dim ^- + 1 so that

Put S = at(DH*(X', Z/3) ®S*(X; Z/3) (x)H*(Z; Z/3) +H*(X\ Z/3) (x)
DH*(X; Z/3) ® H*(Z; Z/3) + H*(Xi Z/3) (x) H*(Z; Z/3)
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Z/3)). Then9 clearly, j/(S) C.S and c*(S) =0, Furthermore, by the

same reason as [4], we have H*(P3X ;Z/3)/S = r4[>i? — j>»]. q. e8 d0

§ 70

In this section, we give an example to show that (1.3) in
Theorem I, 2 is required0

Consider the spinor group Spin ( 2 k ) , Since Spin (2k) is a Lie

group, it is a homotopy associative //-space. Furthermore, H*(Spin

(2k); Z/3) ^H*(SO(2k) ; Z/3) as ^/-algebras. Thus, by [2 ; Prop.

10.2] and [3 ; Cor0 14.3], we have that

(7 1} H*(Stnn(2ky,Z/3)=A(x*xl9-9XM9e), and

e<£j/(H*(Spin(2k);Z/3»,

for some universal transgressive elements x{ and e with dim xt = i and
dim e = 2k—\9 where j/ is the augmentation ideal of jtf m Since

universal transgressive elements are 43-primitive by definition, //*

(Spin (2k) ; Z/3) satisfies the conditions in Theorem 1.2. We consider

the case of k = 3an with rc^O mod 3 and n>3. Then 4°3a(n-l)-l

<4/t — 5 and 4»3an — 1>4£ — 5. Thus, by Milnor-Moore [6; Prop.

4. 21], we have that

; Z/3) = PH^at~l(Spin(2k) °,Z/3) =0
if and only if t>n.

On the other hand, e& Im ^a by (7.1). These show that (1.3)
is required.

We can also show that (1.5) in Theorem L 4 is required by

considering H* = A*/D*A*, where A* = H*(BSpin(2k) ;Z/3).
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