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A Non Spatial Continuous Semigroup
of *-Endomorphisms of ($)*

By

Robert T. POWERS**

Abstract

In this paper a continuous one parameter semigroup «: of *-endomorphisms of B(DH)
is constructed having the property that there does not exist a strongly continuous one para-
meter semigroup of intertwining isometries (i. e. there is no strongly continuous semigroup

of isometries U(#) €B (D) so that U()A=a,(A)U(t) for all A€B(9)).

§I. Introduction

In this paper we construct a continuous one parameter semigroup
a, of *~endomorphisms of B($H) having the property that there does
not exist a strongly continuous one parameter semigroup of intertwin-
ing isometries (i.e. there is no strongly continuous semigroup of
isometries U (¢) €B(H) to that U(t)A=a,(A)U () for all 4=B(D)).
In a previous paper [3 Powers] it was shown how to associate an
index with continuous semigroups of #-endomorphisms of B(®)
having an intertwining semigroup of isometries. This previous paper
raised the question of whether such an intertwining semigroup of
isometries always existed. The present paper shows that they need
not exist,

We will call a continuous one parameter semigroup of #-endomor-
phisms of a von Neumann algebra M an Eysemigroup of M. The
precise definition of an FE,-semigroup is given as follows.

Definition 1.1. We say {a,; >0} is an E;-semigroup of a von
Neumann algebra M if the following conditions are satisfied.
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i) a,is a x-endomorphism of M for each £>0.
ii) @, is the identity endomorphism and a,ca,=a,,, for all ¢, s>0.
iii) For each f&M, (the predual of M) and A€M the function
f(a,(4)) is a continuous function of ¢.

In §II we review some results concerning generalized free state
of the CAR algebra and in §III we prove a theorem concerning
operators which almost commute with projections onto subspaces of
functions with support in [4, c0). These results are needed in §IV
where we prove the main result, Theorem 4. 1.

We wish to thank the referee for helpful comments concerning the
organization of this paper.

§II. Quasi-Free States of the CAR Algebra

In this section we collect some results concerning generalized free
state of the CAR algebra. We refer to [5 Powers, Stormer] for more
details. The CAR algebra over & denoted A(®) is a C*-algebra
generated by elements a(f) defined for f€8& and satisfying the CAR
relations

a(af+g) =aa(f)+a(g
a(f)a(@ +a(@a(f)=0
a(f)*a(g) +a(@a(fH)*=(f, 91

for all f, g=& and complex numbers a.
The gauge invariant generalized free states of A(®) are states of
A(®) whose n—-point functions satisfy the relations

o(@a(f)*eea(f)*a(g) < a(gn)) =0,,det{(f;, Wg)}.

If w is any state of A(R®) then the two-point function of w determines
an operator T on ® by the relation w(a(f)*a(g)) = (f, Wg) where
B satisfies the relation 0<W</. The gauge invariant generalized
free states are determined by their two point function.

In the following we denote the trace of an operator 4 by tr(4).
An operator is of trace class if tr(|A4])< oo where |4|=(4*4)Y? and
A is of Hilbert Schmidt class if tr(|4]? =tr (4*4) <oo.

Theorem 2.1. Suppose w, and wg are generalized free states of U(K)
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and B is a projection (i.e. B=B*B). Then w, is a factor state (i.e.,
®, induces a factor representation of U(R)) and w, induces a type I
Sactor representation of W(R) if and only if tr (AL —A))<oo. The states
0, and wg are quasi-equivalent (i.e. these states induce quasi-equivalent
representations of U(RK)) if and only if

(%) tr(BU—4)B+({U—-B)A(I—B))<co.

Furthermore, if o is any state of W(K) (not necessarily a generalized free
state) and o has a two point function A (i.e., w(a(f)*a(g)) = (f, Ag)

Sor f,g€8) and A satisfies inequality (x) then o is a factor state which
is quasi—equivalent to wg.

Proof. If follows from [5 Powers, Stormer] that w, is a factor
state and o, is of type I if and only if A=C+E where E is a
projection and C is a trace class operator. One checks that 4 can be
written in this form if and only if tr(A(/—4))<{oco. It is also shown
in [5] that the states w, and wp are quasi-equivalent if and only if
AV2—BY2 and (I—A)Y2— (I—B)Y?are of Hilbert Schmidt class. We will
show that in the case where B is a projection these two differences are
of Hilbert Schmidt class if and only inequality () is satisfied. To see
this let X=A4Y2—BY2 and Y=({I—A4)¥>— (I—B)"2 Then X and Y are
of Hilbert Schmidt class if and only if tr (X2+Y?) <{co. Now we have

X?+Y?*=2[—AY2B—BAYV*— (I—A)YV*(I—B) —(I—B) (I—A4)2

Since the trace of a positive operator can be computed using any
orthonormal basis we can choose an orthonormal basis of wvectors
{fis5i=1,2, -2} so that Bf;=f; or Bf;=0 for each i=1,2, coco,
Computing the trace of X24-Y? with this basis we find

tr(X?24+Y?2) =2tr (BI—AY®B) +2tr (I —B) I— (I—A)Y*(I—B)).
Since for x=[0,1] we have 1—x<2—2x2<2—2x, we have I—A<
2(I—-AY%) <2(I—A). And replacing 4 by /—4 in this inequality we
find 4<2(I— (I —A)Y*) <2A. Hence, we have

—%tr(XZ—I—Yz) <tr(BU—-A4)B+({U—-B)A(I—B)) <tr(X*+Y?).

Hence, w, and wp are quasi-equivalent if and only if inequlity (%)
is satisfied.

Next suppose @ is an arbitrary state of A(®) (not necessarily a



1056 ROBERT T. POWERS

generalized free state) and w(a(f)*a(g))=(f, Ag) for all f,g=8.
Suppose B is a projection and tr(B(I—A4)B+ (I —B)A(—B))<oo.
One may see that o is a factor state A (8) which is quasi-equivalent
to wp as follows. Let 4(f)=a((I—B)f)+a(BSf)* for fe® where
§ is a conjugation which commutes with B (i.e. § is a conjugate
linear isometry of & onto ® so that S§f=f for all fE® and SBS=B).
One easily checks that the b(f) satisfy the CAR relations given
at the beginning of this section and the 6(f) generate U. Now let
{fi:i=1,2, «+-+} be an orthonormal basis for & chosen so that Bf,=f;
or Bf;=0 for all 1=1,2,.-+-, Then one finds

g oG (f)*(f))=tr(BU—A)B+({I—B)A(I—B)).

Then as shown in [2 Garding, Wightman] for pure states and [l
Dell’Antonio, Doplicher] for arbitrary states of () if

z o(b(f)*b(f))<oo

then o is quasi-equivalent to the Fock state p, defined by the property
that 0,(b(f)*b(f)) =0 for all feR (see also [4 Powers]). One
checks that if po(b(f)*b(f)) =0 for all fER then py=wp Hence if
o is a state with two-point function w(a(f)*a(g))=(f, Ag) and
tr(B(I—A)B+ (I—B)A(I—B))<co then the state @ is quasi-equiva-
lent to wg. U]

Theorem 2.2. Suppose o, and w, are factor states of U(K) with two

point functions A and B(so w,(a(f)*a(g)) = (f, 48 and w,(a(f)*a(g)) =
(f, Bg) for all f,g®). Then A—B is a compact operator.

Proof. See ([4], Theorem 2-1).

If M is a linear subspace of & we denote by UA(M) the
C*-subalgebra of A(R!) generated by the a(f) with fen.

Theorem 2.3. Suppose wp is a generalized free state of U(RK) with
two-point function a projection P and (m, 9, £2¢) is a cyclic *—representation
of A(R) induced by wp on a Hilbert space © with cyclic vector £,.
Suppose M is a closed subspace of & and E is the orthogonal projection
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of © onto M. Suppose tr(EPE(I—P)E)<oco. Then m(A(M))" is a
type I factor and there is a unitary operator S€x(U(M))” so that S*=I
and Sz(a(f))S=n(a((I—-2E)f)) for all f&M. Furthermore, the commu-
tant w(A(M))’ is generated by the elements Sa(f) with feM*+ (with
ML the orthogonal complement of ).

Proof. Suppose the hypothesis and notation of the theorem are
satisfied. Let 6, be the one parameter group of #-automorphisms of
A(R) defined by the relation 6,(a(f)) =a((I—E)f+e*Ef) for all
fER. Let Ay=EPE. Since tr(4,(I —4,)) <co there is an orthonormal
basis {fi;i=1,2, +»++} for M so that Aofi=4.f; and X 4—2<oo,
Let N,,=f_,1 a(f)*a(f) —AL. Clearly we have N,Em(A(M)”. Let
V,@) =n(exp(itN,)). First we show V,(¢)2, converges strongly as
n—oo, We have for n>m

(Va(@®) —Vau(@)2lP=2—2 Re (V,.(¢) 2o, V,()%0)
=2—2 Re(w,(exp (it (N,—N,))
<t%0y((N,—N,)D =¢* ﬁﬂz,.—ze.
Since i A;—2%co we have from the above inequality that V,(¢) £, is
a Cautczllly sequence in norm. Hence V,(¢)2,—2, in norm as n—oo,
One may calculate that
Va@®w(a(f) V(@) F=n(a(U—E)f+e"E,f))
for all fe® where E, is the projection onto the space spanned by
{fs, =+°*, fu}. Since E,—E as n—co it follows then that V,(¢)=(p) 2,
—n(0,(p)) 2, as n—oo where p is a polynomial in the a(f) and a(g)*.
Hence, it follows that V,(¢) converges strongly to a strongly continuous
one parameter unitary group V() as n—oo and V(@)n(4) V()=
n(0,(4)) for all A= UA(R).

Note that V(2x) commutes with 7#(4) for A=UA(®) and since
(UAR))"=B(H) since wp is a pure state we have V(2z)=al. It
will be convenient to have V(2r)=/. This can be arranged by
redefining V' (¢) =e™'V (¢) with e #*=2. From now on we will assume
that the group V(¢) has been redefined so that V(2z) =I. Then we
define S=V(x) =V (x)*. From the construction of § we have
Sex(A(M))”, S2=1 and Sx(a(f))S=x(a((I—2E)f)) for all fEK.
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Next we show w#(A(M))” is a factor of type I. Let N be the
von Neumann algebra generated by the elements Sz(a(f)) with
feML. Since N is generated by elements which commutes with the
a(f) with feI® we have that NCa(Y(M))’. Let R be the von
Neumann algebra generated by #(€(M)) and N. Since Sex(A(M))”
it follow that z(a(f)) =SSz (a(f)) ER for feM*+ and = (a(f)) EMCR
for feI. Hence, 7(a(f)) €R for all for all feR. Since the a(f)
generate A(R) we have R=z(AR))"=B(H). Suppose C=x(A(M))”"
Na(AM))’. Since Cexn(A(M))” we have C=N’. Hence, C com-
mutes with both z(A(M))” and N we have C=R’. Hence, C=A1l.
Hence, z(A(M))” is a factor.

Consider the state (2,B92,) for Bex(A(M))". This state is the
weakly continuous extension of the state (£2,, 7(B)%2,) =wp(B) for
BeA(M). Let w, be the restriction of wp to A(M). The state o, is
a generalized free state of Y(IM) whose n-point functions are given
by

wy(a(f)*e e a(f)*a(g) «+++a(gy)) =det(f;, 4og))

where 4,=EPE is the restriction of P to . As we have seen this
state is of type I if and only if A4,—A4% is of trace class. Since
tr(4o—A4%) =tr (EPE(I—P)) <o we have o, is a type I state. Hence,
T(A(M))” is a factor of type I and #(A(M))’ is generated by the
elements Sw(a(f)) with feM* OJ

8§ IIl. Almost Multiplication QOperators

Let 8=L%(— o0, 00) @LZ(— o0, ) be the Hilbert space of square
integrable two component functions on the real line. Let P; be the
orthogonal projection of & onto the subspace M; of & of functions
with support in [4, o) (,e., (P;f)=f(x) for x>2and (P,f) (x) =0
for x<{4). For a<lb let P ;=P,—P, and let M[a,b] be the range
of Pr . The main result of this section is the following theorem.

Theorem 3.1. Suppose a<<b and A is a positive compact operator on
& with the property that (I—P;) AP, is of rank not more than one for
all 2c[a,b]. Then there are numbers ¢ and d so that a<c<d<b so that
tr (Pp, APy, ap) < 0.
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Before we prove this it is useful to prove the following.

Lemma 3.2. Suppose A is a compact hermitian operator on the acting
on & and (I—P)AP;=0 for A€[a,b]. Then P, AP 5=0.

Proof. Suppose A satisfies the hypothesis of the lemma. Since 4
is hermitian we have A commutes with P; for 1&[q,b]. It follows
that B=P, 4P, ;; commutes with the operation of multiplication
by functions of x. Suppose f&eM[a,b] and 6, is the operator of
multiplication by ¢™. Then Bf=60}B6,f for all n=1,2, -+« and as
n—oo, 0, f tends weakly to zero. Since B is compact we have Bo,f
tends to zero in norm as n—oco. Hence, Bf=0 and B=0. ™

Progf of Theorem 3.1. Suppose A satisfies the hypothesis of the
lemma., Suppose (/—P;)AP;=0 for all i€[a,6]. Then by the
previous lemma we have Py ;4P ;=0 and, therefore, the pair
(¢, d) = (a, b) satisfies the conclusion of the theorem. Suppose then
there is a A& (a,b) so that (/—P;) AP, is a rank one operator. Let
Ao= P, 3AP, ;3. There are functions Ay, ko€ M[a, b] so that (I —P,) AP, f
=(ko, f)hy. Let d=(4,b) so that Pu;k,#0 and c=(a, ) so that
(I—P)hy#0. Note the following. Suppose x,yE[¢,d] and »<).
There are functions k., h,, k., k,EM[a, b] so that (I —P,) AP, f= (k., [ h,
and (/—P,)AP,f=(ky, f)h, for all fER and the functions must
satisfy the relations

(%) k,=aPk, and h,=a(l—-P)h,
where a is a complex number. The truth of the above statement
follows immediately from the fact that the operators (/—P,)A.P, and
(I—P,) AP, are of rank one and these operators are equal when
sandwiched between (/—P,) on the left and P, on the right.
Applying this statement to the numbers ¢ and d we obtain functions
hey hay k.o kg satisfying (*). The functions k2, and k; are unique up
to the transformation A;=A4k; and k;=2"%,. We can then choose the
functions #; and k; so that the « of (%) is one. We assume the 4,
and k,; have been so chosen. Then we have k;=P,k, and h,.= (I —P.)h,.
Now suppose s&[¢,d]. Then we have (/—P) AP, f= (k,, f)h, for
all feM[a,b]. We have A, and £k, are related to 4, and £, by (%)
and with an appropriate choice of A, and k&, we can arrange it so
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that the @ of (*) is one. Then with this choice of the %, and £, we
have

kd=Pdkc hc': (I_Pc)hd

ks=Pskc hc—_— (I-Pc)hs

kd=anks hs=d(I_Ps)hd'
We will show that the @« in the above equation is one. Since
({I—-P)AP, and (I—P,)A,P, are equal when sandwiched between
(I—P,) on the left and P; on the right we have for fe&

(Péks, [)UT—=PIh=(Pikc, f)h..
Since (I—P,)h,=h, it follows that Pk, =Psk,. But Pk, =k,;s0 k;=Puik,.
Hence, the above a=1 and A,=({—P,)h;. Hence, we have for
see, d]
(I—=PYAP,f=(Pk., [)UT—P)h,
for all fe®. Now let B be an operator & with kernel K;;(x,y) given by
K;;(x,9) =h,i,-(x)m for x<y
and
Ki;(%,9) =k (x)hy;(p)  for x>y

where
2 (b
BN =2 Kum (D

Clearly, B is a compact hermitian operator (in fact, B is a Hilbert
Schmidt class operator) and from the construction of B we have
(I—P,) (4,—B)P,=0 for all s€[¢,d]. Since A,—B is a compact
hermitian operator it follows from Lemma 3.2 that Py ;4¢P 5=
P[c.d]BP[c.d] . Let Q,:P[c,d]BP[c,d] .

We show Q is of trace class. Since 4,>0 we have Q>0 and Q is
given by a kernel K;;(x, »). Suppose C is a positive compact operator

so that Cf=§ 2;(h;y f)h; where >0 and the {A;} are an orthonormal

set of vectors. Then

(€f) () = ZS TG D) dy

i=lda

with
Ji(x, ) =kZ::1 Ay (%) by ; ».
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We see that the trace of C is given by
[ 2 (b
() =% A=2 Juls, dx
k=1 i=lJa
where the integral diverges if the trace of C is not finite. This formula
for the trace of C must be used with some care since the kernel
Jii(x, ») is only defined up to sets of measure zero and the set of
(x, ) with x=y is a set of measure zero.

To calculate the trace of a positive operator C with kernel
Jis(x, ) on M[a, b] one may proceed as follows. Consider the
functions ¢, (x) for i=1,2 and k=1, ----,n given by (e),;(x)=
(n/(b—a))Y?ifi=jand (k—1) (b—a)/n<x—a<k(b—a)/n and (e;) ;(x)

=0 otherwise. Note the ¢, are an orthonormal set of step functions.
Then we have

> % (eurs Cend) = iSbJ,-,(x, 9)6,(x, »)dx dy

=1 i=lJa

sk

where 6,(x,y) is a positive function with vanishes when |x—y|>
(b—a)/n. One can show that the above expression converges to the
trace of C as n—oo where the expression diverges if the trace of C
is not finite. This follows from the facts that the trace of a positive
operator can be computed using any orthonormal basis and as n—oo
any function in M[a,b] can be approximated in norm by linear
combinations of the ¢,. Calculating the trace of Q by such a
procedure we find

(ekiaQ,eki) = bﬁ SS hdi(x)k::'(}’)dx d}’

a x,y€Lx<y

k. (x)bdi(.y) dx d}’ .

—a x,yEL x>y

n

+
b
Hence,

2n

0 Q) <2 1ha el ke 1,

where [, is the interval of support for ¢,;. Then we have from the
Schwarz’s inequality that

S 3 (enss Oew) <2Ulhd| IR .

i=1 k=1
Taking the limit as n—oco we have tr(Q) <2||h4| ||k]]. Hence,
tr (Pre, AP, ap) =tr (Pre,ndoPre,ap) <<oo. O
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§IV. An E,-Semigroup with No Intertwining
Semigroup of Isometries

In this section we construct an example of an E,-semigroup of
B(H) for which there is no strongly continuous one parameter
semigroup of intertwining isometries. The construction uses the CAR
algebra A=A(R) over a Hilbert space $=L*(—oco, o0)PL?(— 00, o0)
the space of square integrable two component functions on the real
line. If fE® we denote by f the Fourier transform of f given by

F#) = @n) A" e pnyds.
Let E, be the projection on & given by (E,f) (p) =e(p)f(p) where
e(p) is a (2X2) matrix with entries

_]_'_. Leie(l’)
2 2
e(p) = : : where 0(p) = (1 +p?) =4,
L e L
2° 2
Let o be the (2X2) matrix
[
R
=l ] N
2 2

Then in x-space E, acts as follows.

@D EH@ =@+ TN
where I'(x) is a (2X2) matrix with entries

0 7(x)
r(=x) 0

We now state our main theorem.

(4.2) I'(x) =[ ] and 7(x) :7}1;80: (€7 —1) ¢itdp.

Theorem 4.1. Let w, be the gauge invariant generalized free state of
U=A(R) with two-point function E, defined above (i.e. wy(a(f)*a(g)) =
(fy Eg) for f,g€8R). Let (7, D, 20) be a cyclic *—representation of U
induced by w, on a Hilbert space § with cyclic vector 2, Let T, be the
unitary group of translations on & so (T, f) (x) =f(x—t) for fER and let
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B be the group of x-automorphisms of U defined by the requirement B,(a(f))
=a(T,f) for all fER. Since w, is a B, invariant state there is a unitary
group W(t) acting on § defined by the requirements W (t)2,=2, and
(B (A)) =W () mg(A) W (£) ! for all ASY and t>0. Let M, be the
subspace of & of all functions f with support in [0, o) and let B=U(IM.)
be the C*-subalgebra of U genmerated by the a(f) with feM,. Let
M=ry(B)" and for AEM and t>0 we define a,(A)=W@)AW (@)™
Then M is a type I factor and «, is an Eg-semigroup of M. Furthermore,
there does not exist a strongly continuous one parameter semigroup of
isometries U(@) €M with the property that U(@)A=a,(A)UE) for all
AeM and t=0.

The proof of this theorem will be based on the following lemmas.

Lemma 4.2, The function y defined above has the property that
r(x) =iK |x |35 — K, |x | V5+h(x) where K, and K, are positive constants
and h is a bounded function of x. Furthermore, it is true that

S:x |7 (%) |2dx< o0,

Proof. We have

@ 1@ =\ G I—Lp S a () + () +o()dp

where
a(p) =i0(p) =i 16|, b(p) = — 0D+ |p| %,
¢(p) =P~ 10 (p) + 0 ($)"

Routine estimates show that |a(p) |[<<p~?% |b(p) |<<p™% Hence, these
functions are in L' for large [p| and one sees by inspection these
functions are in L' for small p. Hence, we have a, b€ L!(— o0, ).

Since [e"“—l—ix+~é-leé |x]3/6 for all real x if follows that
le(p) |<0(p)%/6=(1/6) (1+p» ~¥*

for all p. Hence, we have ceL!(—oo, c0). Hence d=a+b+ce

L'(—oc0,0). Now we have by a change of variable y=px for
0<ls<{l that
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l = ibx -5 _!xls—lgm iy =Sy — s=1
o\ emiplmap =2 ey =K@ 1x1,

where K(s) is positive, Then we have from equation (%)

r(0) =iK(2/5) |x| 25— L K(4/5) |x| "+ 41—”8“’ e#d(p) dp.
Since d€L!(—oco, o) we have shown that y(x) =iK,|x| ¥ —K,|x|™*
+h(x) where K, and K, are positive constants and % is a bounded
function. Hence, |x|Y?r(x) is in L? for small x and since

(dn/d n) (eiﬁ(P)_l)ELl(_oo, oo) for n:l, 2’ R
P

it follows that [x|"r(x)—0 as x—oo so |x|Y%(x) is in LZ for large x.
Hence, x|y (x) [2€ L]0, o). ]

Lemma 4.3. The von Neumann algebra M=ry(%8)" define in Theorem
4.1 is a type I factor and a, is an Ey-semigroup of M.

Proof. It follows from Theorem 2.3 that M=m,(B)" is a type I
factor if tr (P, EP,(I—E,) P,)<oco where P, is the orthogonal pro-
jection of & onto M,. Now P,E,P,—P.EP.EP =P, EP_EP, =0Q*Q.
To compute the trace of Q*Q where Q in an operator with a kernel
K;;(x,y) one has

22 )
tr (Q*Q) = EISS_W lKij(x’y) lz dx dy.
Hence,

tr(PLEP,(I—EyP.) =2§° e v dy=2{ w17 (o) pran<eo

—oo

where the last integral converges by Lemma 4.2. Then by Theorem
2.1 M=n,(8)" is a type I factor.

Since B; maps B into itself for t>0 and 7,(B) is strongly dense
in M we have @, maps M into itself and from the form of a,
(a,(A) =W @) AW (t) ") it is clear that a, is an Ey-semigroup of M. []

Lemma 4.4. Let M[a,b] be the subspace of & of functions f having
support in the interval [a,b] and let Bla,b]=A(M[a, b]) be the C*-
subalgebra of U generated by the a(f) with fEM[a, b]. Then ny(Bla, b])”
is a type I factor.
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Proof. Assume the hypothesis and notation of the lemma holds.
Let P be the orthogonal projection & onto IM[a,6]. Then from
Theorem 2.3 it follows that m(B[a,6])” is a type I factor if
tr (PE,P(1—Ey) P)<oo. Now we have PEP(I—E)P=PE,(I—P)E,P
=0*Q . Hence,

tr (PEP (I — Ey) P) ZQSSM 7= [7dx dy<4S:x 7 (x) |%dx< oo

ye[01]

Hence, 7,(B[a,6])” is a type I factor.

Lemma 4.5. Suppose there is a strongly continuous one parameter
semigroup of isometries U (t) €M so that U(t) A=a,(A)U(t) for all A M.
Suppose e, is a minimal projection in M (which exists since M is a type
I factor) and F, is a unit vector in the range of eo. Let Fi=U(1)F, and
let p(A) = (Fy, m(A)F)) for A€, Let W be the two-point funciion of
p (.e, pla(f)*a(®) =(f, Wg) for f,g=8). Let P, be the projection
on & given by (P,f) (x) =f(x) for x=2and (P,f) (x) =0 for x<A. Then
(I—=P))WP, is an operator of rank at most one for all 0<2<L1,

Proof. Suppose the hypothesis and notation of the lemma are
satisfied. Since Fj is in the range of a minimal projection ¢, M the
state (Fo, AF,;) is pure on M. Let %B,=5,(8) for t=0. We note
the restriction of p to %, is pure for 0<t<1. This may be seen as
follows. We have U((t)m(A) =a,(m(A))U (@) =mo(B;(A))U(2) for
Ae®B. Hence, we have m(4) =U@#)*r,(8,(4))U(¢). Hence, for
0<t<1 and A% we have

p(B,(4)) = (U ) Fo, m(B,(4)) U (1) Fy)
= U= F, Ut)*m (B (AU U —1) Fy)
=UU =) Fy, (DU —1)Fy).

Since U(1—¢) M we have p is a pure state of B, for all 0<¢<1.
We will show that (/—P;)WP; is an operator of rank at most one
for 0<2<1.

In Lemma 4.2 we saw that tr (P EP,({—Ey P,)<co and, hence,
by Theorem 2.3 it follows that there is a unitary S&M so that
8$?=1 and Smo(a(f))S=m(a((I—2P,)f)) for all f€& and M’ is
generated by the elements Smy(a(f)) for all feIM_ where IM_ is
the orthogonal complement of M, in & Let f be a unit vector with
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support in (— oo, ] 50 P, f=0 and et C=%I+é—n(a(f) Fa()Mai(S).

One checks that C*=C and C?=C. Let = be the functional on B,
given by 7(4) = (Fy, n(4)CF;). Note my(a(g)) and m(a(g))* commute
with C for g in the range of P, Since such elements generate 7(%B;)
we have that C=n(8B;)’. Hence, for A=B; we have

©(4*4) = (Fy, m(A*4)CFy) = (Fy, m(A4*A4) C°Fy)
= (CF,, 7(4*4)CF;) >0

and

p(A*4) —t(A*4) = (Fy, m(4*4) I -C) FY)
= ((I—C)Fl, ﬂ(A*A) (I—C)Fl) 20.

Hence, 0<7<p|®B;. Since p is pure on %B; we have that 7(4) =ap(4)
for A=$B,. Setting A=I we can evaluate the constant a. Then we
obtain (Fy, my(4) CF,) = (F\Cry(A4) Fy) = (Fy,CF,) (F,, my(A4) F,) for A=3,.
By weak continuity this relation extends to all of m,(%8;)". Recalling
the definition of C and subtracting of the identity term from both
sides of this equation we find

(Fy, m(a(f) +a(f)®) a(S)AF)
= (Fy, 7"'o(fl(f) +a(f)*)a'z(S)F1) (Fy, AFY)

for all A=m,(8B,;)". Replacing f by if in this equation and combining
the two equations we find

(Fy, mo(a(f)*) a;(8) AF) = (Fy, m(a(f)*) aa(5) Fy) (Fy, AFy)

for all Aemy(B,)". Let A=a;(S)m(a(g)) with g in the range of P,
Then A€, (B;)” and we have

(fs Wg) =p(a(f)*a(g)) = (Fy, m(a(f)*a(g) Fy)
= (Fy, mo(a(f)*) a(S) a;(S) mo(a(g)) FY)
= (Fy, ”o(a(f) *)a; (8) Fy) (Fy, a;(S) m(a(g)) Fy).

Hence, (f, Wg) is of the form (f, Wg)=Q(f)R(g) where Q and R
are linear functionals on the range of /—P; and the range of P,,
respectively. Hence, (/—P;) WP, is an operator of rank at most one
for all 2&[0, 1]. O

Lemma 4.6. Suppose the hypothesis and notation of Lemma 4.5 is
satisfied. Let B, be the projection on & given by (B,f) (x) =af(x) where
o is the (2X2)-matrix defined at the beginning of this section and let o,
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be the generalized free state of W with two-point function B,. Then there
are numbers a and b so that 0<a<<b<1 and the restrictions of w, and
to Bla,b] are quasi-equivalent. (Recall that B[a,b] is the the C*-
subalgebra of U generated by the a(f) with f having support in [a,b].)

Proof. Assume the hypothesis and notation of the lemma are
satisfied. We will first show that there are numbers a and b so that
0<a<b<1 and the restrictions of p and o, to B[a,b] are quasi-
equivalent. Let W be the two-point function of p. Let the projections
P, and P, ; be defined as in §III. We first show that Q=
Py (W —B) Py is a compact operator. Note w,(4) = (82, 7(4)2y)
and p(4) = (F,,m(A)F)) for all Ae®B[0,1]. From Lemma 4.4 we
have 7, (B[0, 1])" is a type I factor. Since (£2,, 492,) and (F;, AF)
are normal state of 7(B[0, 1])” and since 7, (B[O, 1])” is a type I
factor it follows restrictions of @, and p to B[0, 1] are quasi-equivalent
type I states. Hence, Py (Ey— W) P,y is compact by Theorem 2. 2.
We show Py 1;(Eq— B;) Py is compact. For f€® we have

(Pun(Ev—B) Punf) @ = K& =y

where ' is defined in equation (4.2) in terms of the function 7.
And K(x)=1 for x[0,1] and K(x) =0 for xe&[0,1]. Let

_ L™ ey i
@ =4\ @ @—Derdp

and let I', be defined in terms of 7, as I" was defined in terms of 7.
Let J, be the operator on & given by

() @D = KO-

A straight forward computation shows that J, is a Hilbert Schmidt
class operator (in fact, tr( J}/,) <4n) and since 6(p)—0 as |p|—oo
we have || J,— Pp.13(Eo— By) P ygl|—0 as n—oco. Since the norm limit
of compact operators is compact P ;(Eo— By) Py is compact. Since
Py (Eq—W) Py and Py (Ey—B)) P,y are compact we have
Q=P ;(W—B,) P is compact.

Let Q,=({(—B)QU—B,) and Q ,=—B,0QB,. Since (I —P,;)B,P;=0
and since from Lemma 4.5 (/—P;) WP, is of rank not greater than
one for 2€[0, 1], we find (/—P,)Q ;P; is of rank not greater than
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one for i=1,2 and 2€[0,1]. Since Q, is positive and compact we
have from Theorem 3.1 there exist numbers ¢ and d so that 0<¢c<C
d<1 so that tr (P .;Q P41 <oo. Since Q ,is positive and compact
and (/—P,)Q,P; is of rank not greater than one for 2&[c,d] we
have from Theorem 3.1 that there are numbers a and b so that
¢<a<b<d and tr(Pp»Q P <co. Since [a,b]cC[c,d] we have
tr (Pras1 Q iPrasy) <oo for i=1,2. Now e, restricted to B[q,b] is a
generalized free state of B[a, b] with two-point function (the restric-
tion of B, to M[a,b]) a projection. Hence, it follows from Theorem
2.1 that the restrictions @, and p to B[a, b] are quasi-equivalent if

tr (P[a.b](Bl(-[_ W) B+ (I—-By) W(I—Bl))P[a,b]) < oo,

But the above expression is equal to tr(Pp,;;(Q ;+Q 1) Pr.s;) which is
less than infinity. Hence, the restrictions of w;, and p to $B[a,b] are
quasi-equivalent.

Since 7,(B[a,6])” is a type I factor by Lemma 4.4 and since
®y and p arise from normal states of m(B[a,b])” (recall p(4) =
(Fy, m(A)F)) and wy(4) = (£, m,(A4)2,)) it follows that the restrictions
of p and w, to B[a, b] are quasi-equivalent. Hence, the restrictions
of w, and @, to B[a, b] are quasi-equivalent.

Lemma 4.7. If a<lb then the restrictions of w, and ; to Bla,b]
are not quasi-equivalent,

Proof. Suppose a<lb. Let Ej and B} be the restriction of E, and
B, to M[a,b] (i.e., Ejf=PyuEf and BYf=P, B f=B,f for
fEMa,b]). Since the restrictions of w, and w, to B[a, b] are gauge
invariant generalized free states of B[a, 4] and Bj is a projection it
follows from Theorem 2.1 that the restrictions of these states to
$B[a,b] are quasi-equivalent if and only if tr(D)<co where D=
BY(I—E)B)+ (I—B)E(I—B)) where the trace is taken to be the
trace on IM[a,b]. Calculating D we find

(Df) (x) = Sif«x —)f(dy

where
K(x) = = 57() —57(—5) =—Re(r(x).

From the discussion at the end of Theorem 3.1 we recall that the
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trace of a positive operator D with kernel K;;(x, y) is given by
b
(D) = Kux, 5) + Kz, 2

where the integral is suitably interpreted as a limit of other integrals.
In our case Ky (x, ) =K,(x, y) =—Re(y(x—»)) and from Lemma 4. 2
we have

—Re(y(x)) =K,|x|"+a bounded function of x.

2

Then one can show that >
i=1
(where the ¢,; are the functions constructed in §3). Hence, tr (D) =o0.[]

n
> (ey, Dey;) diverges like n'5 as n—oo
k=1

Proof of Theorem 4.1. Assume the hypothesis and notation of
Theorem 4.1. From Lemma 4.3 we have that M=m,(B)" is a type I
factor and a, is an E,-semigroup of M. Assume there is a strongly
continuous semigroup of isometries U (¢) €M so that U(t) A=a,(4)U(t)
for all AeM. Then the hypothesis of Lemma 4.5 is satisfied as is
the hypothesis of Lemma 4.6 and, therefore, there are numbers a
and b so that a<b and the restrictions of w, and @; to B[a,b] are
quasi-equivalent. But by Lemma 4.7 this is not possible. Hence, it
follows that there is no intertwining semigroup of isometries U()e M.[]
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