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Abstract

In this paper a continuous one parameter semigroup at of ^-endomorphisms of
is constructed having the property that there does not exist a strongly continuous one para-
meter semigroup of intertwining isometrics (i. e. there is no strongly continuous semigroup
of isometrics £/(Oe93(€>) so that U(t)A = at(A)U(t) for all

§ I. Introduction

In this paper we construct a continuous one parameter semigroup
at of *-endomorphisms of S3 Op) having the property that there does
not exist a strongly continuous one parameter semigroup of intertwin-
ing isometries (i. e. there is no strongly continuous semigroup of
isometrics t/ (OeS3(£) to that U(t)A = a t ( A ) U ( t ) for all ^eS3(©)).
In a previous paper [3 Powers] it was shown how to associate an
index with continuous semigroups of *-endomorphisms of S3 Op)
having an intertwining semigroup of isometries0 This previous paper
raised the question of whether such an intertwining semigroup of
isometries always existed. The present paper shows that they need
not exist.

We will call a continuous one parameter semigroup of *-endomor~
phisms of a von Neumann algebra M an £0-semigroup of M, The
precise definition of an E^-semigroup is given as follows.

Definition 1.1. We say [ati t>0] is an Eo-semigroup of a von
Neumann algebra M if the following conditions are satisfied,,
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1) at is a *-endomorphism of M for each
ii) aQ is the identity endomorphism and atoas = at+s for all t, 5>08

iii) For each f^M* (the predual of M) and A^EM the function
f ( a t ( A ) ) is a continuous function of t.

In § II we review some results concerning generalized free state
of the CAR algebra and in § III we prove a theorem concerning
operators which almost commute with projections onto subspaces of
functions with support in [^,00). These results are needed in § IV
where we prove the main result, Theorem 4. 1.

We wish to thank the referee for helpful comments concerning the
organization of this paper.

811. Quasi- Free States of the CAR Algebra

In this section we collect some results concerning generalized free
state of the CAR algebra. We refer to [5 Powers5 Stormer] for more
details. The CAR algebra over ® denoted H(ft) is a C*-algebra
generated by elements a ( f ) defined for /eS and satisfying the CAR
relations

a(af+g)=aa(f)+a(g)

for all /, g&!$ and complex numbers a.
The gauge invariant generalized free states of 81 (S) are states of

81 (®) whose 7z-point functions satisfy the relations

If CD is any state of 31 (®) then the two-point function of a) determines
an operator SB on $ by the relation Q>(a(f)*a(g)) = (/, 3%) where
SB satisfies the relation 0<2B</. The gauge invariant generalized
free states are determined by their two point function.

In the following we denote the trace of an operator A by tr(A).
An operator is of trace class if tr( \A |X°° where \A \ = (A*A)l/2 and
A is of Hilbert Schmidt class if tr(\A\2) =tr(A*A)<ooe

Theorem 2e 1. Suppose CDA and WB are generalized free states of
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and B is a projection (i.e. B=B*B)0 Then a)A is a factor state (i.e.,
COA induces a factor representation of 21 (^)) and a)A induces a type I
factor representation of 31 (®) if and only if tr(A(I — ̂ ))<oo. The states
o)A and OJB are quasi-equivalent (i. e. these states induce quasi-equivalent

representations of §!($)) if and only if

Furthermore, if o) is any state of 21 (®) (not necessarily a generalized free

state) and CD has a two point function A (i.e., <w(fl(/)*0(g)) = (/, Ag)
for f,g&®) and A satisfies inequality (*) then a) is a factor state which
is quasi-equivalent to (DB«

Proof. If follows from [5 Powers, Stormer] that <DA is a factor
state and (DA is of type I if and only if A = C + E where £ is a
projection and C is a trace class operator,, One checks that A can be
written in this form if and only if tr(A(I—A))<^oo0 It is also shown
in [5] that the states o)A and O)B are quasi-equivalent if and only if
Al/2-Bl/2 and (I-A)l/2- (J-B)1/2are of Hilbert Schmidt class8 We will
show that in the case where B is a projection these two differences are
of Hilbert Schmidt class if and only inequality (*) is satisfied,, To see
this let X=Al/2-Bl/2 and Y= (I- A}1/2- (I-B)l/2

e Then X and Fare
of Hilbert Schmidt class if and only if tr(Z2+y2)<<cx)8 Now we have

X2+Y2=2I-A1/2B-BAl/2- (I-A}l/2(I-B} - (I-B) (I-A)l/\

Since the trace of a positive operator can be computed using any
orthonormal basis we can choose an orthonormal basis of vectors
{/,;i=l,2, • • • • } so that Bf—f, or Bf~0 for each i = l, 2, • ••• .
Computing the trace of X2+Y2 with this basis we find

Since for *e[0, 1] we have 1 -x<2-2xl/2<2-2x, we have I — A<
2(1 — A1/2) <2(I — A), And replacing A by / — A in this inequality we
find A<2(I-(I-A)l/2)<2A. Hence, we have

~tr(X2 + Y2)<tr(B(I-A)B+(I-B)A(I-B»<tr(X2+Y2)e

Hence, COA and COB are quasi-equivalent if and only if inequlity (*)
is satisfied,

Next suppose CD is an arbitrary state of 21 (®) (not necessarily a
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generalized free state) and <o(a(f)*a(g)) = ( f , A g ) for all
Suppose B is a projection and tr(B(I~A)B+ (I-B)A(I-B^<oo,

One may see that co is a factor state 21 (ft) which is quasi-equivalent
to coB as follows. Let b ( f ) = a((I-B)f) + a(BSf)* for /(Eft where
6* is a conjugation which commutes with B (ia e. 6* is a conjugate
linear isometry of ft onto ft so that SSf=f for all /Eft and SBS = B).
One easily checks that the i(/) satisfy the CAR relations given
at the beginning of this section and the &(/) generate 2L Now let
{fi',i = l, 2, • • • •} be an orthonormal basis for ft chosen so that Bf—fi
or Bfi = Q for all i=!92, --. Then one finds

f;ai(i(/ i)*ft(/ i))=tr(5(/-^)J8+ (7-5) 21(7-5)).
t=i

Then as shown in [2 Carding, Wightman] for pure states and [1
Dell3 Antonio, Doplicher] for arbitrary states of 21 (ft) if

S« (A (/*)**(/,•))<«>
z = l

then o> is quasi-equivalent to the Fock state p0 defined by the property

that A>(*(/)**(/))=0 for all /Eft (see also [4 Powers]). One
checks that if /of l(A (/)**(/)) =0 for all /eft then /OO = <N* Hence if
ft) is a state with two-point function o>(a(f)*a(g)) = ( f , A g ) and
tr(JB(7 — ̂ 4)5+ (/ — E)A(I — jB))<oo then the state o> is quasi-equiva-

lent to CWB. n

Theorem 2.2. Suppose wl and o)2 are factor states o/8T(ft)
functions A and B(so <*>i(a(f)*a(g)} = (/, Ag) and <*>2(a(f}*a(g)} =

(/, -5 )̂ /or allf,g€E$). Then A — B is a compact operator.

Proof, See ([4], Theorem 2-1).

If 3K is a linear subspace of ft we denote by 21(2)?) the
C*-subalgebra of 21 (ft) generated by the a(/) with /e2R.

Theorem 20 3e Suppose cop is a generalized free state of 21 (ft) with
two-point function a projection P and (TT, ̂ 9 fl0) ij a cyc/ic ^-representation

of 21 (ft) induced by (op on a Hilbert space § rwVA y;c/iV o^^or fi0-
Suppose SJl i^ a ^/oj^rf subspace of ft awrf £" is the orthogonal projection
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of Q onto m. Suppose tr(EPE(I-P)E)<oo. Then 7r(2l(SK))" is a

type I factor and there is a unitary operator ££= ̂ (21(211))" so that S2=I
and Sic(a(f))S = n(a((I-2E)f)) for all /eSK. Furthermore, the commu-

tant ;r(8l(2K))' is generated by the elements S a ( f ) with fE:^l± (with

SJl-1- the orthogonal complement of 5K)8

Proof. Suppose the hypothesis and notation of the theorem are
satisfied. Let Ot be the one parameter group of ^-automorphisms of
a (ft) defined by the relation 0t(a(f))=a((I-E)f+e{tEf) for all
/e^. Let A0=EPE. Since tr(AQ(I — A0))<^oo there is an orthonormal

basis {/.;i = l,2, • • • • } for m so that A^f—iji and f; ^-^?<oo.

Let JV,= £fl(/,0 **(/,-) -V- Clearly we have ^e^aON)*. Let
*=i

Fw(0 = 7r(exp(i'JJVB)). First we show Fn(0^o converges strongly as
ft— »oo. We have for

00

Since 2Z ̂ - — ̂ ?<°° we have from the above inequality that Vn(t)0Q is
1=1

a Gauchy sequence in norm. Hence Vn(t)Q0—^Qt in norm as n— >oo0

One may calculate that

for all /e^ where En is the projection onto the space spanned by
t/i? O B O % / n } - Since En-^E as ?2->oo it follows then that Vn(f)^(p)QQ

-*K(Ot(p}}®t as ft -> oo where /? is a polynomial in the a ( f ) and a(g)*.
Hence, it follows that Vn(t) converges strongly to a strongly continuous
one parameter unitary group V(t) as ft->oo and V(f)n(A) V(t) ~1 =

n(Ot(A)) for all ^e8t(ft).
Note that F(2?r) commutes with TT(^[) for ^4e§l(^) and since

7r(2I(ft))" = S3($) since o>P is a pure state we have F(2?r) =A7. It

will be convenient to have F(2?r) =/. This can be arranged by
redefining V'(t) =eistV(t) with e~2ltis = l. From now on we will assume
that the group V(t) has been redefined so that V(2n) =L Then we
define S=V(n") =V(x)*. From the construction of S we have

3 S2=/ and Sx(a(f))S = x(a((I-2E)f)) for all /eft.
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Next we show ?r(2l(3K))" is a factor of type I. Let N be the
von Neumann algebra generated by the elements S n ( a ( f } } with
/GrSR-1. Since N is generated by elements which commutes with the
<z(/) with f<=$Jl we have that JVCjr(8T(3R))'. Let R be the von
Neumann algebra generated by 7r(2t(SK)) and N. Since Se7r(2r(3K))"
it follow that w(fl(/)) =SSn(a(f)) ^R for/e3Kx and *(*(/)) eAfC/Z
for /e2R. Hence, *(«(/)) e/Z for all for all /eft. Since the a(/)
generate 8T(ft) we have /2 = ir(Sr(ft))' = »(£). Suppose Ce7r(2l(3K))"
rMH(SR))'. Since CeffCHCStt))* we have Ce^'. Hence, C com-
mutes with both ?r(2l(3K))" and N we have C^R'. Hence, C = M.

Hence, 7r(3T(3K))" is a factor.
Consider the state (QJBQ^ for 5<E7r(§t(3K))". This state is the

weakly continuous extension of the state C00, ?r(jB)i20) — a)P(B) for
£<E§r(3K)0 Let tw0 be the restriction of O)P to ST(50l). The state cu0 is
a generalized free state of 21 (3K) whose ra-point functions are given
by

a>o(*(/«) * •9 e e^(/i) *«(ft)e •' e«(?J) = det (/, A&)

where AQ=EPE is the restriction of P to 3K, As we have seen this
state is of type I if and only if AQ—A\ is of trace class. Since
trG40—Al) =tr(EPE(I — P))<oo we have CDO is a type I state. Hence,
7r(W(SK))" is a factor of type I and 7r(Sr(3K))' is generated by the
elements Sn (a (/)) with

§111. Almost Multiplication Operators

Let ft = L2( — oo, oo)@L2( — oo? oo) be the Hilbert space of square
integrable two component functions on the real line,, Let PA be the
orthogonal projection of ^ onto the subspace SK^ of $ of functions
with support in P, oo) (i, e., (P,/) =/(*) for *>;tand (P^/) W =0
for x<^). For a<b let P[fl6] = Pfl-P6 and let SW[a, 4] be the range
of P[aij]. The main result of this section is the following theorem.

Theorem 3,1. Suppose a<b and A is a positive compact operator on
$ with the property that (I — P^)APX is of rank not more than one for
all ^e[<2, 6], Then there are numbers c and d so that a<c<^d<b so that
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Before we prove this it is useful to prove the following,,

Lemma 3* 2* Suppose A is a compact hermitian operator on the acting

on ft and (I-PJAP^Q for ^e[fl,4]. Then Pc«,&]4P[ai5] = 0.

Proof. Suppose A satisfies the hypothesis of the lemma. Since A
is hermitian we have A commutes with PA for l^l_a^b~\. It follows
that B = PLaiftAP[atn commutes with the operation of multiplication
by functions of x. Suppose /e2JZ[0, 4] and On is the operator of
multiplication by einx. Then Bf=0;B0nf for all w = l, 2, » . . . and as
?z— »oo5 0nf tends weakly to zero. Since B is compact we have B0nf
tends to zero in norm as n-*oo. Hence, Bf=Q and B = Qa Q

Proof of Theorem 3. 1. Suppose A satisfies the hypothesis of the
lemma,, Suppose (/ — P^AP^ = 0 for all ^e[fl, 4], Then by the
previous lemma we have PLai^APLaib-] = Q and, therefore, the pair
(c, d) = (a, 4) satisfies the conclusion of the theorem. Suppose then
there is a 2e(a54) so that (I — P^)APX is a rank one operator,, Let
AQ=PLaib-1APLaM. There are functions /z0, A0eaK[fl,4] so that (I-P^AQP^f
= ( A ; o , / ) A o . Let rfe (2, 6) so that Pdk0^0 and c<E(X^) so that
(/ — PJAo^O. Note the following. Suppose #,j;e[c, rf] and ^<j;0

There are functions Ax, A,, A,, A,eSK[fl,6] so that (I-Px)A0Pxf= (kxj)hx

and (I — Py)A0Pyf=(ky,f)hy for all /eft and the functions must
satisfy the relations

(*) ky = aPykx and hx=a(I-Px)hy

where a is a complex number. The truth of the above statement
follows immediately from the fact that the operators (I — PX)AQPX and
(I — Py)A0Py are of rank one and these operators are equal when
sandwiched between (/ — PJ on the left and P^ on the right.

Applying this statement to the numbers c and d we obtain functions
hc,hd,kc,kd satisfying (*). The functions hd and kd are unique up
to the transformation h'd — lhd and kd = l~1kd. We can then choose the

functions hd and kd so that the a of (*) is one. We assume the hd

and kd have been so chosen. Then we have kd — Pdkc and hc= (I — Pc)hda

Now suppose s^[c,d]. Then we have (I — Ps)AQPsf=(ks,f)hs for
all /e3K[X 6]. We have hs and ks are related to hc and kc by (*)
and with an appropriate choice of hs and ks we can arrange it so
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that the a of (*) is one. Then with this choice of the hs and ks we
have

kd=Pdkc hc=(I-Pc)hd

hs = d(I~Ps)hda

We will show that the a in the above equation is one. Since
(I—PC)A0PC and (/ — Ps)AQPs are equal when sandwiched between

(I -Pe) on the left and Pd on the right we have for

Since (I~Pc)hs = hc it follows that Pdks = Pdkc. But Pdkc = kd so kd=Pdks .
Hence, the above a = l and hs=(I — Ps)hd, Hence, we have for

(I-PJAQPsf= (PA, /) d-PJhi

for all /e®. Now let B be an operator ® with kernel Ku(x^y) given by

Ku (x,y) = hdi (x) kcj (7) for x < y

and

where

(#),(*)=:
Clearly, B is a compact hermitian operator (in fact, B is a Hilbert
Schmidt class operator) and from the construction of B we have
(/—Ps) (A0—B)PS = 0 for all s^[c9d]. Since A0—B is a compact
hermitian operator it follows from Lemma 3.2 that PlCid^AQPiCidJ =

We show Q is of trace class. Since ^40>0 we have Q,>0 and Q is
given by a kernel Ku(x,y). Suppose C is a positive compact operator

so that C/=2 %i(hi,f)hi where ^^>0 and the {h{} are an orthonormal

set of vectors. Then

2 r &
(C/).-00=£!\y=iJ

with



SEMIGROUPS OF *-ENDOMORPHISMS OF SS(§) 1061

We see that the trace of C is given by

k=l »=l j

where the integral diverges if the trace of C is not finite. This formula
for the trace of C must be used with some care since the kernel

Ju(x> y) is only defined up to sets of measure zero and the set of
(x, y) with x=y is a set of measure zero.

To calculate the trace of a positive operator C with kernel

Jij(x> y) on 2ft[0? A] one may proceed as follows,, Consider the
functions eki (x) for i = 1, 2 and k = 1, ° * • •, n given by (eki) j (x) —

(n/(b-a)}l/2if i=j and (k-1) (b-o)/n<x~a<k(b-o)/n and (*W)X*)
= 0 otherwise. Note the eki are an orthonormal set of step functions,,
Then we have

2 n 2 fb

XI 2 (eki 3 C^jj) = XI\ Ja(xi J ;)^n(-^? y)dx dy

where @n(x,y) is a positive function with vanishes when \x—j|>
(b — a)/ntt One can show that the above expression converges to the
trace of C as n—>oo where the expression diverges if the trace of C
is not finite. This follows from the facts that the trace of a positive
operator can be computed using any orthonormal basis and as n->oo

any function in Sft|X 6] can be approximated in norm by linear
combinations of the eki. Calculating the trace of Q, by such a
procedure we find

ki) ==-r^—\\ hdi(x}kc;(y)dx dy
D-d JJX,yeIkx<y

Jx,y^I1fx>y

Hence,

T \\ k c i ( x ' ) h d i ( y ) d x dy .
O—a JJx,y^I1.x>y

o — a

where Ik is the interval of support for eki. Then we have from the
Schwarz9s inequality that

SS(«H, Qs^<m*\\ I IA.II .1=1 fe=l

Taking the limit as ra-»oo we have tr(Q,) <2||Aj| ||A:C||. Hence,
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§IV8 An ^-Semigroup with No Intertwining
Semigroup of Isometries

In this section we construct an example of an £0-semigroup of
3300) for which there is no strongly continuous one parameter
semigroup of intertwining isometries. The construction uses the CAR
algebra 21 = 81 (ft) over a Hilbert space S-L2(-oo5 oo)©L2(-oo5 oo)
the space of square integrable two component functions on the real
line. If /e® we denote by / the Fourier transform of/ given by

Let E0 be the projection on ® given by (Egf)(p)=e(p')J(p) where
e (p) is a (2 X 2) matrix with entries

where 0(0) = (1 + j&2)-<1/5).

.T° T
Let a be the (2x2) matrix

Y 2~
J_ J_

L 2 2 J

Then in x-space £0 acts as follows.

(4. 1) (£„/) (*) = af(x) +\~F(x~y}f(y)dy
J-oo

where F(x) is a (2x2) matrix with entries

[~0 7*001 1 f00

(4. 2) r(x) = \ and j (x) = -A—\ (ei6(p) ~ I) eip*dp.
Lr( — #) 0 J ^TTj -oo

We now state our main theorem.

Theorem 4S1. L^^ ce;0 be the gauge invariant generalized free state of
2I=2[(ft) o;^A two-point function E0 defined above (i.e. Q>o(a(f)*a(g)) =
(/? EQg) for /,geft). L^^ (7T0, ^, 120) i^ a cjvdk ^-representation of 21
induced by COQ on a Hilbert space § zw'J/z cjc/ic y^c^or fi0. L^^ Tf be the
unitary group of translations on $ so ( T t f ) (x) =f(x — t) for /eft <2^rf /*£



SEMIGROUPS OF *-ENDOMORPHISMS OF SS(§) 1063

jSj be the group of ^-automorphisms of SI defined by the requirement fit
= a(Ttf) for all /e^. Since O)Q is a fit invariant state there is a unitary
group W(t) acting on § defined by the requirements W(t)Q0 = Q0 and
^(^(A)")=W(f)^(A)W(t}'1 for all A^U and t>Q. Let m+ be the
subspace of ® of all functions f with support in [0, oo) and let S3 = 2T(2R+)
be the C*-subalgebra of St generated by the a ( f ) with f^$Jl+. Let
M=x0(%>y and for AtEM and t>0 we define at(A) =W (t)AW(t) ~\
Then M is a type I factor and at is an EQ-semigroup of M, Furthermore,
there does not exist a strongly continuous one parameter semigroup of
isometries U(f)^M with the property that U(t)A = at(A)U(t) for all

and t>0.

The proof of this theorem will be based on the following lemmas.

Lemma 48 20 The function 7- defined above has the property that
=iK1\x |~3/5— K2\x \~l/5 + h(x) where KI and K2 are positive constants

and h is a bounded function of x» Furthermore, it is true that

Proof, We have

where

i \p\~v\ b(p) = -

Routine estimates show that \a(p) \<p~~2, \b(p) \<p'2. Hence, these
functions are in Ll for large \p \ and one sees by inspection these
functions are in Ll for small pa Hence, we have <2? b^Ll( — oo, oo)Q

Since \eix-l-ix + -x2\< \x\3/6 for all real x if follows that

for all p. Hence, we have c&Ll( — oo, oo)B Hence d=

Ll( — 00,00). Now we have by a change of variable y=px for
OO<1 that
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L\~ e'*\
iTT J— oo

-
iTT

where K(s) is positive. Then we have from equation (*)

-3

Since d^Ll( — oo, oo) we have shown that j-(x) =iK1\x\~3/5~K2\x\~1/5

-\-h(x) where K± and K2 are positive constants and h is a bounded
function. Hence, \x\l/2?(x) is in L2 for small # and since

(dn/dpn)(emp)-l)^L1(-oo^oo) for * = 1,2, ....

it follows that |% |nf(X)— >0 as x-»oo so | A; 1 1/2f (#) is in L2 for large #.

Hence, x \ f ( x ) \2&Ll[Q, oo). Q

Lemma 4. 38 77ze yo^z Neumann algebra M = KQ(%$)" define in Theorem

4. 1 is a type I factor and at is an EQ- semigroup of M.

Proof. It follows from Theorem 2.3 that M=x0($3y is a type I
factor if tr(P+E0P+(I — Eo)P+)<^oo where P+ is the orthogonal pro-

jection of$onto3K+. Now P+E0P+-P+E0P+E0P+ = P+E0P_EP+ = Q*Qa

To compute the trace of QfQ, where Q, in an operator with a kernel

Ku(x*y} °ne nas

tr(Q*0 = Z H" I^-U^) I2 dx dy.
»V = lJJ-oo

Hence,

tr(P+EQP+(I-E0)P+)=2{° (~\r(x-y)\Vx dy = 2(~x \TW \2dx<oo
J-ooJO JO

where the last integral converges by Lemma 4. 2. Then by Theorem
2. 1 M = 7r0(S3)" is a type I factor.

Since j8f maps S3 into itself for 2>0 and 7r0(S3) is strongly dense
in M we have af maps M into itself and from the form of at

(at(A) — W(t}AW(t) ~l) it is clear that at is an ^-semigroup of M. O

Lemma 4e 40 L^^ SJl[fl, £] i^ ^/z^ subspace of S o/ functions f having

support in the interval [a, b] and let 83[fl, 4]=8l(SW[fl, 4]) 4* *A* C*-
subalgebra of 2T generated by the a ( f ) with /e3K[fl, A]. Tfo/z
ij a (j^ / factor,
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Proof, Assume the hypothesis and notation of the lemma holds.

Let P be the orthogonal projection ft onto 271 [0,6]. Then from

Theorem 2,3 it follows that 7r0(S3[fl, 6])" is a type I factor if

tr(P£0P(I-£o)P)<°°. Now we have PE0P(I-Eo)P = PEQ(I-P)E0P

= (?*Q,- Hence,

tr(P£0P(/-£o)P) =2\\ Ir(*-J0 l2
JJ*e[0,l]

Hence, 7r0(S3[<2, £])" is a type I factor,,

Lemma 4, 5. Suppose there is a strongly continuous one parameter

semigroup of isometries U(t)&M so that U(t}A = at(A)U(t} for all A^M.

Suppose eQ is a minimal projection in M (which exists since M is a type
I factor) and F0 is a unit vector in the range of e0. Let Fl = U(l)FQ and

let p(A) = ( F l y nv(A)F-d for A^W. Let W be the two-point function of

p (i.e., /o(fl(/)*fl(£)) = (/, Wg)forf,gE:R). Let P, be the projection
on ft given by (P,/) (*) =/(*) for x>l and (P,/) (x) =0 for x<l Then

(I — P^)WPX is an operator of rank at most one for all 0<^<1.

Proof. Suppose the hypothesis and notation of the lemma are
satisfied. Since F0 is in the range of a minimal projection eQ^M the
state (F0? AFQ) is pure on M. Let &, = &(») for £>0. We note
the restriction of p to S3t is pure for 0<t<l . This may be seen as

follows. We have E/(0*oW) =at(x0(A»U(t) =x0(pt(A»U(t) for
Hence, we have TTO(^) =U(t)*xQ(pt(A))U(t). Hence, for

*<1 and A^%> we have

Since U(l—t)^M we have p is a pure state of S3f for all 0 < £ < L
We will show that (I — P^WP^ is an operator of rank at most one

for 0<^<L
In Lemma 4.2 we saw that tr(P+E0P+(/ — jE0)P+Xoo and, hence,

by Theorem 2. 3 it follows that there is a unitary S^M so that
S2=I and 52r0(fl(/))5 l = 2r0(fl((/-2P+)/)) for all /eft and Mx is
generated by the elements STTO (0(/)) for all f^<$l_ where 3K_ is
the orthogonal complement of SJJ+ in ft. Let/ be a unit vector with
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support in (-00, ^] so P,/=0 and let C = y/ + y

One checks that C* = C and C2=C. Let r be the functional on 25^

given by r(A) = (Fl9 nQ(A)CF^. Note *r0(fl(g)) and 7r0(Xg))* commute
with C for g in the range of PA. Since such elements generate

we have that Ce*r0(S3;i)'. Hence, for A^^BA we have

r(A*A) = (F1

and

Hence, Q<T<P\%$I. Since ^ is pure on SB^ we have that r(A) =ap(A)

for ^4^83^. Setting A=I we can evaluate the constant a. Then we

obtain (F15 ^U)^) = (FlCn0(A)F1) = (Fl9CFJ (Fl9 *0(A)FJ for ̂ Le»,.

By weak continuity this relation extends to all of KQ($BZ)". Recalling

the definition of C and subtracting of the identity term from both

sides of this equation we find

for all ^eTToCS^)". Replacing / by if in this equation and combining

the two equations we find

= (F19 *o(a(f)*)ai(S)Fj (Fl9 AFJ

for all A^7cQ(^y. Let A = ax(S}nQ(a(g)} with g in the range of Px.

Then ^e7r0(a5^)* and we have

Hence, (/, Wg) is of the form (f,Wg)=Q(f)R(g) where ft and /Z
are linear functionals on the range of I — P* and the range of P^,
respectively. Hence, ( /—P^)WP^ is an operator of rank at most one
for all aEE[05 1]. n

Lemma 4. 6. Suppose the hypothesis and notation of Lemma 4. 5 is

satisfied. Let J?! be the projection on !& given by (Blf) (x) =af(x) where

(j is the (2 X 2) -matrix defined at the beginning of this section and let a)l
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be the generalized free state of 21 with two-point function Blm Then there

are numbers a and b so that 0<0<4<1 and the restrictions of ^0 and ^
to S3 IX 6] are quasi-equivalent, (Recall that S3 [0,4] is the the C*-
subalgebra of SI generated by the 0(/) with f having support in [0,6].)

Proof, Assume the hypothesis and notation of the lemma are
satisfied We will first show that there are numbers a and b so that
0<0<4<1 and the restrictions of p and ^ to S3[03 4] are quasi-
equivalent. Let W be the two-point function of p. Let the projections
PI and P[flt6] be defined as in § III. We first show that Q,=

^[o.i](W— ̂ i)-P[o,i] is a compact operator Note a>0(A) = (fl0 9^o(^)^o)
and /o(^) = (F1,7T0(4)F1) for all 4eS3[0, 1]. From Lemma 4.4 we
have 7r0(S3[0? 1])" is a type I factor. Since (fi0 , 4fi0) and (Fx , 4FX)
are normal state of 7r0(S3[05 I])" and since ?r0(S3[09 1])" is a type I
factor it follows restrictions of a)0 and p to S3[09 1] are quasi-equivalent

type I states. Hence, P[0il](£0— WOP[o,i] *s compact by Theorem 2, 2.
We show PLOilJ(EQ— BJPim is compact. For/eS we have

o

where F is defined in equation (4. 2) in terms of the function

And £(*)=! for ^^[05 1] and JiTW =0 for %£[09 1]. Let

and let Fn be defined in terms of jn as F was defined in terms of
Let Jn be the operator on ® given by

A straight forward computation shows that Jn is a Hilbert Schmidt
class operator (in fact, tr(t/*yn)<4rc) and since 0(/0-»0 as |/?|->oo

we have ||/n — P[0.i](^o"- Bi)Pw. i] II— *0 as n-*oo. Since the norm limit
of compact operators is compact P[0>1](-E0-" -^i)-^[o,i] is compact. Since

P[0ii]CEo— W)-P[o.i] and PIO.I^EQ—BI^P^^ are compact we have
Q,= ̂ [o.i](M^— jBJP^i] is compact

Let d^d-BJdd-BJ and a2=-fi1ftB1. Since (/-PJ^P.-O
and since from Lemma 4.5 (I — P^WP^ is of rank not greater than
one for 2e[0, 1], we find (I — P^Qfi is of rank not greater than
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one for t '=l,2 and ^^[0,1]. Since Q,! is positive and compact we
have from Theorem 3. 1 there exist numbers c and d so that 0<c<
d<\ so that tr(P[c>rf] j^i-Pcc.^X00- Since Q2 is positive and compact
and (I — Pt)Q,2P* is °f rank not greater than one for ^e[£, rf] we
have from Theorem 3. 1 that there are numbers a and b so that
c<a<b<d and tr(P[a>6] Q^2P[fl>&])<oo. Since [fl, 4] C [>, rf] we have
tr(P[Bi6]Q.fP[ai6])<oo for { = 1,2. Now ^ restricted to g)[fl, 4] is a
generalized free state of 83[fl, 4] with two-point function (the restric-
tion of B1 to 2K[fl, 4]) a projection. Hence, it follows from Theorem
2. 1 that the restrictions CDI and ^ to S3[<2, 6] are quasi-equivalent if

But the above expression is equal to tr(P[ai6](Q,2+Q,i)<P[a.&]) which is
less than infinity. Hence, the restrictions of o^ and ^ to S3[<2, 4] are
quasi-equivalent.

Since 7r0(S3[<2, &])" is a type I factor by Lemma 4.4 and since
<y0 and p arise from normal states of 7T0(S3[X 4])" (recall ^(^4) =
(^i 5 ^0(^)^1) and cy0(^4) = (QQ , 7T0(^[)fi0)) it follows that the restrictions
of p and <y0 to S3[0, b~\ are quasi-equivalent. Hence, the restrictions
of a^ and G;O to ®[«, i] are quasi-equivalent.

Lemma 4. 79 //* <2<6 then the restrictions of COQ and c^ ^o S[^, 6]
are not quasi-equivalent.

Proof. Suppose a<J). Let £° and jBj be the restriction of EQ and
Bl to SW[fl, 6] (i. e.5 E°Qf=PM,EQf and BQ

lf=PLaiblBlf=Blf for
/^SK[fl, 6]). Since the restrictions of a)0 and wx to S3 [a, 4] are gauge
invariant generalized free states of S3[<29 6] and B\ is a projection it
follows from Theorem 2. 1 that the restrictions of these states to
S3[<2, 4] are quasi-equivalent if and only if tr(D)<C°° where D =
BKl-E^Bl+U-B^E^I-Bb where the trace is taken to be the
trace on 3K[0, b~]. Calculating D we find

where

From the discussion at the end of Theorem 3. 1 we recall that the
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trace of a positive operator D with kernel K{j(x9 j>) is given by

tr (D) - f KU(X, x) + K22(x, x)dx
Ja

where the integral is suitably interpreted as a limit of other integrals,,

In our case KU(X, y) = K22(x,y} = — Re(p(# — jy)) and from Lemma 40 2

we have

= K2\x\~l/5 + a bounded function of x.
2 n

Then one can show that Z! Z! (*«> -DO diverges like nl/* as n->oo
i=i k=i

(where the eki are the functions constructed in §3). Hence, tr(D) =00. Q

Proof of Theorem 4, 1. Assume the hypothesis and notation of

Theorem 4. 1. From Lemma 4. 3 we have that M = nQ(%5Y' is a type I

factor and at is an E^-semigroup of M. Assume there is a strongly

continuous semigroup of isometries £7(0 eM so that U(t)A = at(A)U(t)

for all A^M, Then the hypothesis of Lemma 4.5 is satisfied as is

the hypothesis of Lemma 4. 6 and, therefore, there are numbers a

and b so that a<b and the restrictions of ^0 and w1 to S3[<2, 6] are

quasi-equivalent. But by Lemma 4. 7 this is not possible, Hence9 it

follows that there is no intertwining semigroup of isometries U(t)^M,[^]
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