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Finite Automorphism Groups of Complex
Tori of Two
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Denote by (T, G) a pair consisting of a complex torus T and a
finite subgroup of Aut T, where Aut T Is the automorphism group
of T as a complex Lie group0 Then the purpose of this paper is to
give. In case of dimension 2, a complete classification of such pairs
up to Isomorphisms. Here "up to isomorphisms" means that we
consider G modulo conjugacy in Aut T, Since the body of the paper
Is technical and lengthy, we should like here to give a rather detailed
summary of the content of this paper.

First, note that the corresponding result Is well-known In the case
of dimension 1. Namely, Aut T is trivial, that is, = {±1} except the
cases where T is isomorphic to either of the elliptic curves E{ and
Ep\ and In the latter case Aut 7" Is a cyclic group of order 4 and 6
respectively,, (Here, and in what follows, we shall use freely the
notations listed after this Introduction,) However, In dimension 2, the
result already becomes considerably complicated; for example new
features appear such as the existence of "moduli", of automorphisms
of Infinite order, and of non-algebraic complex tori etcn

To our knowledge, the results obtained so far In this case are as
follows,,

a) Bolza In 1888 classified all the pairs (C, g) consisting of a
hyperelllptic curve C of genus 2 and an automorphism g of C (cf.
[13] for a modern presentation),, Each of such automorphisms then
Induces an automorphism of the associated Jacobian /(C) of C preserv-
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Ing the canonical polarization, and vice versa0 Later, using this
result, Enriques-Severi [5] classified all the pairs (T, G) as above,
under the assumption that T=J(C) for some C as above, G preserves
the canoical principal polarization of T and that every element of G
preserves any holomorphic 2-form on T, In our terminology the last
condition is expressed as (T9G) being special (cf. below). Actually
they considered also the case where G is a finite automorphism group
of T as a complex manifold (not necessarily as a Lie group) contain-
ing no translations.

b) Gottschling [8] [9] studied the action of the Siegel modular
group Sp (2, Z) on the Siegel upper half space of degree 2, and
determined the stabilizer group at each point, considered modulo
certain equivalence, which was later made precise by Ueno [25] to
the exact Sp (2, Z) -equivalence,, This result is considered as determin-
ing all the pairs (T, G) for which T is a principally polarized
abelian surface (not necessarily Jacobian) and G is the group of all
automorphisms of T preserving the polarization.

c) Tokunaga-Yoshida [24] classified all the discrete affine auto-
morphism group A of C2 which is generated by "reflections" and for
which the quotient C2/A is compact. This can again be interpreted
as the classification of the pairs (7", G) with G generated by reflections8

d) Yoshihara [27] and Fujiki [6] determined certain special cases
when G is cyclic. In fact our motivation for this paper comes from
[6], where we used such pairs (7*, G) to obtain examples of certain
symplectic F-manifolds0

In this paper we shall give exact correspondences between the
above mentioned results and ours (cf. 30 4 and 40 6). For automor-
phisms of abelian surfaces in positive characteristic we refer the reader
to the recent article by Katsura [12],

Now we turn to the detailed description of the results and methods
of this paper. Let (T, G) be a pair with dim T= 2 as above,, Then
by considering the induced actions of G on the tangent space of T
at the origin and on the first homology group A = H1(T9Z)^ we get
two faithful representations f:G->GL2(C) and y:G-»GL4(Z) satisfying
the compatibility condition vc^f®/* The conjugacy classes of the
images of G by / and v in GL2(C*) and GL4(Z) respectively then
depend only on the isomorphism class of the pair (T1, G). We call
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them the complex and the rational representation types of (T, G),
respectively,, They are basic Invariants of the pair (T, G) which are
invariant under deformations0 Indeed, a "moduli space" Jt (simply
the set of isomorphism classes of the pairs here) of fixed complex
and rational representation types turns out to have a priori a natural
structure of a disjoint union of quotients F\W of a homogeneous
complex manifold W by a certain discrete group F (cf. 2 0 l , b ) ) 0

(Note however that F may not act on W properly dlscontlnuously,
and hence in general Jl has no analytic structure,,)

Therefore, it would be natural,, first to classify all the possible
compatible complex and rational representation types,, next to determine
the structure of moduli spaces Ji with fixed complex and rational
representation types as (a union of) quotients P\W as above -as a
final outcome of our classification each Ji actually turns out to be
connected (Theorem 40 7) - and finally to get description of the pairs
belonging to each Ji as explicitly as possiblee

First, in Section 2 we classify all the possible rational representation
types of pairs (Proposition 20 14) and determine the corresponding
moduli spaces (Proposition 20 19), except for certain most complicated
cases as explained below0 However, Instead of dealing directly with
subgroups H of GL4(#) (as was done In certain simplest cases In
[6]), we rather classify more manageable object, that is, certain
quadruples (A, 0, H, M) which (determines and) Is determined by
H', namely, here A Is the Q-aigebra generated by the elements of H
In M4(Q), a=Ar\M4(Z) considered as an order of A containing H
In Its unit group ox, and finally M=Z* considered as an 0-module0

The exceptional cases mentioned above then correspond to the cases
where A~M2(K) for some Imaginary quadratic field K. Since a
rational representation type determines uniquely a compatible complex
representation type except for a few simple cases (cfa 20 8) this already
takes care of the first two steps other than the exceptional cases»
Each member of the resulting moduli spaces will then be made explicit
In the subsequent sections. On the other hand, the exceptional cases
will be classified directly (cf. below). In these cases T Is necessarily
a singular abelian surface (cf. 50 1 for the definition) and It turns
out that such exceptional pairs (7", G) are finite in number0

From the viewpoint of complex representation f:G-*GL2(C) the
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subgroup GQ°'=f~l(SL2(C)) Is Important. G then normalizes G0 and
the quotient G/G0 Is cyclic of order ^6 (cf8 Lemma 3. 2)0 In general
we call a pair (F, G) special if G = G0, i. e., /(G) CSL2(C). The
problem Is then reduced to the following two steps; to study special
paris (T9 G) and then to study the normalizer of G in Aut T0

Now in Section 3 we classify special pairs. We see easily that the
essential cases are (cf. Lemma 30 3) : Case A: G is cyclic of order 4
or 6, and Case B: G Is Isomorphic to either of the groups Q, 2 or
S) (cf. Notations). Moreover, In each case the complex and the
rational representation types are unique. First, in Case A the moduli
space is shown to be a quotient of the total space of the holomorphic
tangent bundle of the complex projectlve line JP1 modulo certain discrete
group whose action is not properly discontinuous (Proposition 3. 5).
Also the period matrix description of each member will be given
(Proposition 38 7).

Case E is perhaps the most interesting part of the whole classifica-
tion, corresponding to the case where the Q-algebra A mentioned
above is a definite quaternion algebra over Q. In this case, If we
fix the abstract Isomorphism type of the group, the moduli space Is
Isomorphic to the complex projectlve line Pl (Theorem 3.11). (In
the case G=G, one more trivial component appears corresponding to
the natural inclusion QcS0)

As a typical example we shall describe the construction when G is
isomorphic to the binary tetrahedral group %* We set

F=Q[l,i9j9k'] and a = Z [ l 9 i J 9 f ] 9 t=(l+i+j+k)/2.

Then F Is a definite quaternion algebra over Q and a Is a maximal
order of F consisting of Hurwitz quaternions, whose unit group ctx Is
Isomorphic to 29 Next we set

X={q<=H;f=-\}^pi (cf. (12)).

Then by right multiplications, X parametrizes the complex structures
J(q) of FR = H=R\ and hence on the real torus FR/a. Then the
left multiplications on FR induces the action of ax on FR/d which
commutes with each J(q). In this way we get a holomorphic family
of special pairs (Tq9Gq) with Gq = X parametrized by X=Pl

e Further,
If ax Is the normalizer of ax In the unit group Fx, then the Inner
automorphisms Induce the action of ax :=5X/©X = @4§ the symmetric
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group of degree 43 on X and it turns out that Y°=X/a* = Pl Is precisely
the moduli space in this case8 The construction is quite the same if
we modify the definitions of F and a also for G~O or SX

In the above construction the pairs which correspond to the three
branch points pi9 l^i^S, on Y of the covering map b:X-^Y are
important* Indeed9 general consideration shows (cf. 2. l ,b ) ) that
for the pairs (71, G) not corresponding to these three points G is its
own normalizer in Aut T9 while if (T9 G) corresponds to one of the
pi9 the normalizer N is strictly larger than G9 and the resulting pair
(T9 N) is an exceptional pair mentioned earlier; further the structure
of the latter can be described explicitly using the above construction
(Proposition 30 13). This reduces the study of exceptional pairs to
the cases where G0 is cyclic^ which will be treated in Section 40

We also show that for a special pair (7*, G) in Case B, if G
preserves some principal polarization on Tg then (T9 G) is isomorphic
to a special pair corresponding to one of the pio This enables us to
identify part of our classification with that of [§] already mentioned
(cf. Remark 33 18), In fact, we also give in general a classification
of special pairs in the generalized sense as in [5]; namely we allow
G to be a subgroup of the affine automorphism group of T containing
no translations,, This needs some extra efforts and occupies the second
half of Section 3.

In Section 4 non-special pairs are classified9 and the results are
summarized in Tables 6 through 11. The case — ieG is essential,,
which we assume now. For the non-exceptional pairs the result is
derived in a more or less straightforward way from the results in
Section 2 (Tables 6-8). The groups which occur are either abelian
with at most two generatorss or dihedral of order 8 or 12; in the
cyclic case the possible orders of the groups are 2/c with 2^k^6B

On the other hand, the exceptional pairs (T9 G) for which G is
maximal in Aut T are exihibited in Table 9; it turns out that there
exist eleven such pairs. Non-maximal exceptional pairs and the pairs
with — 1$G are classified in Tables 10 and 11 respectively.

In the first part of Section 5 we give a result of a classification
of rational endomorphism rings End0T of complex tori T of dimension
29 This also tells us the rough structure of Aut I" (possibly infinite)
for each TB



6 AKIRA FUJIKI

In the rest of the paper we study special pairs more in detail.
Let a(T), Q^=a(T)^2, be the algebraic dimension of T9 that is, the
transcendence degree of its meromorphic function field; thus a(T) =2 if
and only if T is an abelian surface. We first observe that if a(T) ^1,
any pair (T9G) is necessarily special (Lemma 3.1). Further, when
a(T) =1, the result of the classification of the pairs is simple (Proposi-
tion 3. 10). In particular Aut T is cyclic of order 2,4, or 6, This
in turn implies that in the family of special pairs (Tq9 Gq) as above
parametrized by X with Gg=Q, £, or 35, we never have a(T)=l for
any q^Xa More precisely, (e.g., in case of Z as above), we see
that Tq is an abelian surface if and only if there exists a non-zero
real number ft such that /^eF, and that in this case Tq is a singular

abelian surface with center Kq of EndQTq given by Kq=Q(fjnl — l)9

and with G-invariant Picard number pG(Tq)=li otherwise a(Tq)=0
and Picard number p(T)=3 (Propositions 50 7 and 5 0 9) 8

The problem then arises as to which singular abelian surfaces
actually appear as Tq as above. As for this, we show for example

that if Kq~Q(^ — m) for a square-free positive integer m we must
have m^ — l (8), and conversely, for any integer m^O satisfying this

condition we can find some q as above such that Kq=Q(^ — m)
(Proposition 5, 13).

In order to get a more definite result, however, first in Section 6
we shall study an interesting relation between special pairs (T1, G)
and root lattices of rank 2 or 3. This relation comes from the consi-
deration of the action of G on the second cohomology group //2(T, Z).
Namely, let H2(T,Z)G be the sublattice of G-invariant elements, and
H2(T,Z)G its orthogonal complement in H2(T^Z) considered as a
euclidian lattice. Because of the connectedness of the moduli space
Y these depend only on the abstract isomorphism class © of G. In
fact, we show that H2(T,Z)G is isomorphic as a euclidian lattice to
a root lattice Z,® of rank 2 or 3 (Theorem 6. 4) ; more precisely,
according as ©=&4, S6, Q, 2, or S), L<§ is the root lattices A\, A2,
A\9 A^ ^2©^i3 which in fact exhaust all the root lattices of rank 2
or 3 up to isomorphisms. (Such isomorphisms will be given explicitly
(cf. 6. 6) ) . This implies that we have the natural primitive embedding
of the Neron-Severi lattice NT of T into L@0 Then we show, among
others, that the converse of this is also true ; namely, if NT is embed-
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dable as a primitive sublattlce in L© then there exists a subgroup G
of Aut T such that (T, G) is a special pair with G = © (Theorem
6,9). In Case B this condition is equivalent to: NT = L® if a(T) =0,
and to the existence of a primitive embedding of transcendental lattice
BT of T into L©( —1) if T is a singular abelian surface (cf0 Proposi-
tion 60 12). For the proof we use the global Torelii theorem for 2-
marked complex tori due to Shioda [22] and the results of Nikulin

[14] [15] concerning the existence and uniqueness of embedding of

lattices,,
Recall now that by Shioda-Mitani [23] the isomorphism classes of

singular abelian surfaces are, via their transcendental lattices, in one
to one correspondence with the equivalence classes of oriented binary
positive even lattices. By using this and the results obtained in Sec-
tion 6, we finally obtain in Section 7 a necessary and sufficient
condition for a singular abelian surface to admit a special action of
@( = Q92;, or S)) in terms of its transcendental lattice (Theorems 70 2
and 78 5). The condition actually depends only on the discriminant
form of the lattice, and what we actually get is the classification of
those finite quadratic form groups (in terms of the known classification
of such objects (cf. [15])) which can be a discriminant form of a
transcendental lattice of some singular abelian surface T such that
(T, G) is a special pair for some subgroup G of Aut T with G = ®0

Further, in this case we also obtain the number of conjugacy classes
of such G and the degree d = (e,ey/2 of (7",G), where ±e are the
generators of the G-invariant Neron-Severi lattice N? = Zi for instance
d=l if and only if G preserves some principal polarization of T

(Theorems 70 4, 70 5). As an illustration we give a table of all the
singular abelian surfaces with discriminant D^12 which admit a
special ©-action (cf. Example 7 0 9) 8

Notations and Conventions*

Z ring of rational integers
Q, R, C fields of rational, real, and complex numbers
H real quaternion division algebra with standard JS-basis
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Sm cyclic group of order m
S)t dihedral group of order 2k
O quaternion group
SC binary tetrahedral group (order 24)
S) binary dihedral group of order 12
@£ symmetric group of degree k
$ik alternating group of degree k
<X 6, . . . > group generated by a, b, . . .
m = n(l) m = n modulo /, m,n,l^Z
E^ elliptic curve with period (I, /*) ; Eft = C/(Z+Zfi)

For a ring /Z
R* group of units of R
Mk(R) full matrix ring of degree k with coefficients In R
GLk (R) group of Invertible k X k matrices with coefficlnets In R

(a^b) diagonal matrix f^ 7] In M2(R)

\_a,b~\ anti-diagonal matrix f , Q] in M2(R)

For groups H and K
MK submodule of JT-invarlant elements of a ^-module M
K^H, H^K semi-direct product of H by K

For any Z- module M and any homomorphism 1:M-*N of ^-modules
MR = M®ZR, 1R = 1®ZR : MR-*NR .
Mn = M®n, Kn = Kxoe. XK (n times)
T complex torus of dimension 29 considered as a complex

Lie group with origin o^T
Aut T autoinorphims group of T (as a complex Lie group)
-1 element of Aut T defined by (-1)^) = -^ ^eT
End T endomorphism ring of 7"
End0jT=End T(x)£@ rational endomorphism ring of T
(T, G) pair consisting of a complex torus T as above and a

finite subgroup G of Aut T with

We call any such pair simply a pair. Two pairs (T, G) and (T\ GO
are said to be isomorphic if there exists an isomorphism u:T-*T' of
complex Lie groups such that G' = uGu~l In Aut 7".

If E is the tangent space of T at o and A=H1(T,Z), we have the
natural Identification
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(*) T=E/A0

This Induces two faithful representations f:G-»GL(E) and v:G-*GL(A),
called respectively the complex and rational representations associated to
the pair (T9G).
NT Neron-Severi lattice of T —Image of ^: H2(T9 ®%)-»H2(T9Z) BT

transcendental lattice of T :=N$ in H2(T,Z} (cf. §6)
p(T) Plcard number of T -—rankzNT a

Here a lattice^ or more precisely,, a euclidian lattice is a free Z-
module L of finite rank endowed with a ^-valued nondegenerate
symmetric bilinear form < , >: LxL-»Z, < , > is called the inner
product of Le

Other general notations can also be found before Proposition 2, 17,
after Table 43 and in 4. 1.

§20 Moduli of Fixed Type

2. lo a) As is well-known, the moduli space for complex tori does
not exist as an analytic space. To remedy this situation one usually
consider the marking,,

Let T be a complex torus of dimension two. Let T=E/A be as
in (*), where A = Hl(T^Z)a Then we get a canonical real linear
isomorphism 2: AR-*Ea Let A°=Z*a Then a marking of T Is an
Isomorphism 0: A-*A° of ^-modules9 and a marked torus is a pair
(T9 0) consisting of a complex torus of dimension 2 and a marking

<[> of T, We define the Isomorphisms of two marked tori In the obvious
way0 Let W be the set of Isomorphism classes of marked tori (T1, 0). Let

i% be the multiplication by V — 1 on E, Then any marked complex torus

(!T, 0) defines a complex structure/ on A°R by i/=(^ji^"1)t*(^ji^~1)"1.
(Recall that a complex structure on A°R Is an endomorphism / of
A°R withJ2= — Id^o.) Moreover the correspondence (T9<f>)-+J sets up

R

a bijectlve correspondence between the set W and the set of complex
structures on A°R. So In what follows we shall make the Identifica-

tion;

(1) W= {complex structure on A°R] 0

In particular W has the natural structure of a homogeneous complex

manifold (cf. e0 g, [I])"-
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W=GL4(«)/GL2(C).

(A homogeneous complex manifold X=H/K is a complex manifold X on
which a real Lie group H acts biholomorphically and transitively with
K the stabilizer at some point.) Then GL4(Z) acts on W via the
natural inclusion GL4(Z)« - >GL4(/Z). Explicitly, the action takes the
form (T,</>)-»(T,h<{>), or with respect to the identification (1), the
form J-*hJh-\ AeGL4(Z).

On the other hand, W parametrizes the universal family U =(&:&*
-*W, (piR^Z-^WxA0) of marked complex tori, where Ri®*Z is the
local system with fiber H^&'^^Z^p^W. The action of GL4(Z)
on W defined above lifts naturally to the action on the universal
family, i. e., to the action on 3" making s? equivariant,

b) Now we consider an analogue of the above construction in the
case of pairs. Let (T9 G) be a paira Let H be any finite subgroup
of GL4(2T). Then a marking <f> of type H of (T,G) is a marking
0:A-*A° of T as in a) such that ^*(G):={^-1;geG} =H. In this
case the triple (71, G; 0) is called a marked pair of type H, The
isomorphisms of two marked pairs of type H are defined in the obvious
way. Let

WH= {marked torus of type H}/ = .

Then WH is naturally a subset of W and with respect to the identifi-
cation (1) it is given by

WH={J^W;Jh=hJ, VAe//},

Namely WH is the fixed point set of H if we let H act on W via
the inclusion //CGL4(Z). In particular WH is a complex submanifold
of W,

Let ®H:<TH-»WH be the restriction of the universal family cr. y-*W
to WH. Then the induced action of H on ^H preserves each fiber
Tp—ts"1 (p) , p^WH) so that we have the natural embedding cp: H< - »
Aut Tp. Let Gp be the image of this embedding,, Then

(2) U^

is considered as the universal family of marked pairs of type H
parametrized by WH, where <pp:Hi(Tp, Z)-*A° is induced by <j)a

Let (T, G) be a pair. If there exists a marking <j> of (3", G) of
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type H9 then the conjugacy class (/f) of H in GL4(Z) is independent
of (f> and depends only on (T, G) . We call (H) the rational represen-
tation type of (r,G). Let

^(H) — f(7"9G); of rational representation type (#)}/=;

namely, Jt(H) is the moduli space of pairs of fixed rational representa-
tion type (H). Let KH'-WH-^Jt(H) be the natural surjection, Let
NH be the normalizer of H in GL4(Z). Then the induced action of
NH on W leaves WH invariant and nH induces the natural bijection

Via this bijection ^(#) has the natural quotient topology and, further,
if NH acts properly discontinuously on WH, Jt^ even has the natural
structure of a normal analytic space0 In fact, the isomorphism class
of WH as a complex manifold depends only on the conjugacy class
(H) but not on the particular choice of H. The action NH on WH

lifts naturally to an effective action on the universal family & ' H-^WH

inducing the "universal action" of HC=N on 3~ 'H. Therefore if p is
any point of WH and Np is the stabilizer at p in NH, we have the
natural embedding cp:Np< - »Aut Tp inducing the embedding cp: H< - »
Aut Tp defined above. Thus if N(p) is the normalizer of Gp in Aut T&
then we have the natural identification

2.20 In view of 2. 1, in order to determine the structure of the
moduli space of pairs in general, we have: 1) to determine all finite
subgroups H of GL4(Z) up to conjugacy for which WH=£ 0, and then
2) for any such subgroup //, to calculate the normalizer NH of H in
GL4(Z) and to give a description of WH as a complex manifold.

For the first purpose it is convenient to pass from H to another
object, a certain quadruple, which is more manageable than H itself.
Namely we observe that any subgroup H of GL4(Z) as above deter-
mines a quadruple FHi=(A9 0, H, M) as follows; A is the Q-subalgebra
of Af4(Q) generated by the elements of H, o = AnM4(Z), and M = A°,
Then we see that 1) A is a finite semisimple ^-algebra as the homo-
morphic image of the group algebra of H over Q, 2) 0 is an order
of AS i. e., it is a ^-subalgebra of finite ^-rank in A with QQ = A and
leo, 3) H is a subgroup of the unit group ox of 0, 4) ®=
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where we consider M as a submodule of the ^4-module
MQ, and finally, 5) any element of WH commutes with elements of
A as an endomorphism of MR.

In view of this we shall consider such quadruples in general.
Namely we consider the quadruples

F=(A,*,H,M),

where A is a finite semisimple Q-algbera, 0 is an order of A9 H is a
finite subgroup of ox and M is a faithful 0-module which is at the
same time a free ^-module of rank 4, and they are required to
fulfill the following conditions:

QJ) A is generated by the elements of H as a Q-algebra?

Q2) there exists a complex structure / on MR which centralizes
AQEndRMR, and

Q3) Q={aE^A',aMS:M}.

Further for technical reason we also require the following:
Q4) -letf (cf. Remark 2.2 below).

Two such quadruples (A9 09 //, M) and (A\ o', H\ M'} are said
to be isomorphic if there exists an isomorphism u : M-^M' of Z-modules
such that the induced homomorphism u^iEndgMg— >EndgMg sends

the triple (A9 0, H) onto the triple (A'9o'9H') with respect to the
natural inclusions H^O^A^EndgMg and //'Co'C^'CEndgAfQ,,

Now we denote by £ the set of quadruples as above and by jg
the set of isomorphism classes of quadruples in & . Then the quadru-
ple FH determined by //CGL4(Z) as above is naturally considered
as an element of J. For any quadruple F in J we define the
normalizer NF of F by

We also define the set WF by the set of all ^-linear complex structures
on MR\

WF=

Up to isomorphisms NF and WF depend only on the isomorphism class
of F. From the definitions the following is immediate to see,

Lemma 20 1. The above correspondence H~*FH sets up a natural

bijective correspondence between a) the set 3? of finite subgroups H of



AUTOMORPHISM GROUPS OF COMPLEX TORI 13

GL4(Z) with — le/f and with WH3= 0 , and b) the set £ of quadruples
as defined above ; it also induces one between a) ' the set of conjugacy classes

of the groups in 3^ and b) ' the set J of isomorphism classes of quadruples
in 9,. Under the first correspondence the normalizer NH of H in GL4(Z)
and the normalizer NF of F defined above (resp, the set of complex struc-
tures WH and WF) are naturally identified (up to isomorphisms). In
particular we have the natural identification ^(H^=^F'=NF\WF9 where
F=FH.

Remark 2.2. The condition — iGr/f corresponds to considering
only those pairs (T, G) with -leG. In fact, any pair (T9G') with
— 16JEG', gives rise cannonically to the pair (T,G) with — 1 GzG by
setting G = (G\ — 1>, and in this way the classification of such pairs
are readily deduced from that of pairs with — 1 eG (cf. 4 8 4) 0

Definition, Let (T, G) be a pair with -leG. Let (H) be the
rational representation type of (T1, G). Then any quadruple in 2,

whose isomorphism class in J2 corresponds to the class (//) in the
correspondence of Lemma 2. 1 will be called a quadruple associated to

CT.G).

Let F= (A, 09 //, M) be a quadruple in 2. . Via the identification
of WF with WH in Lemma 2. 1 we can put on WF the natural
structure of a complex manifold. Moreover the universal family (2)
gives rise to a holomorphic family

(3) UF={(Tp,Gp)}p(EwF

of pairs parametrized by WF, where we have neglected the marking
<l>p . We call Up the holomorphic family associated to F (parametrized
by Wp). In view of the universality of (2) and Lemma 20 1 the
following lemma is obvious.

Lemma 28 3. Let F be as above. Then for any pair (T, G) with the
associated quadruple isomorphic to F, there exists a point p of WF such
that (T9 G) is isomorphic to (TP,GP)0 Moreover for py pf£=WF, (TP9GP)
and (Tp,9 Gp,} are isomorphic if and only if there exists an element j of

NF such that p = r(p')m
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2. 3, In view of 2. 2 our first task should be the classification of the
quadruples (A9 0, //, Af) in J, which will eventually be summarized
in Proposition 2. 14 below.

a) We start with the determination of the structure of A.

Lemma 2, 4. Let (A, 0, //, Af) be a quadruple in £. Then one of
the following is true: 1) A is commutative; more precisely, A is a field of
degree^ or a direct sum of two fields of degree ̂ 2, 2) A is a quaternion
algebra over Q, and 3) A = M2(K) for some imaginary quadratic field K.

Proof. Let A=Ai@...@Ak be a direct sum decomposition of A
into simple factors At. Write 1=^ + ... +ek with e^Ai. Let V=MQ

and Vi—ey, Then we have the direct sum decomposition V=Vi@e..
®Vk and the natural embeddings AS >End Vt. Let / be as in Q2).
Then, since / commutes with ei9 ViiR are /-invariant and hence of
even dimension over R. Thus k^2 and if the equality Holds, we
have dimQVi = 2 so that A{ is a field of degree ̂ 20 Suppose then that
k = 1, i.e., A is simple. If A is a division algebra, then V is a vector
space over A so that rankq-4^4. Thus A belongs to the cases 1) or
2). Suppose that A is not a division algebra so that A = M2(K) for

some division algebra K over Q. Write I=el + e2 with *i = (/\ A) and
/O 0\£2 = (n j. Then again we have V=Vi®V2 with V{ = eiV and with

Fz-ijR /-invariant In particular ViiR has a natural complex structure.
Then K can be embedded both in End Ft and in EndcVitR = C0 It
follows that K is an imaginary quadratic field if KgQa The lemma
is proved.

b) Next, in Lemmas 2. 5, 2. 7 and 2. 10 below we shall give the
possible types of (A, 0, H) for quadruples (A, 0, //, M) in J, in
case rankg^4^4, i.e., A is either commutative or is a quaternion
algebra over Qe We define two such triples (A^ 03 /£) and (A'9 o',
//') to be isomorphic if there exists an algebra isomorphism u:A-»A'
such that w ( o ) = o x and u(H)=H'a

bl) First we consider the case where A is commutative. For
the statement of the result we need some definitions and notation: fl
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denotes the maximal order of A0 Then 0/ denotes the subgroups of
elements of finite order In the unit group 0X

0 Let m = !32 or 30

Then we set

Then If A=Q(e2J@Q(e2n), we have $ = Rm@Rna Let Fm = Z/mZ,
considered as a finite field. Denote by A the diagonal In general.
When A=Q@Q(e2m)t m = 2,3 we define

where p:$ = Z@Rm-*Z/mZ@Rm/(l+e2m)Rm = F2
m Is the natural projeo

tion0 When A=Q(e2m)2, we define

®m=p-l(A) and o;^'-1^),

where

and

are the natural projectlons0

Lemma 20 50 Let (A, 09 H, Af) be a quadruple in J with A commu-
tative. Then (A, 09 //) w isomorphic to one of the following triples:

0 = 8, oi, (000(1), 09 ox ) 9 o =
8, o29 (Q@Q(p), o, ox), (Q©Q(/9), o9 o3

x)9 o = fl, o35 (Q(i)2, o9 o x ) 9

-o? o29 o; (QC^)', a, o x ) 9 (Q(P)\ o, o3
x)9

, a, a x ) 0

Proof. By Lemma 2. 4 ^=JT or ^0^ where jRT and K{ are fields
of degree d^4 and rf,-^2 respectivelya Since A Is generated by
elements of finite order9 K and K{ must be cyclotomic fields. From
these9 the assertion on A follows.

Now suppose first that A=Q(e2m)0 If 0 is not the maximal order,
then H contains neither a primitive 2m-th root of unity nor its minus,
so that J^-rank of 0^29 a contradiction. Thus 0 is the maximal order
of A* Similarly, H must contain a primitive 2m-th root of unity;
hence // = fl/.

Next suppose that A=Q(e2n)®Q(e2n) with l^m^n^3. We first
enumerate the subgroups H of ox=®2mXS2 n which generate A as Q-
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algebras; they are one of the following: 1) 5X, 2) <( — l,

3) //,:=<-!, (/°2, 1), (!,/>2)>gQO>)2, 4) //;,:=< (1, ±1),
2, 5) <(1, ±1), (ft, p-'^ZQW. Here /£ and the

group in 5) are transformed to each other by the complex conjugation
on the second factor. So we may omit the case 5) from our
consideration. We next determine for each group H as above the
order 0 of A generated by H, The resulting triples (A9 09 H) are

as follows: (Q^fl*), (Q©Q(i), o2, d x ) 9 (Q@Q(p), 6, o x ) 9 (Q0QOO,

(Q0>)2, % #3), (Q(t)0QOO, Mx)- Moreover in all the cases we
have //=0X

9 the unit group of 00 From this, together with the fact
that 59 0W9 o'w (resp. 39 om) are unique orders in A containing ®'m
(resp. ow)9 the lemma follows immediately in this case also.

q. e. d.

b2) Next we consider the case of a definite quaternion algebra.
Let IFbe the real quaternion division algebra over 12 with the standard
basis 1, i, j9 ka We set

(4) F

where

t= (1 +«+j+*)/2, A= (i + V3j)/29 /= (1 +V3*)/2.

Then F and F' are definite quaternion algebras over Q, and a, a0

and 6 are orders of F and F' respectively.

Lemma 2, 6. 1) a a^rf & ̂ n? maximal orders of F and Ff respectively.
2) The orders of F which contain a0 are just a0 and ao 3) 7%£ groups
of units of these orders are given respectively by

a 0
x ={±l , ±i, ±j, ±k} ^O

a x ={±! 5 ±i 9 ±j 9 (±
Bx= {±1, ±i, ±h, ±1,

Proo/, See e8g.9 Dickson [4]: p. 172, Satz 1 for 1) and 2), and
p. 182 (20) and p. 192 (28) for 3).
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Lemma 20 70 Let (A, 0, H9 M) be a quadruple in J . Suppose that
A is a definite quaternion algebra. Then (A9 0, //) is isomorphic to one
of the following triples', 1) (F9a9ctx)9 2) (F9a9a0

x)? 3) (F9a05a0
x) and

4) (F7
9696X)9

Proof. H is not commutative since A is not Let 3 be any maximal
order containing 0. Since o contains the noncyclic group H9 it follows
that A = F or F'; moreover the maximal orders of A are conjugate
to each other (cf. Vignera [26], p. 145, Prop, 3.1 and p. 269 Gor0

4.11). Hence we may assume that the above isomorphism sends o
onto a or b respectively. Then H9 being noncyclic, must be isomorphic
to X or O (resp. 35) if A = F (resp. F7). This9 combined with Lemma
2. 69 gives the lemma immediately.

In passing we note also the following fact (cf0 Vignera [26], I. 3. 1)
for later use.

Lemma 2888 Let ax,aoc (resp. 5X) be the normalizer of ax
3 af (resp.

bx) in Fx (resp. F/x). Then we have ax=a0
x = <Qx

s a
x

s l+i\ and

Let Ff (resp, F^x) be the multiplicative group of elements of unit
norm of F (resp. F7). Then it follows from the above lemma that

I — ii— A *"\J ' ' -~ L \ •"" 9 \ " • ' " / / » ~ X — "—• 9 «• 11 vl

(5)

where D is the binary octahedral group and 2) is the binary dihedral
group of order 24.

b3) Finally we consider the case of indefinite quaternion algebras.
We take the following presentation of the dihedral group S)A of order
2k I &k= {a,T;0k = T2=l,TGT = (j-1}e For £ = 4?6 we define the subgroup
A of GL2(Z) isomorphic to 5\ by:

We note that such realization of &k is unique up to conjugations in
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GL2(Z). Let ak, k = 4, 6, be the orders of M2(Q) generated by the
elements of A- Then ak are free Z-modules of rank 4 with free
bases given respectively by

n (\ ON /I ON /O IN / 0 IN
Ho ij xo -ij (a oj Ui oj

I ON /O -IN /O IN / 1 O
ij (i 0 Vi oj Ui -

Then

the a4-module generated by f Q Q\ also is an order of M2(Q). From

(7) we have

;a=^, b=c(2}\

(8)

and

(9)

sO (2)1
J

(3)}

Lemma 2.9. Let b^ ^ = 4 or 6, &* an or&r of M2(Q) between ak

and M2(Z), Then &4 = a4?a4 or M2(Z} and b6 = a6 or M2(Z)0

Proof. Let m = k/2. By (9) the problem is reduced to determining
the subalgebras of M2 (Fm) = M2 (Z) /mM2 (Z) containing the image
ak of ak. Since dimF356 = 3 we have %5 = aB or M2(Z)« On the other

hand3 a^=F2 f, ^J and then direct computation shows the desired

assertion.

Using this we shall obtain the following:

Lemma 2.10. Let (A, 09 H, M) be a quadruple in £. Suppose that
A is an indefinite quaternion algebra over Q. Then (A, 05 H) is isomorphic
to one of the following triples; 1) (Af2(Q), M2(Z)5 A), 2) (Afa(Q),
ai, A), 3) (M2(Q),a4,A), 4) (M2(Q)5 M2(Z), A), 5) (M2(Q)9 a6? A).
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Proof, Consider H as a finite subgroup of GL2(R) =A^, and

hence A as a finite Q-subalgebra of M2(R) = AR . Then we see that

H is either cyclic or dihedral H is not commutative since A is not8

Hence H is dihedral. Moreover since the trace of any element of H

is in Q, it has order ^6, ^5. Thus H is isomorphic to S)4 or to 3)6.

After conjugation in GL2(JR) we may assume that H is realized in
M2(Z) as in (6) since S)A embedded in GL2(jR) are conjugate to each
other,, This then implies that A coincides with M2(Q}0 Fix a maximal

order a of M2(Q) which contains H. Since the maximal order of

M2(Q) are conjugate to each other (cf. [26], p. 28, 4. 2), after conjuga-

tion in M2(Q) we may further assume that a = M2(Z), Even after

this, by the conjugacy equivalence of realizations of S)A in GL2(Z)

mentioned above, we may assume that H is realized in M2(Z) as in

(6) . Then the lemma follows from Lemma 2e 9B

Analogously to Lemma 2. 8, we get by direct computations the

following :

20 11. Let «4 = f I I ) and aB = ( o i ). Then the nor-

malizer Dk of ^ A ,A; = 4, 6, in GL2(Q) are given by Dk = (Q*^ A3 «*>•

2o 40 We shall finally deal with M. Let (^4, 09 H, M) be a quadruple

in J* A lattice A in ^4, i. e., a free ^-submodule of A with AQ = A,

is called a proper o-ideal if o={ae^4; <2^f£/f}a It is called principal

if .4 = of for some element feA First we show the following:

Lemma 20 12. Let (A, o, //, M) be a quadruple in M . Assume

that rankQ^4 = 2 or 4. Then any proper o-ideal of A is principal except

the cases o = o{ .

Proof. Suppose first that o is a maximal order of A. We then

have to distinguish four cases according to the structure of A: 1)

Q(e2m), l^m^G, 2) Q(e2m)@Q(e2n\ l^m^n^3, 3) For F'9 and 4)

M2(Q). In the cases 1), 3) and 4) the result is well-known0 (See,

e.g., Hasse [10], p8 594 for the case 1), [26], p. 145, Prop. 3. 1 for 3)

and [26], p. 28, 40 2 for 4).) In the case 2) let A be any proper 5-

ideal of A Since * i—(l ,0 ) and e2=(Q,l) are in o, it follows
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that A is the direct sum A=Al@A2 with Ai — e^A', further each A{ is a

fractional ideal of Ki9 which is principal in K{ as we have noted

above. Thus A also is principal.

So we may assume that o is not a maximal order with o=£o(. The

cases to be considered are: (-4,0)= 1) (Q(e2m)2,0m)5 »i = 2, 3, 2)

(Q(p}\ oi), 3) (F, Ob), 4) (Af2(Q),o) with o = a4, a4 or a6. In view

of (4) and (9) we have the canonical inclusion o< »5 of 0 into a

maximal order 3 of A (which is of course unique if A is commutative);

further we can find a nonzero element a in the center of o such that

aagoCo; we may indeed take a:= 1) l+*2w, 2) 2, 3) 2 and 4) 2
or 3, in respective cases. Let 6 = d/ao and o = o/ar6e These are finite

C -algebras.

Now let A be any proper o-ideal of A. Let A = $A. Then A is a

(proper) o-ideal and we have aAQA^A, As we have seen above, A

is principal; so we may assume that A = o and hence that ao£^£5.

Then A defines an o-submodule A of 6 such that the natural inclusion

o< *6A'.= {a^Q',aAc:A} is the identity. Thus it suffices first to classify

all such o-modules A and then for each such A to show that its

inverse image A in 0 is either principal or is not a proper o-ideal.

First, in cases 1) and 2) the desired result follows from the following

observations: o=(Rm/aRm)2 and o its diagonal, where Rm/aRm = Fm in

case 1), and in case 2) R2/2R2^C[X]/(l+X)2 and R3/2R3^F^.

In case 3) we see that the unique possibility for A other than a0

is the cto-module [a+bi + cj + dk'9 a = b, c=d (2)}. But then A = aQ(l+i)

and hence is principal as desired0 Finally, consider the case 4). In

this case we have o = M2(Z), First we take O = ct4. Set Qf = a\ and

o' = o'/2o. Then, up to right multiplication by elements of 6 the

o-modules contained in d are one of the following:

4-{(i J)}. *-{(J JX! ?))• *-<(! 2X2 !)).
J4=o, ^ = 5'.

Let Ap be the inverse images of A^ in o. Then we have A1 = ofa4 (cf.

Lemma 2. 11) and hence Al is o'-principal; A2 is an M2(Z) -module

and hence it is neither proper o-nor o'-ideal. The same is also true

for A3 since (a/2)yl3Cyl3o This proves the desired assertion in this

case. The case O = a6 is treated similarly and will be omitted.
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2.13. Let (A, 09 H9 M) be a quadruple in J0 I) If
= 2 or 4? then M is a free o-module except the case 0 = 0^0 If

0 = 01 ? then M is either free or isomorphic to the direct sum oJ00 as oj-
modules, 2) If A=Q@Q(e2m)^ and hence if o = Z@Rm<) M is ^-isomorphic
to Z*003 where (056)eo with a^Z and b^Rm acts on the Z2-factor by
the multiplication by a0

Proof. When rankg-4 = 4, we have an Isomorphism w:A-*MQ of
^-modules. Let A = w~l(Af). Then by Q3) A is a proper o-ideal of
A, and hence Is free by Lemma 20 12. It follows that M also Is free.
If rank@.4 =2 and A is a fields then 0 Is a principal Ideal domain
by Lemma 28 12 so that M Is again free0 The remaining cases
are: 1) A=Q\ o = S3 oj, and 2) A=Q@Q(e2J0

Let 8 be the maximal order of A. Then 5 Is the direct sum
5 = 0x0029 where o,- Is the maximal order of the i-th factor of A0

Accordingly3 M:—oM(C=M Q ) becomes a direct sum M=Mi@M2<> where
Mi = Z2 If Oi = Z and M—o,- otherwise. Hence if 0 = 8, M Is just as
claimed. The cases o^o, namely the cases o = oj or Om3 can be treated
analogously as In the proof of the previous lemma In the case of
non-maximal orders; so we leave the detail to the readers

Summarizing what we have proved so fars we get the following:

Proposition 2014. Under the previous notations any quadruple (A9 os

H9 M) with rankgA^ in J is isomorphic to one of the quadruples listed
in the following table.

Table 1

No. A H M

0s

2

2' o, 0

6,62
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4

5

6

7

8

9

10

11

12

13

14

15

16

00000

0(0 ©0(0

Q(P)@Q(P)

0(0 ©Ofa)

F

F'

M2(Q)

0

0,63

Mi

0, £>2, 02

5

Ma

5,0s

S

a, a0

a

6

M2(Z),a4,ai

M2(Z),a6

oxse2xe6

a3
x=®6

oxsS4x©4

o2
x = £2x£4

oxs®6x<£6

o3
x=e3x(S:6

o3
x=s2xs;6

^20o

0

0

0XS®4X®6 1 0

a0
xsO

ax=;£

BxsS)

A = ®4

As®.

0

We note that by Lemma 2. 1 the table Is also considered as
classifying the rational representation types of pairs (T9 G) with
— 1 eG9 under the assumption that rankQA^4a

2e5* We next study the structure of the normalizer N=NF of any
quadruple F= (A, 0, H9 M) in J2. For any such F we denote by
NF the group of algebra automorphisms of ^4 which leave o and H
invarianto First we determine the structure of NFa

Proposition 2015. Let Gm be the Galois group of Q(e2m) over Qe

Let Am be the diagonal of GmxGm. Let rm be the involution of Q(e2m)2

which interchanges the two factors. Then for each quadruple F in Table

1 the corresponding group NF defined above is given in the following table.
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Table 2

No. of F In Table 1

1

2f 2'

3-5

6-9, 10 with 09^03

10 with 0 = 03

11

12,13

14

15 o=M2(Z)
o=a4, a4

| f* ~hjj f fW\

o=as

NF

Gm^ep(2m)
<ri>S®2

{«} xGmsS2

(GmxGm)X1<r>sS)4

J3X<r3>SS)2=S;2xe2

G.xG.sCjX®,

<ax, ( l+t)/V2>/{±l} sO/{±l} s@4

<bx, (V3"+A;)/2>/{±l} SS)/{±1} SS)6

A/{±1}SS)2

<A,«4/V2>/{±1}=®4

A/{±1}=®3

<A,«,/V3>/{±i}sa,
In Nos0 12-16 the elements act on ^4 by Inner automorphisms,,

Proof. Except for 12-16 the assertion Is almost trivial. For 12-14
see Lemma 20 8 and (5). For 15 and 16 the result follows from Lemma
20 11 In view of the fact that a4 (resp0 «6) normalizes a49 a4 (resp0 a6),
but not M2(Z}e

Let N=NF and ff=NF be as above,, We then have the natural
homomorphism /: N-»N,> whose kernel Is Identified with AutoM, the
group of o-linear automorphisms of M, Suppose first that M is a
free o-module 0S

9 s^l. AutoAf=GLs(o)^} and we can define the Z-
linear action of N on M by

(10) A ( f l i , . . . , f l . ) = ( A ( f l i ) , . . - , A(fl.)), h^N, f l£eo;

then for a^o we have h(ah~1(ai)) =h(a)aie Hence we get the natural
embedding N* *N and the semidirect product decomposition

(11) JV

*) In the noncommutative case we always have s=I3 and GLi(o) =ox acts on M=o by right
multiplication.
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Next, in the case (A, 0? M) = (Q2
5 oj, oj©5) we have the natural

embedding Af< - »o2, and the automorphism of fl2 defined by (10) leaves

M invariant. Hence we have again the natural embedding N* - »AutzM

and (11) holds in this case also. Finally in the case (.4, 0, M ) =

(Q@Q(e2m), ^©o) (cf. Lemma 2. 13) we get the natural embedding

M=Z2®& - >Z2@Rm and the action of N'.=Gm on Z2@Rm defined by

h(a,b) = (a, hb), a^Z\ b<=Rm, AeG W 5 leaves Z2©o invariant. Hence

in this case also we have the natural embedding N< - >AutzM and (11)

holds true. Let F0(m) = {(j* J)eGL2(Z) ;«=!, c = 0 (m)}, where

772 = 2,3. Then we easily obtain the following:

Lemma 2.16. Let F be any quadruple in 2, with rankQ.4^4. Let
N=NF and N=fflF be as above . Then there exists a natural embedding
R* - >AT and with respect to this embedding N is naturally a semidirect product
N=AutoMy^N. Here the structure of AutoM is up to isomorphisms

given as follows; 1) GLs(o) if M^os, 2) T0(2) if (o, A0 = (o', o'©o)9

3a) GL2(Z)X^ if (A, o) = (Q0Q (*2J , 3) and 3b) FQ(m)xR^ if

(A, o) =

2e 69 Finally we shall determine the structure of WF for each F in

Table 1. First we introduce some notations. We denote by $ the

upper half plane ; $ = {^ ; Im £>0} 5 and by P1 the complex projective

line. {*} will denote the space consisting of a single point8 For K=R

or C we set

GL2(K) acts transitively on the set C^ by inner automorphisms with

stabilizer at [1, -1] (resp. (t, -f)) (cf. Notations) given by {(_£ *^;

^56el2}=C7* (resp. {(a96); fl9 6eC*} =C7*xC*) if JE=« (resp. C7).

Thus CR = GL2(R)/C*=$ and CC = GL2(C7)/C7*2
5 where |i=£x^

with ^ the lower half plane.
On the other hand, let X be the subset of the pure quaternions

defined by

X= {q^H\qz=-l} = {ai+bj+ck;a2+b2+c2=l}a

Then H* acts transitively on the set X by inner automorphisms with
stabilizer at i given by [a+bi^H*] =C*. Thus we have the natural
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Identifications

(12) X=H*/C*=P\

Now noting that WF depends only on the pair (AR, MR), we obtain
the following:

Proposition 2, 178 In the above notations for each quadruple F=
(A9 6, H, M) in Table 1 the corresponding complex manifold WF is given
in the following table. In particular each connected component of WF is
naturally a homogeneous complex manifold*

Table 3,

No. of F in
Table 1

0» = l)
1 (m = 2,3)

On =4, 5, 6)

2,2'
3-5

6-11

12-14
15-16

AR

R
C

C2

R*
"O/TWtJ-w^pJt-/

C2

H

M,(R)

Ma

R<

C2

C2

J?4

1P©C

C2

H

Mt(K)

WF

w
CclL{±(i,i)}

{(±i, ±0}
CRxCR

C«JiCB

{(±z, ±0}
X

CR

structure

f~* T f iTl\ //^"*2 i i f^*l II J^l"Lj J_/Q v. ̂  / / ̂  ' I 1 | II | j

4 points

$x^

^IL^
4 points

F1

Remark 2.18. As a complex manifold, GL 2 (C ? ) /C* 2 ^SL 2 (C) /C*
here is isomorphic to the total space of the holomorphic tangent bundle
over the complex projective line (cf. [19], Th0 4 0 5 ) 0 In particular
the complex structure is not the one induced from the complex Lie
group structure of GL2(C7)0

Proof. Let L be the closed Lie subgroup AutARMR of AutRMR =

GL4 (U) consisting of ^jg-linear automorphisms0 (L also is the centra-
lizer of H in AutRMRo) Then we have WF= [x^.L;x2= — 1 } 5 and L
operates on WF via inner automorphisms; the orbits are just the
conjugacy classes d in WF. Thus if we choose a representative xt

for each C,-, Ct- is considered a homogeneous complex manifold L/Li9

where L{ is the centralizer of xt. Indeed, according to the numbering
of Table 1 the triples (AR^ L, x{, l^i^k) for suitable xt are given
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as follows. 1. (jR,GL,(fl), (_J* J,^ if m = l^ (C^ GL2(C)? (i, -{),

±(t, i)) if m = 2,3 and (£7©C79 C*xC*, (±i, ±i)) if m = 435?6.
2,2'. (R@R,GL2(R) xGL2(U), ±[1, -1])), 3-5. (JJ®C3 GL2(J?) xC*3

(±[1, -1], ±i)),6-ll . (C7©C,C7*XC7*3 (±i, ±0), 12-14. (JJ,J^,i),
and finally, 15-16. (Af2(fl), GL2(U)3 ±[1, -1]). The lemma follows
from this immediately.

2. 7, Let //be any finite subgroup of GL4(Z) such that W#=£ 0
(cf. 2.1). Let (//) be the conjugacy class of H in GL4(Z). Let
Jt(H) be the moduli space of the pairs (T9 G) with fixed rational
representation type (//). Let F=FH=(A, 05 //, M) be the quadruple
corresponding to H by Lemma 2. 1. Let NF and WF be the normalizer
of F and the set of -^-linear complex structures on MR respectively.
Then we have ^(m=NF\WF by Lemma 2. 1. Since we have deter-
mined NF and WF in Proposition 2. 15, Lemma 2. 16 and Proposition
2. 17 when rank(^4^43 the structure of u?(#) has essentially been
determined in this case already. However we find the following slightly
modified presentation more convenient. Namely we choose one
representative from each A^-equivalence class of connected components
of WFo Let PFyj y = l , 0 0 . ,j, be any such representatives. (Actually
s=l or 2.) Let Nv be the stabilizer of Wv in AfF. Then the following
is also a canonical presentation of ^(H) as a union of locally homoge-
neous spaces;

(13) ^(ID = JLVNV\WV,

Let fi be the centralizer of WF in AutzM5 i. e., S= {g^AutzM°,gJ=Jg
for any J^WF}. Then J? is a normal subgroup of NF containing H
and the action of NF on WF factors through the quotient NF/0.
Hence in the above presentation (13) we may replace Nv freely by
fftt'=Nu/Hv for any normal subgroup Hv of Nv contained in jff, a
typical example being given by Hu = HnNv, Now we shall describe
the structure of u?(fl) in the sense of (13) modulo the remark just
made.

Proposition 2* 19. Let H,F=(A, 09 //, Af), and Jtm be as above.
Suppose that rankQJ^4. Then according to the classification of F in
Table 19 we have the structure of J£(H) as a union of locally homogeneous
spaces as in the following table.
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Table 4.

No.

la m = l

Ib m = 2,3

Id m=5

2

M = o2

2'

0=0
3-5

6-9,11

lOa 0^03

lOb 0 = 03

12,13

14

15,16 °~ ,
o=a4, ct4, a6

J!w

{*}

ntrinn2 / Q T f 'W\ \ T-J\ **** /~^sym. ioJLrf2 i^/ \-o y zir Cy

sym2<T(2) V/)/@3=- (C* X f7*)/@i (rational)

sym2(ro(2)\//)=C'xC7*

nww"T.

{»)

^C \ Dl /— ' Ol

CTN \ Ol /— * Ol

SL,(Z)\HSC
(OixX®2) \H=C — {points}

Here W* is a connected component of W^ and sym2(Z) denotes

the symmetric product of X. Further /7o(w) = |(fl r)eSL2(-Zr); c =(\c a/
0 (m) L In Ib the generator of ®2

 acts °n GL2(C?) via the complex

conjugation, leaving invariant the subgroups GL2(o) and C*2. On

the other hand, consider <O and S> as subgroups of H* by (5). Then

we have the induced action of @4~O/{±1} and D6 = S)/{±1} on

Pl^H*/C*. These are the actions in 12-14. In the last case
61

X:=SL2(Z) noxSGL2(X) and the action of S2 = <X> is induced by
the inner automorphism of aft, & = 4, 60

From (8) we see that the structure of of is described as follows,
Let m = k/2. Let fim:SL2(Z)-*SL2(Z/mZ) be the natural homomor-
phism0 Let Hm be the subgroup of SL2(Z/mZ) defined by: Hm =
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<[1, 1]> = £2 if £ = 4, and = ((J ~i))-£6 If k=6a Then

(14) o f = f f i l ( H m ) .

Proof. Let N=NF and N=NF. We may identify MR with AR

when M=Qa As a typical case, we first consider Ic and Id. By
Proposition 2. 15 and Lemma 28 16 we have N=GmlK$* In this case.
Let the action of N on A extend to the U-linear action on AE, Fix
an J?-algebra isomorphism AR = CZ. The problem Is to identify the
action of N on the set C:={t/gJ7:=(ei, Jji) ;e= ±1, ^=±1} of complex
structures on C2=R*a First of all, the action of 5X is Induced by the
multiplication of the elements of C7*2 via the natural Inclusion 5X« >
Ax = C*2', hence 5X acts on C trivially and the action of N factors through
Gmo Since Gm acts on AR as JF2-algebra automorphisms, we have the
natural inclusion Gm< *AutRAR = AutRC2=(el9 £2>XKr> = S)4, where ca is
the complex conjugation on the a-ih factor and r is the interchanging
of the two factors. Now GOT = S2X©2 if m = 4 or 6 and =S4 if m = 5,

Hence we must have Gw = <v2,r> if m = 4,6 (note that A^m=R) and
= <^r> if ?w = 58 The action of ^2, r, ^r on C are easily identified;

^C/ey) =J-e,-i, *(Ju!) =J?B and tiT(JBV) =Jn,-B. It follows that Gm acts
transitively on C if m = 5 and there exist two Gm-orblts {±(x, 0} and

{±(i, -0} If m = 4,6a This verifies Table 4 In this case. No8 6-10
can be treated similarly.

For Ib we only note that Gm identifies ± (i, i) (cf, Proposition
2. 17). (No. 1, 77z = l, is trivial.) The result for 2-5 follows readily

from the fact that (1, — 1) eGL2(JR) Interchanges § and § in §,

and (1, -l)ero(ro). (We also note that (SL2(Z) nA(3)) X<-1>

sr0(3)o
So we consider the case where A Is a quaternion algebra. In this

case we have N=oK^N0 The action of N on WF factors through

N'-.=N/H. First, assume that A is definite. Let K=Q (respe S>) If
H=£L or SC (resp. S). Let FCoxXJ?be the graph of the composite of
the natural homomorphisms o* = H< »K-*K/ {±1} =N. Then jTis easily
seen to coincide with H^N (H acts on IF by (hxh~l) • h, h&H,
and we have another semidirect product decomposition N=
This implies that N'=N=K/{±1} naturally. Next, assume that A is
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Isomorphlc to M2(Q)e Then the natural image of H In N=N/ox Is
just Dk/{±l}e Then <a^>tXox=E2Xox must be mapped surjectlvely
onto N/H. Hence In N\WF we may replace N by <Q^>[><OX

O The
assertion then follows from the fact that [1, 1] Interchanges $ and

$ In $ and [1,

2o80 Let (T9G) be any pair. Let f:G-*GL(E) be the complex
representation of (T9G)0 Let u:E-*C2 be any C7-linear Isomorphism,,
Then uf maps G onto a subgroup ^ of GL2(£7) whose conjugacy class
(K) Is independent of u as above and depends only on (T9G)0 (K)
Is called the complex representation type of (7", G).

Let jP= (^4, o, //, Af) be a quadruple In J2 with rankQ4^4B As
the proof of Proposition 2B 17 shows., complex structures on MR from
one and the same connected component of WF are conjugate In
AutA MR. From this we conclude that the complex representation type

(K) is constant on each connected component of the moduli space
JiC^H). This In particular Implies that the rational representation type
(H) already determines the complex representation type except possi-
bly In the cases lb, lc, and lOb of Table 40 Indeed9 In these cases
this Is not true9 namely the two connected components correspond to
two different complex representation typesD More precisely the two
types are in each of these cases given by representatives as follows
(cf. the proofs of Proposition 2, 19 and Lemma 20 5) :

lb. <(**,, *J2)>, <('*,, O>, m = 2,3
(15) lc. <(^,^-1)>, <(e2m, *£»)>, m = 4,6

10K <(1, ±1), (p\ p*)\ <(1, ±1), (p\ p-*»>

where in lb the type <02w %n)> belongs to the component {*}3 and
the pairs (T9 G) with G = K2wi5 m = 2 93 5 belonging to the component
GL2(o)\GL2(€)/€^2 are all special. In any case we see that the
following holds0

Lemma 2e 2(L The moduli space of the pairs (T, G) with fixed complex
and rational representation types are connected if for the associated quadruple
F=(A, 09 H, M) we have
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§3. Special Pairs

In this section we classify special pairs. Recall that a pair (T9 G)
is said to be special if /(G) C SL (E), where /: G-»GL (E) is the com-
plex representation,

3.1. First we prove some general lemmas.

Lemma 3.1. The following conditions are equivalent, 1) (T9G) is
special, and 2) the minimal resolution Z of the quotient normal analytic
surface T/G is a K3 surface. Moreover if a(T)^l9 then (71, G) is
necessarily special, where a(T) is the algebraic dimension of T,

Proof. 1) is clearly equivalent to the following: 1)' Cleaves fixed
a nonzero holomorphic 2-form a on T. Let 7r:T->T/G and f\Z-*T/G
be the natural morphisms0 If Z is a K3 surface and <p is a' nowhere
vanishing holomorphic 2-form on Z, then (j~ln)*<p gives a nonzero
G-invariant holomorphic 2-form on T. This shows that 2)—»!)„
Conversely suppose that I)7 is true. Then a descends to a nonzero
holomorphic 2-form a on Z whose zeroes are contained in the inverse
images ?~l(pi) of the singular points p{^T/G. On the other hand,
the stabilizer Gt of each point t^T is naturally considered as a
subgroup of SL (E) so that T/G has only rational double points; thus
a cannot have zeroes contained in 7*"1 (/>,-)• Then & is nowhere vani-
shing. On the other hand, since the eigenvalues of any element (^e)
of G are not 1 on E1, there is no G-invariant holomorphic 1-form on
T. This implies that hl-Q(Z)=Q. It follows that Z is a #3 surface.
For the last assertion see (the proof of) [14], Th. 3. 1 a).

The first part of the next lemma is classical, being a special case
of the so-called crystallographic restriction. The second part also
holds in higher dimensions. Here we deduce it from Proposition 28 I40

Lemma 3.2. Let g be an automorphism of finite order n of a two
dimensional complex torus T. Then <p(ri) ^4; moreover if g is special^ i,e«,
f(g)£=:SlL(E)9 then p(n)^2, where <p is the Euler function.
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Proof. Let G be the abelian group generated by g and — 1. Let
F be the quadruple associated to (T9G). Then F falls under 1 or 5
of Table 1. The first assertion then follows immediately,, If F is
No0 1, 4^m^69 of Table 1 (which correspond to the case G = &n with
p(w)=4) , the corresponding complex representation type given in
(15) shows that (T9G) is not special. In other words, <p(ri) ^2 if g

is special

Together with the well-known classification of finite subgroups of
SL2(C7) this lemma gives us the following:

Lemma 30 3, Let (T9 G) be a special pair. Then G is isomorphic
either to the cyclic group &k of order k with & = 2 9 3 ,4 or 69 or to one of
the groups Q3 X9 or S.

Lemma 3o4e Let (T9 G) be any special pair with — leG. Let
F=(A9Q9H9M) be a quadruple associated to (T9G)0 Then if G = Sfe,
& = 3 9 4 9 6 (res p. G9 !£9 or S), F is isomorphic to one of the quadruples
in Table I, No. I with m = 2,3 (respa Nos. 12-14).

Proof. If G^Sfc, then A is clearly isomorphic to Q(ek) and if
G = Q9 SC or S)9 then A is not commutative and cannot be isomorphic
to M2(Q) since G is never isomorphic to a subgroup of GL2(©).
From these the lemma follows.

3,2, Let © be any one of the groups ®*9 k = 2, 39 4, 69 Q9 S9 and
S)0 Let <^@ be the set of isomorphism classes of special pairs (T9 G)
such that G = ©0 We shall now determine the structure of ^&a We
distinguish three cases according as ©= i) K25 ii) ® f e ? A: = 3 9 4 9 6 and
iii) O, S;, or S.

C<2^ i). © = (£20 In this case T is arbitrary and G = < — 1>. £P%2

is thus nothing but the moduli space GL^(Z)\W=SL^(Z)\W+ of the
isomorphism classes of complex tori of dimension two. The action of
SL4(Z) on W+ is not properly discontinuous as is well-known.

Case ii). © = K^9 & = 3 9 4 9 6 0 Let 0 = 0* be the maximal order of
Q(ek)0 With respect to the .natural embedding oCQ(*4) CC, A = o2

is a lattice in C*2 and is a free o-module. Thus the diagonal action
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of £*eox on C2 preserves A and descends to an automorphism ek of
the complex torus C2/A. Let u be any point of the homogeneous
complex manifold £/:=GL2(C)/(C*2) (cf. Proposition 2. 17). Fix a

representative y of u in GL2(C7). Then j>(i, ~~OjV"1 depends only on M;
so we set J(u) =y(i, -i)y~l(EGL2(C) (cf. Notation). Then J(u)2 = - 1,
so that /(M) defines a new complex structure on C2=R* which is o-
linear, and hence, commutes with the action of ek.

Let Tu be the complex torus C2/A, but with the new complex
structure induced by J(u). Then ek is holomorphic also on Tu.

Therefore we have the natural embedding <^>£ »Aut Tu, Let Gu be
the image of this embedding. Then the resulting pair (TU9 GJ is
special with Gu = &k (cf8 (15)). Thus we have a family {(Tu, GJ}Ketf
of special pairs parametrized by U. By construction this is just the
holomorphic family (3) associated to the quadruple (Q(e2m), 03 0, O2)
restricted to the component U (cf. Proposition 2. 17 and (15)). There-
fore we have almost obtained the following:

Proposition 3.5. Let (T, G) be a special pair with G = $k, £ = 3,4,
or 6. Then there exists a point u^U such that (7", G) = (7"tt, Gtt)e

Moreover, for any w, u'^U^ (!Fa, GJ and (TV, Gu/) are isomorphic if and
only if there exist representatives y> y' in GL2(C7) of u, u' respectively and

an element ^eGL2(o) such that y=fy' or y=?$\ where y' denotes the
complex, conjugate matrix of y'.

Remark 3.6. In particular the moduli space yEjfe is naturally

identified with the locally homogeneous space

(GL2(o)\GL2(C7)/(C7*)2)/e2,

where the action of ®2 on GL2(o)\GL2(C)/(C7*)2 is induced by the
complex conjugation on GL2(C7). Since the action of GL2(o) on
GL2(€7)/(C7*)2 is not properly discontinuous ^E^ has no structure of

analytic spaces.

Proof. Let (T, G) be a pair from ff>^. Then (T, GO with

G' = <G, -1> is in &^ and the correspondence (T, G)->(r, G') gives

a bijection of £f^ and ^^^ Therefore, we may only consider the

cases k = 4 or 6. Since (7*, G) is special, the result then follows from
Lemma 3.4, Lemma 2e 3, Proposition 2. 19 and (15).
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In the above description of the pairs in £%^ the structure of T as

a complex manifold is not explicit enough. As a complementary

result we shall give here a brief description of the elements of SP ̂

in terms of their period matrices according to [6]. Let Q be a 2x4

complex matrix with detf^Wo. Then the column vectors of Q
\aJ /

generate a lattice A of C2. Let T=C2/A be the resulting complex

torus with period Q0 Then any element gQ^GL2(C) preserving A

defines an automorphism g of T. We now consider the following two

cases0

, /I 0 x y\ /O -1\
lo VO 1 -y x) VI OJ
„ /I 0 * j, \ / 0 1\ (*?J

Zo VO 1 -7 *+W V-l l)

Here g0 is of order 4 and 6 in the respective cases with detgo— 1 =

Hence if we set T=T(Q(x,y)) and G = <g0>9 the resulting pair (T, G)Uij;)

is a special pair in «$% , £ = 496. Conversely the following is easily

verified (cf. [6], p.220),

Proposition 3*7e Any special pair (T,G) with G = &k, k = 4,69is

isomorphic to (T, G) (Xiy) for some (x, y) ^C2—R2 as above.

For instance by setting y = Q in 1 and 2 we see that for any

elliptic curve E the product ExE always admits a special action of

E&9 £ = 4,6 (cf. Table 8). On the other hand3 the automorphism
(ek, e^1) defines a special action of S* on Eg xEe . More generally

the following is true:

Lemma 3« 8. Let T be a complex torus of dimension 2 which is

obtained as an extension of Ee^ by Ee , k = 49 6. Then T admits a special

action of ®4.

Proof. Set A = ek. Choosing a suitable basis of Hi(T9 Z) we can
find a period matrix -0 of T in the form

I u
0 1
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Further, if w^O, then after multiplying Q by (ft ~/^)eGL2(C') from
f l —v\

the left we may always assume that w = 0. Then set £ = (Q ^-i)e

SL2(C7). We see readily that g is of order k and gQ=Qv for some
yeGL4(Z). This implies that g defines a special pair (T9 G) with
G = ®jfe as desired.

Remark 3. 9. The lemma can be proved more intrinsically, using
the fact that G acts on the image of the natural homomorphism
//*(£", 0 c>}-*Hl(Cf, 0C '(C))3 which parametrizes the universal family
of the extensions of C by C" as a complex Lie group.

The general extension of E6k by Egk is of algebraic dimension 1.

On the other hand, any complex torus T of algebraic dimension 1
contains a unique subtorus C' (up to translations), and the quotient
homomorphism /: T->C -=T/C' gives the algebraic reduction of T,
Thus by the above lemma if C=C' = EBk, T admits a special action of

&£. More precisely we have the following:

Proposition 3*10. Let T be a complex torus of dimension two with
algebraic dimension a(T}=\. Let f:T-*C be the algebraic reduction of T
with kernel C' as above. Then for k = 4, 6, Aut T=&k if and only if
C=C' = Eek0 Otherwise Aut r=<-l> = S2o

Proof, Since f is intrinsic for jT, there exists natural homomorphisms
uiAut T-»AutC and w':Aut T-»Aut C'. We show that these are both
injectivCo Indeed, if there exists an element g in the kernel of u
(resp. u'} other than the identity, the kernel (resp. image) of the
endomorphism g — 1 turns out to be a subtorus of dimension 1 which
is transversal to the fibers of/, which is a contradiction since a(T) =1.
From this the necessity of the condition and the last assertion already
followo The sufficiency follows from Lemma 3. 80

3o 3, Case iii). ©=O, SC, or SX Recall the natural identifications

X=H*/C*=P\

where X= [q<=H; q2= -1} (cf. (12)). Let q be any point of X.
Then the right multiplication by q defines a complex structure J(g)
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on Set

(16) 4a = ao, Ax = <*9 4*=b

(cf. (4)). Consider A9 as a lattice in H=R\ J(q) then defines the
structure of a complex torus Tq = T®tq on the real torus T'-=H/A&a

Let A% be the unit group of A9 . Then A*=(& by Lemma 20 60 The
left multiplication by elements of A* on H preserve A9 and obviously
commutes with J(q) ; thus it induces canonically an automorphism of
Tq, so that we have the natural embedding A%* - >Aut Tq. Let Gq = G®iq

be the image of A% . Then

(17) £/.= {(7;,G.)},«

is a family of special pairs in <9% parametrized by X=Pl
a Indeed, by

construction this is nothing but the holomorphic family (3) parametri-
zed by X=WF associated to the quadruple F3 where F= (A? A&J A£ 9

A&) with A=Q[l, i,j, k~\ if ®=Q or % and =Q[1, i, A, /] if ©=®0

We write X=X<& also. Now define the subgroups Fl and F2 of Hx by

(cf. (5)). Set r. = ri if ©=D or S and =F2 if © = S. Then the
induced action of F@ on X by inner automorphisms factors through
the quotient /V=/V{±1}.

Now we call a special pair (T9 G) maximal if G is not contained
in another finite subgroup G' of Aut T such that (7*, G') is again
special. Note that when G is not cyclic, (71, G) is not maximal only
in the case where G7 = £ and G is the unique normal subgroup of G'
isomorphic to G (in the above notation) . Then combining Lemma
2.3, Lemma 30 4 and Proposition 2a 19 we get the following:

Theorem 30 11. Let (T, G) be a special pair with G = ®e If (T, G)
is maximal, then (T1, G) is isomorphic to (Tq^Gq} for some point q^X@0

Moreover for q.q'^X (Tq, Gq} and (Tq,9 Gq,) are isomorphic to each other
if and only if q' ' = r(q)'=rqr~l for some r^A> . If (T, G) is not maximal,
then there exists a point q of X% such that (T, G) is isomorphic to
(Tq, GJ)9 where Tq = TXiq and G° is the unique normal subgroup of Gq = G%iq

isomorphic to £X Further (Tq,G°q) and (Tq,9 GJ/) are isomorphic to each
other if and only if so are (Tq,Gq) and (7\/, G</).
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Remark 3. I20 In particular 1) ^0 is naturally identified with the
disjoint union F^XllF^X^P^P1 and 2) for ® = S or ©, ^@ is
naturally identified with F&\X=Pl. (Recall that ro = /\ = @4 and

r.SSfe.)
Let b®:X-*F®\X be the covering map. Since /% = @4 or S)6, b®

must have exactly three branch points, say pl9 p2, pz, on F9\X. In
the next proposition we shall identify these points pa

=P®,a by specifying
a point qa=q®,a of b^l(pa) for each a. Moreover we shall also
determine the stabilizer Fa = F&ia in /% at ^a and the isomorphism
class of the corresponding complex torus Ta:=Tq .

Proposition 3.13. In the above notation qa9 /\, and Ta are given as
in the following table.

Table 5

© 0 = 1 a=3

Q o r ~ « - v- .,„.- (»+J+*)/V3

O

EPXEP

,-. x EJS. I

Here < > denotes the quotient group < >/{±l}0

Proof. It is immediate to see that if we define qa as in the table,
then the stabilizer Fa at qa is just as in the table, and qa are not
mutually equivalent under the action of F9. Hence we may take

Pa = b(qa}* Let J'-=Ja be the right multiplication by qa. Then for
each a we can take the following set of 4 elements as a Z-basis of
4, ©=Q, S, SX
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2) ® = %: a = l {

3) ©=® : a = l {1,/(1), *,/(*)}, a = 2 {1, V3/0), *,

^ = 3 (1, /*(./) (1), A,

where p(J) = (l+^3J)/2. From this we can identify the structure of
Ta as in the table readily0

Remark 3. 14. Using the above mentioned basis of A9 it Is also
straightforward to obtain an explicit description of Ga itself (cfa Table
9 below) . Let (T9G) be any maximal special pair with G noncyclic0

If G is properly contained In Its normalizer In Aut jT3 (T9 G) Is
Isomorphic to one of (jTa9Ga) above, as follows from the definition of
(Ta9 GJ and the remark at the end of 2. 1.

As the above remark shows the complex tori Ta In Table 59 or
more precisely the associated pairs (Ta9Ga)9 play a distinguished role
in the study of automorphism groups of complex tori of dimension 2
In general. The next proposition provides us such an example (cf.
also Table 9 and Example 7.9).

Proposition 3* 15. Let (T9 G) be a maximal special pair with G= Q9

S9 or S). Then T admits a G-invariant principal polarization if and only

if (T9G) is isomorphic to (Tl9GJ in case G=Q9 to (T2,G2) in case

G=X9 and either to (T2,G2) or (jT39 G3) in case G = SX In this case such
a polarization is unique up to constant multiples and is invariant also under
the normalizer of G in Aut T.

The proof will be given at the end of Section 60

38 4, We shall now generalize the preceding classification also to
pairs (T3G)9 where G Is a finite subgroup of the group A(T) of
affine transformations of T (Instead of Aut T") . A (T) Is naturally
the semi-direct product A(T)=AQ(T)X[AutT9 where A*(T) Is the
group of translations of T. Let w:A(T)-*AutT be the natural
projection. Then any pair (T9 G) with G a finite subgroup of A(T)
gives rise to the pair (T,w(G)) In the original sense, and It Is called
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special if (T,w(G)) is. In what follows we always assume that G con-
tains no translations, i. e., Gr\AQ(T) = [e] . G is then isomorphic to
r0(G). We say that two such (generalized) pairs (T, G) and (7", GO
are isomorphic if there exists an affine isomorphism v.T-*T' such that
vGv~1 = G\ Then the following is obvious.

Lemma 3e 16. 1) A (generalized) pair (71, G) is isomorphic to a pair

(T'9 GO zi;i*A G'C Aut T' x/ and only if G has a fixed point, and 2) the

pairs (!F,G) and (T', GO with G^AutT and G'C Aut T' are isomorpic
as generalized pairs if and only if they are isomorphic in the original sense.

In the following we shall call a generalized pair simply a pair0

By virtue of the above lemma and Theorem 3. 1 1 we have only to
consider the case where G has no fixed points. First we shall give
examples, which eventually turn out to exhaust all the possible cases0

We consider the universal family Ux= [(Tq, Gq)}q<=x% mentioned earlier

(cfo (17)). Let T=H/A be the underlying real torus, where A = A%a

For any Z^AutzA and rGjET the real affine automorphism x-»lx + r of
H descends to an affine automorphism of the real torus T, which we
shall denote by (^;r), where r is identified with the residue class
modulo A. For simplicity we write ^ for (^;0).

We denote by A(T) and AQ(T) the group of real affine automor-
phisms, and the group of translations, of T respectively. Then A(T)

is naturally the semidirect product A(T) =AutzA^A0(T). For any
q^X=Xz if /le^x = $£ (left multiplication), (^;r) clearly is biholomor-
phic on Tq so that we have the natural embedding jq*A* IX AQ(T)< - >
A(Tq)a Now define the subgroups Q,0 and T0 of A*\XA0(T) by

Then Q,0=G, TQ = Z and the inclusion Q,o!=7o is isomorphic to the
natural inclusion d£^e Moreover for any g, Q^0 and TQ define via
jq finite subgroups fiq and Gq of A(Tq) respectively. Let F0 be the
subgroup of Fz defined by

(18) r0 = <ylg, (

(cf. Table 2). Then we have /V=/V {±1} ^S>4. 8q, and hence
Gq also, have no fixed point on Tq . Conversely, we have the following :
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Theorem 3, 17. Let (T, G) be a special pair with G^A(T)a Suppose
that G has no fixed points. Then G is isomorphic to O or 5£5 and if
G^Q (resp. £), (T5G) is isomorphic to (Tq,8q) (respa (T,5G3)) for
some q^.X» Moreover (Tq,Bq) and (Tq^fiqf) (respa (T'q9@q) and
(7V,(?a/)) are isomorphic if and only if q = hq'h~l for some Ae/V In
particular the moduli spaces are given by FQ\X=Pl in both cases.

Remark 3. 18. In [5; VII] Enriques-Severi has classified those
special pairs (T9 G) for which T is the jacobian of a complete
nonsingular curve of genus 2 and G preserves the associated principal
polarization. Especially they showed that if G is isomorphic to O or
SC (resp. S)), then there exist 3 (resp0 a unique) isomorphism classes5

which Is in accordance with our Theorems 30 11 and 3B 17. In fact,
these pairs turn out to be given in the above notations as follows
(cf. Proposition 30 15) :

1) G = £:(T2?G2)9 (T25(52):=(rvG,2) and (^,£,0, where

fc = (»+ j)/V2 and q'2= ( j+A)/V2.
2) G=O: the pairs obtained from the above triples by restriction

to the unique normal subgroups isomorphic to 0; in this case (T9 G)
is not maximal.

3) G=®: (T29G2).

3o 5o The rest of this section is devoted to the proof of Theorem
38 17. We need several lemmas. Let (T1, G) be any pair0 For any
subgroup G of -4(7") we shall denote by Fix G the fixed point set of
G. When G = <a>9 we write Fix a instead.

Let (T, G) be any special pair. By the proof of Lemma 30 1 and
Lemma 3.3 T/G has only rational double points of type Ak, D4? D5

or E6', further if r:Z-^T/G Is the minimal resolution, Z Is a ^3
surface. Let nk be the number of singular points of T/G of type ^_i5

k ^2, and n® the number of singular points of type D4? D5 or EB

according as ©=O, S>, or 5L Then we have the following relation

where ^C^Q, |G| and TC denote respectively the topological Euler
characterestic of X, the order of G? and the natural projection T->T/G0

*) Sing G denotes the set of points whose stabilizer group is nontrivial.
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From this, as in Nikulin [14S §5]s we get easily the following formula:

(19) 24=-(

Lemma 3.19. Let (T9G) be any special pair. Let ©=Q5 SC, or SX
Let fk and f% be the numbers of points of x of T, whose stabilizer Gx at
x is isomorphic to &k and © respectively. Then the possible combinations
of the nonzero fk and f® are as follows] 1) G=S2:/2=165 2) G=&3:
/,=9, 3) G^£4:/2=12,/4=4, 4) Gs<E6:/1 = 15,/8=8, /4=1, /, = !,
5) G^Q: a) /2=8, /4=6, /0=2, b) /,= 12, /0 = 4, c) /2=2, /4=12
6) G2£: a) /2 = 12, /,=32, /0 = 3, /, = !, b) /,=32, /4=12, /, = 4,
7) GS3>: /2=6, /3=8, /4=9.

Proof, It is easy to compute all the possible values of nk and n®
satisfying (19)0 Then using the relations \G\nk = kfk and \G\n9= |G|/®9

we obtain the lemma easily.

We note that when G = ®2, Fix G is just the 2-torsion groups of T,
From this lemma we deduce easily the following:

Lemma 3,20, Let (T,G) be a special pair, 1) J/G = K4, Fix G is
contained in the 2-torsion group of T and #(FixG) =40 2) // G^Q and
Fix G = £ 0 5 #(FixG)=2 or 4 according as (7", G) is maximal or not,
3) If G = ̂  and Fix G= 03 £/z£ft Fix GX= 0 ybr /A^ unique normal
subgroup G! o/ G isomorphic to 0. 4) /f FixG= 0, then G=Q or K.

Using this lemma we shall show the following:

Lemma 382L Let (T, G) be a special pair with G=&. Let G':=
z«;(G) £Aut T, Let a, ft be generators of G' such that GnG' = <» in A(T).
Then G is generated by a and (ft'9r) for some r^Fix G7. Moreover if
Fix G= 03 (T*, G') w wo^ maximal,

Proof. It is clear that G = <«3 (j8;r)> for some reT. Let j80 =
(j8;r). Then ^0 should satisfy j8§= — 1 and aftda~l=ftolm, these conditions
are then equivalent respectively to: fir=—r and ftar = re From the
latter and Lemma 3. 20 it follows that r is a 2-torsion point of 71
Hence r=—r and reFixG'. This proves the first assertion,

Suppose now that (7", G7) is maximal Then by Lemma 3, 20
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there exists a point x&Fixa with tf^FixG'. Then we have Fix
= {05 r, *5 x+r] (cfB Lemma 3.20). On the other hand, since
preserves Fix a and /3#^0, r, x we must have fi(x) = x-}-rJ i. e., /30(#) =
namely x e Fix G. Thus Fix G^= 0 .

Lemma 3* 22* Z,** (F,G) fo awy special pair with G=Q and
Fix G = 0 . L*J T be the underlying real torus. Then G is conjugate to
Q,o in A(T) with respect to the representation T=H/AX of Ta

Proof. Let Gf = w(G}. Then by passing to another pair which is
isomorphic to (T, G) if necessary (cf. Lemmas 3.16 and 3e 20) we
may assume that GnG' = <a)> in A(T) for some element a of order 4,
Then by Lemma 3.21 we may write G = <a, (/3;r)> for some element
$eG' and reFixG' with r3=o°, by Lemma 3 0 21 it further follows
that (T, G') is not maximal. Hence by Theorem 3.11 we may
assume that the underlying real action on T =H/AZ is induced by the
left multiplications by elements of A%^A%. We may therefore assume
that G' = yi£ and hence that G is a subgroup o f A * \ X A 0 ( T ) . Then r

is one of (l+<w)/2, a) = ij, or k.
On the other hand, the automorphism group Aut A% of A% acts

transitively on the set of pairs (a0 , /30) of generators of A% . Further
Aut^o is naturally identified with 7^ :=/V{±l} =@4, where the
action of /\ on A% is induced by the natural inclusion A*£iri in Hx

as a normal subgroup. Since Fl preserves Ax (cf. Table 2), after
transforming G by some element of Fl we may further assume that
(a, /3) = (i,j). Thus we have shown that G is conjugate in -4(T) to
one of the subgroups

G.==<i, O':(l+«)/2)>, « = »J, or *,

where G t-=Q^0o Hence it remains to show that these Gm are conjugate
in A(T) to one another. For this purpose we use the following
formulae; for any ft^Fl with its image p, in F^A(T) and for any

we have

(20)

if #=( l+ t ) /V2 we have

(21) f*ijp71 = k and ^^r1=-J.

Indeed, from (20) and (21) together with analogous formulae we see
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that piGjp.T1 = Gk and that if //,•= (1 +./)/V2 and i* is the translation

by t/2, we have pJt^Gi(ftjt^'1 = GJ.

Lemma 3. 23. Let (T,G) be any special pair with G = X and
Fix G = 0 . Let T be the underlying real torus. Then G is conjugate in
A(T} to TQ with respect to the representation T=H/AZ of T,

Proof. Let Gl be the unique normal subgroup of G isomorphic to
£X Then by Lemma 3,20 FixG^ 0 , too. Then by Lemma 3.22 Gl

is conjugate in A(T) to do; we mav thus assume that G1 = Q,0.
Moreover by Theorem 3. 1 1 we may further assume that the image
of G in Aut T is just A£ . Thus there exists a unique element reU x

such that (*;r)eG so that G = <Q,o3 (*;r)>9 where t=(l+i+j + k)/2.
Let f = ( t ' , r ) . Then t must satisfy the conditions

P=-l and rlit=(k\a), a=(l+i)/2.

Computation then shows that these conditions are satisfied if and only
if r = s/2 + r/ for some r'e Fix A*= {(I -f-o>)/2; «» = l,ij,k}. Set
G<a = <Q^o5 ( f ; j /2+( l+<») /2)>. Then it suffices to show that they are
mutually conjugate in A( T). In fact we see readily that if co* is the
translation by (l+(w)/2, then Gi = i*Gji*l=j#Gk j*1 = k*Gik*1.

Let G0 = Q,o (resp. T0) and ©=Q (resp. S). Let A^0 (resp. N) be
the normalizer of G0 (resp. A*) in ^(3T) (resp. Aut T). Then we
have AQ^2^£ and if we set ff=N/A$, N=rz^®, (cf. the proof of
Proposition 2. 19). Now w induces the natural isomorphism G0->^@
and hence the homomorphism WQiNQ-*N. Let NQ be the image of

in N=r%.

Lemma 3* 240 /w ^A^ above notations $0 coincides with the subgroup

of r* defined after (18), (where G0 = QQ or TQ).

Proof, For [t^A* let /J^e Aut*4t be the rf^fe multiplication by
^«. Then for x=(Rfi\v), v^T, and j;= (a;r) eG0? a^~ 1, we have
*~^= (a;((a — 1) y + r)^"1). Hence *~^eG0if and only if ^"^=j;9

and the latter is equivalent to the equality

(22) (a-l)i; = r(/i-l), j;=(a;
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For y= (i;0) eG0 (22) is equivalent to the condition that v^Fixi =
Fix do. *^ Further, if y<EFix£).o9 then foTj>=(j;d) eG0 (22) is equivalent
to the condition; ajJL = a. This implies that x = ( R f l ° , v ) normalizes Q,0

if and only if y^FixQ^o and a/i = a. These are certainly satisfied
by Xi := (Rt , ( 1 + i) /2) and *, := (Rj ; ( 1 -f-j) /2) . Moreover they
satisfy (22) for y= (tis/2) eT0 . Therefore # i , # / normalizes (£0 and
TV On the other hand, from (20) and (21) we see readily that
fa := (fJLi\d) normalizes Q,0; moreover direct computation shows that

which implies that fa also normalizes T0.

Now the images of xi3Xj^fa in 19" generate FQ so that rQ^

Suppose that rQ^=NQa Since /\=S)4 is maximal in #=©4 we then
have N=NQ^ and hence wQ:NQ~>N is surjective. Therefore we can
find an element of NQ of the form (Rtir) for some re I7 (cf. Table 2).
Then (/?f; r) must normalize QQa By what we have seen above this
implies that at = a, which is a contradiction because at=(l+j)/2a

Hence AT0=/V

of Theorem 30 17. The first assertion follows from 4) of
Lemma 3. 20. Let (71, G) be a special pair with G= O and Fix G= 0 .
Let T be the underlying real torus. By Lemma 30 22 there exists
an element u^A(T) such that uGu~1 = QsQ in -4(T). Write T=E/A
and T=H/A^0 Let u*:E-^Hbz the real linear isomorphism induced
by M so that u* puts a complex structure / on H=R* which commutes
with the action of Q^o, and hence of yl£9 on T '. By Theorem 3B 11 this
then implies that J=J(q) for some q£=X0 Then we have (T9 G) =
(Tq9Gq). This proves the second assertion for QQo

By construction, for any g, q'^X an affine isomorphism of (Tq , Bq)
and (7^/ , -ffg/) is identified with an element v of A(T) which normalizes
^0C^(T) and which sends /(g) toj(q')9 i. e8J v^J(q)v^=J(qf), where
v* = w(v)R. Since the action of the normalizer 7V0 of Q,0 on X factors
through its image ^?0 in N=N/A£, the last assertion follows from
Lemma 3a 24 in case of QQa The case of T0 is shown analogously by
using Lemma 3. 23 instead of Lemma 30 22.

f. Lemma 3.20).
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§4e Non-Special Pairs

4,1. In this section we shall classify non-special pairs (T, G)0 The
classification will be given in Tables 6 through 11 below, which are
arranged as follows;

Table No.

6
7

8

9
10

11

G

-leG

-l£G

cyclic

non-cyclic

dihedral

otherwise

abelian

1 maximal

non-maximal

Here "maximal" means that G is a maximal finite subgroup of Aut T0

The proofs will be given after the presentation of all the tables,,
In order to present the tables we shall use, besides the notations

listed in Section 1, the following notations and conventions: 1. E and
Ef will denote elliptic curves in general, considered as complex tori
of dimension 1. Let JT=End0 E. Then either K=Q or K is an
imaginary quadratic field. Let o be the maximal order of K, Then
any element of Aut E is given by a unique element of ox and simi-
larly any element of Aut(jEXjE) will be given by a unique matrix
in GL2(o). 2. Let H be a finite abelian group. Let u:H-*E, u':H-*E'
be embeddings as groups. Then we set

where u, and ur are specified each time. Let o' be the maximal order
of End0 E'. Let (a, b) <EOX xo / x . Suppose that u(H) and u'(H) are
invariant by a and b respectively. Then (a, b) naturally descends to
an automorphism of £"Y #£", which we shall again denote by the same
letter (a,b). 3. For 772 = 2,3 the fixed point group F(e2m) of e2m^0x

on E62m is isomorphic to ®m. Then we shall denote by um:&m-»Ee

any embedding induced by an isomorphism ®m = F(02m)0 4. © will
denote the abstract group isomorphic to G.
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4e 2e With these notations we can now give Tables 6, 73 and 8
successively. In the form of a theorem we have:

Theorem 4e 1. Let (T,G) be a non-special pair with — 1
Suppose that G is either abelian or dihedral. Then (T9 G) is isomorphic
to one of the pairs in Tables 63 7, and 8B

Table 6 G cyclic, -leG

1

2

2'

3

4

5

6

7

8

0

®4

®6

E10

r
£,- x Ef

ExEp

EY«3EP

EpxEp

E; X E{

EVXE*

T5

EtxEt

EpxEp

G

<(*,»)>

( l,p)>

<W)>

<P, 1]>

((-1 ~J)>

<(-C,-C2)>

((_? _!))X<(M)>

<((?,(?}, [!.-!]>

In 2' u:&3-*E is any embedding and u':C3-*Ep is u3. In 6 Ts is
the simple abelian variety with period matrix

/I C C2 C3\ .
U C2 C4 C/' i°~'5-

The moduli space of the pairs in 2 and 2' are given respectively by
SL2(Z)\£and rc(3)\$sC7*.

Table 7 G abelian, but not cyclic, — leG

No.

1

r
i'

®

®2xS2

T

ExE'

2

£Ye2£'

G

<(-!,!)> x < ( l , - l ) >
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2

2'

3

3' E{xEt

5

5'

6 p

6'

ExE

EpxEp

ExE

7

7'

8

8' 0

EpxEp

10

In 2' u' = ui9 and in 6X M2 = Mi, where denotes the complex conjugation
considered as a real analytic automorphism of Ei=C/(Z+Zi). Further
u and u' in 1' and \" and u in 2' are arbitrary. The moduli spaces
for 1, r, 1", 2, 2', 4 are respectively C2

5 CxC*9 C*2/<335 C5 C*9 C
(cfe Table 4). In particular they are all connectedo Note that 39 3',
3" (resp. 73 7') implies that the number of conjugacy classes of
elements of order 2 (resp. 3) in GL2(/?2) (resp. GL2(jR3)) with
eigenvalues {+1, —1} (resp. {^o2, p~2}) equals 3 (resp. 2). (Recall
that Rm=Z[_e2m\.)



AUTOMORPHISM GROUPS OF COMPLEX TORI 47

Table 8 G dihedral, -leG

No.

1
1'

r
2

2'

®

©4

ft

r
Ex£

e T 2

£Y^ExE

G

A" <[1, -1]. [!,!]>

A:={(? -j), [1.1])

In 1', 1", 2' the only condition imposed on u, u' is that u = u\ i. e.9
uXu':H-*ExE is a diagonal embedding. The automorphisms [1, ±1]

and f | | J on ExE then descend to unique automorphisms of the

corresponding quotients, which is still denoted by the same letter
above. In 1, 2 the moduli spaces are isomorphic to C and in 1', 1"9

T they are isomorphic to C— {points} (cf0 Table 4 and (14)).
In Tables 6-8 above, the pairs in k, kf (and k") are characterized

as having one and the same complex representation type.

49 3» Still under the assumption that — 1 eG we say that a non-
special pair (T7, G) is exceptional if G is neither abelian nor dihedral.
Let F=(A9 09 H9 M) be the quadruple associated to (71, G). Then
it is not difficult to see that (T, G) is exceptional if and only if
A = M2(K) for some imaginary quadratic field K. In particular T is
then a singular abelian surface. In any case it will turn out that
exceptional pairs are up to isomorphisms finite in number. We call
an exceptional pair (T, G) maximal if there exists no finite subgroup
of Aut T containing G properly. First we shall give the classification
of maximal pairs. Let G0 be the normal subgroup of G defined by

det

where /:G-»GL(E) is the complex representation of G. Then the
classification is given according to the structure of G0 as classified in
Lemma 3. 3.

Theorem 402S Let (T^G) be any non-special pair with — 1 €EG0

Suppose that (T, G) is exceptional and maximal in the sense defined above*
Then (T, G) is isomorphic to one of the pairs in the following table.
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Table 9 (T,G) exceptional and maximal,

No.

1

2

E.xE,

ExE•sp ^ ^p

24

36

3

4 o
EixEi

{(o ^

32

16

24

7

8

X

ExEp

{(o
1

A * \ \KxT- 1 ~*srr NxO' QC

o
48

72

9

10

11

24

24

72

As the proof will show, in 3-5 (7", G0) is maximal as a special
pair (cf. Theorem 3. 11),

Notations. 1. We choose the presentations of O? Z, and ® as
abstract groups as follows;

=O, 5E, S) the groups ©^ ^ = z, V2i, p, i/3z3 are defined according
to this presentations as follows ;

1 \ /-I -vsir \2p~i i
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= or

where

-i 0

-2 \ ( I V2i
v2i 1-V2J9 W2i -

-A\ D_/(-ffi I W2 V3i! ;;5 ^-^ 2 ^j, ^ _
^P=<[1, -l]5 (ft /O>.

2. In general GmtM denotes the metacycllc group defined by

Gm,k:t = <\a, ui <2m = l5 uk = a\ u~lau=a~lye

3. There are two types, say type 1 and 29 of nontrlvlal semldirect
product ®2!X£i of 0 by E2- In 4 S2D<i^ means that It Is of type 1.
Similar remark applies also to 7 and 10B For the exact definitions of
types 1 and 2 used here see Remark 40 3 below.

48 Let TV, K, H be finite groups and jH:N-»H and jK:N-*Kbe

embeddings such that the images are contained In the centers. Then
we denote by H^NK the quotient group (HxK)/(jH Xj#) C/V).

Next, we classify non-maximal pairs. Let (T7, G) be any excep-
tional and non-maximal pair with — 1 eG0 Let G' be any maximal
finite subgroup of Aut 7" containing G. Then (T5 G') must be
isomorphic to one of the pairs in Table 90 Therefore the problem Is
reduced to classifying for each pair (T, GO of Table 9 the subgroup
G of G' with GoSGsG' and — 1 eG, up to conjugacy in Aut T0

(It turns out that different pairs necessarily give rise to non-isomorphlc
pairs; In other words, given (T7, G), G' is unique up to isomorphisms.)
In this formulation our result will be summarized In the following
table,, (No. in the second column will refer to the number of the pair

(T9G
f) In Table 9.)
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Table 10 (71, G) exceptional and nonmaximal, — lE=G

No. © order

1 \L»l ij» (—'hVS ^4.4:2

2

16

16

3 "q

4

5

Q , I /1/\JL i ^2\^\2^ 48

16

! 32(G !
i

7 B- vF 7/1 H-V2i/ jC'̂ 5!,1 A £L^9,- \tn lU —1
16

24

24

9

10

11
12

11
S2IX!®

24

36

24

36

Remark 4. 3. We explain the notations used in Tables 9 and 10.
Let ^ = Q5 Z, or SX Let Sfe[X^ be a semidirect product in general
defined by an embedding jk: Sfe< >AutS0 (Note the natural isomor-
phisms Aut sQ = Aut2 = @4 and Aut S)=(£2X S3e) Then the following
hold:

1) Sfe[X^ is up to isomorphisms independent of the choice of jk

in the following cases; a) ® = £l or SC and ^ = 3 or 4, and b) ft = S)
and A: = 3 or 6. Moreover e3KO^S, esIXS^KsX® and SalXS^esXS;.

2) Suppose that k = 2. a) If St=O or S;? there exist (up to
isomorphisms) two types of ©2IX^ according as Imj2£F or Imj2£F3

where V is the unique normal subgroup of @4 of order 40 The
corresponding semidirect products will then be denoted by ©2IXi^ and

S2X2^ respectively. Then we always have ®2IXi« = ®4Y*2®. b) If

^=S)9 we have three types S2XaS)3 a = l ,23 or 3, according as Imj2 =
e2X{l}5 {l}X<r>3 or <(-!, r)>5 where ®2={±1} and r is any
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element of order 2 In S3. We see that

4*4, Finally we shall consider nonspeclal pairs (T9 G) with —
In this case if we set (5=<G? — l> = Gx< — 1>, then (T9&) is isomor-
phic to one of the pairs from Tables 6 through 10, Thus the problem
is to find for each pair (T, G) in Table 6-10 the subgroups G of G
of index 2 with — iQzG, up to isomorphisms of the resulting pairs
(T,G). The result will be listed in the following table.

Table 11 -l

No.

1

2

3

4

5

6

7

7'

8

8'

9

10

10'

11

12

1 12'

13

13'

©

e2

3

e<
^

®6

«U

e3xGs

*
®3X®3

No. for (T, (3)

7.1, 7.1', 7. 1"

6.2, 6.2'
6.3

7.2, 7.2'

6.6

7.4

7.5

7.5'
7.6

7.6'

7.10

7.7

7.7'

7.9

8.2
8.2'

9.2

9.9

G

<(-!, D>

<d, P2)>
<(P2, P2)>

< ( ± l , 0>

<«, C2)>

<(1, /»)>X<(. -1 , ^2)>

<(ft "I"))

•\±pAy
<((jO, ^2)>

<±(f t ^2)>
<(«•, ±^2)>
<(/}2, p~2)yx<\(p2, p2)>
<5>X<(^2 , ^)>

<(/}2
? 1 ) > X < ( 1 , /?)>

A*
A

<(^2, p2)>xA±

<C^, ^ )>xA
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Here we set A=Q _f) , 5 = (-? _J) and A± = <55 ±[1,1]>. A*

are subgroups of Z)6 isomorphic to ®3. In 4 < ( ± l , i ) > denotes the
two groups <(1, i)> or <( —1, i)>. Similar remarks apply also to Nos.
7', 8'5 9, 12 and 13.

49 5. Proo/ o/ Theorem 4. 1. Let F= 04, 0, H9 Af) be the quadruple
in 3, associated to (F,G). If G is abelian9 then A is commutative
so that F falls under 1-11 of Table I, If G is dihedral, then A is
isomorphic to M2(Q); indeed, any noncommutative semisimple factors
of the group ring of ®A over Q is isomorphic to Af2(Q). Hence F
falls under 15 or 16 of Table 1. In either case (7*, G) corresponds
to a unique point of the moduli space ^(H). On the other hand, the
pairs listed in Tables 6-8 are precisely those pairs which are constructed
from the quadruples in 1-11 and 15, 16 of Table 1 by the construction
in 2.1 and 2.2 (cf. (2) (3)); (cf. the proof of Proposition 3.13).
The theorem follows.

Proof of Theorem 4. 2. Let K be a normal subgroup of G0 Let
H be the normalizer of K in Aut T. If H is finite, then from the
maximality of (F, G) we must have G = H. LetF=(A, 0, //', M)
be the quadruple associated to the pair (T9 K), Assume that rankQA^4:e

Then we may assume that F is one of the quadruples in Table 1.
Let p be any point of WF such that (Tp, Gp) = (T,K). Then with
respect to the natural action of the normalizer NF of F on WF the
stabilizer Np at p is naturally isomorphic to H (cf. the end of 20 1).

Now apply this remark to K=G0 when G0 is non-cyclic. By
Lemma 3.4 (T9 K) satisfies the above condition that rankQA^4:a In
this case by Proposition 2. 15 and Lemma 2. 16 we see that NF itself
is finite and hence that G is the normalizer of G0 in Aut 7". In
particular (jf, G0) also is maximal as a special pair. Since G^G0,
(71, G) must be isomorphic to one of the pairs (Ta9Ga) in Proposition
3.13 (cf. Remark 3.14). On the other hand, these pairs (Ta,GJ
are precisely the pairs listed in 3-11 of the table. (Explicit description
of Ga as in the table can be obtained by using the X-basis of A9

mentioned in the proof of Proposition 3. 13 (cf. Remark 3. 14).) Thus
it remains to treat the case where G0 is cyclic. For this purpose we
shall prove successively the three lemmas. Lemmas 4. 4, 4. 59 and 4. 6



AUTOMORPHISM GROUPS OF COMPLEX TORI 53

below, from which the theorem clearly follows.

Lemma 4,4. Let (T, G) be a pair with -leG. Let 2n be the
order of G and m the order of G0o Suppose that GQ is cyclic and G is

non-abelian and non-dihedral. Then either 1) G is isomorphic to ®3X®m ,
m = 4, 6, or 2) n = 8 or 12 and G contains an element of order n with

eigenvalues (eH9 — O-

Proof. Fixing an isomorphism E = C2 we consider G as a subgroup
of GL2(C) via complex representation. Fix a generator a of G0 and
an element b of G whose image in G/G0 generates the cyclic group

C*. Let / be the order of b. We know by Lemma 3. 2 that
=2 or 4. Up to conjugation in GL2(C7) we may assume that a

is of the diagonal form (Cm, Cm1) f°r some primitive m-ih root of unity
Cm. Since G is nonabelian, b must then be of the form [d, d'~\ for
some d, d'^C* (cf. Notation). In particular b2 is a scalar matrix,
while b is not. Then in view of the possible eigenvalues of b when
£>(/)= 4 (cf. (15)), from this and the fact that b&GQ we see readily
that /^3, 4, 5, 10 and that if / = 2, 6, 8, or 12, then eigenvalues of b

are ±C/. Then by replacing b by some of Its power, we may assume

that Ci=£j .
Now If / = 12, then 63eG0 and hence the Image of 64 again

generates G/G0, which Is a contradiction with what we have seen
above. In case 1 = 2 or 6, G Is the nontrivial semidirect product
<6>tXG0. It follows that if / = 2, G is dihedral; hence this case does
not occur. Similarly, If Z=6, we see that G is in case 1) of the lemma.
So suppose that / = 8. In this case the order of G/G0 equals 4 so that

n = 2m. Note on the other hand that m = 4 or 6 as — l e G and G Is
nonabelian. Thus if m = 45 G is clearly in case 2) of the lemma. If
m = 6, ab2 is of order 12 and hence G again falls under the case 2).

Each case of the above lemma is divided further into two cases as
follows; la) G^e3xS)4, Ib) G = <£3xS6 and 2a) n = 8 and 2b) n = 12.

Lemma 40 5« There exists a unique (resp. exactly two) isomorphism
classes of pairs in the cases la), 2a), 2b) (resp. Ib)) .

Proof. First we consider the cases 2a)3 2b)0 Let c be any element
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of order n of G as in the previous lemma. By Theorem 4. 1 (T9, <£»

is isomorphic to the pair of Table 6, Noa 4 (respD No8 8) if n = 8

(resp. 12). Moreover, the normalizer A^ of <£> in Aut T is of order

2n (cf. the proof of Proposition 2. 19). Hence we must have G = N.

It follows that (71, G) is up to isomorphisms unique.

Next, we consider the cases la), Ib). We use the notation of the

first part of the proof of Theorem 4. 2. Take K to be the normal

subgroup of G isomorphic to Dk, k = 4, 6. (Such a K is unique.) Then

Np is finite so that G must be isomorphic to Np\ hence NP'.= NP/K is

cyclic of order 3, In fact, in this case Np is identified with the

stabilizer Fp at p^$ in F = SL2(Z) (resp. OixX]E2) considered mod±l

if o = M2(Z) (resp. ^M2(Z))a Let L be the set of points of § whose

stabilizer in F is cyclic of order 6. Let n be the number of F-orbits

in Le Then it suffices to show that 1) n = l if o = M2(Z), 2) «=0 if

O^M2(Z) and k = 49 and 3) n = l if Q^M2(Z) and k = 6, 1) is well-

known. For 2) and 3) one first note that since o* is of index 2 in

F, we may replace F by of. Then from (14), 1), together with the

fact that the principal congruence subgroup F(m)9 m>l, has no

elliptic point on ^, we can deduce easily the desired assertion.

Lemma 49 6, Let (T, G) be a pair as in Lemma 4B 4, Then (T, G)

is maximal and is isomorphic to the pair of Table 9, No, I in the case 2b);

it is not maximal in the cases la) and 2a) and is isomorphic to the

pairs of Table 10, No. 9 and No, 1, respectively. In the case Ib) one is

maximal and one is not (cf. Lemma 40 5). The maximal one is isomorphic

to the pair of Table 9, No, 2 and the non-maximal one is isomorphic to the

pair of Table 10, No, 10.

Proof, Let (T^GJ, //=1,2,3, be the pairs of Table 10, Nos. 1,

9, and 10 respectively. Then G^, /£ = 2, 3, are subgroups of G':=

(p, l)tX-Dp . It is immediate to see that these falls under the cases

2a), la) and Ib) respectively, and moreover that any subgroup of G'

in GL2CR3) (R*=Z\.P\) which is isomorphic to S3xS)6 and containing

(p, p"1) are conjugate to G3 in G'. It follows from Lemma 4B 5 that

the pairs in 2a) and la) and exactly one of the pairs in Ib) are not

maximal. On the other hand, we know that f, , J is not conjugate

to (p, p~1} in GL2CR3) (cf. Table 7). Hence the group of Table 99



AUTOMORPHISM GROUPS OF COMPLEX TORI 55

No, 2 is not conjugate in Aut (Ep X Ep) to G3; hence the corresponding
pair is maximal

Finally we show the maximality of the pair (T9G) in 2b)0 Let
c be any element of G of order 12. Then £3 has eigenvalues {i?i}*
Hence by Theorem 40 1 T must be isomorphic to E{xEia Let G' be
any maximal finite subgroup of Aut 7" containing G, Suppose that
G=£G'a By Lemma 4.4 GO is then non-cyclic. Therefore Gf must
coincide with the normalizer of Go and (!T5 Go) is maximal as a
special pair (cf. the first part of the proof of Theorem 4. 2). There-
fore we conclude that (T, GO is isomorphic to the pair of Table 99

No, 6 in view of the fact that the order of G equals 240 From this
one derives easily a contradiction. Namely (71, G) is maximal as
desired,

As was already mentioned3 Theorem 20 4 follows from the above
three lemmasa As for Table 10, it can be obtained from Table 9 by
straightforward consideration. By way of illustration we consider the
case of subgroups G of G' := <(/0, p)yxTp = &3xX (cf. the notation
before Table 10). Let yr.G'—»®3 be the natural projection,, Then
we must have ic(G) =£3 and G0 is either cyclic or Qp^Tpo The
cyclic case has been classified in general in the proof of Lemma 4. 4;
it follows that this case does not occur. Hence GQ=Qpa We have

then the natural inclusion (Sg^G/^CGV^^egXX/Q^KaXSg. There
exist three subgroups of order 3 in S3X(£3 other than {1} xS3o The
inverse images of these in G' are the groups of Table 10, No0 79 8±9

which are not conjugate to one another in G'9 and G coincides with
one of it. Note that F± is the subgroup of Gf corresponding to the
(transpose of) the graph of the two non-trivial homomorphisms

/±:T-»S3o That F± are not conjugate in Aut T follows from the fact
that F+r\F_ = Qp and G' is the normalizer of $p.

The verification of Table 11 is also not difficult and will be left to
the reader. From Lemma 2a 20 and the above tables we conclude
the following:

Theorem 4* 70 The moduli space of pairs with fixed complex and
rational representation types are connected. In other words, two pairs (T, G)
and (7", GO are equivalent under deformation if and only if their complex
and rational representations are equivalent.
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4. 60 We compare our results with the results of Gottschling and
Ueno in a)3 and with the results of Tokunaga-Yoshida in b).

a) In [8] [9] Gottschling studied fixed point manifolds and
stabilizers of the standard action of Sp(2,2T) on the Siegel upper

half space $2 of degree 2. Later Ueno [25] refined his results by
obtaining the classification of elements of finite order of Sp(2, Z) up
to conjugacy. These are regarded as the classification of automorphism
groups of principally polarized abelian surfaces in terms of their
period matrices. A comparison of their results and ours will be given

in the following:

Theorem 4.8, Let (7"9 G) be a pair. Suppose that there exists a
principal polarization on T such that G is the full automorphism group of

the resulting principally polarized abelian surface. Then (T9 G) is isomorphic
to one of the pairs in the following table.

Table 12

No.

1

r

2

2'

3

4

5

6

7

T

ExE'

E\^E'
2

ExE

EY..E

*Y./

EXE,

ExEp

ftxft

EpxEp

©

®6

<£2xe,

<£2X<£6

WO

<£6KS>

Table
No.

7.1

7.1*

8.1

8.1*

8.2'

7.2

7.4

9.3

9.11

Z

( z O N
Vo z'J
( z l/T)

(z ON
Vo z)
(z 1/2N
U/2 « >/

/* z/2\
\z/2 z)

( J ? )
6 2 )
/i ON

^ 0>1lo ^

C

/ = *« + a*H^+l

/-^ + «-+l)

y^ + «.+ l
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7.10 i 0\
O p)

10

11

^ x Er2i

x E&

6.6

.7

9.10

=*(**+ 1)

Here Z is the period of !T on $2 determined up to conjugacy by

elements of Sp (2, Z). Further, *=£*', *, *'=£i, ^/o. C=*53 7= C1 +2V2i)/2.
In case T is the Jacobian of a smooth curve of genus 2 we have
given an inhomogeneous equation of it on the last column (cf.
Namikawa-Ueno [13]). The stabilizer of Sp(2?Z) at Z which is
isomorphic to G is given in [9],

6) Let T be a complex torus of dimension 2. An element g of
Aut T is called a reflection if it has a 1-dimensional fixed point set
on T, In Table I of [24] Tokunaga-Yoshida gives a complete
classification of those pairs (T, G) for which G is generated by reflec-
tions. Identification of their and our classifications are given as follows,,
Notations. G(m5 p, 2) the subgroup of GL2(C) generated by the ele-
ments (em, tf"1), [1, 1], (**„, 1). G(m, p) the abstract group isomor-
phic to G(m, p9 2). [&] the primitive finite reflection groups of GL2(C)
of Shepard-Todd number k; (k) the corresponding abstract group in
GL2(C7) up to conjugacy. Now the classification in [24] is in terms
of G(m? p, 2) and [&]; for each of these groups the equivalence classes
of lattices in C2 preserved by it are given. In the next table we give
for each of these groups the corresponding pair (T9 G) in our classi-
fication table.

Table 13

G

G(1.2) S>4

G(4.2) ®4YE2Q

Table No.

8.1, 8.1', 8.1"
10.2, 10.4

G

G(4. 1) S4IXQ

G(3. 1) £3x3>3

Table No.

9.3, 10.5
11.13, 11.13'
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G(6.2) K6xS>3

G(6.3) e,IXiS)

G(6. 1) ®6K®

G(3.3) S>3

9.2, 10. 10

9.10, 10.11

9.11

11. 12, 11.12'

G(6.6) S6

(4) £
(5) <£3x£

(8) ®4ixs:

8. 2, 8. 2'

9.5, 10.8

9.8

9.6

In each case the complex representation is given by the corresponding
subgroup G(m, p9 2) or [£] o/ GL2(C).

§ 5. Endomorphism Rings of T

581. The automorphism group of a complex torus is closely related
with its endomorphism ring, the former being the unit group of the
latter. In this section we summarize the structure of rational endo-
morphism rings End0r of complex tori of dimension two; this will
help us to get a better understanding of the automorphism groups
themselves.

We distinguish three cases according as T contains: 1) more than
one, 2) exactly one, and 3) no, subtori of dimension one. In case
1) T is isogenous to a product E1xE2 of two elliptic curves El and
E2iT^^ElxE2a (^ means "isogenous to", here and in what follows.)
In case 2) we denote by C" the unique subtorus and by C the quotient
torus TyC". In case 3) T is by definition simple. The relation with
algebraic dimension a(T) of 7" is as follows: 1) a(T) =2, 2) a(T) =1,
and 3) a(T) =2 or 0. (Recall that a(T) =2 if and only if T is an
abelian surface.) In case 2) the natural homomorphism T->C gives
the algebraic reduction of T.

Theorem 5.1. Let T be a complex torus of dimension 2. Then in
each of the above three cases the possible types of rational endomorphism
rings End0T, the values of Picard numbers p(T), the dimension d of the
"moduli space" (cf, [7] for the precise definition) and the structure of Aut T
are given as in the following table.

Table 14
Case 1. T~ExE'

No.

1

T

E+E

EndoT

*e*'
P(T)

2

d

2

AutT

®m©®«? l^m,n^3
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2

2'

E not CM
E~E'

E CM
M2(K) 3

4

1

0
subgroup of GL2(jfiO

Here #=End0£ and K' =

Case 2.

No.

1

2

2'

T

C+C'

C not CM

C CM

End0r

Q

K\y\
(V=K)

io(T)

1

2

3

d

3
2

1

AutT

<±1>

<±1>
®2m, l=gm£3

Here ^ = End0C. Further, in 2 or 2' the elements of F are considered
to be square zero. Thus if C is not CM, EndQT=Q[X^/(X2) and if
C is CM, EndQT=KlXJYy(X,Y)2

a

Case 3. T simple

No.

1

2

3

4

5

6

7

8

a(T)

2

0

End0T

Q
real quadratic field

CM field of degree 4

indefinite quaternion
division algebra/Q

Q
imaginary quadratic
field

totally imaginary

number field of degree
4, not CM

definite quaternion
algebra/Q

p(T)

I

2

2

3

Oor 1

2

2

0

3

d AutT

3

2

0

•
4

2

0

1

<±1>
%®&2

Z®&2m i m = l,5
non-abelian
infinite

<±1>

S2m, 1^^3

Z®&2m9 l^m^3

^fRe 2

finite

Here in 35 m = 5 if and only if T=T5 (cf. Table 6). In 4 Aut T
contains a normal subgroup TO of index 2 which is a Fuchsian group
of the first kind. Any possible finite subgroup of F0 is isomorphic
to Km with m = !9 29 3, 4 or 6. Possible finite subgroups in 8 are
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those which appear in special pairs (cf. Sec. 2). In 7 if K is the

minimal Galois extension of End0r, then p = 2 (resp. 0) if and only

if the Galois group Gal (J?/Q) = S>4 (resp. 214 or @4), where 2C4 is the

alternating group.

For the proof of Theorem 5. 1 we refer to [7] (Most of the

results are special cases of those results which hold also in higher

dimensions.) We only note that for abelian surfaces all the results

in the above tables are well-known (cf. e.g. [20, §4]).

5.2s As follows from the above table, if a(T)<^l, then Aut T is
infinite if and only if a(T) = 0 and EndoT1 is a totally imaginary field
of degree 4 which is not CM; conversely given any such a field K
one can construct a complex torus T of dimension 2 with EndQT=K
and hence with a(T)=0 and with Aut T infinite (cf. [27] for an
explicit example). If, in addition, we take K with Gal(J?/Q)=@4 or
2I4, then we even have p(T) = 0. In this connection, we shall show
that any automorphism g of infinite order of T with a(T) =0 is never
special, i.e., det /(g)^!, where /: Aut T-+GL (E) is the complex
representation. This is in a good contrast to the case of abelian
surfaces since if a(T) =2 (instead of 0), gk is special for some positive
integer k by a theorem of Zarhin [28]. The fact is even true for
K3 surfaces, if we make the following definition. An automorphism
g of a K3 surface (or complex torus) S is said to be special (or
symplectic) if g*a)=w for any holomorphic 2-form co on S. (For a
complex torus this definition coincides with the original one.)

Proposition 5. 2. Let S be a complex torus of dimension 2 or a K3
surface. Let g be an automorphism of infinite order of S. Then g is never
special if a(T) = 0.

Lemma 5. 30 Let S be as in the above proposition. Let Ns be the
Neron-Severi lattice of S. Then the natural homomorphism u : Aut S-* Aut Ns

factors through a finite group.

Proof. Since a (S) = 0, Ns is negative definite (cf. [14, 3. 5]). Then

u(Aut T) is considered as a discrete subgroup of the orthogonal group.

Hence it is finite.
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Proof of Proposition 5.2. By Lemma 5. 3 gk acts trivially on Ns

for some positive integer k. Then gh> and hence g also9 act on the
transcendental lattice of S nontrivially since gk^= ±1. (An automorphism
which acts trivially on both Ns and Bs is either of ±1.) Then by
[14, Th0 3. 1] g is not special.

Table 14 also shows that if a(T) = 0 and p(T) =3, Aut T is finite.
This also admits an analogy in the case of K3 surfaces. Namely we
prove

Proposition 5.4, Let S be a K3 surface with a(T) =0 and p(S) =19.
Then the automorphism group of S is finite.

Proof, In this case the rank of the transcendental lattice Bs of S
equals 3. Since H2(S,R) has signature (3,19) and Ns is negative
definite,, it follows that Bs is positive definite. Hence by the same
argument as in the proof of Lemma 5. 3 the action of Aut T on Bs

factors through a finite subgroup as well as the action on NSe From
this the proposition follows immediately.

Remark 5.5. 1) /o=19 is the maximal number for the Picard
number of a K3 surface with a (5)^1. 2) The above proof also
applies to a complex torus? thus giving another proof for the fact
mentioned before the proposition.

50 3o Using the structure of the endomorphism ring described above?

we now study the structure of each special pairs (T7, G) with G=G,
£ or ® in some more detail. Recall that a singular abelian surface is
an abelian surface T with Picard number p(T) =4 (corresponding to
Case 1, No, 3, of Table 14). In this case T is isogenous to a product
ExE of copies of an elliptic curve E with complex multiplication,
and vice versa.

Lemma 5=6. Let (T,G) be a special pair with G=Q,, X or 5).
Then either a(T) = 0 and p(T) =3, or T is a singular abelian surface.

Proof, By Lemma 3. 4 End0T contains a definite quaternion algebra.
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According to Table 14 this is possible only in either of the two cases

of the lemma.

Let © be either of O, X and SX We consider the universal family
{(rg,Gs)}9e* of special pairs with Gq = ® defined in Sect. 3 (cf. (17))
parametrized by X= [q<=H;q2= — 1} =P\ (Recall that by Theorem
3. 1 1 any maximal special pair is isomorphic to (Tq, Gq) for some
q^X.} By Lemma 5.6 either Tq is a singular abelian surface or
a(Tq) =0. Then the points q corresponding to singular abelian surfaces
Tq are identified in the next proposition. For a singular abelian
surface T we shall denote by KT the center of the rational endomor-
phism ring End07" of 7".

Proposition 5. 7. In the above notation T= Tq is a singular abelian
surface if and only if there exists a real number /*^0 such that

Moreover, in this case we have KT = Q(fiiI — 1). In particular the set
A-= {q^X]a(Tq) =2} is countable and dense in X.

Proof, Let H = A&(x)Q, which is a definite quaternion algebra over
Q. Then EndoT is naturally identified with the ring of endomorphisms
/ of H as a Q-vector space such that fR is J(q) -linear, where J(q)

is the right multiplication by q on HR=H. By left multiplication on
H we have the natural embedding //< - »End07"g. On the other hand,
if fjtq£zA& for some real number jtf^O, then (jLtq)2=—{j.2 is a negative
rational number. Hence K:=[a-\-^/jq;ay fi^Q} is an imaginary
quadratic field. Moreover, by right multiplication a+fifiq (which
commutes with /(#)) is considered as an element of End07^; hence
we have also an embedding K< - >End07^. Thus we have EndoT^J
K®QH=M2(K). (Note that by left multiplication K is embeddable
also in H so that K is a splitting field of //.) As Table 14 shows, T
must be a singular abelian surface in this case, and we clearly have

KT=K=Q(^ — l), Since any Q-linear automorphism of H is
obtained as the composition of the right and left multiplications of
elements of H, if there exists no real number fj, as above, EndoT" must
coincide with H. Hence, by Table 14 we see that 0(7^=0. This
shows the proposition.
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5* 4fl Next we proceed to describe the rational Neron-Severi group

NTiQ of T=Tq for each q^X. We start with the description of

H2(T,Q} as an inner product space with inner product defined by

the cup product. Of course this depends only on the underlying real

torus T of T with the orientation induced by the complex structure

of T. Recall that we may naturally write T=H/A, where A is some

lattice in a definite quaternion algebra H over Q (actually H = F or

F' (cf. 2.3, (4))) , and we have identified HR with H by a fixed

isomorphism <p'.HR=Ha Here we assume that for the orientation of

H inducing that of T, 1, i, j, k form a positive basis0

Let tr://— >Q be the (reduced) trace. Define as usual a nonde-

generate positive symmetric Q-bilinear form < ? > on H by

where y is the quaternion conjugate of y. Let HQ (resp. U0) be the

subspace of H (resp. H) of pure quaternions, i0 e., those quaternions

with zero trace. We denote by H0( — 1) the space H0 equipped with

the negative definite inner product — < , ) > . Define a positive integer
d=d(A) by

(23) rf=|det«M|.,M,»|

for any Z-basis ui9 l^i^4, of A. We may identify //2(T,Q) with

the space A2//* of Q-valued alternating bilinear forms on AQ^.H,

where //* is the dual Q-vector space of H. Then the multiplicative

group Hx of H acts naturally on f\2H* = H2(T,Q) and the formula

defines a Q-linear map /://0©-^o->^2(^3 Q). Then the foil wing is true.

Lemma 50 80 1) / gives an isomorphism of the inner product spaces

#o©#o(-l) and H2(T,Q). 2) If we let Sp(l) art on H0@HQ(-l)
by the formula <y(f , 57) = (f, (7^(7~1)? c7eSp(l), f, y^HQ, thenfisSp(l)-

equivariant.

Proof. 1) Denote by rfl, A', dj, dk (e//J) be the dual basis of

1, i,j, k^H = HRa We denote by the same letter tr the ft-linear

extension HR->R of tr:Jff-»Q. For any £ = ai + bj + ck, a^b^c^R and

let ^(*,^) = (l/2)tr(^) and ^(^5 j) - (l/2)tr(*#), con-
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sidered as elements of /\2H*R = H2(T,K). Then in f\2H*R we have

^c = adl Adi + bdl Adj + cdl ̂ dk — adjAdk — bdiAdk — cdi^dj
9C = adl Adi + bdl ̂ di + cdl Adk + adj^dk — bdi^dk + cdi^dj.

From this we see that for £ = ai+bj+ck, y = a'i

(24) <p^v,f

and

(25) &A^
KM= (-2)

where Q=dl/,di^djA(-dk) = -dl^di^dj^dk. (24) implies that /(//0)
JL/(7/0( — 1)) in ^I2//*. Hence it suffices to show that /i :=/IHO

and /2
 :=./i (-#<,) are both inner product preserving; indeed, then the

injectivity of / follows immediately and therefore /is isomorphic since
both HQ@HO and H2(T,Q) are 6-dimensional.

Let ttf, l^i^4, be an oriented basis of -4. Then if we set QA —
dulAdu2Adu3Adu4, we have Q=(d/4)QA. From (25) and this we get

^A^ = <£, ̂ > W/4) ̂ ^ J so yi (f )A/i (?7) = (2^/V^ A (2^/^/J) = (4/d) &A& =
<f , 57) .̂ This shows that fi is inner product preserving. Similarly,
we can prove the same result also for/2. 1) is thus proved. 2) can
also be checked by direct computation as above.

Now, returning to our complex torus T=Tq, q^X9 let Hp>q,p+q = 2,
be the Hodge (/>, q) -components of H2(T,C). The action of Hx

on H2(T,Q) extends naturally to a complex linear action on
H2(T9C), and preserves the Hodge components Hpi9

9 and hence also
NTiQ = H1-lnH2(T9Q} and BTiQ = N£tQ in H2(T,Q). (Note that H^EndQT
and Sp(l) acts on H2(T, Q) isometrically.) Now we shall identify
H2(T,C) with HQiC@HQ( — l)c via /c1. Accordingly, 7Vr§Q and jBr§g

are considered naturally as subspaces of the latter. Further, via
we shall consider q^XS=HQ as an element of //o.

Proposition 5. 9. M^i/A respect to the above identifications we have
H1'l=Cq®HQ(-l)c. Moreover, a(T) =2 (resp.=0) if and only if there
exists (resp. does not exist) a real number fjt^O such that fjtq^HQ'9 in this

case we have #r.g=Q(w)©#o(-l), ^r.g=Q(w)-L in HQ and N?*Q =

(resp. NTtQ = HQ(-l), BTtQ = HQ and N?*Q = Q).
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Proof. We see that for any f, ^e/fo.* and x,

since f f = L It follows that for fixed £ , ^ we have

/*((£, 7)) (*?,J>?) =/*((£, 7)) (*,JO, *,y^HR

(which is equivalent to the condition that /((?, 27)) &H\l := Hl>ln
H2(T,R))9 if and only if # commutes with £, i. e., v# = ? for some
real number y. Hence we have H1

it
l=Rq@HQ( — 1) Ra From this the

first assertion follows immediately. This then in turn implies that
p(T)=4 (respa 3) if and only if there exists (resp. does not exist)
a real number /i such that fjtq^HQa This is equivalent to the second
assertion by Theorem 5. 1. Further, in this case we clearly get the

desired description of NTiQ and BTiQa The description of NT!Q as in
the proposition follows from this and 2) of the previous Iemma0

Remark 5. 10, Suppose that NTiQ=Q(fiq)@HQ( — l)J then we may
assume that fjtq^NT by replacing p by rip for a large positive integer
n. Let L be a line bundle on T whose chern class is fjiq. Then
since </^5 /ig»05 either L or L"1 is ample,,

Since G generates H as a Q-aIgebra5 from Proposition 5. 9 and
Remark 50 10 we obtain the following:

Corollary §„ 11. Let (T, G) be any special pair with G^C9 X, or 3)
and with T a singular abelian surface. Then the G-invariant Neron-Severi
lattice NT is of rank 7, and it contains a chern class of an ample line
bundle.

By the above corollary NT is a unary positive even lattice (cf. 6. 1),
and has a unique positive generator say ea Then we define a positive
integer 8 by

and call it the degree of (T,G). For instance G leaves invariant a
principal polarization on T if and only if 5 = 1.

Remark 50 12. In the course of the proof of Proposition 50 9 we

have seen that (H1^1)11 =Rqa Hence c^:— tr(xqy) is the unique Hx-
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invariant real (1, l)-form on Tq up to constants. On the other hand,
the form o)q can be interpreted as follows. Let g(x,y) = tr(xy). Then
g is a non-degenerate symmetric bilinear form on HR=H, For any

#5 &(*> jO:—£(*> j O + V —!£(##, jO defines a hermitian metric on the
complex vector space (H, q). Hence it defines a Kahler metric on
T (denoted still by gq) whose underlying Riemannian metric is inde-
pendent of the choice of q (cf. Galabi [3]). Thus (oq is nothing but
the Kahler form associated to gqa Further, for a positive real number
p, fjtgq is a (rational) Hodge metric in the sense that fjtcoq belongs to
HIQI if and only if fiq^HQo Note further that H0( — 1) is just the
subspace of H^1 consisting of those classes which are primitive with
respect to the Kahler metric gq and is independent of the choice of q
(cf. [3, Lemma 4.2]).

Under a suitable formulation Proposition 5. 9 and Remark 5, 10
are true for any 2-dimensional complex torus 7" which admits a
definite quaternion algebra over Q as a subalgebra of End0I".

58 5o For a singular abelian surface T we denote by mT the unique

square-free positive integer m such that KT=Q(i — rn), where KT is
the center of End0T, We end this section by proving the following:

Proposition §013. Let ©=<Q or Z (resp, S). Let m be a square-
free positive integer. Then there exists a special pair (T, G) such that
G = ® and T is a singualr abelian surface with mT=m if and only if

m^-l (8) (resp. =-1 (3)).

Proof. We consider only the case where ©=£} or 5E, the other
cases being similar. Let T be a singular abelian surface with

KT=Q(^—m)0 First, we note the following implications; "T admits
a special action of @"->"/f is embedded in M2(KT) ^EndoT"*-*"^ is a
splitting field of //"<-»"KT is embedded in //"*->"f2=-m for some
f &H"**"a2-i-b2 + c2 = m for some rational numbers a, b, c"<^>"m^ — 1
(8)" (cf. [18, p455 Lemma A]). This shows already the necessity
and shows also that if m^ — l (8), ® is embedded in SL(29 KT). In
this case let A be any maximal o-order of H, where o is the maximal
order of KT, Then A is of the form /l = Homo(M, M) for an o-module
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M of rank 2; further M is up to isomorphism of the form 0©$ for
some ideal $ of o (cf. [17, 4. 13]). Fix an embedding K< >C; then
T'=ElxE29 Ei = C/o, E2=C/$, admits a natural special action of®.

We note that Proposition 5B 13 can also be deduced from Theorem
7, 2 and 7. 5 below, though the above proof is more direct.

§ 6. Special Pairs Root Lattices

In Sect 6 we associate to each group © in Lemma 30 3 a certain
root lattice, and by using this we shall give a characterization of
those complex tori T which admits a special action of © in terms of
the Neron-Severi and transcendental lattices. The conditions can be
made more explicit In the case of singular abellan surfaces; Indeed
in Sect 7 we shall determine all the singular abellan surfaces which
admit special ©-actions in terms of their transcendental lattices In
case © is non-commutative. Moreover, In this case we also determine
the number of conjugacy classes of such special subgroups in Aut T0

S01. We recall some basic terminologies on Euclidian lattices used
In this section. Let L be a lattice. Then for any rational number m
we shall denote by L(rri) the lattice L with the new Inner product
< , >„. defined by <X }>ym=m(x,> jy> (as long as the right hand side
Is always an Integer). Let ei9 l^i^n^ be a basis of L. Then the
discriminant of L Is the determinant of the matrix «^-, £/»i^-,,-<;n8 L
is said to be even if <X AT)> Is even for any x^La An orientation of L
is by definition an orientation of the real vector space LR. We denote
by O(Z*) and SO(L) the orthogonal and special orthogonal groups
of L respectively. If K Is a sublattice of L, K1- denotes Its orthogonal
complement in L. Ll-LL2 denotes an orthogonal direct sum. U will
denote the standard hyperbolic lattice; U=Zel@Ze2 with <*,•,£,•> = ()
and </l3 e2y=le If T Is a complex torus of dimension 2, then H2(T,Z)
is isomorphic as a lattice to U3 = U-LU-LU, A sublattice K of L is
said to be primitive If the quotient L/K has no torsion. An embedding
j:K<——>L is said to be primitive If j(K) is primitive. Two sublattices
Ka (resp. two embeddings ja :K<—-»Z*), o: — 1, 25 are said to be equivalent
If there exists an element f eO(L) such that f (JQ —K2 (resp. Sji=j2)a



68 AKIRA FUJIKI

Let A be a finite abelian group0 Then a quadratic form on A is
by definition a map q:A-*Q/2Z such that 1) for any x^A and for

any integer a we have q(ax) = a2q(x) and 2) there exists a Q/Z-
valued bilinear form b on ^4 satisfying q(x+y') — #(#) — g(jy) = 2b(x, y)
for any #, y^.A\ here 6 is uniquely determined by q. We call the
pair (A, q) a quadratic form group. We say that q is non-degenerate if
so is 6.

Let L be an even lattice. Let L* be the dual lattice of L;L* =
{*eZ,g;<*,jj>QeZ for any y^L}e Then the formula #(# + L) =
<#5 #> mod 2Z(#eL*) defines a nondegnerate quadratic form gL on
the finite abelian group A °.=L*/L. This gL? or rather, the associated
quadratic form group (A9qL)9 is called the discriminant form (group)
of L. We have

(26) \A | = discriminant of L,

where \A \ is the order of A, We denote the automorphism group
of (A, q) by O(A,q), or simply by O(j).

6. 2e In this subsection we shall give a description of the moduli
space of 2-dimensional complex tori in terms of 2-forms5 according to
Shioda [22] . Let AQ=Z* and AQ its dual. Fix an orientation on A°
and hence on AQm Then we have the natural pairing /\2AQX /\2AQ-+
/\4AQ=Z* which makes /\2A0 a euclidian lattice isomorphic to f/3,

Let T be a complex torus of dimension 2, Write T=E/A, Then
via the natural real linear isomorphism AR:AR—>E9A = Hi(T9Z) is
given a natural orientation. Then a marking <p:A-*A° is said to be
admissible if it is orientation preserving. A 2-marking of 7^ is by
definition an isomorphism <fi:H2(T,Z)-»U3 of euclidian lattices. Any
(l-)marking <p as above induces the 2-marking A (00 -H2(T,Z)-*U3

0

Then a 2-marking <p is said to be admissible if there exists an
admissible marking <p of T such that <f> = /\(<p). We define isomor-
phisms of two admissibly 2-marked complex tori in the obvious way.

Let H2-Q(T) be the Hodge (2, 0) -component of H2(T,C)0 Let

where " denotes the complex conjugation. The projection induces the
real linear isomorphism E (T) = H2t° (T) , which induces the natural
orientation on E(T)a With this orientation we consider E(T^ as an
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oriented 2-plane In H2(T,R). We note that we have the Inclusion
E(T)< - >BTtR. Let (T,<p) be a 2-marked complex torus. Then we set

With the orientation induced from E(T) we consider E(T9<f>) as an
oriented 2-plane in t/|5 and call it the period of ( jT 9<^) 0

Let V be the set of oriented 2-planes E in U3
R. Then F has the

natural structure of a connected homogeneous complex manifold

F^SO0(3? 3) /SO (2) XSO0(19 3)

with respect to some identification

0(3,3)=0(E/i).

Here SO0(p, q) is the identity component of 0(p3q)0 Moreover the
correspondence (T,<p)-*E(T9<f>) ^V induces the natural bijective
correspondence between the set of isomorphism classes of admissibly
2-marked complex tori and the set V (cf. [22]).

Any admissibly (l-)marked complex torus (71, p) naturally gives rise
to an admissibly 2-marked complex torus (71, 0) by setting (/?=/\(<p)»
This induces an isomorphism of homogeneous complex manifolds

diW+ctV

if W+ = SL4(R^/GL2(C) is considered naturally as the (fine) moduli
space of admissibly marked complex tori. Indeed,, with respect to
the homogeneous structures as above d is compatible with the natural
double covering map

(27) 30:SL4CR)-»SOo([/i)

of real Lie groups which induces the surjection SL4(Z)->SO0(£/3)o
Here3 by definition,

with SO0(f/|) the identity component of O(C/|) = O(393)B In parti-
cular SO0(f/3)\F may also be considered as the moduli space of 2-
dimensional complex tori.

Let M be any primitive sublattice of t/3
s Let

Then3 if M is nondegenerate with signature (j, 05 ^^29 FM is naturally
a homogeneous complex sub manifold of F; namely
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Fj,SSO(j,0/SO(2)xSO(j-2,0.

We note that if s = 3<> we have the inclusion

(28) F1^SO(3)/SO(2)c - >SO(j,0/SO(2)

60 3a For any lattice with discriminant form (A, q) we denote by
H(L) the kernel of the natural homomorphism O(L)-»O(#). Then
we set

SH(L)=H(L)nSO(L).

The following lemma is due to Nikulin.

Lemma 60 1. 1) Let L be an even lattice of rank k, Then there
exists a natural embedding L±.L( — l)< - »£/* such that L and L( — 1) are
primitive in Uk and that any element gE:O(L) extends naturally to an
element g of SO(t/*). 2) Let L be any primitive sublattice of Uk, Then
any element g^SH(L) is a restriction of a unique element g of SO(Uk)
such that the restriction g | r j _ of g to Zr1- is the identity.

L

Proof, See Nikulin [15, 1. 6. 39 1.1.1] and [14, Prop. 1.1].

For any pair (T, G) we shall denote by H2(T,Z)G the primitive
sublattice of H2(T,Z) of G-fixed elements, and by H2(T,Z)G its
orthogonal complement in H2(T,Z)a The following lemma is due
also to Nikulin [14],

Lemma 6020 Let (7*, G) be a special pair. Then the following hold:
1) We have the inclusions BT< - >H2(T,Z)G and H2(T,Z)G< - *NT,
2) H2(T^Z)G is negative definite and 3) the natural image of G in
Q(H2(T,Z)G) is contained in SH(H2(T, Z) c).

Proof. 1) follows from the definition of special action and [14,
Th0 3,1, a)]. 2) follows from [14, ThB 4. 39 a)], which also holds
for general complex toriD Finally, 3) follows from 1).

Let (L, H, E) be a triple consisting of a) a negative primitive
sublattice L of f/3

9 b) a subgroup H of SH(L) with the set of H-
invariants LH={0}, and c) an oriented 2-plane E in L^. (Here the
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case L— {0} is allowed In a)0) Let 38 be the set of such triples. Let
(T5G) be any special pair with -leG. Let ^:H2(T9 Z)-»f/3 be
an admissible 2-marking. Set L = <p(H2(T,Z}G), f/ = the image. G of
G in O(L) ^O(H2(T, Z)G) and E = E(T, 0) with its natural orientation.
Then by Lemma 6. 2 L is negative and H^SH(L) with LH={0}a

Thus the triple (L, H, E) is in a.
Let ^ be the set of isomorphism classes of admissibly 2-marked

special pairs (T9 G; 0) with — 1 eG (with isomorphisms defined in
the obvious way)a We have then obtained the natural mapping
$\Sr^OI defined by

We say that two triples (L, H9 E) and (L', H ', £") in J5 are equivalent
if there exists an element ^eSO0(C/3) such that u(L)=L', u*(H)'=
uHu~1 = H' and that uR(E) =Ef with the resulting isomorphism

E->E' orientation preservinga Let 38 be the set of equivalence classes
of triples in 38 . Then we see that ft induces the natural map

^:<9?-»^9 where Sf is the set of isomorphism classes of special pairs
(T?G) with -leG.

Proposition 6. 30 The natural maps B:^-^^ and $\M-*£f defined
above are bijective*

Proof, Injectivity* Let i = l,2. Let (Li9 H t-9 ££) be the triples
coming from admissibly 2-marked special pairs (Ti9 G,-; (p^) with

Suppose that they are equivalent with an equivalence
as above. Then by the definition of & the induced

isomorphism v — ̂ uty'.H2^^ Z)-*H2(T2, Z) has the property that it

is induced by an orientation preserving isomorphism

vR(E(Tl))=E(T2) vfithE(T1)-+E(T2) orientation preserving, and that
v*(Gj=G2, where G{ is the natural image of Gt in O(H2(T9 Z)G.).

Therefore if G- is the image of G, in O(H2(T,Z)), then we also
have z;*(Gi)=Gi. Then by Shioda [22] (cf. (6.2)) v is induced by
an isomorphism f:Tl-^T2 of complex tori Further from the relations
v*(G'i)=G2 noted above and G,-/< — 1>= Gf

{, we have f*(GJ =G2, i. e03

(T19 d) = (T29 G2)8 This shows the injectivity of ^ If (Ll3 Hl9 EJ =
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(L2? H2j £"2)5 then we can take u to be the identity in the above
argument; hence we have <fii=f*</>2, where f^:H2(Tl9 Z)-*H2(T2,Z)
is induced by /. This shows the injectivity of ft.

Surjectivity a It suffices to show the surjectivity of ft. Let (L, /f, E)
be an arbitrary triple in ^. Then by [22] (cf. (6.2)) there exists
an admissibly 2-marked complex torus (T,<fi) such that E(T,<p)=E.
On the other hand, from the inclusion H^SH(L) and Lemma 6. 1
any h&H extends to a unique element ^eSO(t/3) such that K\L±=idL±0

We can thus consider H as a subgroup of SO(C/3)0 Set H=

<//9-idu3> = Hx<-idc?3>sand //0=HnSOo(C/3)0 Then /fo-^ and

again by Shioda [22] any A0eH0 is induced by an automorphism of T
determined uniquely modulo multiplication by —1. It follows that
there exists a unique subgroup G of Aut T with — leG such that the
natural image of G in SCKf/3) =SQ(H2(T, Z)) coincides with HQ.
Suppose now that (T1, G) is special. Then by Lemma 6. 2 we must
have H0 = Hi then (L,H,E) is the image of (r,G;^)<E^ by &
proving the surjectivity of ft.

It remains to show that (T, G) is special. Set M=L±
e Now in

the above argument we let E vary in VM with L and H fixed. Let
M/M=r1(FM)CJ^+a Let S=d^l(HQ), where «0 is defined by (27).
Then the above argument shows that any admissibly marked pair
(T; <p) corresponding to a point of WM can be completed to a marked
pair (r9G;^) of type R (cf. 2.1, b)). It follows that WMQW^ in
the notation of 2. 1, b). On the other hand, since L is negative, the
signature of Mis of the form (3,0 with Og^3. Therefore WM=VM

contains at least one protective line P1 (cf. (28)). Then by Proposition
2, 17 and the finiteness of exceptional pairs (cf. 4.3) W% must be
isomorphic to one of the following homogeneous complex manifolds
W+, GL2(C)/C*2 and jHrx/C*. But we know already that then any
pair corresponding to a point of Wfr is special. Hence (7", G) also
is special. q. e. d.

60 4. Let (T, G) be a special pair with — leG. Let <p be any
admissible 2-marking of (T, G). Let (L,//,£") be the triple corres-
ponding to (T, G; 0) via ^. Then from the definition of ft we see
that the equivalence class of the pair (L, //) is constant when (T, G)
vary on each connected component of the moduli space (cf. Sect. 3).
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(Here two (L9 H) and (I/, H') are equivalent if and only If there
exists an element u^Q(U*) such that u(L)=Lr and u*(H)=H'a) In
particular if G^09 then the equivalence class of (L9 H) is determined
uniquely by the abstract isomorphism class of ©5 and if G=Q 3 we
have two possibilities according as (T9 G) is maximal or not. We
shall now determine these isomorphism classes of (L, //) explicitly,
It turns out that such L are actually given as certain root lattices.

Any root system R defines the associated (negative) root lattice,

which we shall again denote by the same letter R. For instance Ak

is the lattice with an integral basis el9...,ek with <X-, e f > = — 2 ,
(e.9 ei+1y = l, l^i^k-l, and <*,., <?y> = 0 if \i-j\^2. We shall give
the structure of automorphism groups of certain root lattices in the
following table (cf. [11, 12.2]):

Table 15

rank

2

3

L

A\

A2

A\

A3

A^A,

0(L)

eixi<32
©3X]S2

®ixi@3
©4X1^2

C©3xe2)xe2

H(L)

<&}

©3

si
©4

@3x(£2

SH(L)

s2=<-i>
®3

S|=<(1,-1, -1), (-!,-!, -1)>

sr4
®3=^,^©s->s2

We note that H(L) is just the Weyl group of L in each case and
that these root lattices exhaust all the negative even root lattices of
rank 2 and 38 (We have G2=A2 and C3 = ^43 as root lattices.)

Let © be one of the following groups: ®m? m = 4, 65 Q9 SC, or SX
Then we define the negative even root lattice L@ as a root lattice as
follows :

From Table 15 we see immediately that

(29) SH(L@)^G/<-l> and

We also set
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Af. = L.(-l)J-C7 if ©=

= £.(-!) if

By Lemma 6. 1 we have the natural embedding

in which M© and L© are the orthogonal complement of each other.
In what follows we consider M9 and L® primitive sublattices of U3

via j9.

Theorem 6. 48 Let © £0 aj aioz;^. Let (T9 G) fo a special pair with

-1 eG 0rcrf z0ifA G = ®. L^ G 4* the natural image of G in O(H2(T, Z)G)

so that GsG/<-l>. 1) Suppose that ©^©2 ^ (T, G) is maximal
when © = £X TA07Z M^r* exists an admissible 2-marking <f> of T such that
</>(H2(T,Z)G)=M® and </>(H2(T, Z)G) =L®. Moreover, <p induces an
isomorphism of G with SH(L®). 2) If®=Q, and (T7, G) is not maximal,
then there exists a unique 2-marking <p of T such that $(H2(T, Z)G) =M%

and (p(H2(T,Z}G')=Lx. Moreover, <f) induces an isomorphism of G with
the unique normal subgroup of order 4 of SH(L&)=^, 3) If G=K2?

H2(T,Z)G={0} and G={e}.

Proof. Set L = L& and H=SH(LJ. Then by (29) LH = Q0 Hence
if we set M=M^ (L,H,E)(E<% for any EtEVM^®0 Let (T\G')
be a special pair with — leG7 corresponding to such an (L,H9E).

Then by (29) and the relation G'/< — !> = #, we see that the orders
of G' and © are the same. If follows that G' = ®. Further, by
Lemma 6. 25 3) we conclude that (T\ G7) is maximal if @=Q. 1)
follows from this, in view of the remark at the beginning of this
subsection. 2) follows from 1) immediately, and 3) is obvious.

Remark, By extending elements of H=SH(L9) uniquely to
by Lemma 6. 1 we consider H as a subgroup of SO(C/3)0 As we have
noted H(L®) is the Weyl group of the corresponding root system;
further SH(L®) is the subgroup of those elements of even length
(with respect to generators consisting of reflections),, From this we
see that any element of SH(L9) has spinorial norm 1 (cf. [16, §55])
so that actually we have /f CSO0(£/3). Using this fact one can give
a more direct proof (i. e., the one which is independent of the results
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of Section 2) of the fact that (T, G) is special in the last part of the
proof of Proposition 6B 3.

Corollary 6.5. There exists up to equivalence a unique primitive
embedding of L® into U3.

Proof. Let L be any primitive sublattlce of £73 isomorphic to L®.
Let H=SH(L)0 Then by repeating the argument of the proof of the
theorem we see that there exists a special pair (7", G) which is in
the case 1) of Theorem 6.4 with Invariant (L,//). It follows from
the theorem that (L, H) is equivalent to (LB, SH(LJ). Since L± = M99

any element of O(L«) extends to an element of O(C/3)0 It follows
that the embedding itself is unique.

Remark 6B 6, 1) More preclcely5 we can always find an element
^eSO0(f/3) which sends L onto L®. This follows from the existence
of elements ^eO(l73)-SO(f/3) and v2= -id^eSOCt/3) -SOoCt/3)

leaving L© invarinat. (For ^ take-for instance the extension of any
element of H(L9)—SH(L9) which is the Identity on M&.)

2) If ® —Sm 9 the corollary is a special case of the general uni-
queness theorem of Nikulln (cf. [15, 1. 12. 3]). There exists a direct
proof also In the case ®^Em (cf. Remark 7. 18).

Similarly we obtain from Theorem 6B 4 the following:

Corollary 60 7. 1) Among all the binary positive even lattices L, A\
and A2 are characterized by the condition that SH(L)^{e}. 2) Among all
the ternary positive even lattices L? A\, Ai-LA2, and A$ are characterized
by the condition that SH(L) is non-cyclic.

Remark 60 8, Actually 1) is immediate from the well-known con-
formal classification of binary positive lattices (cf. [2, II, §7]). 2)
could also have been obtained from the classical Bravlais classification
of space Iattices8

So 5o Next we shall give a characterization of those complex tori T
which admit a special action of © as in 6. 4 in terms of its Neron-
Severi lattice NT or of its transcendental lattice BTa
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Theorem 6. 9. Let T be a complex torus of dimension 2, Let
® = &m, m = 4, 6, Q, SC, or SX Then the following conditions are equivalent.
1) There exists a finite subgroup of G of Aut T with G = ® such that the
resulting pair (T, G) is special, and in addition, is maximal if ©=Q. 2)
There exists a primitive embedding Lj - *NT . 3) There exists a primitive
embedding B^ - *MT.

Remark 6. 10. The following three assertions are clear: 1) Any
complex torus of dimension 2 admits a unique special action of ®2.
2) T admits a special action of E3 if and only if it admits a special
action of ®6. 3) T1 admits a special and non-maximal action of Q if
and only if it admits a special action of Z (cf. 3. 3)0 Hence the
above theorem gives a complete characterization of complex tori which
admits a special action of a given finite group.

Remark 6. 11. In case ©=£}, Z9 or S) we have the two alternative
cases: a) a(T) = 0, p(T)=3, BT=M@ and NT^L&: in particular in
this case NT and BT are independent of the isomorphism classes of
T, b) T is a singular abelian surface and BT is primitively embedded

Proof of Theorem 6. 9, 1) implies 2) by Theorem 6. 4 and Lemma
6.2. Let L = L® and M=M&. Suppose now that 2) is true. Let
u:L< - >NT be any primitive embedding. Then by Corollary 6.5 (cf.
Remark 68 6 also) we can find an admissible 2-marking <p of T such
that <f>(u(L)) =L. Let E = E(T,<f>) and H = SH(L). Then by Proposi-
tion 6. 3 there exists a finite subgroup G of Aut T such that (T, G)
is special, -leG and P((T9G;4>)) = (L,H,E). Thus 1) follows0

On the other hand, 2) implies the existence of an embedding BT< - ^ZA,
while by Corollary 6.5 Zr^Af. Hence 3) is true. Finally we shall
show that 3) implies 2). Let BT< - >M be any primitive embedding.
This induces a primitive embedding N^ - >NT. If @5^Em? then by
Corollary 6.5 M±^L& and 2) is true. If © = SW, then |discr M1- =
|discr M \ = |discr L@| =4 if m = 4 and =3 if m = 6, where discr
denotes the discriminant. As is well-known, binary negative even
lattice with discriminant —4 or —3 is unique (cf. [2]). Hence
M^-^L*', so 2) is true in this case also.
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We refine the above theorem slightly In the case of singular abelian
surfaces. Let T be a singular abelian surface. Then rank5 r=2;
hence we have E(T) =BTiR. In particular BT has the natural induced
orientation. Let (T, G) be a special pair with •—leG and with T a
singular abelian surface. Take any isomorphism u:H2(T, Z)G—»M@ ,
which in turn induces a primitive embedding uQ:BT< ^Af^cf. Theorem
604 and Lemma 6.2). Let B(T,G) be the image of UQ . We put
on B(T,G) the orientation induced from BT. We say that the
oriented sublattices Vl and V2 of M® are equivalent if there exists an
element fj.^O(M@) such that fjt(Vi) =V2 with the induced isomorphism
Vl-^V2 orientation preserving. Then the equivalence class of the
oriented sublattices B(T9G) is independent of the choice of u as
above and depends only on the pair (7*, G).

Proposition 69120 Let © be as in Theorem 6, 9, The correspondence
(7*3 G)-»5(!F9 G) defined above sets up a natural bijective correspondence

between a) the set & of equivalence classes of special pairs (T?G) with
G = ©? with T a singular abelian surface and with (T, G) maximal if
G=d? and b) the set V of oriented primitive binary positive sublattices of
Mm considered up to equivalence.

Proof, Injectivitya Let i = l, 28 Let (T i?G t-) be pairs from SP.

Suppose that B(Ti9Gi) are equivalent sublattices of M*. Let u be
an element of O(M@) which gives an equivalence as above. Let
(L{9 JF/ f J £t.) be the triples corresponding to (T' I 5G i;^ I) for some
admissible 2-markings <pt for (!T,-,G,-) via Proposition 60 3D Then by
that proposition it suffices to show that these triples are equivalent.
Since © = G1 = G2 and (Ti9Gt) are maximal if G—O, by Theorem
6.4 if we choose <p{ suitably we may assume that L1 = L2 = L&QU3

and Hl = H2 = SH(L9)m Now using Lemma 6. 1 we extend u to an
element u of SO(C/3). Further, by taking — u instead of u if necessary,
we may assume that u^S00(U

z). Then u preserves LG and sends
E(Ti, <£i)=B(T1,G1)R onto E(T2, <J>2) =B(T2, G2)R orientation preser-
vingly. Hence (Li5 //i5 EJ are isomorphic as desired.

Surjectivity, Let B be an oriented primitive binary positive subla-
ttice of Af.. Let L = L^ H = SH(L) and E = B. Then (L, H, E) e J5.
Let (T, G; 0) be an admissible 2-marked special pair corresponding
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to the triple (L, //, E) by Proposition 6. 3. Then by construction
B = B(T,G) (modulo equivalence). By Theorem 6.4 (7", G) is maxi-
mal if G=£X It remains to show that T is a singular abelian surface.
Let N=B-L. Then N is of rank 4 and is orthogonal to the period
E = E(T,0') of (r,«&). This implies that </>~l(N)^NT. Hence ^(T) =
rank JVr 2^4; thus T1 is a singular abelian surface.

6.6. Let © be G, X, or SX Let (!T,G) be a maximal special pair
with G = ®. We know by Theorem 6.4 that H\T, Z)G = L@(-l) and
H2(T,Z)G=L® as euclidian lattices. However, the proof there of
this fact was rather conceptual but not explicit. So we shall exhibit
a more explicit isomorphism here, by using the calculation given in
the last part of Section 5. The method also gives us the proof of
Proposition 3. 15.

Recall that by Lemma 5. 8 we have the natural G-equivariant
isometry

(See below for more explicit formula.) Here the notation HQ is
explained as follows. Let H be the definite quaternion algebra given by

H=Q\\9iJ,K\ if @ = Q or £ and =Q[1, f, V3j, V3 K\ if ®=S

as a Q-subalgebra of if. Then HQ is the Q-subspace of pure quaternions
of H endowed with the inner product defined by <Xjy> = tr(.ry) (cf. 5, 4).
We have also fixed an identification T=H/A as an oriented real torus,
where A = A& (cf. (16)) and we consider elements of H2(T9Q) as
Q- valued alternating forms on HC=H. Now let

Let L=Lr\HQ and L' = LnHQ(-l). Then

=L and f ~ l ( H 2 ( T , Z ) G } =L'.

Therefore our task is to exhibit an explicit isomorphism L = L®( — 1)
and L' = L® as euclidian lattices.

Recall first that for any

for any #, y^HQ, where d = d® is given respectively by rfc = 4, dx =

and rf,=3 (cf. (23)). Hence f eJL if and only if (l/V3)tr(^)
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for any x, y^Aa Hence if we set

L1=[^^H'9tr(x^y)^Z for any x.y^A],

then L = ̂ dLlnHQ. On the other hand, for any £e//, £^L1 if and
only if C;ye/f* for any y^A, where A*:=[z&H',tr(zx) ^Z for any
x^A] is the dual lattice of A with respect to the nondegenerate
bilinear form

Proposition 6. 13B The notations being as above, L is given by 1 ) AriH0

if®=&, 2) ( (1 + 0/V2) A) n //0 if® = % and 3) ( ( (V3 + A)/2)4) n//o
f/ © = 3X /w £<2c/z £<2je i£>£ £<2?z ta£# a 2 '-basis of L as follows]

1) i,j,k9 2) (i+j)/V2, 0 + AO/V2, (A+0/V2 a«rf 3) (V3i+j)/2,

Proof. By straightforward computation we get that A*=%A = Az,

where *=*.= 1/2, (1+0/2, (3-i-V3A:)/6 according as ®=O,S; and
S) respectively,, Then, since /f = J, for any C^^? C^^i if and only
if C>y^zA for any jye/t On the other hand, since A is an order,
Zy&zA for any jye/1 if and only if C^^A Therefore Li = zA and

Z*= ('JdzA) H / / O O Substituting the values of £ = £® and rf^^® we get
the description of L in the proposition. It is immediate to check that
the three elements of the proposition form a Z-basis of L in each
case0

Corollary 6e 14. Let L(1)= {6eL;^(f) =1}, where w(?) is the norm

L(1) is given by 1) {±i, ±j, ±k} i /©=O, 2) {(1/V2)

±J9 ±k} if ®-®9

Proof. By Proposition 6. 13 any element f of L can be written

as f = a;C for some C<E/i, where w = l, (1+0/V2 or (V3+A:)/20 Since
?z(z£;)=l , w ( f ) = l if and only if w ( Q = l . Hence by Proposition 6. 13
we get L(1)=z£;/fx D//o9 where Ax is the unit group of the order A.
From this the corollary follows immediately (cf. (16) and Lemma 2 0 6 ) e

The "intersection matrix" of L with respect to the Z-basis of
Proposition 6. 13 are as follows;
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/ 2 0 0 \ / 2 1 1 \ 7 2 - 1 0

1) I 0 2 0 I 2) I 1 2 1 I 3) [-1 20

\ 0 0 2 / \ 1 1 2 / \ 0 0 2

It follows that L( — 1) is isomorphic to A\9 A3 and A2±.Al (i. e.? to
Zi«), in respective cases as desired. Indeed, in case 2), passing to

another Z-basis, say (i+j)/V2, — (j + k)/^29 (j — i)/V2, the correspond-
ing matrix becomes the Gartan matrix of A3. The isomorphism
L' = L@ can be shown in the same way. Finally using Corollary 6. 14
we shall give the:

Proof of Proposition 3.15. Let (T9G) be a maximal special pair,
By Theorem 3.11 we may assume that (T9 G) = (Tq9 Gq) for some
q^X. Now T admits a G-invariant principal polarization if and only
if the G-invariant Neron-Severi lattice NT contains an element f of
length 2. On the other hand, NT = LnRq in HQ9 where L is as in
Proposition 6. 13 (cf. §5). Hence the condition is further reduced
to:L(1) ClRq^ 0, or, since the norm of q equals 1, to:<?ejL(1). From
the explicit description of L(1) in Corollary 6. 14 we see that L(1)

consists of a single F®-orbit if ©=O or SC and consists of two orbits

{(± V3z+7)/2, ±j}9 and {±&}e From this the first assertion of the
proposition follows. The uniqueness of the polarization then follows
from Corollary 5. 11.

Let K be the normalizer of G in Aut T. Then K is finite (cf0 2.
5) so that the ^-invariant Neron-Severi lattice NT of T is non-zero.
Then from the inclusion N$£NT=Z we have Nr = NT. Hence K
also fixes the principal polarization under consideration.

§ 7. Special Pairs for Singular Abelian Surfaces

7. L Singular abelian surfaces are in one-to-one correspondence
with binary positive even lattices via their transcendental lattices
(Shioda-Mitani [23]). On the other hand, by Proposition 6. 12 the
existence of a special action of a finite group © as in 6. 4 on a singular
abelian surface is reduced to the existence of a primitive embedding
of the corresponding binary positive even lattice into L&e By making
the latter condition more precise we can obtain a more detailed descrip-
tion of the special pairs (T,G) with G = ® and with T a singular
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abellan surface*
First, in order to fix notations and terminologies,, and also for the

convenience of the reader we shall summarize the main results of
[23] mentioned above.

a) Let (A, q) be a finite quadratic form group. For any prime
number p let Ap be the p-torsion part of A. Let qP=q\Ap be the

restriction of q to Ap. Then we have the direct sum decomposition
of the quadratic form group (A9 q) = ©p(Ap, qp),

For any integers n^l with ri>\ and with nl even we define the
quadratic form group K^ri) by

Also we define

For simplicity we write K(n) for K^n) and set JS^(1) = ({0},0) for
any ^. Any indecomposable quadratic form group is isomorphic to
one of Kz(pk), Uk and Vk, where p is any prime, (A,p)=l and £^>1
(cf. Nikulin [15]).

Let n be odd and l = n or 2w. Then we have

where s is the number of distinct prime factors of n,
b) Let m be a square-free positive integer. Then we set Km =

Q(^ — m)a Let d=dm be the negative of the discriminant of Km .
Then d is given by

(30) d=4m if m=!3 2 (4), and =m if m = 3 (4).

Define (*)=a)m by (o = ̂ -m if m = l s 2 (4) and =(- l+V-»i) /2 if
m = 3 (4). Then any order o contained in J£m is of the form
Q = Qf:=Z+Zfo) for a unique positive integer /, called the conductor
of 0, A proper o/-ideal is a free Z'-submodule M of Km of rank 2 such
that o/= {aejSrm; aM£M}. Two proper o/-ideals M and M' are said
to be equivalent if there exists an element &^Km such that ®M=M'0
The set of equivalence classes, denoted by «/mi/3has the natural structure



82 AKIRA FUJIKI

of a finite abelian group.
c) Let L be a binary positive even lattice. Let D>0 be the

discriminant of L. Then Q(v—£>) is an imaginary quadratic field
and hence is isomorphic to Km for a unique squarefree positive integer
m = mL . Then we may write

(31) D=df*

for a unique positive integer /, called the conductor of L9 where
d=dm. With respect to any basis we may represent L by a 2x2
integral matrix

<32> (2» *.
with D = 4ac — b2. Let s = G. C. D. (a,b,c). Then s is independent of
the choice of the basis and called the degree of primitivity of L.
We say that L is primitive if 5 = 1. For any L there exists a unique
primitive binary positive even lattice L0 such that

/ Q Q N r ~ r f c\\*JiJj Juzzz±jQ\jJe

In this case we call the conductor /0 of L0 the reduced conductor of L.
Thus to any binary positive even lattice we have associated a triple
of numerical invariants

(01,/o, 5),

by which the conductor / and the discriminant D of L are recovered
respectively by:

(34) /=j/0 and D = d s 2 f l ,

where d is determined by 772 via (30). For a primitive lattice L0 this
reduces to a pair of invariants (m,f).

Let J? (resp. J^Q) be the set of isomorphism classes of binary
positive even lattices (resp. primitive such lattices). Let N be the set
of natural numbers. Then by the isomorphism (33) we have the
natural bijection

(35) J?S

d) Let L, Z/£iJ£Pe Then we say that L and Z/ are in the same
genus if for any prime p the /?-adic lattices L®ZZP and L'^)ZZP are
isomorphic, where Zp is the ring of jfr-adic integers. We call such an
equivalence class a genus. Nikulin [15, 1.9,4] proved the following:
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I) L and Lf are in the same genus If and only If the discriminant
forms of L and L' are isomorphic to each other.

In this connection we also note the following:

li) The Invariant (m, /0, s) of a binary positive even lattice L
depends only on the genus to which L belongs3 i. e., (m, /0, -0 Is an
invariant of a genus.

Proof: For any prime />, the /^-component (Ap, qp) of the discrim-

inant form (A9 q) of L is of one of the following forms: K^ (p p)@

K6k(p
lp), 0^kp^lp, p^29 or V^ or Uk2,l9 k2^2 when^-2 (cf.a)).

In this case s Is simply given by s = 22 H p p
a On the other hand,

p odd

by (26) the discriminant D Is determined by A, Then from the
relations (31) and (34) fQ and m can be recovered from D/s2

0

e) Let m and / be positive integers with m squarefree. Then we
set

<^mj— {oriented primitive binary positive even lattice with Invariant

On,/)}/-,
$m.f~ {elliptic curves E with EndoE^i^ and End E = of}/^-9

where ~~ denotes "up to isomorphisms". Then the following is
classical (cf. e.g. [2, II, §7] and [21, 4.8]).

Proposition 701. There exist natural bijective correspondences among

the three sets &mj , ^mj , and <£ m t f .

We shall briefly recall the correspondences J>mj-^<gm>f and «/"„,/-»
£ mtf . Fix an embedding j:Km< >C. Let C ̂ J f

m > f a Choose a represen-

tative M of C such that M£=$f . Since M®R = C via j, M is given
a natural orientation. On the other hand3 the restriction of the bilinear
form trK /Q (•*:?)? x^y^Km^ on M makes M into a binary positive even

lattice. Then we associate to C 1) the primitive even lattice MQ^£?mtf

associated to M via (33) and 2) the elliptic curve E i—C/MQ^ ffm.f9
where we consider M0^=C via j.

f) (cf. [2, III, §8]) Via the above correspondences =^m>/ Is given
the natural structure of a finite abellan group since «/„./ Is one. It
Is then a classical fact that

1) a genus of binary positive primitive even lattices with Invariant
(m, 1) corresponds to a coset of the quotient group &mil/&

z
nti bijecti-
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vely, where J2*.i= {M2;M(E,Sfmif}. (For any L and L'ejg*,,., it is

known that L and L' are in the same genus if and only if L®Q and

Z/(X)Q are isomorphic over Q.) It is also known that

ii) if t is the number of positive distinct prime factors d, then

&mtl/&
2
mtl is an elementary abelian 2-group of rank t — l.

In particular,

iii) the following conditions are equivalent: 1) There exists a

unique genus of primitive lattices with invariant (m, 1), 2) the class

number of Km is odd and 3) m = l,2, or m is prime with m = 3 (4).

g) For any square-free positive integer m we define the sets £Pm,

< f m ? and 3?m as follows;

£f m— {singular abelian surfaces T with mT = m}/'^9

gm= {elliptic curves E with EndQT^Km}/^,

&m= {oriented binary positive even lattice L with mL=m}/^^^

where ~~ means "up to isomorphisms35 and see Sect. 6 for mT. Then

the following holds.

Theorem (Shioda-Mitani [23]). There exist natural bijective corres-
pondences among the following three sets', 1) £Pm^ 2) §mxN and 3) J^OT5

where N is the set of natural numbers,

We shall briefly recall the correspondences of the theorem.
l)->2). Let Te SPmm Then E '= H2(T, 0 r)/Im H2(T,Z) is an

elliptic curve in gm. Let o/ = End EC=EndQE=Kma Let o// be the
center of End 7". Then o/,£o/ so that / divides /'. Then we
associate to T the pair (E9 /'//).

2)-*l). Let (E,s)^EmxN, Let o/ = End£1. Then E'i=C/ofs

is an elliptic curve with EndE' = ofs. Then we associate to (E9 s)
the singular abelian surface T=ExE',

2)->3). The correspondence is obtained via (35) and Proposition
7.1.

l)->3). To each T^£fm we associate its transcendental lattice BT

with its natural orientation.
3)->l). Let L^&m. Represent L by a 2x2 integral matrix as

in (32) with respect to an oriented base. Then we associate to L the
singular abelian surface



AUTOMORPHISM GROUPS OF COMPLEX TORI 85

(36)

where r=(-* + V-Z>)/2fl and r' = (* + V-Z>)/2.
We note that the second set £ mxN Is not explicit In [23] but

one can deduce the validity of the above correspondences readily from
[239 Prop. 4.5], In particular we see that the presentation (36) of
T as a product of elliptic curves is canonical In the sense that the
elliptic curves are determined intrinsically by TB

78 20 Let T be a singular abelian surface with transcendental lattice
3T . Then we $hall say that T Is with invariant (m9fQ , s) (resp0

primitive) if so is BT (cf. 7. 1, c)). Similarly3 if ^ is a genus of a
binary positive even latticess then we say that T belongs to & if BT

does0

Theorem 7, 2, Let ©=O or S. Let (T,G) be a maximal special
pair with G = ®0 Suppose that T is a singular abelian surface with
invariant ( m 3 f 0 j s ) a Then m3 /0, s satisfy the following conditions;

(I) rn^-l (8), i.*., m=l , 2 (4) or m = 3 (8), (II) /0 u orfrf, and

(III) J = 2 (/" ©=Q and if m = 3 (8); otherwise s=l. Conversely, if
positive integers m^fQ^ s with m square-free satisfy these conditions, then
among all the genera with invariant (m,fQ,s) (cf. 70 1, d)3 II)) there
exists a unique genus & = &mifQiS such that a singular abelian surface T

with invariant (m,fQ , s) admits a maximal special action of © if and only
if T belongs to the genus & ; moreover & is explicitly given via the

corresponding discriminant form (A,q) (cf. 70 1, d) I)) as in Table 16 below.

Corollary 7038 If either m = l^2 or m is a prime with m = 3 (8),
then any primitive singular abelian surface T with invariant (m, 1) always
admits a special action of X.

For Instance E^xE^^ o) = a)m, admits a special action of SC If m
satisfies the above condition. The corollary can also be deduced
directly from a theorem of Steinitz on the structure of a finite torsion-
free module over a Dedekind domain (cf. [17; p. 48]).

Let (m,fQ,s) satisfy the conditions (I) -(ill) of the above theorem,
Let T be a singular abelian surface belonging to the genus ^ = ^m./.*

of the theorem so that T admits a maximal special action of @50 Fix
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such an action and let (!T, G) be the resulting pair0 Let d be the
degree of (T, G) as was defined before Remark 5. 128

Theorem 70 40 1) d depends only on the genus &, and is independent
of T and of the chosen action of ®; indeed d is explicitly given for each
© in Table 16 below, 2) Let t be the number of distinct odd prime
factors of d. Then the number of conjugacy classes of maximal special

subgroups of Aut T which is isomorphic to @5 equals 2 f~1
0

Table 16

©

o

s

m

1 (4)

2 (4)

3 (8)

1 (4)

2 (4)

3 (8)

s

1

1

2

1

1

1

(A,q) corresponding to & m,/0.s

*(2)«e*_i(2)
*<2)©*,(4>e*-40«>

F^-CO

*J,(2)'e*_4(n),;i=(-l)<«'-»'«

^3(4)0^(2)0^^)

^(»)

^

n

2n

n

2n

n

2n

Here in all cases f0 is any positive odd integer and

n = mfl if m is odd and
= 7?2//0 if m=2m' with ^2' odd.

For the notations ^(/) and Vl see 7 e l 5 a ) e 1 (4) above means that
7?z=l (4) etc.

In the case ©=S we have analogously the following:

Theorem 7* 58 L^^ T be a singular abelian surface. Let (A^ q) be the
discriminant form of the transcendental lattice of T. Then a necessary and
sufficient condition for T to admit a special action of S) is that (A, q) is
isomorphic to one of the quadratic form groups listed in Table 17 below',
in particular in this case T is necessarily primitive. Further^ the degree d

of any special pair (T, G) with G = S) is given also in Table 17, The
number of conjugacy classes in Aut T of such groups G is finite.
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Table 17

GU)

K2(V®K_,W «= 1,5(12)

j^ //?\ /T\ gy* /^j^ *| — O A /'fi^

^_6(n) ns7(12)

X(2)©^(2i)©JS"_6a(«) «=(-l)*(8-3^) (24) if A; ^2

A>0,i=l,5 if A>2 ( 1 2 ) i f A = l
= 1 if £ = 1,2

d

n

n/2

3n
!

Remark ?„ 7, 1) As In the cases of £} and 5£ the existence of a
special action of S>, as well as the degree d of a special pair (T, G)
with G = S5 depends only on the genus to which T belongs,, Indeed,
from the above table one can deduce the statements in terms of the
Invariant (m,fQ, s) as in the first part of Theorem 70 2; but it becomes
more complicated in this case so we have omitted it heren

2) Let m be a square-free positive integer. Assume that m —19 2
or Is a prime with 171 = 3,7 (12). Thens similarly to Corollary 70 3
we see that any primitive singular abelian surface with Invariant (m, 1)
admits a special action of SX

Remark 70 8, Each quadratic form group in Tables 16, 17 Is a
discriminant form of a transcendental lattice of some singular abelian
surface. This follows from [15, 1. 10. 1] and the theorem of Shioda-
Mitani

Example 7. 90 The following Is the list of all the singular abelian
surfaces T whose transcendental lattice BT has discriminant Drgl23

in its canonical representation as a product of elliptic curves (cf. 70 1,
g)). We also give I) all the possible non-cyclic groups © acting
maximally and specially on T5 ii) the degree d of (T?G) and Hi)
the number c of conjugacy classes of such groups.



88 AKIRA FUJIKI

Table 18

D

3

4

7

8

11

12

12

T

EpxEp

EiXE;

Et*E,

E*xE*

EvxE9

E*XE*

E,xE*

BT

/O 1\
(* \
VI 2)

(2)2

(? J)
(4)0(2)

(2 \\vi 6;
(6)0(2)

/4 2\
V2 4;

(m,f0,s)

(3, 1, D

d , l ,D

(7,1,1)

(2, 1, D

(11,1,1)

(3,2,1)

(3,1,2)

(A,q)

K2 (3)

#(2)2

jTL_6 (7)

Jf T4) ffiJf (2)

*(1D

if /^\ /T\ IT" /ONA_5(oj y^A^!^^;

^0^(3)

©

T

S>

O

s
®
s>
o.

5E

35

D

5

fi

1

1
2

3

21

2

1

22

1

3

c

1

1

1

1

1

2

1

1

1

1

1

Here f = ^7, ^=<Wn (cf. 7. l ,b ) ) 9 The table should be compared with
Table 5.

The above table can be checked as follows. First of all, from the
relations (30), (34) and Z)^12, we get that the possible values of
(m,/o,j) are exactly those in the above table. Let h(Km)=^Jr

m>l be
the class number of Km. Then h (Km) = I if m takes one of the values
of the table (cf. Table 4 of [2]) and moreover #«/3i2=l as follows
from [25 p. 152]. It follows that for each possible vaule of (m,/05 s)
there exists up to isomorphisms a unique binary positive even lattice
5, which is exhibited in the above table. Moreover, one sees readily
that each such B admits an orientation-reversing automorphism so
that the singular abelian surface T whose transcendental lattice is
isomorphic to B is up to isomorphisms unique. T is then obtained
explicitly by (36). Finally, the values of ©, 5, c are obtained imme-
diately from Theorems 7.2, 7.3, and 7.4, except the values of c
when ©=S), (for which we omit the proof here)0
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7e 3, We shall give the proofs of the above theorems,,

Proof of Theorem 7,2. From Table 16 we first observe the follow-
ing two facts: 1) A quadratic form group is isomorphic to one of
those listed in Table 16 if and only if its invariant satisfies the condi-
tions (i)-(iii) of the theorem, and 2) the quadratic form groups in
the table have different invariants to one another. From these two
facts it follows easily (cf. 7. 1, d)) that the theorem is a consequence
of the following assertion: (A) Let T be a singular abelian surface
with the transcendental lattice BT . Let (A9 q) be the discriminant
form of BT . Then there exists a finite subgroup G of Aut T such
that (T, G) is a maximal special pair if and only if (A9 q) is isomor-
phic to one of the quadratic form groups listed in Table 16. On the
other hand, by Proposition 6. 12, for (A) it suffices to show the next
proposition,,

Proposition 7. 10. Let ©=Q or X (resp. S>). Let B be a binary
positive even lattice* Let (AB , qs) be the discriminant form of B. Then
there exists a primitive embedding j'.B* - »L®( — 1) if and only if qBis
isomorphic to one of the quadratic form groups listed in Table 16 (res p. 17).

For the proof of Proposition 70 10 we need some preliminaries.
Let B be a binary, and L a ternary, positive even lattices, respectively.
Let (AB, qs) and (AL9 qL} be the discriminant forms of B and L9

respectively. Then we consider the quintuples (H9 K, k9 7-, /i) con-
sisting of finite subgroups H of AB9 and K of AL, a positive integer
k9 and isomorphisms of quadratic form groups l".(H9qB\H)-^>(K9qL\K)
and (jt:M-*K(2k)9 where the quadratic form group M is defined as
follows. Let FC-H®K be the graph of j and F-1- the orthogonal
complement of F in AB@AL with respect to the quadratic form
(— qs)®qL- We denote by the same letter (— ̂ B)®^L the quadratic
form induced by it on F^/F. Then we set

Let 2 be the set of such quintuples. Let Et= (Hi9 Ki9 mi9 fi9 //,-),
i= l ,2 , be two quintuples in ^. Then we say that El and E2 are
equivalent to each other if H1 = H2, k1 = k29 and if there exists an

element feO(gL) such that £(Ki)=K29 fo^ft* and t*ii=±pt9 where
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| is the element of O(Af) induced by £. The following is then a

special case of Nikulin [15, 1. 15. 1],

Proposition 7. 11. Suppose that L is uniquely determined by its discrim-

inant form (AL, qL) in the sense that if L' is another ternary positive

even lattice with (AL,,qL,) = (AL,qL)9 then L is isomorphic to L'0 Then

the set of equivalence classes of primitive embeddings of B into L is in

natural bijective correspondences with the set of equivalence classes of

quintuples in 2 as above. Moreover , if a primitive embedding j:B - >L

corresponds to a quintuple (//, K, k, ?, p) in @ , then the orthogonal

complement of j(B) in L is isomorphic to the unary lattice (2k).

Let HQ be any subgroup of AL „ Then we denote by @ H the set

of quintuples (/f, K, k, p, fjt) in ^ such that H=HQo On the other

hand, we consider the following conditions on L (or on AL) : 1) For

any subgroups Kl9 K2 of AL such that the resulting quadratic form

groups (Ki9qL\K^)9 (K2^qL\K^) are isomorphic, there exists an element

?eO(L) such that $(Kl)=K2, and 2) for any subgroup K of AL the

natural homomorphism rK'.Q(qL,K)-*Q(qL\K} is surjective, where

O(?L, K) = {£ eO(?L) ;£ (K) =K}. Then the following is obvious from
the definitions.

Lemma 78 12, Suppose that L satisfies the conditions 1 ) and 2) above,

Let HQ be any subgroup of AL . Fix any element (H0 , K, k, f, ft) of

^HQ> Then any element (//', K', k'9 f, /O of @HQ is equivalent to a

quintuple of the form (H0 , JT, k, 7-, //") . Moreover, two quintuples (H0 ,

K, k, 7, pi) , i = l ,2, are equivalent to each other if and only if there exists

an element f in the kernel of rK such that ^£=

We are interested in the case L = L&( — 1), where we recall L0=^4i,

Lx = Aa and Lto=Ai-LA2. First of all, we get the following lemma by
direct computations (cf. also [15, 13. 1]).

Lemma 7.13. In the notations of 7, 1, a) the discriminant forms of

L.(-l) are given respectively K(2)\ JT3(4), and K_5(6) =K(2)@K2(3)

according as ® = Q5 S and S).

From this we get immediately the following:
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Corollary 7B 14. L9 ( — I ) satisfies the conditions 1 ) and 2) of Lemma
7.12.

Lemma 7« 15. L© ( — 1 ) is uniquely determined by its discriminant form
in the sense of Proposition 1,11,

Proof, By Corollary 6, 5 we know that the primitive embedding
£®c - »£/3 (exists and) is unique. Hence the lemma follows from [15,
1.14.1].

Remark 7,16. A direct proof of Corollary 6, 5 and Lemma 7. 15
without using complex tori is as follows (cf0 Remark 68 6) : First we
consider the case ©=Q so that L.(— 1)=4? and qL = K(2)3, Then
for any ternary positive even lattice C with qc=qL, C(l/2) is a
ternaty positive unimodular lattice,, Hence C( l /2)^( l ) 3 (cf. [16,
106:13]) so that C = A3

L, Hence Lemma 7, 15 is proved in this casee

Since the natural homomorphism O(Al)-*Q(K(2)3) is surjective,
Corollary 6. 5 follows from [15, 1.14.1], For Lz and Ls Corollary
6.5 is an easy consequence of [15, 1.14.6] and the fact that
qLz = qD5 and qL^ = qA^, where D5 and A5 are considered negative root

lattices (cf. [15, 13. 1]). As above this also gives a proof of Lemma
7.15.

Proof of Proposition 7,10, We treat only the case ©=<Q, other
cases being essentially the same. Let L = L&( — 1) in Proposition 7. 11.
By Lemma 7. 15 L certainly satisfies the condition of that proposition.
By Lemma 7, 13 we can identify the discriminant form (AL,qL) with
i£(2)3. Now let E= (H, K, k, j, (i) be any quintuple in 3f considered
up to equivalence. Since K^&\ and H is isomorphic to K, H is
contained in the 2-torsion part A2 of AB, and hence FC-A2@AL;
therefore if F£- is the orthogonal complement of F in A2@AL we
have PL — F^@Af

2 , where ^2 = ©-4^ with Ap the /^-torsion part of AB,
P*2

Hence

(37) r±/r^
Then, since F±/F^&2k, F£/F (and A'2) must be cyclic. Let K=^\,
Q<^b^30 Then b 9^3 as rank B = 2a Moreover, if K± is the orthogonal
complement of K in AL , we have the natural inclusion ^©O' - >F£/F.
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Since K^--^ and Ff/F is cyclic, it follows that £^2; thus b = 2.
Then, after a transformation by a suitable element of O (gL) if neces-
sary we can assume that K coincides with one of the following
quadratic form subgroups a) <el9 e2y = K(2)2, b) <0l9 e2 + e3y = K(2)@

K2(2), and c) <£i-M2? £i + £3>= Vl9 where [ei,e2,e3] is the standard
basis of AL = K(2)3.

Correspondingly, (A2, q2} must contain a quadratic form subgroup
which is isomorphic to: a) #(2)2, b) #(2)0#2(2), c) F1? respectively.
Since (A2, q2) is isomorphic to one of the quadratic form groups
Ki(2k)@Ke(2

l)9 Q^k^l, and Uk9Vh9 k^l (cf.7. l ,a)), we easily
conclude that 1) (A29q2) must be isomorphic to: a) K(2)\ b) K(T)
0^(4), ^=±1, ±5, and c) Vi9 respectively, where in b) the natural
inclusion K2(2)< >Aj(4) induces the subgroup K(2)®K2(2). It then
follows that M2i=(F2-/F9 ( — qB)®qLir±/r) is isomorphic to

(38) a) *(2), b) ^2_,(4), and c) K.,(2)

in respective cases. (Use the fact that by Corollary 7. 14 and Lemma
7. 12 we may take ? to be any isomorphism of Hand K to caluculate
M2.) Write these groups as ^(2J) in general; for instance 7] = l=l in
case a). Let ra be the order of A2 so that we have

(39) k = 2l~ln.

Then we have M^K(2k)^K(2ln)=Kn(2
l)@K2l(n); by comparing this

with (37) we get that M2^Kn(2
l) and (A29 -q'2)^Kj(n). Therefore

(AB9qB) = (A2,q2)@K_j(n) with Kn(20 =^(20, while the last condi-

tion is equivalent to: n = r] (8) (resp. (4)) if 1^2 (resp. =1). From
this we get that (AB,qB) must be isomorphic to one of the following
groups: a) K(2}2@K_2(n) with n=l (4), b) K(2)@K2(2)@K.1(n)
with n = 2-Z (8) and c) Ki0tf-2(/0 with w = 3 (4).

Finally, the fact that (AB,qB) is a discriminant form of the lattice
B imposes additional restrictions on the possible structures of (AB9qB).
In fact, by [15, 1. 10D 1] (the condition 4) there in our case) we
see that in case c) we must have n = 3 (8). (Note that in the cases
SC and 2) this restriction turns out to be much stricter.) Hence
(AB,qB) must be isomorphic to one of the quadratic form groups in
Table 16 for ©=£X

Conversely, if (ABjqB) is isomorphic to one of the quadratic form
groups in Table 16, then from the above arguments one sees readily
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that we can find at least one quintuple (H,K9k9?9 p) in ^0 Hence
by Proposition 7. 11 there exists a primitive embedding j:5c »L.

Proof of Theorem 7. 4. Again we consider only the case ©=OS

the case © = S being similar. Let (T, G) be a maximal special pair
with G=& and with T a singular abelian surfaceB Let BT* *L&( — 1)
be the primitive embedding of the transcendental lattice BT of T into
L.(-l) determined by (T9G) (cf. Proposition 6. 12). Let (H9 K, k,
7-3 //) be the quintuple in 2 corresponding to this embedding (cf.
Proposition 7.11). Then, since the G-invariant Neron-Severi lattice
N$ is given by N$ = B^C=L& by Proposition 5. 9, we have N$= (2k)

by Proposition 7. 11. Hence 8 = k. We then have d = 2l~ln as in (39).
It then follows readily that d depends only on the structure of (AB, qB}

as in Table 16 (in fact on the order of AB) and is as listed in Table
16. This shows 1).

Next we show 2). T determines the binary positive even lattice
with fixed orientation BT, and hence, the finite group AB, Moreover,
as the proof of the previous proposition shows, even the subgroup H
of AB is uniquely determined once AB is fixed, hence depending only
on T, but not on the choice of the maximal special subgroup G£Aut T0

Hence, by Proposition 7. 11 the set of isomorphism classes of maximal
special pairs (T1, GI) with Gi = G is in natural bijective correspondence
with the set of equivalence classes of the quintuples in @H. Further,
by Lemma 7. 12 and Corollary 7. 14 we see that the latter in turn
is identified with the set Jt of isomorphisms (jLiM-*K(2S) with p's

considered modulo the following equivalence ifjf^fji' if and only if
fij = ±JLI' for some element feO(JT(2)3) =@3 which induces the identity
on K^K(2)3 (cf. Lemma 7, 12).

Let M2 be the 2-torsion part of M and M'2 be its orthogonal
complement Then clearly any f as above induces the identity on
M2, and if M2 = K(2) or ^(2) (cf. (38)), also on M2. Hence, under
the latter assumption Jt is in bijective correspondence with the set
O(K(2d) )/< — !>, which is isomorphic as a group to Sg"1, 8 being
odd (cf. Table 16). In case M2=K2_z(4) simple computation shows
that any element of O(M2)=< —1> is induced by some f as above.
Thus Jt is in bijective correspondence with the set O(M/

2)/<^ —1>.
Since M2 is cyclic of (odd) order ^/2S the latter is isomorphic as a
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group again to K^1 (cf. 7. 19 a)).

Proof of Theorem 7. 5. The first assertion follows from Proposition
7. 10. The values of d can be computed essentially the same way as
in the case of O; the detail will be omitted. The finiteness of G
follows from Proposition 7. 11 and the finiteness of the set @.

7.4. a) By using Theorems 7.2 and 7.4 we can give another
proof for Proposition 3. 15. Indeed, generalization to certain non-
principal polarizations is also possible. For instance we have the
following:

Proposition 7.17. Let ©=O (resp. X, resp. S>). Let (T,G) be
a maximal special pair with G = ®. Then T admits a G-invariant polari-
zation of degree <5fg3 if and only if T is isomorphic to one of the singular
abelian surfaces in the table below. Conversely, given a singular abelian
surface T in the table there exists up to isomorphisms a unique "such pair
(T, G). Moreover, in this case the G-invariant polarization is unique and
is invariant also by the normalizer of G in Aut 7".

© T T

o

s

E;xEf

EpxEp

EpxEr3i

EixEi

Proof, We show the first and the second assertions. Since the
case d = l is just Proposition 3. 15, we only consider the cases <5 = 2 or
3. From Tables 16 and 17 we pick up the cases for which *5 = 2 or
3. As a result the possible values of invariants (m,/0, s) turn out
to be as follows: Case <5 = 2: (2, 1, 1) if @ = Q, (1, 1, 1) if © = £, and
(6, 1, 1) if © = ». Case d = 3: (3, 1, 2) if @ = Q, (6, 1, 1) if © = £,
and (1, 1, 1) if © = S). Then in each case the corresponding singular
abelian surface is unique and is isomorphic to one of the singular
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abelian surfaces in Table 18, and hence the assertion is proved, except
for the cases d = 2, ® = S) and 5 = 3, © = $£„ In these cases the discrim-
inant forms are isomorphic respectively to JT_5(6)0^_1(4) and
^3(4)©^(2)©JT_2(3)9 which are indeed isomorphic to the discriminant
form of the lattices (4) ©(6) and (2) ©(12), respectively. Since
A(J£6)=2, these exhaust the positive even lattices with discriminant
24 up to isomorphisms. Then by the same argument as in the proof
of Example 7, 9 we see that in each of these cases T is unique and
is isomorphic to the corresponding singular abelian surface in the
table. The last assertion is proved in the same way as the correspond-
ing one in Proposition 30 15.

b) The groups <Q, !E and S> are characterized as those non-
commutative finite groups which can be realized as a subgroup of
SL(29 KM) for some square-free positive integer m\ the subgroup is
then unique up to conjugacy. More precisely,, by Proposition 50 13,
the following holds true:

© is realized as a subgroup of SL2(JTm) if and only if m^ — I (8)
(resp. m& — l (3)) provided that © = Q or X (resp0 S>).

We consider then the problem as to when © can be realized as a
subgroup of SL2(om), where om is the maximal order of Km and then
would also like to calculate the number of conjugacy classes. Since
SL2(om) is identified with the subgroup of Aut Em X Ea, (D = (*)m, of all
the special automorphisms, the answer is in a sense already contained
in Theorems 7.2 and 70 40 We shall state this only in the case
©=£l or SC. (In the case © = 3), the statement becomes less simple.)

Proposition 7* 18. Write m = 2apl..apS3 where a = Q or I and p{ are

distinct odd primes. Then the necessary and sufficient condition that Q
(resp. 5C) is realized as a subgroup of SL2(om) is that pi=l (4) (resp.
pi=l or 3 (8)) for any i. Moreover, if m satisfies the above condition, then
the number of conjugacy classes under GL2(om) of the maximal finite sub-

groups of SL2(oOT) which are isomorphic to Q (respa S£) equals 2S-1
0 (When

m = 2a we set s=l.)

Proof. As before we consider only the case ©^Q. Fixing an
embedding Km< >C we obtain an elliptic curve Em'=C/om. Set
Tm = EmxEm. Then Aut Tm = GL2(om)0 With respect to this isomorphism
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we can naturally identify the set of eonjugacy classes under GL2(om)
of maximal finite subgroups of SL2(oOT) which is isomorphic to G
with the set of eonjugacy classes of maximal special subgroups of
AutTm. By (36) we see that the transcendental lattice Bm of Tm is

isomorphic to (2)©(2m) if m=l or 2 (4), and to fi 2jh if m = 3 (4),

where k= (m + l)/4^1. Then the corresponding discriminant forms
are given respectively by K(2)2@K2(m) if m=l (4), ^(2)©#,(4)©
K<(1)9 l = m/2, if m = 2 (4), and K2k(m) if m = 3 (4). Comparing this
with Table 16 we see that T admits a maximal special action of O
if and only if either of the following is true; a) m=l (4) and
K.2(m)=K2(m), and b) m = 2 (4) and #_4(0=#4(0. These condi-
tions are reduced to the condition that —1 is a quadratic residue
modulo m and modulo / in cases a) and b) respectively, which in
turn is equivalent to p{=\ (4) for any i. This proves the first part
of the proposition. Since in this case d = m, the second assertion
follows from Theorem 7. 4.

Remark 7. 19. Starting from Proposition 6. 12 and proceeding in
the same way as in 7. 3 we can also obtain the condition for a singular
abelian surface T to admit a special S^-action, k = 4 or 6, in terms
of the discriminant form (AT, qT) of BT. For instance, in case of
®6, the condition is: a) for any prime p with p= — 1 or 5 (12), the
jb-torsion part Ap of AT is cyclic and b) either the 2-torsion part A2

of AT is cyclic or (A29 q2) admits K±1(2) as a direct summand. In
particular, if AT is cyclic, then T always admits a special S6-action.
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