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Finite Automorphism Groups of Complex
Tori of Dimension Two

By

Akira FUJIKI*

§1. Introduction and Summary of Results

Denote by (7, G) a pair consisting of a complex torus 7" and a
finite subgroup of Aut 7, where Aut 7 is the automorphism group
of T as a complex Lie group. Then the purpose of this paper is to
give, in case of dimension 2, a complete classification of such pairs
up to isomorphisms. Here “up to isomorphisms” means that we
consider G modulo conjugacy in Aut 7. Since the body of the paper
is technical and lengthy, we should like here to give a rather detailed
summary of the content of this paper.

First, note that the corresponding result is well-known in the case
of dimension 1. Namely, Aut T is trivial, that is, = {41} except the
cases where T is isomorphic to either of the elliptic curves E; and
E,; and in the latter case Aut 7 is a cyclic group of order 4 and 6
respectively. (Here, and in what follows, we shall use freely the
notations listed after this introduction.) However, in dimension 2, the
result already becomes considerably complicated; for example new
features appear such as the existence of “moduli”, of automorphisms
of infinite order, and of non-algebraic complex tori etc.

To our knowledge, the results obtained so far in this case are as
follows.

a) Bolza in 1888 classified all the pairs (C,g) consisting of a
hyperelliptic curve C of genus 2 and an automorphism g of C (cf.
[13] for a modern presentation). Each of such automorphisms then
induces an automorphism of the associated Jacobian f(C) of C preserv-
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ing the canonical polarization, and vice versa. Later, using this
result, Enriques-Severi [5] classified all the pairs (7,G) as above,
under the assumption that 7=/(C) for some C as above, G preserves
the canoical principal polarization of 7" and that every element of G
preserves any holomorphic 2-form on 7. In our terminology the last
condition is expressed as (7, G) being special (cf. below). Actually
they considered also the case where G is a finite automorphism group
of T as a complex manifold (not necessarily as a Lie group) contain-
ing no translations.

b) Gottschling [8] [9] studied the action of the Siegel modular
group Sp(2,Z) on the Siegel upper half space of degree 2, and
determined the stabilizer group at each point, considered modulo
certain equivalence, which was later made precise by Ueno [25] to
the exact Sp(2, Z)-equivalence. This result is considered as determin-
ing all the pairs (7,G) for which T is a principally polarized
abelian surface (not necessarily Jacobian) and G is the group of all
automorphisms of 7 preserving the polarization.

c) Tokunaga-Yoshida [24] classified all the discrete affine auto-
morphism group 4 of C? which is generated by “reflections” and for
which the quotient C2/4 is compact. This can again be interpreted
as the classification of the pairs (T, G) with G generated by reflections.

d) Yoshihara [27] and Fujiki [6] determined certain special cases
when G is cyclic. In fact our motivation for this paper comes from
[6], where we used such pairs (7,G) to obtain examples of certain
symplectic V-manifolds.

In this paper we shall give exact correspondences between the
above mentioned results and ours (cf. 3.4 and 4.6). For automor-
phisms of abelian surfaces in positive characteristic we refer the reader
to the recent article by Katsura [12].

Now we turn to the detailed description of the results and methods
of this paper. Let (T,G) be a pair with dim T'=2 as above, Then
by considering the induced actions of G on the tangent space of T
at the origin and on the first homology group A=H,(T,Z), we get
two faithful representations f:G—GL,(C) and v:G—GL,(Z) satisfying
the compatibility condition ve~f@f. The conjugacy classes of the
images of G by f and v in GL,(C) and GL,(Z) respectively then
depend only on the isomorphism class of the pair (7,G). We call
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them the complex and the rational representation types of (T,G),
respectively. They are basic invariants of the pair (7,G) which are
invariant under deformations. Indeed, a “moduli space” # (simply
the set of isomorphism classes of the pairs here) of fixed complex
and rational representation types turns out to have a priori a natural
structure of a disjoint union of quotients I"\I# of a homogeneous
complex manifold W by a certain discrete group I' (cf. 2.1,b)).
(Note however that I' may not act on W properly discontinuously,
and hence in general .# has no analytic structure.)

Therefore, it would be natural, first to classify all the possible
compatible complex and rational representation types, next to determine
the structure of moduli spaces .# with fixed complex and rational
representation types as (a union of) quotients I'\W as above -as a
final outcome of our classification each .# actually turns out to be
connected (Theorem 4.7)- and finally to get description of the pairs
belonging to each .# as explicitly as possible.

First, in Section 2 we classify all the possible rational representation
types of pairs (Proposition 2.14) and determine the corresponding
moduli spaces (Proposition 2. 19), except for certain most complicated
cases as explained below. However, instead of dealing directly with
subgroups H of GL,(Z) (as was dene in certain simplést cases in
[61), we rather classify more manageable object, that is, certain
quadruples (4, o, H, M) which (determines and) is determined by
H; namely, here 4 is the @-algebra generated by the elements of H
in M (®), o=ANM,(Z) considered as an order of 4 containing H
in its unit group 0%, and finally M=Z2" considered as an 0-module.
The exceptional cases mentioned above then correspond to the cases
where A= M,(K) for some imaginary quadratic field K. Since a
rational representation type determines uniquely a compatible complex
representation type except for a few simple cases (cf. 2. 8) this already
takes care of the first two steps other than the exceptional cases.
Each member of the resulting moduli spaces will then be made explicit
in the subsequent sections. On the other hand, the exceptional cases
will be classified directly (cf. below). In these cases T is necessarily
a singular abelian surface (cf. 5.1 for the definition) and it turns
out that such exceptional pairs (T,G) are finite in number.

From the viewpoint of complex representation j:G—GL,(C) the
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subgroup Gy:=f"1(SL,(€)) is important. G then normalizes G, and
the quotient G/G, is cyclic of order <6 (cf. Lemma 3.2). In general
we call a pair (T,G) special if G=G,, i.e., f(G)SSL,(C). The
problem is then reduced to the following two steps; to study special
paris (7,G) and then to study the normalizer of G in Aut 7.

Now in Section 3 we classify special pairs. We see easily that the
essential cases are (cf. Lemma 3.3): Case A: G is cyclic of order 4
or 6, and Case B: G is isomorphic to either of the groups £,% or
D (cf. Notations). Moreover, in each case the complex and the
rational representation types are unique. First, in Case A the moduli
space is shown to be a quotient of the total space of the holomorphic
tangent bundle of the complex projective line P! modulo certain discrete
group whose action is not properly discontinuous (Proposition 3.5).
Also the period matrix description of each member will be given
(Proposition 3. 7).

Case B is perhaps the most interesting part of the whole classifica-
tion, corresponding to the case where the @-algebra 4 mentioned
above is a definite quaternion algebra over @. In this case, if we
fix the abstract isomorphism type of the group, the moduli space is
isomorphic to the complex projective line P' (Theorem 3.11). (In
the case G=4LQ, one more trivial component appears corresponding to
the natural inclusion QC%.)

As a typical example we shall describe the construction when G is
isomorphic to the binary tetrahedral group X. We set

F=Q[l,i,j, k1 and a=2Z[1,i,j,¢], t=(+i+j+k)/2.

Then F is a definite quaternion algebra over @ and a is a maximal
order of F consisting of Hurwitz quaternions, whose unit group a* is
isomorphic to T, Next we set

X=[geH;p=—1} =P (cf. (12)).

Then by right multiplications, X parametrizes the complex structures
J(@ of Frp=H=R" and hence on the real torus Fr/a. Then the
left multiplications on Fg induces the action of a* on Fr/a which
commutes with each J(g). In this way we get a holomorphic family
of special pairs (T, G,) with G,=% parametrized by X=P'. Further,
if @ is the normalizer of a* in the unit group F*, then the inner
automorphisms induce the action of a*:=8*/Q*=©,, the symmetric
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group of degree 4, on X and it turns out that V:=X/a*= P! is precisely
the moduli space in this case. The construction is quite the same if
we modify the definitions of F and a also for G= or D.

In the above construction the pairs which correspond to the three
branch points p;,, 1<i<3, on Y of the covering map b6:X—Y are
important. Indeed, general consideration shows (cf. 2.1,b)) that
for the pairs (7,G) not corresponding to these three points G is its
own normalizer in Aut T, while if (7,G) corresponds to one of the
p;, the normalizer N is strictly larger than G, and the resulting pair
(T, N) is an exceptional pair mentioned earlier; further the structure
of the latter can be described explicitly using the above construction
(Proposition 3.13). This reduces the study of exceptional pairs to
the cases where G, is cyclic, which will be treated in Section 4.

We also show that for a special pair (7,G) in Case B, if G
preserves some principal polarization on 7, then (7, G) is isomorphic
to a special pair corresponding to one of the p;. This enables us to
identify part of our classification with that of [5] already mentioned
(cf. Remark 3.18). In fact, we also give in general a classification
of special pairs in the generalized sense as in [5]; namely we allow
G to be a subgroup of the affine automorphism group of T containing
no translations. This needs some extra efforts and occupies the second
half of Section 3.

In Section 4 non-special pairs are classified, and the results are
summarized in Tables 6 through 1l1. The case —1&G is essential,
which we assume now. For the non-exceptional pairs the result is
derived in a more or less straightforward way from the resulis in
Section 2 (Tables 6-8). The groups which occur are either abelian
with at most two generators, or dihedral of order 8 or 12; in the
cyclic case the possible orders of the groups are 2t with 2=<k=6.
On the other hand, the exceptional pairs (7,G) for which G is
maximal in Aut T are exihibited in Table 9; it turns out that there
exist eleven such pairs. Non-maximal exceptional pairs and the pairs
with —1€&G are classified in Tables 10 and 11 respectively.

In the first part of Section 5 we give a result of a classification
of rational endomorphism rings End,7 of complex tori 7" of dimension
2. This also tells us the rough structure of Aut 7 (possibly infinite)
for each T.
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In the rest of the paper we study special pairs more in detail.
Let a(T), 0=<a(T) =2, be the algebraic dimension of T, that is, the
transcendence degree of its meromorphic function field; thus a(7) =2 if
and only if T is an abelian surface. We first observe that if a(7) =1,
any pair (7,G) is necessarily special (Lemma 3.1). Further, when
a(T) =1, the result of the classification of the pairs is simple (Proposi-
tion 3.10). In particular Aut T is cyclic of order 2,4, or 6. This
in turn implies that in the family of special pairs (7, G,) as above
parametrized by X with G,=£, T, or D, we never have a(T) =1 for
any ¢€X. More precisely, (e.g., in case of £ as above), we see
that T, is an abelian surface if and only if there exists a non-zero
real number g such that pg&F, and that in this case 7, is a singular
abelian surface with center K, of End,7, given by K,=Q(u/—1),
and with G-invariant Picard number p¢(7,) =1; otherwise a(7,)=0
and Picard number p(7) =3 (Propositions 5.7 and 35.9).

The problem then arises as to which singular abelian surfaces
actually appear as T, as above. As for this, we show for example
that if KQEQ(\/——_E) for a square-free positive integer m we must
have m# —1 (8), and conversely, for any integer m=0 satisfying this
condition we can find some ¢ as above such that KqEQ(J——m)
(Proposition 5. 13).

In order to get a more definite result, however, first in Section 6
we shall study an interesting relation between special pairs (7T, G)
and root lattices of rank 2 or 3. This relation comes from the consi-
deration of the action of G on the second cohomology group H*(T, Z).
Namely, let H*(T, Z)¢ be the sublattice of G-invariant elements, and
H*(T, Z); its orthogonal complement in H*(7,Z) considered as a
euclidian lattice. Because of the connectedness of the moduli space
Y these depend only on the abstract isomorphism class & of G. In
fact, we show that H?*(T, Z). is isomorphic as a euclidian lattice to
a root lattice Lg of rank 2 or 3 (Theorem 6.4); more precisely,
according as =€, €, Q, T, or D, Ly is the root lattices A% A,
A3, As, A,PA,, which in fact exhaust all the root lattices of rank 2
or 3 up to isomorphisms. (Such isomorphisms will be given explicitly
(cf. 6.6)). This implies that we have the natural primitive embedding
of the Neron-Severi lattice N of 7 into Lg. Then we show, among
others, that the converse of this is also true; namely, if Ny is embed-
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dable as a primitive sublattice in L then there exists a subgroup G
of Aut T such that (7,G) is a special pair with G=® (Theorem
6.9). In Case B this condition is equivalent to: Ny=Lg if a(T) =0,
and to the existence of a primitive embedding of transcendental lattice
By of T into Lg(—1) if T is a singular abelian surface (cf. Proposi-
tion 6.12). For the proof we use the global Torelli theorem for 2-
marked complex tori due to Shioda [22] and the results of Nikulin
[14] [15] concerning the existence and uniqueness of embedding of
lattices.

Recall now that by Shioda-Mitani [23] the isomorphism classes of
singular abelian surfaces are, via their transcendental lattices, in one
to one correspondence with the equivalence classes of oriented binary
positive even lattices. By using this and the results obtained in Sec-
tion 6, we finally obtain in Section 7 a necessary and sufficient
condition for a singular abelian surface to admit a special action of
G(=9,%, or D) in terms of its transcendental lattice (Theorems 7. 2
and 7.5). The condition actually depends only on the discriminant
form of the lattice, and what we actually get is the classification of
those finite quadratic form groups (in terms of the known classification
of such objects (cf. [15])) which can be a discriminant form of a
transcendental lattice of some singular abelian surface 7" such that
(T, G) is a special pair for some subgroup G of Aut 7 with G=G,
Further, in this case we also obtain the number of conjugacy classes
of such G and the degree d=<¢,¢>/2 of (T,G), where +e¢ are the
generators of the G-invariant Neron-Severi lattice N§=Z; for instance
d=1 if and only if G preserves some principal polarization of T
(Theorems 7.4, 7.5). As an illustration we give a table of all the
singular abelian surfaces with discriminant D<12 which admit a
special ®-action (cf. Example 7.9).

Notations and Conventions.

Z ring of rational integers

Q,R,C fields of rational, real, and complex numbers

H real quaternion division algebra with standard R-basis
Li, 5,k

C*=C—{0}, H*=H-{0}
em=exp(@n{—1/m), i=e=V—1, p=e=(1+V—3)/2
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cyclic group of order m

dihedral group of order 2k
quaternion group

binary tetrahedral group (order 24)
binary dihedral group of order 12

fKovrapp A

symmetric group of degree %
A, alternating group of degree &
{a, b,...» group generated by a4,b,...
m=n() m=n modulo I, m,nlcZ

E, elliptic curve with period (1, p); E,=C/(Z+Zp)
For a ring R
R* group of units of R

M,(R) full matrix ring of degree £ with coefficients in R
GL,(R) group of invertible £ Xk matrices with coefficinets in R

(a,)  diagonal matrix (g 2) in My(R)
[a,b] anti-diagonal matrix (2 g) in M,(R)

For groups H and K
MX submodule of K-invariant elements of a K-module M
KXH, HXK semi-direct product of H by XK

For any Z-module M and any homomorphism 2: M—N of Z-modules

Mr=MQzR, 2z=2Q:R:Mp—Np.

Mr=M®  Kr'=KX...XK (n times)

T complex torus of dimension 2, considered as a complex
Lie group with origin o&€T

Aut7T  automorphims group of 7" (as a complex Lie group)

—1 element of Aut 7T defined by (—1)(z) =—z, z€T

EndT  endomorphism ring of T

End,T=End TQA rational endomorphism ring of T

(T,G)  pair consisting of a complex torus 7 as above and a
finite subgroup G of Aut7 with G+ {l}.

We call any such pair simply a pair. Two pairs (7,G) and (T7,G’)
are said to be isomorphic if there exists an isomorphism u:T—T’ of
complex Lie groups such that G'=uGu™ in Aut T".

If E is the tangent space of T at o and A=H,(7T, Z), we have the
natural identification
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(%) T=E/A.

This induces two faithful representations /:G—GL(E) and v:G—GL (4),
called respectively the complex and rational representations associated to
the pair (7,G).

N7 Neron-Severi lattice of T :=Image of ¢;: H*(T, 0})—H*(T,Z) B;
transcendental lattice of T :=N#% in H*(T, Z) (cf. §6)

p(T) Picard number of T :=rank;Nz.

Here a lattice, or more precisely, a euclidian lattice is a free Z-
module L of finite rank endowed with a Z-valued nondegenerate
symmetric bilinear form {, >: LXL—Z. <, > is called the inner
product of L.

Other general notations can also be found before Proposition 2,17,
after Table 4, and in 4. 1.

8§2. Moduli Space of Fixed Rational Representation Type

2.1, a) As is well-known, the moduli space for complex tori does
not exist as an analytic space. To remedy this situation one usually
consider the marking.

Let 7 be a complex torus of dimension two. Let T=E/4 be as
in (x), where A=H,(T,Z). Then we get a canonical real linear
isomorphism 2A: Ag—E. Let A°=Z*  Then a marking of T is an
isomorphism ¢: A—>4° of Z-modules, and a marked torus is a pair
(T, ¢) consisting of a complex torus of dimension 2 and a marking
¢ of T. We define the isomorphisms of two marked tori in the obvious
way. Let W be the set of isomorphism classes of marked tori (7, ¢). Let
ix be the multiplication by Y—1 on E. Then any marked complex torus
(T, ¢) defines a complex structure J on Ay by J= (¢rd™)ix(¢ei™) ™
(Recall that a complex structure on Ay is an endomorphism J of
Ay with J2= —id £, .) Moreover the correspondence (7T, ¢)—J sets up

a bijective correspondence between the set W and the set of complex
structures on Ax. So in what follows we shall make the identifica-
tion;

Y W= {complex structure on Ag}.

In particular W has the natural structure of a homogeneous complex
manifold (cf. e.g. [1]):
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W=GL,(R)/GL,(C).

(A homogeneous complex manifold X=H/K is a complex manifold X on
which a real Lie group H acts biholomorphically and transitively with
K the stabilizer at some point.) Then GL,(Z) acts on W via the
natural inclusion GL,(Z)——GL,(R). Explicitly, the action takes the
form (T, ¢)— (T, h¢), or with respect to the identification (1), the
form J—hJh™Y, heGL,(Z).

On the other hand, W parametrizes the universal family U= (&:7
—W, ¢:RiwyZ—->W XA4°) of marked complex tori, where Rj@Z is the
local system with fiber Hy(@™!(p), Z),p=W. The action of GL,(Z)
on W defined above lifts naturally to the action on the universal
family, i.e., to the action on J making @ equivariant,

b) Now we consider an analogue of the above construction in the
case of pairs. Let (7,G) be a pair. Let H be any finite subgroup
of GL,(Z). Then a marking ¢ of type H of (T,G) is a marking
¢:4—4° of T as in a) such that ¢ (G):={¢gy';g=G} =H. In this
case the triple (7,G;¢) is called a marked pair of type H. The
isomorphisms of two marked pairs of type H are defined in the obvious
way. Let

Wy= {marked torus of type H}/=.

Then Wy is naturally a subset of W and with respect to the identifi-
cation (1) it is given by

Wy={JeW;Jh=L], VhEH]}.

Namely Wy is the fixed point set of H if we let H act on W via
the inclusion HSGL,(Z). In particular Wy is a complex submanifold
of W.

Let @y:J y—>Wy be the restriction of the universal family a: 7 —->W
to Wy Then the induced action of H on J 4 preserves each fiber
Ty=w"1(p), pEWy, so that we have the natural embedding ¢,: H—>
Aut T, Let G, be the image of this embedding. Then

©)) Up={(Ty, Gy, ¢} PEW
is considered as the universal family of marked pairs of type H

parametrized by Wy, where ¢,:H (T, Z)—A4° is induced by ¢.
Let (T,G) be a pair. If there exists a marking ¢ of (7,G) of
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type H, then the conjugacy class (H) of H in GL,(Z) is independent
of ¢ and depends only on (7,G). We call (H) the rational represen-
tation type of (T,G). Let

M= {(T, G); of rational representation type (H)}/=;

namely, .# g is the moduli space of pairs of fixed rational representa-
tion type (H). Let ny:Wy— 4 m be the natural surjection. Let
Ny be the normalizer of H in GL,(Z). Then the induced action of
Ny on W leaves Wy invariant and ny induces the natural bijection

N\Wy= M .

Via this bijection # 4, has the natural quotient topology and, further,
if Ny acts properly discontinuously on Wy, # even has the natural
structure of a normal analytic space. In fact, the isomorphism class
of Wy as a complex manifold depends only on the conjugacy class
(H) but not on the particular choice of H. The action Ny on Wy
lifts naturally to an effective action on the universal family I z—Wj
inducing the “universal action” of HEN on J 4. Therefore if p is
any point of Wy and N, is the stabilizer at p in Ny we have the
natural embedding ¢,: Ny——>Aut T, inducing the embedding ¢,: H—>
Aut T, defined above. Thus if N(p) is the normalizer of G, in Aut T,
then we have the natural identification

N(p) =i6,(Ny).

2.2, In view of 2.1, in order to determine the structure of the
moduli space of pairs in general, we have: 1) to determine all finite
subgroups H of GL,(Z) up to conjugacy for which Wy+ @, and then
2) for any such subgroup H, to calculate the normalizer N; of H in
GL,(Z) and to give a description of Wy as a complex manifold.

For the first purpose it is convenient to pass from H to another
object, a certain quadruple, which is more manageable than H itself.
Namely we observe that any subgroup A of GL,(Z) as above deter-
mines a quadruple Fy:=(4, 0, H, M) as follows; A is the -subalgebra
of M,(®)) generated by the elements of H, 0=4ANM,(Z), and M=4°,
Then we see that 1) 4 is a finite semisimple @-algebra as the homo-
morphic image of the group algebra of H over @, 2) 0 is an order
of 4, i.e., it is a Z-subalgebra of finite Z-rank in 4 with 0=4 and
l€o, 3) H is a subgroup of the unit group 0* of 0, 4) 0= {ac4;



12 AKIRA FUJIKI

aMZ M}, where we consider M as a submodule of the A-module
Mg, and finally, 5) any element of Wy commutes with elements of
A as an endomorphism of M.

In view of this we shall consider such quadruples in general.
Namely we consider the quadruples

F=(A’0,H’M)!

where 4 is a finite semisimple @-algbera, 0 is an order of 4, His a
finite subgroup of 0* and M is a faithful 0-module which is at the
same time a free Z-module of rank 4, and they are required to
fulfill the following conditions:

QI) A is generated by the elements of H as a @Q-algebra,
Q2) there exists a complex structure J on My which centralizes
ASEndyMg, and
03) o={acsd;aMZ M}.
Further for technical reason we also require the following:
04) —1€H (cf. Remark 2.2 below).

Two such quadruples (4,0, H, M) and (4’,0, H’, M’) are said
to be isomorphic if there exists an isomorphism u: M—M’ of Z-modules
such that the induced homomorphism u,:EndgMe—EndeMg sends
the triple (4,0, H) onto the triple (4’,0’, H’) with respect to the
natural inclusions HES0C ACEndqM, and H'C o' S A'CEndgMy.

Now we denote by 2 the set of quadruples as above and by 2
the set of isomorphism classes of quadruples in 2. Then the quadru-
ple Fy determined by HSGL,(Z) as above is naturally considered
as an element of 2. For any quadruple F in 2 we define the
normalizer Ny of F by

Ny={gEAut,M;gdg'=A, gog'=0, gHg'=H]}.

We also define the set Wi by the set of all Ag-linear complex structures
on MR;

WF= UEEndARMR;JZ= —idMR}'

Up to isomorphisms Nr and Wy depend only on the isomorphism class
of F. From the definitions the following is immediate to see.

Lemma 2.1. The above correspondence H—Fy sets up a natural
bijective correspondence between a) the set H# of finite subgroups H of
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GL,(Z) with —1€H and with Wy+ @, and b) the set 2 of quadruples
as defined above; it also induces one between a)’ the set of conjugacy classes
of the groups in # and b)' the set 2 of isomorphism classes of quadruples
in 2. Under the first correspondence the normalizer Ny of H in GL,(Z)
and the normalizer Ny of F defined above (resp. the set of complex struc-
tures Wy and Wy) are naturally identified (up to isomorphisms). In
particular we have the natural identification M= Mr=N\W5, where
F=Fy.

Remark 2.2. The condition —1&H corresponds to considering
only those pairs (7T, G) with —1&€G. In fact, any pair (7,G’) with
—1€&G’, gives rise cannonically to the pair (7,G) with —1&G by
setting G=<(G’, —1), and in this way the classification of such pairs
are readily deduced from that of pairs with —1&G (cf. 4. 4).

Definition. Let (7,G) be a pair with —1=G. Let (H) be the
rational representation type of (7,G). Then any quadruple in 2
whose isomorphism class in 2 corresponds to the class (H) in the

correspondence of Lemma 2.1 will be called a quadruple associated io

(T, G).

Let F= (4, o, H, M) be a quadruple in 2. Via the identification
of Wy with Wy in Lemma 2.1 we can put on W  the natural
structure of a complex manifold. Moreover the universal family (2)
gives rise to a holomorphic family

3) Ur= {(Tp, Gp)}pEWF

of pairs parametrized by Wy, where we have neglected the marking
¢,. We call Uy the holomorphic family associated to F (parametrized
by Wy). In view of the universality of (2) and Lemma 2.1 the
following lemma is obvious.

Lemma 2.3. Let F be as above. Then for any pair (T,G) with the
associated quadruple isomorphic to F, there exists a point p of Wy such
that (T, G) is isomorphic to (T4, G,). Moreover for p, p’EWr, (T, G,)
and (T, Gy) are isomorphic if and only if there exists an element y of
Np such that p=y(p’).
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2.3. In view of 2.2 our first task should be the classification of the
quadruples (4, o, H, M) in 2, which will eventually be summarized
in Proposition 2. 14 below.

a) We start with the determination of the structure of A.

Lemma 2.4. Let (4, o, H, M) be a quadruple in 2. Then one of
the following is true: 1) A is commutative; more precisely, A is a field of
degree <4 or a direct sum of two fields of degree<2, 2) A is a quaternion
algebra over @, and 3) A=M,(K) for some imaginary quadratic field K.

Proof. Let A=4,P...@D4; be a direct sum decomposition of A
into simple factors 4;, Write 1=¢,+... 4+¢, with ¢,€4;. Let V=M,
and V;=¢;V. Then we have the direct sum decomposition V=V,P...
@V, and the natural embeddings 4,——End V;. Let J be as in 02).
Then, since J commutes with ¢, V;p are J-invariant and hence of
even dimension over R. Thus £<2 and if the equality holds, we
have dimgV;=2 so that 4, is a field of degree<2. Suppose then that
k=1, i.e, 4 is simple. If 4 is a division algebra, then V is a vector
space over A so that rankeAd<4. Thus 4 belongs to the cases 1) or
2). Suppose that 4 is not a division algebra so that A=AM,(K) for

some division algebra K over @. Write 1=e¢,+¢, with €1=<(l) 8) and
ez-—'(g ?) Then again we have V=V,@V, with V;=¢,V and with
V.r J-invariant. In particular V, has a natural complex structure.
Then K can be embedded both in End V; and in End¢V; ,=C. It

follows that K is an imaginary quadratic field if K#@. The lemma
is proved.

b) Next, in Lemmas 2.5, 2.7 and 2. 10 below we shall give the
possible types of (4, o, H) for quadruples (4, o, H, M) in 2, in
case rankqd=4, i.e., 4 is either commutative or is a quaternion
algebra over @. We define two such triples (4, o, H) and (4’, 9,
H'’) to be isomorphic if there exists an algebra isomorphism u:4—A4’
such that u(0) =0’ and u(H) =H'.

bl) First we consider the case where 4 is commutative. For
the statement of the result we need some definitions and notation: 8
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denotes the maximal order of 4. Then 87 denotes the subgroups of
elements of finite order in the unit group 8*. Let m=1,2 or 3.
Then we set

R.=Z[e;n). (Ri=2Z2.)
Then if A=Q(e;,) PR (), we have =R,PR,. Let F,=Z/mZ,

considered as a finite field. Denote by 4 the diagonal in general.
When 4=QP& (¢sn), m=2,3 we define

8,=p1(d)
where p:3=ZPR,—Z/mZPR,/ (1 +e¢,,) R,=F? is the natural projec-
tion. When A=@(e,,)?% we define

0,=p7*(4) and 0,=p""1(4),
where

p:3=R:—-5/(1+e,,)0=F%, m=2,3,
and
p'0=R:—5/20= (R,/2R,)? 1=m<3,

are the natural projections.

Lemma 2.5. Let (A4, 9, H, M) be a quadruple in 2 with A commu-
tative. Then (A4, 9, H) is isomorphic to one of the following triples:
(Q(ezm), D, 0%), 1=m=6, (@, o, 3*), 0=9, o, (QDR®, o, 3*), 0=
8, 0,, (@DR(), 8, 3), @DQ(0), 0, 65), 0=5, 85, (@)? o, §%),
0=38, 0, (R(D? 8, 0°), 0=0, 0, 0, (Q(0)% 8, ), @(p)? 0, 05),
0=3, 05 (Q(p)% o, 05°), 0=8, 05, (Q()DR(p), B, 6%).

Proof. By Lemma 2.4 A=K or K\@K,, where K and K; are fields
of degree d<4 and d;<2 respectively. Since A is generated by
elements of finite order, X and K; must be cyclotomic fields. From
these, the assertion on A follows.

Now suppose first that 4=@(¢;,). If 0 is not the maximal order,
then H contains neither a primitive 2m~th root of unity nor its minus,
so that Z-rank of 0<2, a contradiction. Thus 0 is the maximal order
of A. Similarly, H must contain a primitive 2m-th root of unity;
hence H=357%.

Next suppose that 4=@(e;,) DR (e;,) with 1=m=n=<3. We first
enumerate the subgroups H of 5*=€¢,, X€,, which generate 4 as @-
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algebras; they are one of the following: 1) 3%, 2) <{(—=1,0)>C
QDQ(p), 3) Hy=<{—-1, (i, D), (1,p)>SR(W? 4 H,={({, £1),
(Cams €20) YSQe2)% 5) (1, £1), (% 0™ >CQ(p)?. Here Hj and the
group in 5) are transformed to each other by the complex conjugation
on the second factor. So we may omit the case 3) from our
consideration. We next determine for each group H as above the
order 0 of A generated by H. The resulting triples (4,09, H) are
as follows: (@, 0;,8"), (@DPR®), 0, 5), (@DE(p), 8,5), (@DR(0),
85, <(—1,0)3), @)% 05 5°), @(ezn)% 9, Hy), m=2,3, (@(0)?% 3, 05%),
(Q(p)% 04 H3), (QG)DPR(p), 8,5%). Moreover in all the cases we
have H=0%, the unit group of 0. From this, together with the fact
that 9,0, 0, (resp. 8,0,) are unique orders in A containing 0,
(resp. 8,), the lemma follows immediately in this case also.
g. e. d.

b2) Next we consider the case of a definite quaternion algebra.
Let H be the real quaternion division algebra over R with the ‘standard
basis 1, 7, j, k. We set

“4) F=Q[l,i,j, k1, a=2Z[1,i,j,¢], a&=2Z[1,i,j, k]
F'=Q[1,i,V3j,V3k], b=2Z[1,i,h,[]

where
t=(1+i+j+k) /2, h=G+V3))/2, I=(1+V3k)/2.

Then F and F’ are definite quaternion algebras over @, and a,
and b are orders of F and F’ respectively.

Lemma 2.6. 1) a and b are maximal orders of F and F’ respectively.
2) The orders of F which contain &y are just &y and a. 3) The groups
of units of these orders are given respectively by

ay={=£l, i, +j, £k}
a*={+£1, &i, £j, (£l+itj+k)/2}
b*= {1, +i, +h, +1, +ih, +il}

I
vap

Proof. See e.g., Dickson [4]: p.172, Satz | for 1) and 2), and
p. 182 (20) and p.192 (28) for 3).
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Lemma 2.7. Let (4,0, H, M) be a quadruple in 2. Suppose that
A is a definite quaternion algebra. Then (A, o, H) is isomorphic to one
of the following triples; 1) (F,a,a%), 2) (F,a,0a8), 3) (F,a,a3) and
4) (F’,0,b%).

Proof. H is not commutative since 4 is not. Let § be any maximal
order containing 0. Since 3 contains the noncyclic group H, it follows
that A=F or F’; moreover the maximal orders of A are conjugate
to each other (cf. Vignera [26], p. 145, Prop. 3.1 and p.26, Cor.
4.11). Hence we may assume that the above isomorphism sends 9
onto a or b respectively. Then H, being noncyclic, must be isomorphic
to T or Q (resp. ) if A=F (resp. F’). This, combined with Lemma
2.6, gives the lemma immediately,

In passing we note also the following fact (cf. Vignera [26], I. 3. 1)
for later use.

Lemma 2.8. Let &%, 8 (resp. %) be the normalizer of a*, af (resp.
6*) in F* (resp. F'*). Then we have &*=a=<@%, a%, 147>, and
*={@%, 0%, V3+kD.

Let FY¥ (resp. F1*) be the multiplicative group of elements of unit
norm of F (resp. F’). Then it follows from the above lemma that
- &N Fr=ay NFr=<a*, (14+i)//2>=9O, and

N Fr =%, (3+k)/2>=D

where O is the binary octahedral group and 9 is the binary dihedral
group of order 24.

b3) Finally we consider the case of indefinite quaternion algebras.
We take the following presentation of the dihedral group ®, of order
2k; D= {o,7;0*=7*=1,76t=0""}. For k=4,6 we define the subgroup
D, of GL,(Z) isomorphic to D, by:

Bale=(3 ) o=(_3 3)
De(e=(Y o) o=(} 71)-

We note that such realization of ®, is unique up to conjugations in

(6)
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GL,(Z). Let a,, k=4,6, be the orders of M,(@) generated by the
elements of D,. Then a, are free Z-modules of rank 4 with free
bases given respectively by

a(o 1) (0-1) @ o) (-1 0)
w( 1) 07 (o) (1)

smal(} ]

the a,~module generated by <(1) 6), also is an order of M,(@). From

™

Then

(7) we have

a, {(“ Z)EMZ(Z);aEd, 650(2)}

4

®  a={

)
a5={(“ Z)EMZ(Z);a—I—b‘:‘c-}—d (3)}

c

EMy(Z); atbtct+d=0 (2)}

and
) { 2M,(Z) Sa,Sai S My(Z)

3M,(Z) SasS My (Z).

Lemma 2.9. Let b,, k=4 or 6, be an order of M,(@Q) between a,
and M,(Z). Then b,=a, a; or My(Z) and b;=a5 or M,(Z).

Proof. Let m=k/2. By (9) the problem is reduced to determining
the subalgebras of M,(F,)=M,(Z)/mM,(Z) containing the image
@ of @, Since dimp @ =3 we have by=a; or M,(Z). On the other

hand, &4=F2[<(1) 6)] and then direct computation shows the desired

assertion.

Using this we shall obtain the following:

Lemma 2.10. Let (4, o, H, M) be a quadruple in 2. Suppose that
A is an indefinite quaternion algebra over Q. Then (A, o, H) is isomorphic
to one of the following triples; 1) (M,(Q), M,(Z), D)), 2) (M,@),
o, D, 3) (M:Q), 0, D), 4) (M @), My(2), D), 5) (My(Q), 65, Dy).
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Proof. Consider H as a finite subgroup of GL,(R)=A4} and
hence 4 as a finite §@-subalgebra of M,(R)=A,. Then we see that
H is either cyclic or dihedral. H is not commutative since 4 is not.
Hence H is dihedral. Moreover since the trace of any element of H
is in @, it has order <6, #5. Thus H is isomorphic to D, or to D
After conjugation in GL,(B) we may assume that H is realized in
M,(Z) as in (6) since D, embedded in GL,(R) are conjugate to each
other. This then implies that 4 coincides with M,(®). Fix a maximal
order & of M,(@) which contains H. Since the maximal order of
M,(®) are conjugate to each other (cf. [26], p. 28, 4.2), after conjuga-
tion in M,(@) we may further assume that 3=M,(Z). Even after
this, by the conjugacy equivalence of realizations of ®, in GL,(Z)
mentioned above, we may assume that H is realized in M,(Z) as in
(6). Then the lemma follows from Lemma 2.9.

Analogously to Lemma 2.8, we get by direct computations the
following:

Lemma 2, 11. Let a4=<—i i) and a(,:(_é _%> Then the nor-

malizer D, of Dy, k=4,6, in GL,(Q) are given by ﬁk=<@x, ﬁk,ak>.

2.4. We shall finally deal with M. Let (4,0, H, M) be a quadruple
in 2. A lattice 4in 4, i. e., a free Z-submodule of 4 with 4y=A4,
is called a proper o-ideal if o= {acA; adCA}. It is called principal
if 4=0¢ for some element §€A4. First we show the following:

Lemma 2.12. Let (A, o0, H, M) be a quadruple in 2.  Assume
that rankqA=2 or 4. Then any proper o-ideal of A is principal except
the cases 0=0;.

Proof. Suppose first that o is a maximal order of 4. We then
have to distinguish four cases according to the structure of A: 1)
Qerm), 1=m=6, 2) Q(ez,) PR(ez), l=m=n<3, 3) For F/, and 4)
M;(@). In the cases 1), 3) and 4) the result is well-known. (See,
e.g., Hasse [10], p.594 for the case 1), [26], p. 145, Prop.3.1 for 3)
and [26], p.28, 4.2 for 4).) In the case 2) let 4 be any proper §-
ideal of 4. Since ¢:=(1,0) and e¢,= (0,1) are in 9, it follows



20 AKIRA FUJIKI

that 4 is the direct sum A=4,P4, with 4,=e;4; further each 4; is a
fractional ideal of K;, which is principal in K; as we have noted
above. Thus 4 also is principal.

So we may assume that o0 is not a maximal order with o+#9;. The
cases to be considered are: (4,0)= 1) @(em)% 0n), m=2,3, 2)
@Q(p)? 03), 3) (F, @), 4) (M;(@),0) with o=aqa, a;or a;. In view
of (4) and (9) we have the canonical inclusion o0——3 of o into a
maximal order & of 4 (which is of course unique if 4 is commutative);
further we can find a nonzero element « in the center of § such that
adCSoCd; we may indeed take a:= 1) 1+4e,,, 2) 2, 3) 2 and 4) 2
or 3, in respective cases. Let 0=0/ad and 0=o0/ad. These are finite
C-algebras.

Now let 4 be any proper o-ideal of 4. Let A=84. Then 4 is a
(proper) d-ideal and we have aACACSA. As we have seen above, 4
is principal; so we may assume that /=3 and hence that adSAS3.
Then 4 defines an d-submodule 4 of 8 such that the natural inclusion
p—b,:={a€d;aAC A} is the identity. Thus it suffices first to classify
all such d-modules 4 and then for each such 4 to show that its
inverse image 4 in o is either principal or is not a proper o-ideal.
First, in cases 1) and 2) the desired result follows from the following
observations: 0= (R,/aR,)? and d its diagonal, where R,/aR,=F, in
case 1), and in case 2) R,/2R,=C[X]/(1+X)? and Ry/2R,=F,.

In case 3) we see that the unique possibility for 4 other than a,
is the ay-module {a-+bi+¢j+dk; a=b, c=d (2)}. But then d=a,(1+17)
and hence is principal as desired. Finally, consider the case 4). In
this case we have 3=M,(Z). First we take 0=aqa,. Set o’=aj;and
9'=0’/28. Then, up to right multiplication by elements of § the
9-modules contained in 0 are one of the following:

i=((0 o)) 4=(0 o}( D) #=(G 0}© D)
A,=0, A=0"
Let 4, be the inverse images of 4, in 8. Then we have 4 =0'a, (cf.
Lemma 2.11) and hence 4; is o’-principal; 4, is an M,(Z)-module
and hence it is neither proper o-nor o’-ideal. The same is also true
for 4, since (a/2)4;C4,. This proves the desired assertion in this
case. The case o=a; is treated similarly and will be omitted.
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Lemma 2.13. Let (4, o, H, M) be a quadruple in 2. 1) If
rankqAd=2 or 4, then M is a free o-module except the case o=o0;. If
0=0y, then M is either free or isomorphic to the direct sum 0;@PD3 as o0j-
modules.  2) If A=QPDR((ezn), and hence if 0=ZPDR,,, M is o-isomorphic
to Z*@Po, where (a,b) €0 with a€Z and bER,, acts on the Z*-factor by
the multiplication by a.

Progf. When rankqd =4, we have an isomorphism w:4—Mgy of
A-modules. Let 4=w™(M). Then by Q3) 4 is a proper o-ideal of
A4, and hence is free by Lemma 2. 12. It follows that M also is free.
If rankg4=2 and 4 is a field, then o is a principal ideal domain
by Lemma 2.12 so that M is again free. The remaining cases
are: 1) A=@? 0=35, 0}, and 2) A=QPR(e,;n).

Let & be the maximal order of 4. Then 5 is the direct sum
8=0,Po,, where o; is the maximal order of the i-th factor of A4.
Accordingly, M:=3M (C Mg) becomes a direct sum M=M,@M,, where
M;=22 if 0,=7 and M,=0; otherwise. Hence if 0=3, M is just as
claimed. The cases 0+#3, namely the cases 0=0; or §,,, can be treated
analogously as in the proof of the previous lemma in the case of
non-maximal orders; so we leave the detail to the reader.

Summarizing what we have proved so far, we get the following:

Proposition 2.14. Under the previous notations any quadruple (A4, o,
H, M) with rankeA=<4 in 2 is isomorphic io one of the quadruples listed
in the following table.

Table 1
No. A 0 H M
|
@ (ezm) " S 0°
1 (1=m<6) 0 07=Cam (s=4/ranke4)
A 2
2 eoe ° 0", xG, °
2/ 0; 0%, 035
3 QAR ) 9,0, *=E,x¢, YA
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4 90 =, x €
QDR (p) Z:Po

5 57 63 6;5@5
6 8, 0, 3*=C,xE,

QGE)DR() 0
7 0, 0y 0, 0,°=C,x¢,
8 i) X =€ x €
9 Q(p) DR (p) B, 04 05 =@, X C; 0
10 9, 0 05" =€, x &
11 QDR (p 0 =€, xE 0
12 a, ag =0

F
13 a ‘=g
14 F’ b =D 0
15 l M,(Z),a, a; D4§®4
M,@Q) _

16 My(Z), as D=

We note that by Lemma 2.1 the table is also considered as
classifying the rational representation types of pairs (7,G) with
—1€&€G, under the assumption that ranked <4.

2.5. We next study the structure of the normalizer N= Ny of any
quadruple F=(4, o, H, M) in 2. For any such F we denote by
N the group of algebra automorphisms of 4 which leave o and H
invariant. First we determine the structure of Np.

Proposition 2.15. Let G, be the Galois group of Q(eyn) over @.
Let 4,, be the diagonal of G,XG,. Let t, be the involution of @Q(ey,)?
which interchanges the two factors. Then for each quadruple F in Table
1 the corresponding group Ny defined above is given in the following table.
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Table 2
No.of F in Table 1 N-
1 GmE@(o(Zm)
2, 27 (=6,
3-5 {e} XG,=G6,
6-9, 10 with o+0; (G X Gp) X<>=D,
10 With 0=0; A3><]<Z‘3>E@ZE@2X@2
11 G.%xG,=E,XE,
12,13 o, A+ N2/ {£1} =0/ {£1} =6,
14 6%, (V3+k) /2>/{£1} =D/ {1} =D
15 0=M,(Z) D,/ {+1} =9,
o=a, a; <E49 a4/J§>/{:t 11 =9,
16 0=M,(Z) ﬁs/{ﬂ:l} =9,
0=a; Dy, as/NB>/ {21} =D

In Nos. 12-16 the elements act on 4 by inner automorphisms,

Proof. Except for 12-16 the assertion is almost trivial. For 12-14
see Lemma 2.8 and (5). For 15 and 16 the result follows from Lemma

2.11 in view of the fact that @, (resp.a;) normalizes a, a; (resp. as),
but not M,(Z).

Let N=N; and N=N; be as above. We then have the natural
homomorphism f: N—N, whose kernel is identified with AutoM, the
group of o-linear automorphisms of M. Suppose first that M is a
free o-module 0%, s=1. AuteM=GL,(0)*® and we can define the Z-
linear action of N on M by
(10) hay,...,a)=(h(a),..., h(a)), hEN, a;E0;
then for e =0 we have A(ah™(a;)) =h(a)a;. Hence we get the natural
embedding N——N and the semidirect product decomposition

(1) N=AutoMXN.

*) In the noncommutative case we always have s=1, and GL,(0) =0* acts on M=bo by right
multiplication.
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Next, in the case (4, o, M)=(Q? o;, 0;P3) we have the natural
embedding M——5? and the automorphism of 3? defined by (10) leaves
M invariant. Hence we have again the natural embedding N—Aut, M
and (11) holds in this case also. Finally in the case (4, o, M) =
QPR (e3), ZD0) (cf. Lemma 2.13) we get the natural embedding
M=2*@o—>Z*PR,, and the action of N:=G,, on Z*PR,, defined by
h(a,b) = (a, hb), acZ? bER,, hEeG,, leaves Z*Po invariant. Hence

in this case also we have the natural embedding N—>Aut;M and (11)

holds true. Let ﬁo(m)={(j z,)EGLz(Z);aEl, ¢=0 (m)}, where

m=2,3. Then we easily obtain the following:

Lemma 2.16. Let F be any quadruple in 2 with rankgA<4. Let
N=N; and N=N; be as above. Then there exists a natural embedding
N——N and with respect to this embedding N is naturally a semidirect product
N=AutoeMX|N. Here the structure of AutoM is up to isomorphisms
given as follows; 1) GL(0) if M=0¢*, 2) fo(2) if (o, M)=(0’, 0’Po),
32) GLy(Z) XR% if (4, 0)=(QDQ(esn), 8) and 3b) I'o(m) xRy if
(4, 0) = QDR (ezm), 8,).

2.6. Finally we shall determine the structure of W for each F in
Table 1. First we introduce some notations. We denote by $ the
upper half plane; $= {z;Im z>>0}, and by P' the complex projective
line. {*} will denote the space consisting of a single point. For K=R
or C we set

cx=1{(_4 b)eMz(K);a2+bc=—l}.

C
GL,(K) acts transitively on the set Cx by inner automorphisms with

stabilizer at [1, —1] (resp. (i, —i)) (cf. Notations) given by {(_Z z);
a,bER} =C* (resp. {(4,0); a,bEC*} =C*XC*) if K=R (resp. C).
Thus Cr=GL,(R)/C*=$ and Cc,=GL,(C)/C*’, where $=9X
with © the lower half plane.

On the other hand, let X be the subset of the pure quaternions

defined by
X={geH;¢’=~1} = {ai+bj+ck;a*+b+c2=1}.

Then H* acts transitively on the set X by inner automorphisms with
stabilizer at ¢ given by {a+bicH*}=C*. Thus we have the natural
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identifications
(12) X=H*/C*=P",

Now noting that Wy depends only on the pair (4, Mg), we obtain
the following:

Proposition 2.17. In the above notations for each quadruple F=
(4, o, H, M) in Table 1 the corresponding complex manifold Wy is given
in the following table. In particular each connected component of Wy is
naturally a homogeneous complex manifold.

Table 3.
N’%ﬁ%ﬁcFl in Ag i Mg Wr structure
(m=1) R R w
1 (m=2,3) C C? | Coll {£(,1)} [GLy(C)/C*21 {*} 1L {*}
(m=4,5,6)] C* C? {(&i, £i)} |4 points
2,2’ R! R CeXCgr HX 9
3-5 RO®C | R*®C | CriCq 519
6-11 C? C? {(£i, £i)} |4 points
12-14 H H X P
15-16 M,(R) | M,(R) Cr &)

Remark 2.18. As a complex manifold, GL,(C)/C*?=SL,(C)/C*
here is isomorphic to the total space of the holomorphic tangent bundle
over the complex projective line (cf. [19], Th. 4.5). In particular
the complex structure is not the one induced from the complex Lie
group structure of GL,(C).

Proof. Let L be the closed Lie subgroup Aut, Mg of AutpMp=
GL,(R) consisting of Ag-linear automorphisms. (L also is the centra-
lizer of H in AutgMp.) Then we have Wy={x&L;x*=—1}, and L
operates on Wy via inner automorphisms; the orbits are just the
conjugacy classes C; in Wy Thus if we choose a representative x;
for each C;, C; is considered a homogeneous complex manifold L/L;,
where L; is the centralizer of x;. Indeed, according to the numbering
of Table 1 the triples (dg, L, x;, 1 <i<k) for suitable x; are given



26 AKIRA FUJIKI

as follows. 1. <R, GL.(R), (_?2 (1)2)) if m=1, (C, GL,(C), G, —i),
2 2

+(@, 7)) if m=2,3 and (CPC, C*xXC*, (Fi, £1)) if m=4,5,6.
2,2". (RPR,GL,(R) xGL,(R), £[1, —11)), 3-5. (RPC, GL,(R) xXC*,
(£[1, =11, £9)),6-11. (CHC,C*xC*, (£i, +i)), 12-14. (H, H*,1),
and finally, 15-16. (M,(R), GL,(R), £[1, —1]). The lemma follows
from this immediately.

2.7. Let H be any finite subgroup of GL,(Z) such that Wy+# @
(cf. 2.1). Let (H) be the conjugacy class of H in GL,(Z). Let
M g be the moduli space of the pairs (7,G) with fixed rational
representation type (H). Let F=Fy= (4, o, H, M) be the quadruple
corresponding to H by Lemma 2. 1. Let Ny and Wy be the normalizer
of F and the set of Ag-linear complex structures on My respectively.
Then we have # =Nz\Wy by Lemma 2.1. Since we have deter-
mined Nr and Wy in Proposition 2, 15, Lemma 2. 16 and Proposition
2.17 when ranked <4, the structure of #;, has essentially been
determined in this case already. However we find the following slightly
modified presentation more convenient. Namely we choose one
representative from each Ny-equivalence class of connected components
of Wr. Let W,, v=1,...,s, be any such representatives. (Actually
s=1 or 2.) Let N, be the stabilizer of W, in Nr. Then the following
is also a canonical presentation of .#, as a union of locally homoge-
neous spaces;

(13) ./”(H)=JJ_DND\WD.

Let H be the centralizer of Wy in AutzM,i.e., H={gEAut;M;g]=]g
for any JEW;}. Then H is a normal subgroup of N containing H
and the action of N on W; factors through the quotient N/H.
Hence in the above presentation (13) we may replace N, freely by
N,=N,/H, for any normal subgroup H, of N, contained in H a
typical example being given by H,=HNN,. Now we shall describe
the structure of #(, in the sense of (13) modulo the remark just
made.

Proposition 2.19. Let H,F=(A, o, H, M), and M 4, be as above.
Suppose that rankqA=<4. Then according to the classification of F in
Table 1, we have the structure of M, as a union of locally homogeneous
spaces as in the following table.



AUTOMORPHISM GROUPS OF COMPLEX TORI 27

Table 4,
No. M
la m=1 SL,(Z)\W*
1b m=2,3 (GLy(R.)\GL,(C)/(C*)%) /CylL {*}
lc m=4,6 {x} AL {x}
1d m=>5 {x}
2 sym?(SL,(Z)\H) =C
o M =9? sym?(I" (2)\H) /&= (C * X C*) /&, (rational)
M=0@d sym?(Ih(2)\H)=C XC*
5.5 0=> SL,(Z)\H=C
p=0, F'ym)\H=C*
6-9,11
, {*}
10a 0;&03
10b 0=0j {x} 1 {x}
12,13 S\P'=pP*
14 DN\ =P
15, 16 0=M,(Z) | SL,(Z)\H=C

0=0a, a5 05| (07 XE,)\H=C — {points}

Here W™ is a connected component of W, and sym?(X) denotes
the symmetric product of X. Further Fo(m)={<? (bZ)ESLz(Z);cE
0 (m)}. In 1b the generator of €, acts on GL,(C) via the complex
conjugation, leaving invariant the subgroups GL,(0) and C*%. On
the other hand, consider © and ® as subgroups of H* by (5). Then
we have the induced action of &,=0/{+1} and Dy=D/{+1} on
P'=H*/C* These are the actions in 12-14, In the last case
0;:=SL,(Z) N0*SGL,(Z) and the action of €,=<e;> is induced by
the inner automorphism of a,, £=4,6.

From (8) we see that the structure of 0 is described as follows.
Let m=#%k/2. Let p,:SL,(Z)—>SL,(Z/mZ) be the natural homomor-
phism. Let H, be the subgroup of SL,(Z/mZ) defined by: H,=
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([, 11526, if k=4, and =<<‘1’ ‘i)}z@:s if £=6. Then

(14) o =t (H,).

Proof. Let N=Ny and N=N;. We may identify My with Ag
when M=o0. As a typical case, we first consider lc and 1d. By
Proposition 2.15 and Lemma 2. 16 we have N=G,X3* in this case.
Let the action of N on A extend to the R-linear action on Ag. Fix
an R-algebra isomorphism Ap=C?% The problem is to identify the
action of N on the set C:={J.;=(e,7i);e==%1, =21} of complex
structures on C?=R*. First of all, the action of 3* is induced by the
multiplication of the elements of C*? via the natural inclusion §*——
Ax=C*?*;hence 0% acts on C trivially and the action of N factors through
G,. Since G, acts on A, as R-algebra automorphisms, we have the
natural inclusion G,——AutpAx= AutxC?*={y, (,) XKzD=D,, where ¢, is
the complex conjugation on the a-th factor and = is the interchanging
of the two factors. Now G,=€,XC, if m=4 or 6 and =€, if m=5.
Hence we must have G, =<{4¢,7)> if m=4,6 (note that A:"'ER) and
={47) if m=5. The action of ¢, 7, 47 on C are easily identified;
at2(Jer) =J-e.—p> ©(Jep) =J5 and 7(Je,) =J, . It follows that G, acts
transitively on C if m=5 and there exist two G,-orbits {4+ (z,7)} and
{£ @G, —9)} if m=4,6. This verifies Table 4 in this case. No. 6-10
can be treated similarly.

For 1b we only note that G, identifies 4 (i,7) (cf. Proposition
2.17). (No. 1, m=1, is trivial.) The result for 2-5 follows readily
from the fact that (1, —1) EGL,(B) interchanges § and $ in .6,
and (1, —1)&l(m). (We also note that (SL,(Z) NI(3)) X<{—1>
=TI%(3).)

So we consider the case where 4 is a quaternion algebra. In this
case we have N=0*XN. The action of N on W; factors through
N’=N/H. First, assume that A is definite. Let K=O (resp. fg)) if
H=Q or T (resp. D). Let I'S0* XN be the graph of the composite of
the natural homomorphisms 0*= H——K—K/ {+1} = N. Then [ is easily
seen to coincide with HC N (H acts on H by (hxh™) < h, heH, x€H),
and we have another semidirect product decomposition N=I"XN.
This implies that N’=N=K/{+1} naturally. Next, assume that 4 is
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isomorphic to M,(@). Then the natural image of H in N=N/o* is
just Dy/{+1}. Then <{a;>X0*=EC,<0* must be mapped surjectively
onto N/H. Hence in N\W; we may replace N by <a;>Xo*. The
assertion then follows from the fact that [1,1] interchanges § and
$ in § and [1,1]1€D,Zay.

2.8, Let (T,G) be any pair. Let f:G—>GL(E) be the complex
representation of (7,G). Let u:E—C? be any C-linear isomorphism.
Then uf maps G onto a subgroup K of GL,(C) whose conjugacy class
(K) is independent of u as above and depends only on (7,G). (X)
is called the complex representation type of (T,G).

Let F= (4, o, H, M) be a quadruple in 2 with ranked<4. As
the proof of Proposition 2.17 shows, complex structures on Mg from
one and the same connected component of W, are conjugate in
Auty Mpg. From this we conclude that the complex representation type
(K) is constant on each connected component of the moduli space
M . This in particular implies that the rational representation type
(H) already determines the complex representation type except possi-
bly in the cases Ib, lc, and 10b of Table 4. Indeed, in these cases
this is not true, namely the two connected components correspond to
two different complex representation types. More precisely the two
types are in each of these cases given by representatives as follows
(cf. the proofs of Proposition 2.19 and Lemma 2. 5):

Ib. {(eam, €m) >y <(ezm; €2m)>, m=2,3
(15 lIe. {(eams €520, {(ezm €3)D, m=4,6

10b. <(1, £D), (&% 09>, <U, £D), (&% p™)),
where in 1b the type {(és,, €.)> belongs to the component {*}, and
the pairs (7,G) with G=GC,,, m=2, 3, belonging to the component
GL,(0)\GL;(C)/C** are all special. In any case we see that the
following holds.

Lemma 2.20. The moduli space of the pairs (T,G) with fixed complex

and rational representation types are connecied if for the associated quadruple
F=(4, o, H, M) we have rankqA <4.
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§3. Special Pairs

In this section we classify special pairs. Recall that a pair (T, G)
is said to be special if f(G) SSL(E), where f:G—GL(E) is the com-
plex representation.

3.1. First we prove some general lemmas.

Lemma 3.1. The following conditions are equivalent. 1) (T,G) is
special, and 2) the minimal resolution Z of the quotient normal analytic
surface T/G is a K3 surface. Moreover if a(T) <1, then (T,G) is
necessarily special, where a(T) is the algebraic dimension of T.

Proof. 1) is clearly equivalent to the following: 1)’ G leaves fixed
a nonzero holomorphic 2-form a on 7. Let 7:7T—T/G and 7:Z—T/G
be the natural morphisms. If Z is a K3 surface and ¢ is a’ nowhere
vanishing holomorphic 2-form on Z, then (y7'x)*¢ gives a nonzero
G-invariant holomorphic 2-form on 7. This shows that 2)—l).
Conversely suppose that 1)’ is true. Then a descends to a nonzero
holomorphic 2-form & on Z whose zeroes are contained in the inverse
images 77'(p;) of the singular points p;,&7/G. On the other hand,
the stabilizer G, of each point &7 is naturally considered as a
subgroup of SL(E) so that T/G has only rational double points; thus
a cannot have zeroes contained in 7y7!(p;). Then a is nowhere vani-
shing. On the other hand, since the eigenvalues of any element (#e¢)
of G are not 1 on E, there is no G-invariant holomorphic 1-form on
T. This implies that #%°(Z) =0. It follows that Z is a K3 surface.
For the last assertion see (the proof of) [14], Th. 3.1 a).

The first part of the next lemma is classical, being a special case
of the so-called crystallographic restriction. The second part also
holds in higher dimensions. Here we deduce it from Proposition 2. 14.

Lemma 3.2. Let g be an automorphism of finite order n of a two
dimensional complex torus T. Then ¢(n) =4; moreover if g is special, 1i.e.,
f(e) ESL(E), then ¢(n) =2, where ¢ is the Euler function.
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Proof. Let G be the abelian group generated by g and —1. Let
F be the quadruple associated to (7,G). Then F falls under 1 or 5
of Table 1. The first assertion then follows immediately. If F is
No. 1, 4=m=6, of Table 1 (which correspond to the case G=E, with
¢(n) =4), the corresponding complex representation type given in
(15) shows that (7,G) is not special. In other words, ¢(n) <2 if g
is special.

Together with the well-known classification of finite subgroups of
SL,(€) this lemma gives us the following:

Lemma 3.3. Let (T,G) be a special pair. Then G is isomorphic
either to the cyclic group €, of order k with k=2,3,4 or 6, or to one of
the groups Q, T, or D.

Lemma 3.4. Let (T,G) be any special pair with —1€G. Let
F=(A,0,H, M) be a quadruple associated to (T,G). Then if G=G,,
k=3,4,6 (resp. Q, X, or D), F is isomorphic to one of the quadruples
in Table 1, No. 1 with m=2,3 (resp. Nos. 12-14).

Proof. If G=GC,, then 4 is clearly isomorphic to @(e¢,) and if
G=9, T or D, then 4 is not commutative and cannot be isomorphic
to M,(®) since G is never isomorphic to a subgroup of GL,(®).
From these the lemma follows.

3.2. Let & be any one of the groups €,, £=2,3,4,6, Q, T, and
D. Let &, be the set of isomorphism classes of special pairs (7,G)
such that G=©®. We shall now determine the structure of &,. We
distinguish three cases according as &=1i) €,, ii) €,, £=3,4,6 and
i) 9, T, or D.

Case i). &=C,. In this case T is arbitrary and G={—-1). &,
is thus nothing but the moduli space GL(Z)\W=SL,(Z)\W* of the
isomorphism classes of complex tori of dimension two. The action of
SL4(Z) on W+ is not properly discontinuous as is well-known.

Case i1)). ®=¢,, £=3,4,6. Let o=p, be the maximal order of
@(e;). With respect to the .natural embedding 0S®(e,) SC, 4:=0?
is a lattice in C? and is a free o-module. Thus the diagonal action
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of ¢,E0* on C? preserves 4 and descends to an automorphism é, of
the complex torus C?/4. Let u be any point of the homogeneous
complex manifold U:=GL,(C)/(C*?) (cf. Proposition 2.17). Fix a
representative y of u in GL,(C). Then y(i, —i)y™* depends only on u;
so we set J(u) =y(i, —1)y"'€GL,(C) (cf. Notation). Then Ju)2=-—1,
so that J(u) defines a2 new complex structure on C?*=R* which is o-
linear, and hence, commutes with the action of ¢,.

Let 7, be the complex torus C?/4, but with the new complex
structure induced by J(u). Then ¢, is holomorphic also on T,.
Therefore we have the natural embedding <{é,>~——Aut T,. Let G, be
the image of this embedding. Then the resulting pair (7,,G,) is
special with G,=€, (cf. (15)). Thus we have a family {(7., G.)}.ev
of special pairs parametrized by U. By construction this is just the
holomorphic family (3) associated to the quadruple (@(e;,), 8, 9, 0%
restricted to the component U (cf. Proposition 2. 17 and (15)). There-
fore we have almost obtained the following:

Proposition 3.5. Let (T,G) be a special pair with G=GC,, k=3, 4,
or 6. Then there exists a point ucU such that (T,G)=(T,,G,).
Moreover, for any u, u'€U, (T,, G,) and (T, G,) are isomorphic if and
only if there exist representatives y, ' in GL,(C) of u, u’ respectively and

an element yEGL,(0) such that y=yy’ or y=ry’, where 5’ denotes the
complex conjugate matrix of y’.

Remark 3.6. In particular the moduli space &, is naturally
identified with the locally homogeneous space

(GL;(0)\GL,(€) /(€*)?) /&,,

where the action of €, on GL,(0)\GL,(C)/(C*)? is induced by the
complex conjugation on GL,(C). Since the action of GL,(0) on
GL,(C)/(C*)? is not properly discontinuous &, has no structure of
analytic spaces.

Proof. Let (T,G) be a pair from &e,- Then (T,G’) with
G'=<G, —1) is in &, and the correspondence (7, G)—> (T, G') gives
a bijection of #;, and &;. Therefore, we may only consider the

cases k=4 or 6. Since (7, G) is special, the result then follows from
Lemma 3.4, Lemma 2.3, Proposition 2.19 and (15).
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In the above description of the pairs in &, the structure of T' as
a complex manifold is not explicit enough. As a complementary
result we shall give here a brief description of the elements of &g,

in terms of their period matrices according to [6]. Let 2 be a 2x4

complex matrix with det<g>¢0. Then the column vectors of £

generate a lattice 4 of C% Let T=C?/4 be the resulting complex
torus with period 2. Then any element g&GL,(C) preserving 4
defines an automorphism g of 7. We now consider the following two
cases.

2=0(x, ») )

1 (l 0 «x y) <O —l)
: 01 —y x 1 0
9 (1 0 x ) ( 0 1)
’ 0 1 —p x+y -1 1

Here g is of order 4 and 6 in the respective cases with detg=1.
Hence if we set T=T(£2(x,»)) and G=<g), the resulting pair (7, G) ..,
is a special pair in % , k=4,6. Conversely the following is easily
verified (cf. [6], p.220).

(x, y) €eC*—R2

Propesition 3.7. Any special pair (T,G) with G=C,, k=4,6,is
isomorphic to (T, G) ., for some (x, y) EC?—R? as above.

For instance by setting y=0 in 1 and 2 we see that for any
elliptic curve E the product EXE always admits a special action of
€y, k=4,6 (cf. Table 8). On the other hand, the automorphism
(er, €7Y) defines a special action of €, on E, XE,. More generally
the following is true:

Lemma 3.8. Let T be a complex torus of dimension 2 which 1is
obtained as an extension of E, by E, , k=4,6. Then T admits a special
action of €,.

Proof. Set A=e¢,. Choosing a suitable basis of H,(7, Z) we can
find a period matrix £ of T in the form

(1 2 u v
.Q——<0 0 1 2), u,veC,
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Further, if u#0, then after multiplying 2 by <(1) —}/u>EGL2(C) from
the left we may always assume that u=0. Then set g=<0 2—_1>E

SL,(C). We see readily that g is of order k£ and g2=0v for some
veGL,(Z). This implies that g defines a special pair (7,G) with
G=¢, as desired.

Remark 3.9. The lemma can be proved more intrinsically, using
the fact that G acts on the image of the natural homomorphism
HY(C’, O0:)—H(C’, 0.(C)), which parametrizes the universal family
of the extensions of C by C’ as a complex Lie group.

The general extension of E, by E, is of algebraic dimension I.
On the other hand, any complex torus 7' of algebraic dimension 1
contains a unique subtorus C’ (up to translations), and the quotient
homomorphism f:T—C:=T/C’ gives the algebraic reduction of T.
Thus by the above lemma if C=C’=E, , T admits a special action of

€,. More precisely we have the following:

Proposition 3.10. Let T be a complex torus of dimension two with
algebraic dimension a(T) =1. Let f:T—C be the algebraic reduction of T
with kernel C’ as above. Then for k=4,6, Aut T=C, if and only if
C=C'=E,. Otherwise Aut T={—1>=6,.

Proof. Since fis intrinsic for T, there exists natural homomorphisms
u:Aut T—>Aut C and u':Aut T—-Aut C’. We show that these are both
injective. Indeed, if there exists an element g in the kernel of u
(resp. u’) other than the identity, the kernel (resp. image) of the
endomorphism g—1 turns out to be a subtorus of dimension 1 which
is transversal to the fibers of f, which is a contradiction since a(T) =1.
From this the necessity of the condition and the last assertion already
follow. The sufficiency follows from Lemma 3. 8.

3.3. Case iii). =8, T, or . Recall the natural identifications
X=H*/C*=P",

where X={g€H ; ¢?=—1} (cf. (12)). Let ¢ be any point of X.

Then the right multiplication by ¢ defines a complex structure J(g)
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on H=R* Set
(16) Ay=0ay, dy=0q, Ay;=0

(cf. (4)). Consider 4, as a lattice in H=R". J(g) then defines the
structure of a complex torus 7,=T7,, on the real torus T:=H /4.
Let 45 be the unit group of 4, . Then 45=® by Lemma 2.6. The
left multiplication by elements of 45 on H preserve 4, and obviously
commutes with J(g); thus it induces canonically an automorphism of
T,, so that we have the natural embedding 45——Aut 7. Let G,=Gq,
be the image of 45 . Then

a7n UG={(T4’G4)}4EX

is a family of special pairs in &, parametrized by X=/P', Indeed, by
construction this is nothing but the holomorphic family (3) parametri-
zed by X=W; associated to the quadruple F, where F= (4, 4, 45,
Ag) with A=@Q[1, i, j, k] if 8= or ¥ and =@[1, i, £, [] if G=D.
We write X=X, also. Now define the subgroups I'; and I', of H * by
=<, (+i)/2>=90
r,=<8%, (13+£)/2>=D
(cf. (8)). Set I'y=I1if 8= or T and =TI, if &=D. Then the
induced action of I'y on X by inner automorphisms factors through
the quotient ['y:=I"y/{%1}.

Now we call a special pair (7, G) maximal if G is not contained
in another finite subgroup G’ of Aut T such that (7,G’) is again
special. Note that when G is not cyclic, (7,G) is not maximal only
in the case where G'=T and G is the unique normal subgroup of G’

isomorphic to £ (in the above notation). Then combining Lemma
2.3, Lemma 3.4 and Proposition 2. 19 we get the following:

Theorem 3.11. Let (T, G) be a special pair with G=&. If (T,G)
is maximal, then (T, G) is isomorphic to (T,,G,) for some point q< X,.
Moreover for q,¢'€X (T,, G,) and (T, G,) are isomorphic to each other
if and only if q¢'=y(qQ)=rqr™ for some vy . If (T,G) is not maximal,
then there exists a point q of X; such that (T,G) is isomorphic to
(Ty, G2), where T,=Ty , and G is the unique normal subgroup of G,=G; ,
isomorphic to Q. Further (T,,Gy) and (T,,GY) are isomorphic to each
other if and only if so are (T,,G,) and (T,,G,).
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Remark 3.12. In particular 1) &, is naturally identified with the
disjoint union FN\NXUT\X=P'uP! and 2) for =% or D, L, is
naturally identified with Ig\X=P!, (Recall that I";=I;=&, and
F,=%.)

Let by: X—I"4\X be the covering map. Since [,=C, or o, b
must have exactly three branch points, say p;, ps, ps, on ['g\X. In
the next proposition we shall identify these points p, = ps,, by specifying
a point ¢,=¢s ., Of bz'(p,) for each a. Moreover we shall also
determine the stabilizer I',=Ig, in I’y at ¢, and the isomorphism
class of the corresponding complex torus 7T,:=T7,_.

Proposition 3.13. In the above notation q,,T,, and T, are given as
in the following table.

Table 5
® a=1 a=2 a=3
Ga i G+n/N2 (i+j+k) /N3
QorT | - = oYt
r, <(l+1)/\/2>_5@:4i<(l+])/\/2>'§@2 >-=E6,
o | |ExE, | By x By, E,xEg,
T “| E;XE; Eg X Eg, E,xXE,
Ga g J k
D r, | <Gy-=6, {j>~=G, {(V3+k) /2>~ =G,
| T. | E:xE; Ey X Eg, E,xE,

Here < >~ denotes the quotient group < »/{*1}.

Proof. It is immediate to see that if we define g, as in the table,
then the stabilizer I, at g, is just as in the table, and g, are not
mutually equivalent under the action of I's. Hence we may take
b.=b(g,). Let J:=]J, be the right multiplication by ¢g,. Then for

each @ we can take the following set of 4 elements as a Z-basis of
dey =80, T, D,

D 8=9: a=1 {L,J1),iJ (DN}, a=2 {I-i, V21, j, V2] (N},
a=3 {1—i, (p.]) 1~1),j, V3] (1 =D}.
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2) §=%: a=1 {I,J(D,t,J®}, a=2{1,V2]1),:,12]®)},
a=3 {1, p(J)) (1), 4, 0(DJj}.

3) 8=9: a=1 {1,J(),hJ®}, a=2 {I,V3]1),h 3]JM)},

where p(J) = +v3J)/2. From this we can identify the structure of
T, as in the table readily.

Remark 3.14. Using the above mentioned basis of 4, it is also
straightforward to obtain an explicit description of G, itself (cf. Table
9 below). Let (T,G) be any maximal special pair with G noncyclic,
If G is properly contained in its normalizer in Aut T, (T,G) is
isomorphic to one of (T,,G,) above, as follows from the definition of
(T,, G,) and the remark at the end of 2. 1.

As the above remark shows the complex tori T, in Table 3, or
more precisely the associated pairs (7T, G.), play a distinguished role
in the study of automorphism groups of complex tori of dimension 2
in general. The next proposition provides us such an example (cf.
also Table 9 and Example 7.9).

Proposition 3.15. Let (T,G) be a maximal special pair with G= £,
T, or D. Then T admits a G-invariant principal polarization if and only
if (T,G) is isomorphic to (Ty,G,) in case G=L, to (T,,G,) in case
G=%, and either to (T, G,) or (T3, Gs) in case G=D. In this case such
a polarization is unique up to constant multiples and is invariant also under
the normalizer of G in AutT.

The proof will be given at the end of Section 6.

3.4. We shall now generalize the preceding classification also to
pairs (T,G), where G is a finite subgroup of the group A(7T) of
affine transformations of 7 (instead of Aut7). A(T) is naturally
the semi-direct product A(T) =A¢(T)XAut 7T, where A(T) is the
group of translations of 7. Let w:4(7T)—AutT be the natural
projection. Then any pair (7,G) with G a finite subgroup of A(T)
gives rise to the pair (7, w(G)) in the original sense, and it is called
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special if (T,w(G)) is. In what follows we always assume that G con-
tains no translations, i.e., GNA4o(T) ={e}. G is then isomorphic to
w(G). We say that two such (generalized) pairs (7,G) and (77, G")
are isomorphic if there exists an affine isomorphism 2:7—7" such that
vGv'=G’. Then the following is obvious.

Lemma 3.16. 1) A (generalized) pair (T,G) is isomorphic to a pair
(T',G") with G'’CAut T’ if and only if G has a fixed point, and 2) the
pairs (T,G) and (T',G’) with GSAutT and G'SAutT’ are isomorpic
as generalized pairs if and only if they are isomorphic in the original sense.

In the following we shall call a generalized pair simply a pair.
By virtue of the above lemma and Theorem 3.11 we have only to
consider the case where G has no fixed points. First we shall give
examples, which eventually turn out to exhaust all the possible cases.
We consider the universal family Uz= {(T,, G,)} ,cx, mentioned earlier
(cf. (17)). Let T=H /A be the underlying real torus, where 4=4,.
For any 2€Autz4 and r&H the real affine automorphism x—2x+r7 of
H descends to an affine automorphism of the real torus 7, which we
shall denote by (4;r), where 7 is identified with the residue class
modulo 4. For simplicity we write 1 for (4;0).

We denote by A(T) and 4,(7T) the group of real affine automor-
phisms, and the group of translations, of 7 respectively. Then A(T)
is naturally the semidirect product A(T)=AutzAX4,(T). For any
geEX=X, if 2eA4*=F (left multiplication), (2;r) clearly is biholomor-
phic on 7, so that we have the natural embedding j,: 4*X4,(T)—>
A(T,). Now define the subgroups Q, and T, of 4*X4,(T) by

Qo={=£l, +i, (£jia), (£kia)}, a=1+i)/2

Ty=<Q., (£35/2), s=1+i—j+k)/2.
Then Q,=Q, T,=%T and the inclusion Q,ZS7, is isomorphic to the
natural inclusion QC . Moreover for any ¢, Q, and 7, define via
Jo finite subgroups H, and G, of A(T,) respectively. Let I’y be the
subgroup of I'y defined by
(18) Fo=<45, (1+i)/12)
(cf. Table 2). Then we have Iy:=1,/{+1}=D,. H,, and hence
G, also, have no fixed point on T,. Conversely, we have the following:



AUTOMORPHISM GROUPS OF COMPLEX TORI 39

Theorem 3.17. Let (T, G) be a special pair with GSA(T). Suppose
that G has no fixed points. Then G is isomorphic to Q0 or , and if
G=Q (resp. ), (T,G) is isomorphic to (T,,H) (resp. (T,,Gp)) for
some q€X.  Moreover (T,,H,) and (T,,H,) (resp. (T,,G,) and
(Ty,G)) are isomorphic if and only if q=hq'h™ for some h&ly,. In
particular the moduli spaces are given by I'\X=P" in both cases.

Remark 3.18. In [5;VII] Enriques-Severi has classified those
special pairs (7,G) for which T is the jacobian of a complete
nonsingular curve of genus 2 and G preserves the associated principal
polarization. Especially they showed that if G is isomorphic to £ or
T (resp. D), then there exist 3 (resp. a unique) isomorphism classes,
which is in accordance with our Theorems 3.1l and 3.17. In fact,
these pairs turn out to be given in the above notations as follows
(cf. Proposition 3. 13):

1) G=T:(T,,Gy), (T, Gz):Z(Tq
g.=(i+j) /12 and g;= (j+£k) /V2.

2) G=$£: the pairs obtained from the above triples by restriction
to the unique normal subgroups isomorphic to £Q; in this case (7, G)

qu) and (Tq,z, éq;), where

99

is not maximal.

3) G=D: (T,Gy).

3.5. The rest of this section is devoted to the proof of Theorem
3.17. We need several lemmas. Let (T,G) be any pair. For any
subgroup G of A(T) we shall denote by Fix G the fixed point set of
G. When G=<a), we write Fix a instead.

Let (T,G) be any special pair., By the proof of Lemma 3.1 and
Lemma 3.3 T/G has only rational double points of type A4,, D,, D;
or E;; further if r:Z—T/G is the minimal resolution, Z is a K3
surface. Let n, be the number of singular points of 7/G of type 4;,,
k=2, and n, the number of singular points of type D,,Ds; or E;
according as =9, D, or . Then we have the following relation

x(Z) = (T) —x(Sing G))/ |G| +x(r*(z(Sing G)),*)

where y(X), |G| and 7= denote respectively the topological Euler
characterestic of X, the order of G, and the natural projection T—T7/G.

*) Sing G denotes the set of points whose stabilizer group is nontrivial.
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From this, as in Nikulin [14, §5], we get easily the following formula:
(19) 24=— (Eznk/k-{— >ne/ |G|) +,§2k"" +3ny+6ny+7n,.

Lemma 3.19. Let (T,G) be any special pair. Let &=, T, or D.
Let f, and fy be the numbers of points of x of T, whose stabilizer G, at
x is isomorphic to €, and & respectively. Then the possible combinations
of the nonzero f, and fy are as follows; 1) G=G,:f,=16, 2) G=E,:
=9, 3) G=€,:f,=12, fi=4, 4) G"’@G'fz=15 f=8, fi=1, fe=1,
5) G=4Q: a) f,=8, fi=6, fa=2, b)fz“Ian ©) fo= 2f4—12
6) G=T: a) f,=12, fo= 32 fo=3, fz=], b)fa 32, fi=12, fi=
7) G=D: f,=6, fi=8, fi=

Proof. It is easy to compute all the possible values of 7, and 74
satisfying (19). Then using the relations |G |n,=£f, and |G|ne= |G |fs,
we obtain the lemma easily.

We note that when G=G,, Fix G is just the 2-torsion groups of T.
From this lemma we deduce easily the following:

Lemma 3.20. Let (T,G) be a special pair. 1) If G=C,, FixG is
contained in the 2-torsion group of T and #(FixG) =4. 2) If G=Q and
FixG+ 0, #(FixG) =2 or 4 according as (T,G) is maximal or not.
3) If G=X and Fix G=0, then Fix Gi=0 jfor the unique normal
subgroup G, of G isomorphic to Q. 4) If FixG= @, then G=Q or .

Using this lemma we shall show the following:

Lemma 3.21. Let (T,G) be a special pair with G=. Let G":=
w(G) SAutT. Let a, B be generators of G’ such that GNG'=<{a> in A(T).
Then G is generated by a and (B;r) for some r&EFix G’. Moreover if
Fix G=0, (T,G") is not maximal.

Proof. It is clear that G=<a, (8;r)) for some r&T. Let f=
(B;r). Then B, should satisfy ff= —1 and aBa~'=f;"; these conditions
are then equivalent respectively to: fr=—r and pBar=r. From the
latter and Lemma 3. 20 it follows that r is a 2-torsion point of 7.
Hence r=—r and r&Fix G’. This proves the first assertion.

Suppose now that (7,G’) is maximal. Then by Lemma 3.20
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there exists a point x€ Fixa with *&FixG’. Then we have Fixa
={o, 7, x, x+7} (cf. Lemma 3.20). On the other hand, since B
preserves Fix a and Bx+o0, r, x we must have 8(x) =x+7, i. e., Bo(x) =x,
namely x< FixG. Thus FixG+# 0.

Lemma 3.22. Let (T,G) be any special pair with G= and
FixG=0. Let T be the underlying real torus. Then G is conjugate to
Qo in A(T) with respect to the representation T=H/A; of T.

Proof. Let G'=w(G). Then by passing to another pair which is
isomorphic to (7, G) if necessary (cf. Lemmas 3.16 and 3.20) we
may assume that GNG'=<a) in A(T) for some element a of order 4.
Then by Lemma 3.21 we may write G=<a, (8;r)> for some element
BEG’ and r€Fix G’ with r#0; by Lemma 3.21 it further follows
that (7,G’) is not maximal. Hence by Theorem 3.11 we may
assume that the underlying real action on T'=H /4, is induced by the
left multiplications by elements of 43S 47. We may therefore assume
that G’=4% and hence that G is a subgroup of 43)X4,(7T). Then r
is one of (14+w)/2, w=i,j, or k.

On the other hand, the automorphism group Aut 43 of 4% acts
transitively on the set of pairs (ao,f,) of generators of 4%. Further
Aut 4% is naturally identified with I':=1,/{+1}=&,, where the
action of I"; on 4% is induced by the natural inclusion AZCI"; in H*
as a normal subgroup. Since I', preserves A4, (cf. Table 2), after
transforming G by some element of /', we may further assume that
(a, B) = (i,7). Thus we have shown that G is conjugate in A(7T) to
one of the subgroups

G, =<, (ji(14+w)/2)>, w=i,j, or k,
where G;=Q,. Hence it remains to show that these G, are conjugate
in A(T) to one another. For this purpose we use the following
formulae; for any pg&l'; with its image g in F'CA(T) and for any
(A;r) €A(T) we have
(20) LQsr) gt = (padpt prp)
if p;=(14i)/V2 we have
@n pijet=k and  pkpl=—j.

Indeed, from (20) and (21) together with analogous formulae we see
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that g,G;a7'=G, and that if u;= (1 +7)/V2 and {4 is the translation
by ¢/2, we have p,-zAt*G,-(ﬂﬁ*) “l=@;.

Lemma 3.23. Let (T,G) be any special pair with G=I and
FixG=@. Let T be the underlying real torus. Then G is conjugate in
A(T) to Ty with respect to the representation T=H /A, of T.

Proof. Let G, be the unique normal subgroup of G isomorphic to
Q. Then by Lemma 3.20 Fix G,= 0§, too. Then by Lemma 3.22 G,
is conjugate in A(T) to Q,; we may thus assume that G;=0,.
Moreover by Theorem 3.11 we may further assume that the image
of G in Aut T is just 43 . Thus there exists a unique element rEH *
such that (¢;7) €G so that G=<Q,, (¢;r)>, where t=(1+i+j+k)/2.
Let {=(¢;r). Then § must satisfy the conditions

B=—1 and {%i=(k;a), a=(1+1i)/2.

Computation then shows that these conditions are satisfied if and only
if r=s5/2+r" for some r'€Fixdi={(1+4+w)/2; o=1,ij,k}. Set
G,=<{Q., (t;s/24+ (14+®)/2)>. Then it suffices to show that they are
mutually conjugate in A(T). In fact we see readily that if @y is the
translation by (1+®)/2, then G;=14Gi3'=jxG: ' =ksGik3'.

Let Go=Q, (resp. 7o) and =92 (resp. ). Let N, (resp. N) be
the normalizer of G, (resp. 43) in A(T) (resp. Aut T'). Then we
have N2/4324% and if we set N=N/A3, N=I',=®, (cf. the proof of
Proposition 2.19). Now w induces the natural isomorphism Gy—A43
and hence the homomorphism w,:N;,—N. Let N, be the image of
wo(Ny) in N=TI;.

Lemma 3.24. In the above notations N, coincides with the subgroup
[y of Ty defined after (18), (where Go=Q , or Ty).

Proof. For pedi let R,€ Autz4, be the right multiplication by
. Then for x=(R,;v), vET, and y=(a;r) €Gy,, a# —1, we have
xx=(a; ((@=1)v+r)p™"). Hence xyx=G, if and only if x~lyx=y,
and the latter is equivalent to the equality

(22) (@a—Do=r(g—1), y=(a;r) €G,.
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For y=(i;0) €G, (22) is equivalent to the condition that vEFixi=
Fix Q o .® Further, if vE€Fix Q o, then for y= (j;a) €G, (22) is equivalent
to the condition; agz=a. This implies that x=(R,;v) normalizes Q,
if and only if vEFixQ, and ap=a. These are certainly satisfied
by x;:=(R;, 1+1)/2) and «x,;:=(R;; (1+))/2). Moreover they
satisfy (22) for y=(t;5/2) €T,. Therefore x;,x; normalizes Q, and
T;. On the other hand, from (20) and (21) we see readily that
fi = (¢;3a) normalizes Q ,; moreover direct computation shows that
£:(t55/2) pit=— (k;a) (£35/2)%,

which implies that p; also normalizes 7.

Now the images of x;,x;, f; in N generate I, so that I,CN.
Suppose that I'y#N,. Since I,=9D, is maximal in N=&, we then
have N=N,, and hence w,:No—N is surjective. Therefore we can
find an element of N, of the form (R,;r) for some r& T (cf, Table 2).
Then (R,; r) must normalize Q,. By what we have seen above this

implies that at=a, which is a contradiction because at= (1+j)/2.
Hence N():fo.

Proof of Theorem 3.17. The first assertion follows from 4) of
Lemma 3.20. Let (T, G) be a special pair with G=£ and FixG=0.
Let 7 be the underlying real torus. By Lemma 3.22 there exists
an element u€A(T) such that uGu™'=Q, in A(T). Write T=E/4
and T=H/A,. Let uy:E—H be the real linear isomorphism induced
by u so that ux puts a complex structure J on H =R* which commutes
with the action of Q o, and hence of 4%, on T. By Theorem 3. 11 this
then implies that J=J(g) for some ¢=X. Then we have (7,G)=
(T,,H,). This proves the second assertion for Q.

By construction, for any ¢, ¢’€X an affine isomorphism of (T,, H,)
and (T, , H,) is identified with an element v of A(T) which normalizes
QS A(T) and which sends J(g) to j(¢"), i. €., vxJ (@) v3'=J (¢"), where
ve=w()g. Since the action of the normalizer N, of Q, on X factors
through its image N, in N=N/4}, the last assertion follows from
Lemma 3.24 in case of Q,. The case of T, is shown analogously by
using Lemma 3.23 instead of Lemma 3. 22,

*) Qgi=w(@) =45 (cf. Lemma 3.20).
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§4. Non-Special Pairs

4.1. In this section we shall classify non-special pairs (7, G). The
classification will be given in Tables 6 through 11 below, which are
arranged as follows;

Table No. G
6 cyclic
7 non-cyclic abelian
8 —1eG | dihedral
9 . maximal
otherwise .
10 non-maximal
11 —-l&G

Here “maximal” means that G is a maximal finite subgroup of Aut T.
The proofs will be given after the presentation of all the tables.

In order to present the tables we shall use, besides the notations
listed in Section I, the following notations and conventions: 1. E and
E’ will denote elliptic curves in general, considered as complex tori
of dimension 1. Let K=Endy E. Then either K=@ or K is an
imaginary quadratic field. Let o be the maximal order of K. Then
any element of Aut E is given by a unique element of 0* and simi-
larly any element of Aut(EXE) will be given by a unique matrix
in GL;(0). 2. Let H be a finite abelian group. Let u: H—E, u’': H—E’
be embeddings as groups. Then we set

EY yE'=(EXE")/(uxu") (H),

where u, and u’ are specified each time. Let 0’ be the maximal order
of Endy E’. Let (a,b) €0*X0’*. Suppose that u(H) and u’(H) are
invariant by a and b respectively. Then (a,b) naturally descends to
an automorphism of EY zE’, which we shall again denote by the same
letter (a,b6). 3. For m=2,3 the fixed point group F(e,,) of e,,E0*
on Eem is isomorphic to €,. Then we shall denote by u,,,:@,,,—>E,_,zm
any embedding induced by an isomorphism €,=F(e,). 4. & will
denote the abstract group isomorphic to G.
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4.2. With these notations we can now give Tables 6,7, and 8
successively. In the form of a theorem we have:

Theorem 4.1. Let (T,G) be a non-special pair with —1€G.
Suppose that G is either abelian or dihedral. Then (T,G) is isomorphic
to one of the pairs in Tables 6,7, and 8.

Table 6 G cyclic, —1€G

® T G
1 ¢, E.;XE; @G0
2 EXE,
2/ @6 EchEp <( —19 P)>
3 E,XE, (o, P>
4 & E; X E; <L, 11D
8 y —_
5 EexEs | (21 7o)
6 @10 TS <( _Cs _CZ) >
7 E;xE, O Mhx<a,ny
()
8 E,XE, <% oD, 11, —11)

In 2’ u:€;—E is any embedding and u’':Cs—E, is u3. In 6 Tj is
the simple abelian variety with period matrix

(589

The moduli space of the pairs in 2 and 2’ are given respectively by
SL,(Z)\$ and I'((3)\$=C*.

Table 7 G abelian, but not cyclic, —1€G

No. ® T G

1 ExE’

I €, %G, EY . E (=L D) x<d, =)
1" EY ,E'
2
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o | i?EzE (=1, 1>%<, D)

s | (1, =Dyx <G D)
3’ ExE | (14 _])x<Gi>
5 (1 9)x<a,id

‘ ExE, | <(=LD>x<(L,0>
5 (=1, D)>%< (o)
O R B I (I TP
9 iiEE (=1, 1% <o )
7 s B E (% 078 > %< (p, 0)>
ol T (LY LD x<o o
8 <G DX D)

€, xC E.xE, .
2 () Y ()
9 Csx € E,xE, (o, N> xL(1, p)>
10| ExG E,XE, <G, 1>%L(A, )

In 2" u’=u;, and in 6" u,=#;, where ~ denotes the complex conjugation
considered as a real analytic automorphism of E;=C /(Z +Zi). Further
u and #’ in 1’ and 1” and u in 2’ are arbitrary. The moduli spaces
for 1, 1/, 17, 2, 2’, 4 are respectively C% C XC*, C*/&, C, C*, C
(cf. Table 4). In particular they are all connected. Note that 3, 3/,
3" (resp. 7, 7”) implies that the number of conjugacy classes of
elements of order 2 (resp.3) in GL,(R,) (resp. GL,(Rs)) with
eigenvalues {41, —1} (resp. {0% p7%) equals 3 (resp. 2). (Recall
that R,=Z[e;,].)
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Table 8 G dihedral, —1€G

No. ® T G
1 EXE
1 D, EJY ,E D,=<[1, -11, [1,11>
1 EY ,E

2

|

2 EXE R 0 —1
2 o EY . E D= <<1 1)’ [1’1]>

In 17, 1%, 2’ the only condition imposed on u, u’ is that u=u’, i.e,

uXu': H>EXE is a diagonal embedding. The automorphisms [1, +1]

and ((1) _D on EXE then descend to unique automorphisms of the

corresponding quotients, which is still denoted by the same letter
above. In 1, 2 the moduli spaces are isomorphic to C and in ', 1"
2’ they are isomorphic to €— {points} (cf. Table 4 and (14)).

In Tables 6-8 above, the pairs in &, £’ (and £”) are characterized
as having one and the same complex representation type.

4.3. Still under the assumption that —1 &G we say that a non-
special pair (T,G) is exceptional if G is neither abelian nor dihedral.
Let F=(4, o, H, M) be the quadruple associated to (7,G). Then
it is not difficult to see that (7,G) is exceptional if and only if
A=M,(K) for some imaginary quadratic field K. In particular T is
then a singular abelian surface. In any case it will turn out that
exceptional pairs are up to isomorphisms finite in number. We call
an exceptional pair (7,G) maximal if there exists no finite subgroup
of Aut T containing G properly. First we shall give the classification
of maximal pairs. Let G, be the normal subgroup of G defined by

Go=f"\(SL(E)) = {g€G; det f(9) =1},

where f:G—GL(E) is the complex representation of G. Then the
classification is given according to the structure of G, as classified in
Lemma 3. 3.

Theorem 4.2. Let (T,G) be any non-special pair with —1€&G.
Suppose that (T, G) is exceptional and maximal in the sense defined above.
Then (T,G) is isomorphic to one of the pairs in the following table.
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Table 9 (7,G) exceptional and maximal, —1€G

No. | Go T | G G|
0 I\ (1  iZ\~
L | ExE <(_1 _1>,<2._1 _1»:(;6,4,3 24
2 E,xE, | <(0%)>x D;=C3xDs 36
3 EXE, | <G,1)>X0,=CX0 32
¢ | 0 | EaxBy | ((g ‘/_2’1>>D<Q@.E@2!><1@ 16
5 E,xEy <<_5 _—‘/%i >>><Qp~=~@3><@;s 24
6 ExE | ((j |)IxT=Cixs , %6
8 E,xXE, (o, P)>XT, =€ x < 72
9 ExE | <G)>Y nD=6,Y | 2¢
10 | | EgxEs | (( 13 JRUTEIATES | 24
11 E,xE, | <(p,1)>XD,=CxD 72

As the proof will show, in 3-5 (7, G,) is maximal as a special
pair (cf. Theorem 3. 11).

Notations. 1. We choose the presentations of Q, ¥, and D as
abstract groups as follows;
Q={a,b:a*=b*=1, b~lab=a™",
T={HXQ, f=
D=La,b:a*=b=1, a ba=b"").
For =9, T, ® the groups ®,, p=i, V2, p, V3i, are defined according
to this presentations as follows ;

Q.=<G, ii)’ [-1, 1D,
aa=((% i), -1 1)

=% Z5) G 77
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<<_l _l>>{><Qa, a=i or 12
«0 p">>D<Q”’
where

=6 '), T D) a5 ), t-1,11)
Q=2 1 T5) (i PO)

p~{(5 2D, (% TN pe=((73F L) (& )
D,=<[1, =11, (p, p™)>.

2. In general G, ,, denotes the metacyclic group defined by

T,

Tp

Guin=Ca, u; a"=1, v*=a', v au=a).

3. There are two types, say type 1 and 2, of nontrivial semidirect
product &,XLQ of Q by €,. In 4 €,X,Q means that it is of type I.
Similar remark applies also to 7 and 10. For the exact definitions of
types 1 and 2 used here see Remark 4.3 below.

4. Let N, K, H be finite groups and jz:N—H and jx:N—K be
embeddings such that the images are contained in the centers. Then
we denote by HY yK the quotient group (H XK)/(juXjx) (N).

Next, we classify non-maximal pairs. Let (7,G) be any excep-
tional and non-maximal pair with —1&G. Let G’ be any maximal
finite subgroup of Aut7 containing G. Then (7,G’) must be
isomorphic to one of the pairs in Table 9. Therefore the problem is
reduced to classifying for each pair (T,G’) of Table 9 the subgroup
G of G’ with Go&GGSG’ and —1€&G, up to conjugacy in AutT.
(It turns out that different pairs necessarily give rise to non-isomorphic
pairs; in other words, given (7, G), G’ is unique up to isomorphisms.)
In this formulation our result will be summarized in the following
table. (No. in the second column will refer to the number of the pair
(T,G") in Table 9.)



50 AKIRA FUJIKI

Table 10 (T,G) exceptional and nonmaximal, —1€G

No. | | T G ® order
L, | pxp | G- Gt 16
3 <((1) l_'iii>>l><T,. X% 48
+ |6 ExE | {(j X, Cx,Q | 16
5 ((}) }))xé,- CIX D 32
6 | 7 BaxEa | {({ 7% PxC | ex@ | 16

2 ) Q 24
8 EPXE‘, <(p7pz)>pr CS;SX
8i Fi % 24‘
9 Lor o], [1, 11> G x D, 2
10 2 1,17, (p, o7t ¢ 36
11| ExE, <D, [, 11, (o, 7)) C XD
11 (-1, 1)>D<D,, E,XD 24
12 | (e, )>XD, CxD 36

Remark 4.3. We explain the notations used in Tables 9 and 10.
Let 8=92Q, , or ©. Let €,X® be a semidirect product in general
defined by an embedding j;:€,——>Aut®. (Note the natural isomor-
phisms Aut Q=Aut =S, and Aut D=€¢,XD;.) Then the following
hold:

1) @G,X® is up to isomorphisms independent of the choice of j,
in the following cases; a) =% or ¥ and £=3 or 4, and b) 8=
and k=3 or 6. Moreover E;XLQ=T, C,XD=E; XD and E;XT=C; X T.

2) Suppose that k=2, a) If 8= or ¥, there exist (up to
isomorphisms) two types of &,X& according as Im j,SV or Im j,CV,
where V' is the unique normal subgroup of ©, of order 4. The
corresponding semidirect products will then be denoted by €,)<X;® and
€,)<,® respectively. Then we always have @2D<1@E@4Y@29. b) If
=9, we have three types €)X, D, a=1,2, or 3, according as Imj,=
C,x {1}, {1} X<z, or <(—1, 7)), where €={xl1} and r is any
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element of order 2 in ©;. We see that @2D<2§)E@4Y¢2®5.

4.4. Finally we shall consider nonspecial pairs (7,G) with —1&G.
In this case if we set G=(G, —1>=GXx{—1>, then (T, () is isomor-
phic to one of the pairs from Tables 6 through 10, Thus the problem
is to find for each pair (T,G) in Table 6-10 the subgroups G of G
of index 2 with —1€&G, up to isomorphisms of the resulting pairs
(T,G). The result will be listed in the following table.

Table 11 —1&G

No. ® No. for (T, G) G
1 S, { 7.1, 7.1, 7.1" | <(=1, 1)}
G 6.2, 6.2 <, A
3 ? 6.3 CA
Loyg G, 7.2, 7.2 i C(+1, D)
5 o 6.6 <E, &>
6 | 7.4 (1, OyxL(=1, ®>
7 7.5 <o, —p)>
7 G, 7.5 {4 pA>
8 7.6 <o, 69>
g | 7.6’ (o, 1))
9 Gy 7.10 G, £0>
| _
10 L7, <% e H>XL(? D)
w | 8%y B, P
11 (A 7.9 (e, DY*LA, o))
12 N 8.2 D#
12/ : 8.2’ D,
13 9.2 (%, P)>XDf
13 Cax Dy 9.9 XA
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Here we set 4=(} _{), B=(_} _1) and Di=¢B, £[1,11>. D;

are subgroups of D isomorphic to ®;. In 4 <{(&1,i)> denotes the
two groups <(1, 7) > or {(—1, 7)>. Similar remarks apply also to Nos.
7', 8,9, 12 and 13.

4.5. Proof of Theorem 4.1. Let F= (4,0, H, M) be the quadruple
in 2 associated to (7,G). If G is abelian, then 4 is commutative
so that F falls under 1-11 of Table 1. If G is dihedral, then 4 is
isomorphic to M;(Q); indeed, any noncommutative semisimple factors
of the group ring of ®, over @ is isomorphic to M,(@). Hence F
falls under 15 or 16 of Table 1. In either case (7,G) corresponds
to a unique point of the moduli space .# (5. On the other hand, the
pairs listed in Tables 6-8 are precisely those pairs which are constructed
from the quadruples in 1-11 and 15, 16 of Table 1 by the construction
in 2.1 and 2.2 (cf. (2) (3)); (cf. the proof of Proposition 3.13).
The theorem follows.

Proof of Theorem 4.2. Let K be a normal subgroup of G. Let
H be the normalizer of K in Aut7. If H is finite, then from the
maximality of (7,G) we must have G=H. LetF=(4, o, H, M)
be the quadruple associated to the pair (T, K). Assume that ranked <4.
Then we may assume that F is one of the quadruples in Table I.
Let p be any point of Wy such that (T,,G,) = (T,K). Then with
respect to the natural action of the normalizer Nr of F on W; the
stabilizer Npat p is naturally isomorphic to H (cf. the end of 2.1).

Now apply this remark to K=G, when G; is non-cyclic. By
Lemma 3.4 (T, K) satisfies the above condition that rankqed<4. In
this case by Proposition 2. 15 and Lemma 2. 16 we see that N itself
is finite and hence that G is the normalizer of G; in Aut7. In
particular (7, G,) also is maximal as a special pair. Since G#Gy,
(T, G) must be isomorphic to one of the pairs (7,,G,) in Proposition
3.13 (cf. Remark 3.14). On the other hand, these pairs (7,,G,)
are precisely the pairs listed in 3-11 of the table. (Explicit description
of G, as in the table can be obtained by using the Z-basis of 4,
mentioned in the proof of Proposition 3. 13 (cf. Remark 3. 14).) Thus
it remains to treat the case where G, is cyclic. For this purpose we
shall prove successively the three lemmas, Lemmas 4.4, 4.5, and 4.6



AUTOMORPHISM GROUPS OF COMPLEX TORI 53

below, from which the theorem clearly follows.

Lemma 4.4, Let (T,G) be a pair with —1&G. Let 2n be the
order of G and m the order of Go,. Suppose that G, is cyclic and G is
non-abelian and non-dihedral. Then either 1) G is isomorphic to €3X9D,,,
m=4, 6, or 2) n=8 or 12 and G contains an element of order n with
eigenvalues (e,, —e,).

Proof. Fixing an isomorphism E=C? we consider G as a subgroup
of GL,(C) via complex representation. Fix a generator a of G, and
an element b of G whose image in G/G, generates the cyclic group
G/G,CC*. Let [ be the order of 5. We know by Lemma 3.2 that
o) =2 or 4. Up to conjugation in GL,(C) we may assume that a
is of the diagonal form ({,, (') for some primitive m-th root of unity
C.. Since G is nonabelian, b must then be of the form [d,d’] for
some d, d’eC* (cf. Notation). In particular 5% is a scalar matrix,
while b is not. Then in view of the possible eigenvalues of & when
o) =4 (cf. (15)), from this and the fact that &G, we see readily
that [#3, 4, 5, 10 and that if [=2, 6, 8, or 12, then eigenvalues of &
are +{,. Then by replacing b by some of its power, we may assume
that {;=e,.

Now if [=12, then #€G, and hence the image of &* again
generates G/Gy, which is a contradiction with what we have seen
above. In case [=2 or 6, G is the nontrivial semidirect product
<bYXGy. It follows that if [=2, G is dihedral; hence this case does
not occur. Similarly, if /=6, we see that G is in case 1) of the lemma.
So suppose that [=8. In this case the order of G/G, equals 4 so that
n=2m. Note on the other hand that m=4 or 6 as —1EG and G is
nonabelian. Thus if m=4, G is clearly in case 2) of the lemma. If
m=06, ab® is of order 12 and hence G again falls under the case 2).

Each case of the above lemma is divided further into two cases as
follows; la) G=E3;XD,, 1b) G=C;XD; and 2a) n=8 and 2b) n=12.

Lemma 4.5. There exists a unique (resp. exactly two) isomorphism
classes of pairs in the cases la), 2a), 2b) (resp. 1b)).

Progf. First we consider the cases 2a), 2b). Let ¢ be any element
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of order n of G as in the previous lemma. By Theorem 4.1 (7,<c)»)
is isomorphic to the pair of Table 6, No. 4 (resp.No.8) if »=8
(resp. 12). Moreover, the normalizer N of {¢> in Aut T is of order
2n (cf. the proof of Proposition 2.19). Hence we must have GZ=N.
It follows that (7,G) is up to isomorphisms unique.

Next, we consider the cases la), 1b). We use the notation of the
first part of the proof of Theorem 4.2. Take K to be the normal
subgroup of G isomorphic to D,, k=4, 6. (Such a X is unique.) Then
N, is finite so that G must be isomorphic to N,; hence N,:=N,/K is
cyclic of order 3. In fact, in this case N, is identified with the
stabilizer I"y at p€@ in I'=SL,(Z) (resp. 0y XE,) considered mod+1
if 0=M,(Z) (resp. #M,(Z)). Let L be the set of points of § whose
stabilizer in I" is cyclic of order 6. Let n be the number of I'-orbits
in L. Then it suffices to show that 1) a=1 if 0=M,(Z), 2) n=0 if
0#M,(Z) and k=4, and 3) n=1 if 0#£M,(Z) and k=6. 1) is well-
known. For 2) and 3) one first note that since 0 is of index 2 in
I', we may replace I' by 9. Then from (14), 1), together with the
fact that the principal congruence subgroup I'(m), m>1, has no
elliptic point on §, we can deduce easily the desired assertion.

Lemma 4.6. Let (T,G) be a pair as in Lemma 4.4. Then (T,G)
is maximal and is isomorphic to the pair of Table 9, No.l in the case 2b);
it is not maximal in the cases la) and 2a) and is isomorphic to the
pairs of Table 10, No.9 and No.l, respectively. In the case 1b) one is
maximal and one is not (¢f. Lemma 4.5). The maximal one is isomorphic
to the pair of Table9, No.2 and the non-maximal one is isomorphic to the
pair of Table 10, No. 10.

Proof. Let (T,,G,), #=1,2,3, be the pairs of Table 10, Nos. 1,
9, and 10 respectively. Then G,, #=2, 3, are subgroups of G’':=
(p, 1)IXD,. It is immediate to see that these falls under the cases
2a), la) and 1b) respectively, and moreover that any subgroup of G’
in GL,(Ry) (R3;=Z[p]) which is isomorphic to €;X®; and containing
(p, p7') are conjugate to G; in G’. It follows from Lemma 4.5 that

the pairs in 2a) and la) and exactly one of the pairs in 1b) are not

maximal. On the other hand, we know that <(1) —i) is not conjugate

to (p, 07" in GL,(Ry) (cf. Table 7). Hence the group of Table 9,
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No. 2 is not conjugate in Aut(E£,XE,) to G;; hence the corresponding
pair is maximal.

Finally we show the maximality of the pair (7,G) in 2b). Let
¢ be any element of G of order 12. Then ¢* has eigenvalues {i,1}.
Hence by Theorem 4.1 T must be isomorphic to E; XE;. Let G be
any maximal finite subgroup of Aut T containing G. Suppose that
G+#G’. By Lemma 4.4 G; is then non-cyclic. Therefore G’ must
coincide with the normalizer of Gy and (7,Gg) is maximal as a
special pair (cf. the first part of the proof of Theorem 4.2). There-
fore we conclude that (7, G’) is isomorphic to the pair of Table 9,
No.6 in view of the fact that the order of G equals 24. From this
one derives easily a contradiction. Namely (7,G) is maximal as
desired.

As was already mentioned, Theorem 2.4 follows from the above
three lemmas. As for Table 10, it can be obtained from Table 9 by
straightforward consideration. By way of illustration we consider the
case of subgroups G of G':=<{(p,p)>XT,=C;X¥ (cf. the notation
before Table 10). Let 7:G’—C; be the natural projection. Then
we must have 7(G) =€; and G, is either cyclic or Qp;Tp, The
cyclic case has been classified in general in the proof of Lemma 4. 4;
it follows that this case does not occur. Hence Gy=§,. We have
then the natural inclusion C%EG/Q,,;G’/Q,,;C%Xi/@%@ax@g. There
exist three subgroups of order 3 in €;X@&; other than {1} X&,;. The
inverse images of these in G’ are the groups of Table 10, No. 7, 8.,
which are not conjugate to one another in G’, and G coincides with
one of it. Note that I', is the subgroup of G’ corresponding to the
(transpose of) the graph of the two non-trivial homomorphisms
f+:T—E€;. That I', are not conjugate in Aut 7T follows from the fact
that I’+ﬂF_=Q,, and G’ is the normalizer of Q‘,‘,

The verification of Table 11 is also not difficult and will be left to
the reader. From Lemma 2.20 and the above tables we conclude
the following:

Theorem 4.7. The moduli space of pairs with fixed complex and
rational representaiion types are connected. In other words, two pairs (T,G)
and (T’,G’) are equivalent under deformation if and only if their complex
and rational representations are equivalent.
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4.6. We compare our results with the results of Gottschling and
Ueno in a), and with the results of Tokunaga-Yoshida in b).

a) In [8] [9] Gottschling studied fixed point manifolds and
stabilizers of the standard action of Sp(2,Z) on the Siegel upper
half space §, of degree 2. Later Ueno [25] refined his results by
obtaining the classification of elements of finite order of Sp(2,Z) up
to conjugacy. These are regarded as the classification of automorphism
groups of principally polarized abelian surfaces in terms of their
period matrices. A comparison of their results and ours will be given
in the following:

Theorem 4.8. Let (T,G) be a pair.  Suppose that there exists a
principal polarization on T such that G is the full automorphism group of
the resulting principally polarized abelian surface. Then (T, G) is isomorphic
to one of the pairs in the following table.

Table 12
Table
No. | T 6 |20 VA %
1 | ExE 7.1 (f) O,)
€, %G, 2
1’ | EY E 7.1 (z 1/2) 2= 20+ x4 B |
cg ° 1/2 Z,
i
z 0
9 | EXE N 8.1 (0 z)
, , 1/2
2 | EY 4E .17 | (5 ') SF=x(art+])
’ Z 5/2 —
3 |BYGE| o |82 | (5 Y P=tar+]
4 | EXE, (§,x6,]7.2 (g ‘3)
5 | EXE, (€,x6,| 7.4 (g 2)
6 | E.XE, G0 9.3 <§) 2)

7 | E,xE, Bx | 9.11 ;(

o
S
N
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;0
8 | EXE, 6,x& 7.10 | (§ 2

]
9 | T, | G |6.6 <CC C+C2) =at]

+er =g

_ _ 7 (77—1)/2> _
10 |Eipx B, X, 9.7 ((7]_1)/2 , P=x(xi41)
11 |Fygx EqiG,X.S)| 9.10 (i/ﬁ)(f ;) =t

Here Z is the period of T on §, determined up to conjugacy by
elements of Sp(2,Z). Further, 2#2/, z, 2’ #i, #p. {=¢5, n= (1 +2v2i) /2.
In case T is the Jacobian of a smooth curve of genus 2 we have
given an inhomogeneous equation of it on the last column (cf.
Namikawa-Ueno [13]). The stabilizer of Sp(2,Z) at Z which is
isomorphic to G is given in [9].

b) Let T be a complex torus of dimension 2. An element g of
Aut T is called a reflection if it has a l-dimensional fixed point set
on 7. In Table I of [24] Tokunaga-Yoshida gives a complete
classification of those pairs (7, G) for which G is generated by reflec-
tions. Identification of their and our classifications are given as follows.
Notations. G(m, p, 2) the subgroup of GL,(C) generated by the ele-
ments (e,, ¢, [1, 11, (¢4, 1). G(m, p) the abstract group isomor-
phic to G(m, p, 2). [k] the primitive finite reflection groups of GL,(C)
of Shepard-Todd number £; (k) the corresponding abstract group in
GL,(C) up to conjugacy. Now the classification in [24] is in terms
of G(m, p, 2) and [k]; for each of these groups the equivalence classes
of lattices in C? preserved hy it are given. In the next table we give
for each of these groups the corresponding pair (7,G) in our classi-
fication table.

Table 13
G Table No. G ] Table No.
G(.2) 9, 8.1,8.1, 8.1"|cee. 1) €xD | 9.3, 10.5
C(42) 6Y,0 10.2,10.4 |GG.1) CxDy | 1118, 1113
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G(6.2) CxD, l 9.2, 10.10 G(6.6) D | 8.2, 8.2
G(6.3) GC,X® |9.10, 10.11 €)) T 9.5, 10.8
G(6.1) EXD i 9.11 (5) CxT l 9.8
G(3.3) D ' 11.12, 11. 12’ ®) CXE } 9.6

In each case the complex representation is given by the corresponding
subgroup G(m, p, 2) or [£] of GL,(C).

§5. Endomorphism Rings of T

5.1. The automorphism group of a complex torus is closely related
with its endomorphism ring, the former being the unit group of the
latter. In this section we summarize the structure of rational endo-
morphism rings End,7 of complex tori of dimension two; this will
help us to get a better understanding of the automorphism groups
themselves.

We distinguish three cases according as T contains: 1) more than
one, 2) exactly one, and 3) no, subtori of dimension one. In case
1) T is isogenous to a product E; X E, of two elliptic curves E; and
E,;T~E XE, (~ means “isogenous to”, here and in what follows.)
In case 2) we denote by C’ the unique subtorus and by C the quotient
torus 7/C’. 1In case 3) T is by definition simple. The relation with
algebraic dimension a(7T) of T is as follows: 1) a(T) =2, 2) a(T) =1,
and 3) a(T) =2 or 0. (Recall that a(T)=2 if and only if 7 is an
abelian surface.) In case 2) the natural homomorphism 7T—C gives
the algebraic reduction of T.

Theorem 5.1. Let T be a complex torus of dimension 2. Then in
each of the above three cases the possible types of rational endomorphism
rings End,T, the values of Picard numbers p(T), the dimension d of the
“modult space” (cf. [7] for the precise definition) and the structure of Aut T
are given as in the following table.

Table 14
Case |, T~EXE’
No. | T JEndoT },;(T) d Aut T
!
1
1 i E+E ]K@K' E 2 | 2|G,@6C,15mn<3
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, E not CM| M,(K) 3 1

o E~E E CM subgroup of GL,(K)
Here K=End,E and K’=End,E"’.
Case 2,
\ No. T EndT | o(T) | d AutT |
} 1 CrC’ Q) 1 3 1)
2 o Cmot CMigrpy 2 | 2| <«
} 2’ C CM |((V=K) 3 l C,,, 1=m=3

Here K=End,C. Further, in 2 or 2’ the elements of V are considered
to be square zero. Thus if C is not CM, End,7=Q[X]/(X?» and if
C is CM, End, T=K[X, Y]/ (X, Y)%

Case 3. T simple

No. | a(T) End,T o(T) | d Aut T
1 Q 1| 3 <xD
real quadratic field 2 2| ZPG,
3 2 | CM field of degree ¢ | 2 | 0 z®C,,, m=1,5

4 indefinite quaternion 3 1 non-abelian

division algebra/@ | infinite

5 Q Oorl| 4| <&l

6 }iréll;hginary quadratic 9 2|6, 1=m<3

7 o | totally imaginary 2 . ZPS,,, 1=m=<3
Ejlr?llgirci}/[dd of degree | Z@6,

8 Sf;rgi:z/%uaternion 3 1| fnite

Here in 3, m=5 if and only if T7=7; (cf. Table 6). In 4 AutT
contains a normal subgroup I’y of index 2 which is a Fuchsian group
of the first kind. Any possible finite subgroup of Iy is isomorphic
to €, with m=1, 2, 3, 4 or 6. Possible finite subgroups in 8 are
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those which appear in special pairs (cf. Sec. 2). In 7 if K is the
minimal Galois extension of End,7, then p=2 (resp. 0) if and only
if the Galois group Gal (K/Q) =9, (resp. %, or &), where %, is the
alternating group.

For the proof of Theorem 5.1 we refer to [7] (Most of the
results are special cases of those results which hold also in higher
dimensions.) We only note that for abelian surfaces all the results
in the above tables are well-known (cf. e.g. [20, §4]).

5.2. As follows from the above table, if a(7T) <1, then AutT is
infinite if and only if a(7) =0 and End,T is a totally imaginary field
of degree 4 which is not CM; conversely given any such a field K
one can construct a complex torus 7" of dimension 2 with End,7=K
and hence with a(7) =0 and with Aut7 infinite (cf. [27] for an
explicit example). If, in addition, we take K with Gal(K/Q)=®, or
A,, then we even have p(7) =0. In this connection, we shall show
that any automorphism g of infinite order of 7" with a(7T) =0 is never
special, i.e., det f(g) #1, where f:AutT—GL(E) is the complex
representation. This is in a good contrast to the case of abelian
surfaces since if a(T) =2 (instead of 0), g* is special for some positive
integer £ by a theorem of Zarhin [28]. The fact is even true for
K3 surfaces, if we make the following definition. An automorphism
g of a K3 surface (or complex torus) § is said to be special (or
symplectic) if gfw=w for any holomorphic 2-form ® on §. (For a
complex torus this definition coincides with the original one.)

Proposition 5.2, Let S be a complex torus of dimension 2 or a K3
surface. Let g be an automorphism of infinite order of S. Then g is never
special if a(T)=0.

Lemma 5.3. Let S be as in the above proposition. Let Ng be the
Neron—Severi lattice of S. Then the natural homomorphism u:Aut S—Aut Ny
Sactors through a finite group.

Proof. Since a(S) =0, Ns is negative definite (cf. [14, 3.5]). Then
u(Aut T) is considered as a discrete subgroup of the orthogonal group.
Hence it is finite.
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Proof of Proposition 5.2. By Lemma 5.3 g* acts trivially on N
for some positive integer k. Then g* and hence g also, act on the
transcendental lattice of § nontrivially since g*# £+ 1. (An automorphism
which acts trivially on both N5 and Bs is either of +1.) Then by
[14, Th. 3.1] g is not special.

Table 14 also shows that if a(7T) =0 and p(7) =3, Aut T is finite.
This also admits an analogy in the case of K3 surfaces. Namely we
prove

Proposition 5.4. Let S be a K3 surface with a(T) =0 and p(S) =19.
Then the automorphism group of S is finite.

Proof. In this case the rank of the transcendental lattice Bs of §
equals 3. Since H?(S, R) has signature (3,19) and N; is negative
definite, it follows that Bs is positive definite. ~Hence by the same
argument as in the proof of Lemma 5.3 the action of Aut7 on Bjs
factors through a finite subgroup as well as the action on Ns;. From
this the proposition follows immediately.

Remark 5.5. 1) p=19 is the maximal number for the Picard
number of a K3 surface with a(§)=<1. 2) The above proof also
applies to a complex torus, thus giving another proof for the fact
mentioned before the proposition.

5.3. Using the structure of the endomorphism ring described above,
we now study the structure of each special pairs (7, G) with G=£Q,
T or D in some more detail. Recall that a singular abelian surface is
an abelian surface 7" with Picard number p(7) =4 (corresponding to
Case 1, No, 3, of Table 14). In this case T is isogenous to a product
EXE of copies of an elliptic curve £ with complex multiplication,
and vice versa.

Lemma 5.6. Let (T,G) be a special pair with G=2, T or D.
Then either a(T) =0 and p(T) =3, or T is a singular abelian surface.

Proof. By Lemma 3. 4 End,T contains a definite quaternion algebra.
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According to Table 14 this is possible only in either of the two cases
of the lemma.

Let @ be either of Q, % and ®. We consider the universal family
{(T,, G} .ex of special pairs with G,=& defined in Sect.3 (cf. (17))
parametrized by X={g€H;¢*=—1} =P'. (Recall that by Theorem
3.11 any maximal special pair is isomorphic to (7, G,) for some
¢g=X.) By Lemma 5.6 either 7, is a singular abelian surface or
a(T,) =0. Then the points ¢ corresponding to singular abelian surfaces
T, are identified in the next proposition. For a singular abelian
surface 7" we shall denote by K, the center of the rational endomor-
phism ring End,T" of T.

Proposition 5.7. In the above notation T=T, is a singular abelian
surface if and only if there exists a real number p+#0 such that pgsA,ZH.
Moreover, in this case we have KTEQ(,U\/:T). In  particular the set
A:={geX;a(T,) =2} is countable and dense in X.

Proof. Let H=4,X@Q, which is a definite quaternion algebra over
@. Then End,T is naturally identified with the ring of endomorphisms
f of H as a @Q-vector space such that f is J(g)-linear, where J(g)
is the right multiplication by ¢ on Hp=H. By left multiplication on
H we have the natural embedding H——End,7,. On the other hand,
if pged, for some real number #+#0, then (pg)?= —p? is a negative
rational number. Hence K:={a+pBug;a, @} is an imaginary
quadratic field. Moreover, by right multiplication a+pfug (which
commutes with J(g)) is considered as an element of End,7,; hence
we have also an embedding K——End,7,. Thus we have End,7,2
KQeH=M,(K). (Note that by left multiplication K is embeddable
also in H so that K is a splitting field of H.) As Table 14 shows, T
must be a singular abelian surface in this case, and we clearly have
K;=K=Q(ul—1). Since any Q-linear automorphism of H is
obtained as the composition of the right and left multiplications of
elements of H, if there exists no real number g as above, End,7 must
coincide with H. Hence, by Table 14 we see that a(7)=0. This
shows the proposition.
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5.4. Next we proceed to describe the rational Neron-Severi group
Nrq of T=T, for each g=X. We start with the description of
H*(T,®) as an inner product space with inner product defined by
the cup product. Of course this depends only on the underlying real
torus 7' of T with the orientation induced by the complex structure
of T. Recall that we may naturally write T=H/4, where 4 is some
lattice in a definite quaternion algebra H over @ (actually H=F or
F' (cf. 2.3, (4))), and we have identified H, with H by a fixed
isomorphism ¢:Hp=H. Here we assume that for the orientation of
H inducing that of T, 1, i, j, k¥ form a positive basis.

Let tr: H—@ be the (reduced) trace. Define as usual a nonde-
generate positive symmetric @-bilinear form { , > on H by

<xyy>=tr(x9), x,yEH,

where 9 is the quaternion conjugate of y. Let H, (resp. #;) be the
subspace of H (resp. H) of pure quaternions, i.e., those quaternions
with zero trace. We denote by Hy(—1) the space H, equipped with
the negative definite inner product —< , >. Define a positive integer
d=d(4) by

(23) d= |det (<u;, u;)) |

for any Z-basis u;, 1<i<4, of 4. We may identify H?*(7,®) with
the space A’H* of @-valued alternating bilinear forms on 4o=H,
where H* is the dual @-vector space of H. Then the multiplicative
group H* of H acts naturally on A*H*=H?*(T,®) and the formula

SUE D) (x,9) = A/ND) (tr (x€5) +tr (x37)), &, 9, x,9 EHo
defines a @-linear map f: HPH,—H?(T,&). Then the follwing is true.

Lemma 5.8. 1) f gives an isomorphism of the inner product spaces
H®@H,(—1) and H¥ (T, Q). 2) If we let Sp(l) act on H@DH,(—1)
by the formula o (&%) = (§0n07Y),0Sp(l), & nEH,, then fis Sp(l)-

equivariant.

Proof. 1) Denote by dl, di, dj, dk (€H}j) be the dual basis of
l,i,j,k€H=H,. We denote by the same letter tr the R-linear
extension Hy—R of tr:H—>Q. For any {=ai+bj+ck, a,b,ccR and
x, yEHpg let ¢ (x,9) =1/2)tr (x05) and ¢ (x,) = (1/2)tr (x5L), con-
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sidered as elements of A2H3=H?(T,R). Then in A’Hj we have

& =ad] di+bd1 ndj+cd1 \dk —adjdk —bdi \dk —cdi \dj
o =ad] pdi+bd1 di+cd1 dk +adj ndk —bdi \dk +cdindj.

From this we see that for §=ai+bj+ck, n=a"i+bj+c’kEH,r

(24) deap,=aa’ —bb'+cc’—a’a+b'b—c'c=0
and
(25) Dend,=2(aa’+bb"+-cc") Q=& nD2

Penpy=(—2) (aa’+bb" +cc") = —<&, >R,
where 2=dl,di \dj,(—dk) = —dl,\di djdk. (24) implies that f(H,)
L f(Hy(—1)) in £H*. Hence it suffices to show that fi:=fg,
and f;:=f|uy are both inner product preserving; indeed, then the
injectivity of f follows immediately and therefore f is isomorphic since
both HPH, and H?*(T,Q) are 6-dimensional.

Let u;, 1<i<4, be an oriented basis of 4. Then if we set 2,=
duy \dugpdusndu,, we have 2= (d/4)2,. From (25) and this we get
Pentdy= <&, 1> ([d/4) 24350 fL(E)r [r(n)= (2N D) A 2,/ Nd)=(4/d) Perp =
<&,7>2,. This shows that f; is inner product preserving. Similarly,
we can prove the same result also for f,. 1) is thus proved. 2) can
also be checked by direct computation as above.

Now, returning to our complex torus 7=T,, ¢ X, let H*%, p+q=2,
be the Hodge (p,q)-components of H(T,C). The action of H*
on HZ*(T,Q) extends naturally to a complex linear action on
H*(T,C), and preserves the Hodge components H?¢ and hence also
Nro=H"'"NH*(T,Q) and B; q=N+#gq in H*(T, Q). (Note that HC End,T
and Sp(l) acts on H*(T,Q) isometrically.) Now we shall identify
H*(T,C) with Hyc@Ho(—1)¢ via fg'. Accordingly, Nrq and Brgq
are considered naturally as subspaces of the latter. Further, via
¢o: Ho g3 H, we shall consider g XCH, as an element of H, xS H,c.

Proposition 5.9. With respect to the above identifications we have
H"'=Cq@®Hy(—1)c. Moreover, a(T) =2 (resp.=0) if and only if there
exists (resp. does not exist) a real number p+0 such that pgeH,; in this
case we have Nroq=Q(pg) ®Ho(—1), Broq=Q(yq)* in H, and N¥_2=
Q(ug) (resp. Npo=Ho(—1), Bro=H, and Nfo=0).
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Proof. We see that for any & n&H, g and x, y € Hyg,

Vd fa((§, 1)) (x9,59) =tr (xq€pq) +tr (xqpqn) =tr (xgéq™"5) +tr (x5m)
since ¢g=1. It follows that for fixed &, we have

fR((Ea 77)) (xq,)"]) =fR(($9 77)) (x,y), x3yEHR

(which is equivalent to the condition that f((§, 7)) eHy':=H"'N
H*(T,R)), if and only if ¢ commutes with & i.e., vg=§& for some
real number v. Hence we have Hy'=RgPH,(—1)g. From this the
first assertion follows immediately. This then in turn implies that
p(T) =4 (resp. 3) if and only if there exists (resp. does not exist)
a real number g such that pgge H,. This is equivalent to the second
assertion by Theorem 5.1. Further, in this case we clearly get the
desired description of Nyq and Brg. The description of Nfg as in
the proposition follows from this and 2) of the previous lemma,

Remark 5.10. Suppose that N; o=@ (pq) PH,(—1), then we may
assume that pug& N7 by replacing g by ny for a large positive integer
n. Let L be a line bundle on 7T whose chern class is gg. Then
since {pg, pg>>0, either L or L' is ample.

Since G generates H as a @-algebra, from Proposition 5.9 and
Remark 5.10 we obtain the following:

Corollary 5.11. Let (T, G) be any special pair with G=L., T, or D
and with T a singular abelian surface. Then the G-invariant Neron-Severi
lattice N is of rank 1, and it contains a chern class of an ample line

bundle.

By the above corollary N% is a unary positive even lattice (cf. 6. 1),
and has a unique positive generator, say e. Then we define a positive
integer 0 by

0=<e, e>/2

and call it the degree of (T,G). For instance G leaves invariant a
principal polarization on 7 if and only if d=1.

Remark 5,12, 1In the course of the proof of Proposition 5.9 we
have seen that (H%)Z =Rq. Hence w,:=tr(xqy) is the unique H*-
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invariant real (l,1)-form on 7, up to constants. On the other hand,
the form o, can be interpreted as follows. Let g(x, y) =tr(x3). Then
g is a non-degenerate symmetric bilinear form on Hp=H. For any
q, 8,(x, »):=g(x, y) +V—1g(xq, ») defines a hermitian metric on the
complex vector space (H,g). Hence it defines a Kéhler metric on
T (denoted still by g) whose underlying Riemannian metric is inde-
pendent of the choice of ¢ (cf. Calabi [3]). Thus @, is nothing but
the Kahler form associated to g,. Further, for a positive real number
Y, pg, is a (rational) Hodge metric in the sense that pw, belongs to
Hy' if and only if ygeH,. Note further that Hy,(—1) is just the
subspace of Hg' consisting of those classes which are primitive with
respect to the Kéhler metric g, and is independent of the choice of ¢
(cf. [3, Lemma 4. 2]).

Under a suitable formulation Proposition 5.9 and Remark 5.10
are true for any 2-dimensional complex torus 7 which admits a
definite quaternion algebra over @ as a subalgebra of End,7.

5.5. For a singular abelian surface 7" we denote by m, the unique

square-free positive integer m such that K =Q( —m), where K is
the center of End,7. We end this section by proving the following:

Proposition 5.13. Let &= or & (resp. D). Let m be a square-
Sfree positive integer. Then there exists a special pair (T,G) such that
G=® and T is a singualr abelian surface with my=m if and only if
m#E—1 (8) (resp. =—1 (3)).

Proof. We consider only the case where =% or ¥, the other
cases being similar. Let 7 be a singular abelian surface with
K;=Q({ —m). First, we note the following implications; “7T" admits
a special action of &”—“H is embedded in M,(K;) =Z=End,7”<*“K; is a
splitting field of H”«“K; is embedded in H”<>“{ = —m for some
teH"o“a+b*+c*=m for some rational numbers a,b, ¢’e“m#E —1
(8)” (cf. [18, p45, Lemma A]). This shows already the necessity
and shows also that if m# —1 (8), & is embedded in SL(2, K;). In
this case let 4 be any maximal o-order of H, where o is the maximal
order of K;. Then 4 is of the form 4=Homo(M, M) for an 9-module
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M of rank 2; further M is up to isomorphism of the form o@®S for
some ideal § of o (cf. [17, 4.13]). Fix an embedding K—— C; then
T:=E\XE,, E,=C/o, E,=C/$, admits a natural special action of ®.

We note that Proposition 5. 13 can also be deduced from Theorem
7.2 and 7.5 below, though the above proof is more direct.

§ 6. Special Pairs and Root Lattices

In Sect. 6 we associate to each group & in Lemma 3.3 a certain
root lattice, and by using this we shall give a characterization of
those complex tori 7" which admits a special action of & in terms of
the Neron-Severi and transcendental lattices. The conditions can be
made more explicit in the case of singular abelian surfaces; indeed
in Sect. 7 we shall determine all the singular abelian surfaces which
admit special ®-actions in terms of their transcendental lattices in
case & is non-commutative. Moreover, in this case we also determine
the number of conjugacy classes of such special subgroups in Aut 7.

6.1. We recall some basic terminologies on Euclidian lattices used
in this section. Let L be a lattice. Then for any rational number m
we shall denote by L(m) the lattice L with the new inner product
(', >n defined by <x, »>,=mlx, > (as long as the right hand side
is always an integer). Let ¢, 1<i<n, be a basis of L. Then the
discriminant of L is the determinant of the matrix ({e;, €;2)15:j<n. L
is said to be even if {x, x> is even for any x&L. An orientation of L
is by definition an orientation of the real vector space L,. We denote
by O(L) and SO(L) the orthogonal and special orthogonal groups
of L respectively. If K is a sublattice of L, K* denotes its orthogonal
complement in L. L;1 L, denotes an orthogonal direct sum. U will
denote the standard hyperbolic lattice; U=Z¢PZe, with <e;,e,>=0
and <e;, e;>=1. If T is a complex torus of dimension 2, then H*(T, Z)
is isomorphic as a lattice to U*=U_LU_LU. A sublattice K of L is
said to be primitive if the quotient L/K has no torsion. An embedding
Jj:K——L is said to be primitive if j(K) is primitive. Two sublattices
K, (resp. two embeddings j,:K——L), a=1, 2, are said to be equivalent
if there exists an element § €0 (L) such that §(K)) =K, (resp. §j,=/,).
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Let 4 be a finite abelian group. Then a quadratic form on 4 is
by definition a map ¢:4—Q/2Z such that 1) for any x4 and for
any integer @« we have g(ax) =a’q(x) and 2) there exists a @Q/Z-
valued bilinear form & on A4 satisfying g(x+y) —g(x) —g(») =2b(x, »)
for any x, y€4; here b is uniquely determined by ¢g. We call the
pair (4, q) a quadratic form group. We say that q is non-degenerate if
so is b.

Let L be an even lattice. Let L* be the dual lattice of L;L*=
{x&Lq:<{x,9>q€Z for any ycL}. Then the formula ¢(x+L)=
{x,x) mod 2Z (x&L*) defines a nondegnerate quadratic form ¢, on
the finite abelian group 4 :=L*/L. This ¢q., or rather, the associated

quadratic form group (4,q.), is called the discriminant form (group)
of L. We have

(26) |4 | =discriminant of L,

where |A4]| is the order of A. We denote the automorphism group
of (4,q) by O(4,q), or simply by O(qg).

6.2. In this subsection we shall give a description of the moduli
space of 2-dimensional complex tori in terms of 2-forms, according to
Shioda [22]. Let A°=Z* and 4, its dual. Fix an orientation on A°
and hence on 4,. Then we have the natural pairing A24yX A4~
N*4,=Z* which makes A%/, a euclidian lattice isomorphic to U3

Let T be a complex torus of dimension 2. Write T=E/A. Then
via the natural real linear isomorphism 2j:4gx—E, A=H,(T,Z) is
given a natural orientation. Then a marking ¢:4—4° is said to be
admissible if it is orientation preserving. A 2-marking of T is by
definition an isomorphism ¢:H?*(T,Z)—U? of euclidian lattices. Any
(1-) marking ¢ as above induces the 2-marking A (¢):H*(T,Z)—-U
Then a 2-marking ¢ is said to be admissible if there exists an
admissible marking ¢ of T such that ¢=/A(p). We define isomor-
phisms of two admissibly 2-marked complex tori in the obvious way.

Let H*°(T) be the Hodge (2,0)-component of H*(7,C). Let

E(T) =H*(T, R) n (H**(T)@H*(T)),

where ~ denotes the complex conjugation. The projection induces the
real linear isomorphism E(7)=H?>°(T), which induces the natural
orientation on E (7). With this orientation we consider E(T) as an
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oriented 2-plane in H*(T, R). We note that we have the inclusion
E(T)——Br g Let (T,¢) be a 2-marked complex torus. Then we set

E(T, §):=¢(ET))—Us.
With the orientation induced from E(T) we consider E(T,¢) as an
oriented 2-plane in U%, and call it the period of (T, ¢).

Let V be the set of oriented 2-planes £ in U%. Then V has the
natural structure of a connected homogeneous complex manifold

V'=8S0,(3, 3) /SO (2) XS8O(1, 3)
with respect to some identification
0(5,3)=0U%).

Here SOq(p, ¢) is the identity component of O(p,q). Moreover the
correspondence (7, ¢) —>E(T,¢) EV induces the natural bijective
correspondence between the set of isomorphism classes of admissibly
2-marked complex tori and the set V (cf. [22]).

Any admissibly (I-)marked complex torus (7, ¢) naturally gives rise
to an admissibly 2-marked complex torus (7, ¢) by setting ¢=/\(¢).
This induces an isomorphism of homogeneous complex manifolds

oWV

if W*=SL,(R)/GL,(C) is considered naturally as the (fine) moduli
space of admissibly marked complex tori. Indeed, with respect to
the homogeneous structures as above d is compatible with the natural
double covering map
@7 80:SLy (B) >S5S0 (U)
of real Lie groups which induces the surjection SL,(Z)—>SO.(U?).
Here, by definition,

SO0 (U?) =0 (U?) NSO (UR),

with SO,(U%) the identity compoenent of O(Uk) = O(3,3). In parti-
cular SO,(U?\V may also be considered as the moduli space of 2-
dimensional complex tori.

Let M be any primitive sublattice of U?. Let

Then, if M is nondegenerate with signature (s,?), =2, Vi is naturally
a homogeneous complex submanifold of V; namely
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Vu=S0(s,t)/SO(2) XSO(s—2,1).
We note that if s=3, we have the inclusion

(28) P'=80(3) /SO (2)——S0(s,t) /SO (2) XSO (s—2,¢t) = V.

6.3. For any lattice with discriminant form (4, ¢) we denote by
H(L) the kernel of the natural homomorphism O(L)—0O(g). Then
we set

SH(L) =H(L)NSO().

The following lemma is due to Nikulin.

Lemma 6.1. 1) Let L be an even laitice of rank k. Then there
exists a natural embedding L L L(—1)——U" such that L and L(—1) are
primitive in U* and that any element g=O (L) extends naturally to an
element § of SO(U*). 2) Let L be any primitive sublattice of U*. Then
any element g&SH (L) is a restriction of a unique element g of SO (U*)
such that the restriction g| , of § to L* is the identity.

Proof. See Nikulin [15, 1. 6.3, 1.1.1] and [14, Prop. L. 1].

For any pair (7,G) we shall denote by H?(T,Z)¢ the primitive
sublattice of H2(T,Z) of G-fixed elements, and by H*(T,Z). its
orthogonal complement in H*(T,Z). The following lemma is due
also to Nikulin [14].

Lemma 6.2. Let (T,G) be a special pair. Then the following hold:
1) We have the inclusions Br——H*(T,Z)¢ and H*(T,Z);—Nr,
2) H*(T,Z); is negative definite and 3) the natural image of G in
OHXT, Z);) is contained in SH(H*(T,Z)¢).

Proof. 1) follows from the definition of special action and [14,
Th. 3.1, a)]. 2) follows from [14, Th, 4.3, a)], which also holds
for general complex tori. Finally, 3) follows from 1).

Let (L,H,E) be a triple consisting of a) a negative primitive
sublattice L of U® b) a subgroup H of SH(L) with the set of H-
invariants L?= {0}, and ¢) an oriented 2-plane E in L% (Here the
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case L={0} is allowed in a).) Let # be the set of such triples. Let
(T, G) be any special pair with —1€G. Let ¢:H*T,Z)—U* be
an admissible 2-marking. Set L=¢(H*(T, Z);), H=the image. G of
Gin O(L)=O(H*(T, Z);) and E=E(T, ¢) with its natural orientation.
Then by Lemma 6.2 L is negative and HCSSH(L) with L#={0}.
Thus the triple (L, H, E) is in 4.

Let & be the set of isomorphism classes of admissibly 2-marked
special pairs (7T, G;¢) with —1EG (with isomorphisms defined in
the obvious way). We have then obtained the natural mapping
B:F—>% defined by

(T, G; )= (p(HXT, Z)6), G, E(T, ).
We say that two triples (L, H,E) and (L', H',E’) in # are equivalent
if there exists an element u€SO,(U®? such that u(L)=L’, uy(H):=
uHu'=H’ and that ug(E£)=E’ with the resulting isomorphism
E—E’ orientation preserving. Let # be the set of equivalence classes
of triples in #. Then we see that B induces the natural map

B: P>, where & is the set of isomorphism classes of special pairs
(T,G) with —1€G.

Proposition 6.3. The natural maps B: B— and B: B - defined
above are bijective.

Proof. Injectivity. Let i=1,2. Let (L, H;, E;) be the triples
coming from admissibly 2-marked special pairs (73, G;¢;) with
—1&€G;.. Suppose that they are equivalent with an equivalence
uEeS0O,(U® as above. Then by the definition of B, the induced
isomorphism o := gbz‘lugbl:H"(Tl, Z)—H*(T,, Z) has the property that it
is induced by an orientation preserving isomorphism H,(7T, Z)—
H\(Ty 2), 9(HXT,, £))=H"Ty, 2)% o(H(T;, Z)o) =HX(Ty, L),y
vp(E(Ty)) =E(T,) with E(T,)—E(T,) orientation preserving, and that
v%(G) =G,, where G; is the natural image of G; in O (H?(T, Z)q,).
Therefore if G; is the image of G; in O(H*(T,Z)), then we also
have v4(G})) =G,. Then by Shioda [22] (cf. (6.2)) v is induced by
an isomorphism f:7,—T, of complex tori. Further from the relations
v% (G) =G, noted above and G,/{—1>= G}, we have f4(G,) =G,, i.e.,
(T, G) = (T,,G,). This shows the injectivity of 8. If (L,, H, E) =
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(L, H, E,), then we can take u to be the identity in the above
argument; hence we have ¢, =fy¢,, where fyi:H*(T\,, Z)—>H* (T, Z)
is induced by f. This shows the injectivity of B.

Surjectivity. It suffices to show the surjectivity of 8. Let (L, H, E)
be an arbitrary triple in #. Then by [22] (cf. (6.2)) there exists
an admissibly 2-marked complex torus (7, ¢) such that E(T,¢)=EFE.
On the other hand, from the inclusion HESH (L) and Lemma 6.1
any A€ H extends to a unique element #ESO (U?) such that ﬁ]LJ_=idLJ_.,
We can thus consider H as a subgroup of SO(U®). Set H=
{H, —id 3>=H x<—id 3}, and Hy=HNSO,(U®. Then Hy=H and
again by Shioda [22] any A€ H, is induced by an automorphism of T
determined uniquely modulo multiplication by —1. It follows that
there exists a unique subgroup G of Aut T with —1&G such that the
natural image of G in SO (U?) =SO(H*(T, Z)) coincides with H,.
Suppose now that (7, G) is special. Then by Lemma 6.2 we must
have H,=H; then (L,H,E) is the image of (T,G;¢)s¥ by B,
proving the surjectivity of 8.

It remains to show that (7, G) is special. Set M=Lt., Now in
the above argument we let E vary in V), with L and H fixed. Let
Wy=0"'(Vy) SW*. Let H=0;'(H,), where J, is defined by (27).
Then the above argument shows that any admissibly marked pair
(T; ¢) corresponding to a point of W), can be completed to a marked
pair (T, G;¢) of type H (cf. 2.1, b)). It follows that W,SWj in
the notation of 2.1, b). On the other hand, since L is negative, the
signature of M is of the form (3,¢) with 0=<¢<3. Therefore Wy,=Vy
contains at least one projective line P! (cf. (28)). Then by Proposition
2.17 and the finiteness of exceptional pairs (cf. 4.3) Wy must be
isomorphic to one of the following homogeneous complex manifolds
W+, GL,(C)/C** and H*/C*. But we know already that then any
pair corresponding to a point of Wy is special. Hence (7,G) also
is special. g.e.d.

6.4, Let (7,G) be a special pair with —1€G. Let ¢ be any
admissible 2-marking of (7,G). Let (L, H, E) be the triple corres-
ponding to (T,G;¢) via B. Then from the definition of 8 we see
that the equivalence class of the pair (L, H) is constant when (7,G)
vary on each connected component of the moduli space (cf. Sect. 3).
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(Here two (L, H) and (L’, H’) are equivalent if and only if there
exists an element u€O(U?) such that «(L)=L" and uyx(H)=H’.) In
particular if G# Q, then the equivalence class of (L, H) is determined
uniquely by the abstract isomorphism class of ®, and if G=2Q, we
have two possibilities according as (7,G) is maximal or not. We
shall now determine these isomorphism classes of (L, H) explicitly.
It turns out that such L are actually given as certain root lattices.

Any root system R defines the associated (negative) root lattice,
which we shall again denote by the same letter R. For instance 4,
is the lattice with an integral basis e;,...,¢, with <{e;e>=—2,
le;, e;ry=1, 1=Zi<k—1, and <e;, ¢;>=0 if |i—j|=2. We shall give
the structure of automorphism groups of certain root lattices in the
following table (cf. [11, 12.2]):

Table 15
rank | L O(L) H(L) SH(L)
2 43 XS, & E,=<-1)
4, | GXE, S; |G,
3 A, &, X, S, U,
Az_.L Al (@3)(@2) X@z @3)( @2 6351—‘”7 0‘:63—)@2

We note that H(L) is just the Weyl group of L in each case and
that these root lattices exhaust all the negative even root lattices of
rank 2 and 3. (We have G,=A4, and C;=A4; as root lattices.)

Let & be one of the following groups: €,, m=4, 6, Q, L, or D.

Then we define the negative even root lattice Ly as a root lattice as
follows:

Ly =43, Ls=4,
Lo=43, Ly=4,, L,=A4,14,.
From Table 15 we see immediately that
(29) SH(Ly)=G/(—1y and Ly""“¥=0,

We also set
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M,=L,(-1)LU if =¢,
=Le(—1) if &=+C,.
By Lemma 6.1 we have the natural embedding
Ju: ML Lg—U?,
in which M, and Lg are the orthogonal complement of each other.

In what follows we consider M, and L, primitive sublattices of U®
via jg.

Theorem 6.4. Let ® be as above. Let (T, G) be a special pair with
—1EG and with G=®. Let G be the natural image of G in O (H*(T, Z)¢)
so that G=G/{—1>. 1) Suppose that &+C, and (T,G) is maximal
when &=9. Then there exists an admissible 2-marking ¢ of T such that
O(H¥T,Z)®) =My and ¢(H*(T,Z);) =Ls. Moreover, ¢ induces an
isomorphism of G with SH(Lg). 2) If &= and (T, G) is not maximal,
then there exists a unique 2-marking ¢ of T such that ¢ (H*(T, Z)) =M,
and ¢ (H¥ (T, Z)s) =L,. Moreover, ¢ induces an isomorphism of G with
the unique normal subgroup of order 4 of SH(Le)=%,. 3) If G=G,,
H3(T,Z)s= {0} and G= {e}.

Proof. Set L=Ly and H=SH(L,). Then by (29) LZ¥=0. Hence
if we set M=M,, (L,H,E)EZ# for any EcVy,+@. Let (T',G’)
be a special pair with —1&G’ corresponding to such an (L, H, E).
Then by (29) and the relation G’/{—1>=H, we see that the orders
of G’ and & are the same. If follows that G'=@®. Further, by
Lemma 6.2, 3) we conclude that (77,G’) is maximal if G=2Q. 1)
follows from this, in view of the remark at the beginning of this
subsection, 2) follows from 1) immediately, and 3) is obvious.

Remark. By extending elements of H=SH (L,) uniquely to SO (U?)
by Lemma 6.1 we consider H as a subgroup of SO(U?. As we have
noted H(Ls) is the Weyl group of the corresponding root system;
further SH(L,) is the subgroup of those elements of even length
(with respect to generators consisting of reflections). From this we
see that any element of SH(L,) has spinorial norm 1 (cf. [16, §55])
so that actually we have HSSOo(U®). Using this fact one can give
a more direct proof (i.e., the one which is independent of the results
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of Section 2) of the fact that (7, G) is special in the last part of the
proof of Proposition 6. 3.

Corollary 6.5. There exists up to equivalence a unique primitive
embedding of Lg into U®.

Proof. Let L be any primitive sublattice of U? isomorphic to L.
Let H=SH(L). Then by repeating the argument of the proof of the
theorem we see that there exists a special pair (7,G) which is in
the case 1) of Theorem 6.4 with invariant (L, H). It follows from
the theorem that (L, H) is equivalent to (Lg, SH(Ls)). Since Ly =Ma,
any element of O(Ls) extends to an element of O(U?). It follows
that the embedding itself is unique.

Remark 6. 6. 1) More precicely, we can always find an element
2 ES0(U® which sends L onto Lg. This follows from the existence
of elements 2, E0(U®) —SO(U?) and = —id;ESO(U®) —SO(U?)
leaving L, invarinat. (For », take-for instance the extension of any
element of H(Les) —SH (Ls) which is the identity on M,.)

2) If =€, the corollary is a special case of the general uni-
queness theorem of Nikulin (cf. [15, 1.12.3]). There exists a direct
proof also in the case &€, (cf. Remark 7. 18).

Similarly we obtain from Theorem 6.4 the following:

Corollary 6.7. 1) Among all the binary positive even lattices L, A?
and A, are characterized by the condition that SH(L) # {e}. 2) Among all
the ternary positive even lattices L, A3, A, L A,, and As are characterized
by the condition that SH(L) is non-cyclic.

Remark 6.8. Actually 1) is immediate from the well-known con-
formal classification of binary positive lattices (cf. [2, II, §7]). 2)
could also have been obtained from the classical Braviais classification
of space lattices.

6.5. Next we shall give a characterization of those complex tori T°
which admit a special action of & as in 6.4 in terms of its Neron-
Severi lattice Ny or of its transcendental lattice By.
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Theorem 6.9. Let T be a complex torus of dimension 2.  Let
®=C,, m=4,6, Q, T, or D. Then the following conditions are equivalent.
1) There exists a finite subgroup of G of Aut T with G=® such that the
resulting pair (T, G) is special, and in addition, is maximal if &=9Q. 2)
There exists a primitive embedding Le——>Nr. 3) There exists a primitive
embedding By—— M.

Remark 6.10. The following three assertions are clear: 1) Any
complex torus of dimension 2 admits a unique special action of €,.
2) T admits a special action of €; if and only if it admits a special
action of €. 3) T admits a special and non-maximal action of Q if
and only if it admits a special action of ¥ (cf. 3.3). Hence the
above theorem gives a complete characterization of complex tori which
admits a special action of a given finite group.

Remark 6.11. In case =92, T, or © we have the two alternative
cases: a) a(T)=0, o(T)=3, Br=M, and Nry=L,: in particular in
this case Ny and By are independent of the isomorphism classes of
T. b) T is a singular abelian surface and By is primitively embedded
in Mg=Lg(—1).

Proof of Theorem 6.9. 1) implies 2) by Theorem 6.4 and Lemma
6.2. Let L=L, and M=M,. Suppose now that 2) is true. Let
u:L——> Ny be any primitive embedding. Then by Corollary 6.5 (cf.
Remark 6.6 also) we can find an admissible 2-marking ¢ of T such
that ¢(u(L)) =L. Let E=E(T,¢) and H=SH(L). Then by Proposi-
tion 6.3 there exists a finite subgroup G of Aut T such that (7,G)
is special, —1€G and B((T,G;¢))=(L,H,E). Thus 1) follows.
On the other hand, 2) implies the existence of an embedding By——L*,
while by Corollary 6.5 L+*=M. Hence 3) is true. Finally we shall
show that 3) implies 2). Let Br——M be any primitive embedding.
This induces a primitive embedding Nt——N;,. If +#C,, then by
Corollary 6.5 M+=L, and 2) is true. If &=C,, then |discr M*|=
|discr M |=|discr Lg|=4 if m=4 and =3 if m=6, where discr
denotes the discriminant. As is well-known, binary negative even
lattice with discriminant —4 or —3 is unique (cf. [2]). Hence
MEt=L,; so 2) is true in this case also.



AUTOMORPHISM GROUPS OF COMPLEX TORI 77

We refine the above theorem slightly in the case of singular abelian
surfaces. Let T be a singular abelian surface. Then rank B;=2;
hence we have E(T) =By g In particular By has the natural induced
orientation. Let (7, G) be a special pair with —1€G and with T a
singular abelian surface. Take any isomorphism u:H*(T,Z)°—>M,,
which in turn induces a primitive embedding w,: Br——>M,(cf. Theorem
6.4 and Lemma 6.2), Let B(T,G) be the image of u,. We put
on B(7T,G) the orientation induced from Bg. We say that the
oriented sublattices V, and V, of M, are equivalent if there exists an
element =0 (M) such that x(V;) =V, with the induced isomorphism
Vi—V, orientation preserving.  Then the equivalence class of the
oriented sublattices B(7T,G) is independent of the choice of u as
above and depends only on the pair (7,G).

Proposition 6.12. Let @ be as in Theorem 6.9. The correspondence
(T,G)—B(T,G) defined above sets up a natural bijective correspondence
between a) the set & of equivalence classes of special pairs (T,G) with
G=G, with T a singular abelian surface and with (T,G) maximal if

G=%, and b) the set V" of oriented primitive binary positive sublattices of
My considered up to equivalence.

Proof. Injectivity. Let i=1, 2. Let (7;,G;) be pairs from 2.
Suppose that B(T;,G:) are equivalent sublattices of M,. Let u be
an element of O(AM,) which gives an equivalence as above. Let
(L;, H;, E;) be the triples corresponding to (7;,G;;¢;) for some
admissible 2-markings ¢; for (T;,G,) via Proposition 6.3. Then by
that proposition it suffices to show that these triples are equivalent.
Since 8=G,=G, and (7;,G;) are maximal if G;=£, by Theorem
6.4 if we choose ¢; suitably we may assume that L,=L,=L,SU>
and H,=H,=SH(Ls). Now using Lemma 6.1 we extend u to an
element # of SO(U®. Further, by taking —u instead of u if necessary,
we may assume that 2ES0,(U®). Then a preserves L; and sends
E(Ty, ¢) =B(T,,G))g onto E(T, ¢,) =B(T,, G,)r orientation preser-
vingly. Hence (L;, H;, E;) are isomorphic as desired.

Surjectivity. Let B be an oriented primitive binary positive subla-
ttice of My. Let L=Ly, H=SH(L) and E=B. Then (L, H,E)E4%.
Let (T,G;¢) be an admissible 2-marked special pair corresponding
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to the triple (L, H, E) by Proposition 6.3. Then by construction
B=B(T,G) (modulo equivalence). By Theorem 6.4 (7,G) is maxi-
mal if G=L. It remains to show that T is a singular abelian surface.
Let N=B*. Then N is of rank 4 and is orthogonal to the period
E=E(T,¢) of (T,¢). This implies that ¢~*(N) S N,. Hence p(T) =
rank Nr=4; thus T is a singular abelian surface.

6.6. Let ® be Q, F, or ®. Let (T,G) be a maximal special pair
with G=®. We know by Theorem 6.4 that H*(T, Z)°=L,(—1) and
H*(T,Z);=Ls as euclidian lattices. However, the proof there of
this fact was rather conceptual but not explicit. So we shall exhibit
a more explicit isomorphism here, by using the calculation given in
the last part of Section 5. The method also gives us the proof of
Proposition 3. 15.

Recall that by Lemma 5.8 we have the natural G-equivariant
isometry

SiHo LHy(—1)—>H T, Q).

(See below for more explicit formula.) Here the notation H, is
explained as follows. Let H be the definite quaternion algebra given by

H=Q[l,i,j, k] if =9 or € and =@[1,i, V3, V3 £] if =D

as a @-subalgebra of H. Then H, is the @-subspace of pure quaternions
of H endowed with the inner product defined by <{x, y>=tr (xy) (cf. 5. 4).
We have also fixed an identification T=H// as an oriented real torus,
where 4=4, (cf. (16)) and we consider elements of H*(7,Q) as
@-valued alternating forms on HSH. Now let

L=f~'(H*(T,Z)) SHyL Hy(—1).
Let L=LNH, and L'=LNH,(—1). Then

SfYHA(T,Z)®) =L and [fYHYT,Z);)=L".

Therefore our task is to exhibit an explicit isomorphism L=Lg(—1)

and L'=Lg as euclidian lattices.
Recall first that for any §€H,

f& = A/Nd)tr (x€5)
for any x, yEH,, where d=d, is given respectively by do=4, d;=2
and dy=3 (cf. (23)). Hence £€L if and only if (1/Vd)tr(x£9) EZ
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for any x, y4. Hence if we set

Li={{eH;tr(x{y) €Z for any x,yE4},
then L=vVdL,NH,. On the other hand, for any {€H, {&L, if and
only if {y€4* for any y=4, where A*={z&H;tr(zx)EZ for any

x€4} is the dual lattice of 4 with respect to the nondegenerate
bilinear form tr(xz).

Proposition 6.13. The notations being as above, L is given by 1) AN H,
if =9, 2) (1+)/NDA) NH, if =T and 3) (((3+k)/2)4) N H,
if 8=9. In each case we can take a Z-basis of L as follows;
D) dgk 2 GHDNZ, GHE/N2, (k+i)/N2 and  3) (I3i+))/2,
(V3i—j) /2, k.

Proof. By straightforward computation we get that A*=z4=41z,
where z=z,=1/2, (1+i)/2, (3-+-V3k)/6 according as &=L, T and
® respectively. Then, since 4=/, for any {€H, {L, if and only
if {yez4 for any y=4. On the other hand, since 4 is an order,
yezd for any y=4 if and only if {€z4. Therefore L ,=z4 and
L= (VdzA) N H,. Substituting the values of z=z, and d=d, we get
the description of L in the proposition. It is immediate to check that
the three elements of the proposition form a Z-basis of L in each
case.

Corollary 6.14. Let Ly,={6€L;n(§) =1}, where n(§) is the norm
of & Then Lg, is given by 1) {+i, +j, +k} if =9, 2) {(1/V2)
(i), (UN2) (£itk), (1/N2) (£j£kh)} if =T and 3) {(£V3i+))/2,
+j, £k} if =D,

Proof. By Proposition 6.13 any element § of L can be written
as £=w( for some {4, where w=1, (1+i)/¥2 or (V3+£)/2. Since
n(w) =1, n(§) =1 if and only if n({) =1. Hence by Proposition 6. 13
we get Loy =wA*NH,, where A% is the unit group of the order 4.
From this the corollary follows immediately (cf. (16) and Lemma 2. 6).

The “intersection matrix” of L with respect to the Z-basis of
Proposition 6. 13 are as follows;
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2 0 0 2 1 1 2 -1 0
Do 2 o 1121 H|-1 20
00 2 11 2 0 0 2

It follows that L(—1) is isomorphic to 4}, 4; and 4,14, (i.e., to
Le), in respective cases as desired. Indeed, in case 2), passing to
another Z-basis, say (i+j)/V2, — (j+k)/V2, (j—1i)/V2, the correspond-
ing matrix becomes the Cartan matrix of A4;. The isomorphism
L’=Ly can be shown in the same way. Finally using Corollary 6. 14
we shall give the:

Proof of Proposition 3.15. Let (T,G) be a maximal special pair.
By Theorem 3.11 we may assume that (7,G)=(7,,G,) for some
¢g€X. Now T admits a G-invariant principal polarization if and only
if the G-invariant Neron-Severi lattice N§ contains an element & of
length 2. On the other hand, N¢§=LNRg in H,, where L is as in
Proposition 6.13 (cf. §5). Hence the condition is further reduced
to:Ly, NRg+ @, or, since the norm of ¢ equals 1, to:g&Ly. From
the explicit description of Ly, in Corollary 6.14 we see that L,
consists of a single I'g-orbit if &=4% or T and consists of two orbits
{(£V3i+j)/2, +j}, and {+k}. From this the first assertion of the
proposition follows. The uniqueness of the polarization then follows
from Corollary 5.11.

Let K be the normalizer of G in Aut7. Then K is finite (cf. 2.
5) so that the K-invariant Neron-Severi lattice N% of T is non-zero.
Then from the inclusion NXC N$=Z we have N¥=N§. Hence K
also fixes the principal polarization under consideration.

§7. Special Pairs for Singular Abelian Surfaces

7.1. Singular abelian surfaces are in one-to-one correspondence
with binary positive even lattices via their transcendental lattices
(Shioda-Mitani [23]). On the other hand, by Proposition 6.12 the
existence of a special action of a finite group ® as in 6. 4 on a singular
abelian surface is reduced to the existence of a primitive embedding
of the corresponding binary positive even lattice into Ls. By making
the latter condition more precise we can obtain a more detailed descrip-
tion of the special pairs (7,G) with G=® and with 7 a singular
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abelian surface.

First, in order to fix notations and terminologies, and also for the
convenience of the reader we shall summarize the main results of
[23] mentioned above.

a) Let (4,q) be a finite quadratic form group. For any prime
number p let 4, be the p-torsion part of 4. Let ¢,=¢,4, be the
restriction of ¢ to 4,. Then we have the direct sum decomposition
of the quadratic form group (4, ¢) =@,(4;,¢).

For any integers n,4 with »>>1 and with n2 even we define the
quadratic form group K;(n) by

K;(n)=(Z/nZ, (3/n)).
Also we define

U= @227, (3 § ) k2l

2—k+1 2—7:
V=222, (52 Gan)s k2L
For simplicity we write K(n) for K;(n) and set K;(1)=({0},0) for
any A Any indecomposable quadratic form group is isomorphic to
one of K;(p*), U, and V,, where p is any prime, (4, p) =1 and k=1
(cf. Nikulin [15]).
Let n be odd and I=n or 2n. Then we have

O(K:()) =63,

where s is the number of distinct prime factors of =.

b) Let m be a square-free positive integer. Then we set K,=
Q@(—m). Let d=d, be the negative of the discriminant of K, .
Then d is given by

(30) d=4m if m=1, 2 (4), and =m if m=3 (4).

Define w=0, by o=V—m if m=1,2 (4) and =(—14+V—m)/2 if
m=3 (4). Then any order o contained in K, is of the form
0=0p=Z+Zfo for a unique positive integer f, called the conductor
of 0. A proper os-ideal is a free Z-submodule M of K, of rank 2 such
that o,= {a €K, ; aMSM}. Two proper o,-ideals M and M’ are said
to be equivalent if there exists an element a=K,, such that aM=M".
The set of equivalence classes, denoted by £, ;, has the natural structure
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of a finite abelian group.

c) Let L be a binary positive even lattice. Let D>0 be the
discriminant of L. Then Q(V—D) is an imaginary quadratic field
and hence is isomorphic to K, for a unique squarefree positive integer
m=m;. Then we may write

31 D=df?
for a unique positive integer f, called the conductor of L, where

d=d,. With respect to any basis we may represent L by a 2X2
integral matrix

32 (% )
with D=4ac—b. Let s=G.C.D. (a,b,¢). Then s is independent of
the choice of the basis and called the degree of primitivity of L.

We say that L is primitive if s=1. For any L there exists a unique
primitive binary positive even lattice L, such that

(33) L=Ly(s).
In this case we call the conductor f; of L, the reduced conductor of L.

Thus to any binary positive even lattice we have associated a triple
of numerical invariants

(7”’ ‘f.u’ .f),

by which the conductor f and the discriminant D of L are recovered
respectively by:

(34) f=sfo and D=ds*fi,

where d is determined by m via (30). For a primitive lattice L, this
reduces to a pair of invariants (m,f).

Let # (resp. &,) be the set of isomorphism classes of binary
positive even lattices (resp. primitive such lattices). Let IV be the set
of natural numbers. Then by the isomorphism (33) we have the
natural bijection

(35) F=P XN.

d) Let L, L’€%. Then we say that L and L’ are in the same
genus if for any prime p the p-adic lattices L&QzZ, and L'®,Z, are
isomorphic, where Z, is the ring of p-adic integers. We call such an
equivalence class a genus. Nikulin [15, 1.9. 4] proved the following:
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i) L and L’ are in the same genus if and only if the discriminant
forms of L and L’ are isomorphic to each other.

In this connection we also note the following:

ii) The invariant (m, f;, s) of a binary positive even lattice L
depends only on the genus to which L belongs, i.e., (m, f,, s) is an
invariant of a genus.

Progf: For any prime p, the p-component (4;,q,) of the discrim-
inant form (4,q) of L is of one of the following forms:pr(pk’)E}—)
Ko, (p"), 0=k,<l,, p=2, or V,_, or U, ., k=2 when p=2 (cf.2)).
In this case s is simply given by s=2'! Hpkp. On the other hand,

P odd

by (26) the discriminant D is determined by 4. Then from the
relations (31) and (34) f, and m can be recovered from D/s2

e) Let m and f be positive integers with m squarefree. Then we
set

&L ..r= {oriented primitive binary positive even lattice with invariant

(m, f)}/~,
& . r= {elliptic curves E with End,E=K, and End E=o/}/~,

where ~ denotes “up to isomorphisms”. Then the following is
classical (cf. e.g. [2, II, §7] and [21, 4.8]).

Proposition 7.1. There exisi natural bijective correspondences among
the three sets Loy Fmyp, and & ;.

We shall briefly recall the correspondences £, ,—%,, ; and £, ;—
& ms. Fix an embedding j:K,—C . Let C€ .7, ;. Choose a represen-
tative M of C such that MCo;. Since MRR=C via j, M is given
a natural orientation. On the other hand, the restriction of the bilinear
form try _sq(x3), x, yeK, , on M makes M into a binary positive even
lattice. Then we associate to C 1) the primitive even lattice MEZ,, ;
associated to M via (33) and 2) the elliptic curve E:=C/ME & .,
where we consider M,CC via j.

f) (cf. [2, III, §8]) Via the above correspondences %, ; is given
the natural structure of a finite abelian group since £, is one. It
is then a classical fact that

i) a genus of binary positive primitive even lattices with invariant
(m, 1) corresponds to a coset of the quotient group %#,,/%%.. bijecti-
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vely, where &2 ,={M* M, }. (For any L and L'€Z, , it is
known that L and L’ are in the same genus if and only if LQQ and
L’®Q are isomorphic over @.) It is also known that

ii) if ¢ is the number of positive distinct prime factors d, then
L/ L% is an elementary abelian 2-group of rank #—1.

In particular,

iii) the following conditions are equivalent: 1) There exists a
unique genus of primitive lattices with invariant (m, 1), 2) the class
number of K, is odd and 3) m=1,2, or m is prime with m=3 (4).

g) For any square-free positive integer m we define the sets &,
., and &, as follows;

& .= {singular abelian surfaces T with mr=m}/~,
& = {elliptic curves £ with End,T=K,}/~,
&, = {oriented binary positive even lattice L with my,=m}/~,

[11

where ~ means “up to isomorphisms” and see Sect. 6 for m;. Then

the following holds.

Theorem (Shioda-Mitani [23]). There exist natural bijective corres-
pondences among the following three sets; 1) &, 2) 6 XN and 3) &,
where N is the set of natural numbers.

We shall briefly recall the correspondences of the theorem.

1)>2). Let T€%,. Then E:=H?*T, 0;)/Im H*(T,Z) is an
elliptic curve in &,. Let o,=End ECEnd,E=K,. Let o5 be the
center of End 7. Then 0, S0, so that f divides f. Then we
associate to T the pair (E, f/f).

2)—>1). Let (E,s)€E,XN. Let o,=EndE. Then E’:=C/oy,
is an elliptic curve with End E'=o,. Then we associate to (E,s)
the singular abelian surface T=EXE’,

2)—3). The correspondence is obtained via (35) and Proposition
7.1.

1)—>3). To each T€%, we associate its transcendental lattice By
with its natural orientation.

3)—1). Let Le¥,. Represent L by a 2X2 integral matrix as
in (32) with respect to an oriented base. Then we associate to L the
singular abelian surface
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(36) T=E,XE,,

where t=(—b+V—D)/2a and z'= (b+V—D)/2.

We note that the second set &, XNV is not explicit in [23] but
one can deduce the validity of the above correspondences readily from
[23, Prop. 4.5]. In particular we see that the presentation (36) of
T as a product of elliptic curves is canonical in the sense that the
elliptic curves are determined intrinsically by T.

7.2. Let T be a singular abelian surface with transcendental lattice
Br. Then we shall say that T is with invariani (m,f,,s) (resp.
primitive) if so is By (cf. 7.1, ¢)). Similarly, if ¢ is a genus of a
binary positive even lattices, then we say that T belongs to ¥ if Br
does.

Theorem 7.2. Let &= or T. Let (T,G) be a maximal special
pair with G=®, Suppose that T is a singular abelian surface with
invariant (m,f,,s5). Then m, f,, s satisfy the following conditions;
(1) mzE—-1 (8), ie.,, m=1,2 4) or m=3 (8), (i) f, is odd, and
(iii) s=2 if =9 and if m=3 (8); otherwise s=1. Conversely, if
positive integers m, f,,s with m square—free satisfy these conditions, then
among all the genera with invariant (m,f,,s) (c¢f. 7.1, d), ii)) there
exists a unique genus ¥ =9,z . such that a singular abelian surface T
with invariant (m, f,,s) admits a maximal special action of & if and only
if T belongs to the genus % ; moreover % is explicitly given via the
corresponding discriminant form (4, q) (¢f.7.1,d) 1)) as in Table 16 below.

Corollary 7.3. If either m=1,2 or m is a prime with m=3 (8),
then any primitive singular abelian surface T with invariant (m,1) always
admits a special action of X.

For instance E,XE,, o=w,, admits a special action of T if m
satisfies the above condition. The corollary can also be deduced
directly from a theorem of Steinitz on the structure of a finite torsion-
free module over a Dedekind domain (cf. [17; p. 48]).

Let (m,f,, s) satisfy the conditions (i)-(iii) of the above theorem.
Let T be a singular abelian surface belonging to the genus ¥ =9, ,

of the theorem so that 7" admits a maximal special action of &. Fix



86 AKIRA FUJIKI

such an action and let (7,G) be the resulting pair. Let 6 be the
degree of (7,G) as was defined before Remark 5. 12.

Theorem 7.4. 1) 6 depends only on the genus %, and is independent
of T and of the chosen action of ®&; indeed 6 is explicitly given for each
® in Table 16 below. 2) Let t be the number of distinct odd prime
Sactors of 0. Then the number of conjugacy classes of maximal special
subgroups of AutT which is isomorphic to ®& equals 2'71,

Table 16
® m s (4, 9) corresponding to ¥, , 0
1 (4 1 K(2)*PK_,(2) n
Q 2 4) 1 K(2)DK;(4) DK_,(n) 2n
A=2—m’ (8)
3 (8) 2 | ViPK.,(m) n
1 (4) 1 K (2)®K_y(n), 4= (—1) -/ 2n
z 2@ 1 K;(4) DK, (2) DK _,(n) n
2:(.___1)(7"’4’1)/2
3 (8 1 K_(n) 2n

Here in all cases f; is any positive odd integer and
n=mf?% if m is odd and
=m'fy if m=2m’ with m’ odd.
For the notations K;(l) and V, see 7.1,a). 1 (4) above means that
m=1 (4) etc.
In the case =9 we have analogously the following:

Theorem 7.5. Let T be a singular abelian surface. Let (A, q) be the
discriminant form of the transcendental lattice of T. Then a necessary and
sufficient condition for T to admit a special action of D is that (4,q) is
isomorphic to one of the quadratic form groups listed in Table 17 below;
in particular in this case T is necessarily primitive. Further, the degree 0
of any special pair (T,G) with G=D is given also in Table 17. The
number of conjugacy classes in Aut T of such groups G is finite.
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Table 17

(4,9 P

K,3) ®K_,(n) n=1,5(12) n

K_5(6)®K_, (n) n=2,4(6) i n/2
K_;(n) n=7(12) 3n

K2 PK,(2")BK_s,(n) n=(—1)*(8-32) (24) if k=2 2k-13p
k>0,2=1,5 if k>2 (12) if k=1

=1if k=1,2

u=(3+(—-1"/2

Remark 7.7. 1) As in the cases of ©Q and ¥ the existence of a
special action of D, as well as the degree ¢ of a special pair (7, G)
with G=®D, depends only on the genus to which 7 belongs. Indeed,
from the above table one can deduce the statements in terms of the
invariant (m,f,,s) as in the first part of Theorem 7. 2; but it becomes
more complicated in this case so we have omitted it here.

2) Let m be a square-free positive integer. Assume that m=1,2
or is a prime with m=3,7 (12). Then, similarly to Corollary 7.3
we see that any primitive singular abelian surface with invariant (m, 1)
admits a special action of D.

Remark 7.8. Each quadratic form group in Tables 16, 17 is a
discriminant form of a transcendental lattice of some singular abelian

surface. This follows from [15,1.10.1] and the theorem of Shioda-
Mitani.

Example 7.9. The following is the list of all the singular abelian
surfaces 7' whose transcendental lattice B has discriminant D<12,
in its canonical representation as a product of elliptic curves (cf. 7.1,
g)). We also give i) all the possible non-cyclic groups & acting
maximally and specially on 7, ii) the degree 6 of (7,G) and iii)
the number ¢ of conjugacy classes of such groups.
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Table 18

D T BT (my.f(h S) (A, 9) @ 5 c
2 1 T | 6|1

3 | E,xE, (1 2) G LD | K@3) o1l
ol 1] 1

4 | E,xE, @z | (L,1,1) | K@) T | 2|1
o | 3| 1

7 | E.xE, (f }}) a, LD | Km ® |21 2
ol 2|1

8 |EmXEs | H)D@) | (2L, 1) K(4)DK(2) T 1l
11 | E,xE, (f é) aLLy | KA T [22] 1
12 | EgXEg | 6)D@) | 3,2,1) K ;6)DK_,(2)D | 1| 1
12 | E,xEg (; f) 61,2 | vex,3 | o] 3|1

Here é=w;, p=w; (cf.7.1,b)). The table should be compared with
Table 5.

The above table can be checked as follows. First of all, from the
relations (30), (34) and D=<12, we get that the possible values of
(m, f,, s) are exactly those in the above table. Let A(X,)=#.,, be
the class number of K,. Then A(K,) =1 if m takes one of the values
of the table (cf. Table 4 of [2]) and moreover #.£;,=1 as follows
from [2, p.152]. It follows that for each possible vaule of (m, f;, s5)
there exists up to isomorphisms a unique binary positive even lattice
B, which is exhibited in the above table. Moreover, one sees readily
that each such B admits an orientation-reversing automorphism so
that the singular abelian surface T whose transcendental lattice is
isomorphic to B is up to isomorphisms unique. T is then obtained
explicitly by (36). Finally, the values of ®, d, ¢ are obtained imme-
diately from Theorems 7.2, 7.3, and 7.4, except the values of ¢
when =%, (for which we omit the proof here).
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7.3. We shall give the proofs of the above theorems.

Proof of Theorem 7.2. From Table 16 we first observe the follow-
ing two facts: 1) A quadratic form group is isomorphic to one of
those listed in Table 16 if and only if its invariant satisfies the condi-
tions (i)-(iii) of the theorem, and 2) the quadratic form groups in
the table have different invariants to one another. From these two
facts it follows easily (cf. 7.1, d)) that the theorem is a consequence
of the following assertion: (A) Let T be a singular abelian surface
with the transcendental lattice B;. Let (4,¢) be the discriminant
form of Br. Then there exists a finite subgroup G of Aut T such
that (7, G) is a maximal special pair if and only if (4,¢) is isomor-
phic to one of the quadratic form groups listed in Table 16. On the

other hand, by Proposition 6. 12, for (A) it suffices to show the next
proposition.

Proposition 7.10. Let 8=Q or T (resp. D). Let B be a binary
positive even lattice. Let (Ap,qs) be the discriminant form of B. Then
there exists a primitive embedding j:B——Lo(—1) if and only if qpis
isomorphic to one of the quadratic form groups listed in Table 16 (resp. 17).

For the proof of Proposition 7.10 we need some preliminaries.
Let B be a binary, and L a ternary, positive even lattices, respectively.
Let (Az, ¢s) and (A4r, ¢.) be the discriminant forms of B and L,
respectively. Then we consider the quintuples (H, K, k, 7, ¢) con-
sisting of finite subgroups H of Ap, and K of A, a positive integer
k, and isomorphisms of quadratic form groups 7:(H, ¢px) — (XK, ¢1 %)
and p:M—K(2k), where the quadratic form group M is defined as
follows. Let I'CH@®K be the graph of y and I'* the orthogonal
complement of I' in A4z@PA,; with respect to the quadratic form
(—¢s)@qr. We denote by the same letter (—g¢5)@q, the quadratic
form induced by it on I'*/I'. Then we set

M=T+/T', (—q3)PqL).

Let 9 be the set of such quintuples. Let E;=(H;, K;, m;, 1:, tt:),
i=1,2, be two quintuples in 2. Then we say that E, and E, are
equivalent to each other if H,=H,, k,=k,, and if there exists an
element £€0(q;.) such that £(K)) =K,, r,=8r,, and w&=+y,, where
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£ is the element of O(M) induced by & The following is then a
special case of Nikulin [15, 1.15.1].

Proposition 7.11. Suppose that L is uniquely determined by its discrim-
inant form (Ayp,qr) in the sense that if L’ is another ternary positive
even lattice with (Ayp,,qr.) = (AL, qL), then L is isomorphic to L’. Then
the set of equivalence classes of primitive embeddings of B into L is in
natural bijective correspondences with the set of equivalence classes of
quintuples in D as above. Moreover, if a primitive embedding j:B——L
corresponds to a quintuple (H, K, k,r,p) in 2, then the orthogonal
complement of j(B) in L is isomorphic to the unary lattice (2k).

Let H, be any subgroup of 4;. Then we denote by 2 the set
of quintuples (H, K, k, 7, #) in 2 such that H=H,. On the other
hand, we consider the following conditions on L (or on A4;): 1) For
any subgroups K, K, of 4; such that the resulting quadratic form
groups (K1,qL|K1), (Kz,quz) are isomorphic, there exists an element
§=0(L) such that §(X,) =K,, and 2) for any subgroup K of A4; the
natural homomorphism 7.:0(q., K)—>O(qrx) is surjective, where
O(q., K) ={6€0(qr) ;6(K) =K}. Then the following is obvious from
the definitions.

Lemma 7.12. Suppose that L satisfies the conditions 1) and 2) above.
Let Hy be any subgroup of Ap. Fix any element (Hy,K,k,71,1) of
Dy, . Then any element (H', K', k', 7', ¢') of Dy, is equivalent to a
quintuple of the form (H,,K k,7, ). Moreover, two quintuples (H,,
K k7, 1), i=1,2, are equivalent to each other if and only if there exists
an element & in the kernel of ry such that pé=+y,.

We are interested in the case L=Lg(—1), where we recall L, =43,
Ly=A4; and Ly=4,1A4,. First of all, we get the following lemma by
direct computations (cf. also [15, 13.1]).

Lemma 7.13. In the notations of 7.1, a) the discriminant forms of
Ly(—1) are given respectively K(2)3, K3(4), and K_;(6) =K (2)DK,(3)
according as =9, T and D.

From this we get immediately the following:
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Corollary 7.14. Ly(—1) satisfies the conditions 1) and 2) of Lemma
7.12.

Lemma 7.15. L,(—1) is uniquely determined by its discriminant form
in the sense of Proposition 7.11.

Proof. By Corollary 6.5 we know that the primitive embedding
Lg—U? (exists and) is unique. Hence the lemma follows from [15,
1.14.1].

Remark 7.16. A direct proof of Corollary 6.5 and Lemma 7.15
without using complex tori is as follows (cf. Remark 6.6): First we
consider the case =9 so that Ly(—1)=4% and ¢,=K(2)% Then
for any ternary positive even lattice ¢ with ¢c=¢,, C(1/2) is a
ternaty positive unimodular lattice. Hence C(1/2)= (1)*® (cf. [16,
106:13]) so that C=4}. Hence Lemma 7.15 is proved in this case.
Since the natural homomorphism O(4})—O(K(2)% is surjective,
Corollary 6.5 follows from [15, 1.14.1]. For L, and L, Corollary
6.5 is an easy consequence of [15, 1.14.6] and the fact that
91, =4qp, and qr_ =q. , where D; and 4; are considered negative root
lattices (cf. [15, 13.1]). As above this also gives a proof of Lemma
7.15,

Proof of Proposition 7.10. We treat only the case =4, other
cases being essentially the same. Let L=L4(—1) in Proposition 7. 11.
By Lemma 7.15 L certainly satisfies the condition of that proposition.
By Lemma 7.13 we can identify the discriminant form (4;,¢.;) with
K(2)% Now let E=(H, K, k,7, #) be any quintuple in £ considered
up to equivalence. Since KCSG@} and A is isomorphic to K, H is
contained in the 2-torsion part A4, of Ap, and hence I'CA4,PA;;
therefore if I'y is the orthogonal complement of I in 4,4, we
have I't=I'y@A;, where 4;=@4, with 4, the p-torsion part of Ag.
Hence i
37) I/ r=ry/IreAd,.

Then, since ['+/I'=C,,, I't/I" (and 4;) must be cyclic. Let K=},
0=<b<3. Then b+#3 as rank B=2. Moreover, if K* is the orthogonal
complement of K in 4, , we have the natural inclusion K+*@0——1"3/I".
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Since K+=@3? and I'3/I" is cyclic, it follows that 6=2; thus b=2.
Then, after a transformation by a suitable element of O(g.) if neces-
sary we can assume that K coincides with one of the following
quadratic form subgroups a) <e, e;)=K(2)% b) <{e;, e, +e>=K(2)D
K,(2), and c) {e;+e,,e,+ep=V,, where {e,e,, ¢} is the standard
basis of A, =K(2)3

Correspondingly, (4,,¢;) must contain a quadratic form subgroup
which is isomorphic to: a) K(2)% b) K(2)PK;(2), c) V,, respectively.
Since (4;,¢,) is isomorphic to one of the quadratic form groups
K, (2" PK,(2), 0<k=l, and U,,V,, k=1 (cf.7.1,a)), we easily
conclude that 1) (4,,¢,) must be isomorphic to: a) K(2)% b) K(2)
@K;(4), A=+1, £5, and c) V;, respectively, where in b) the natural
inclusion K,(2)——K;(4) induces the subgroup K(2)@PK,(2). It then
follows that M,:="3/T, ("qB)@qurzL/r) is isomorphic to

(38) a) K(2), b) K,2(4), and ¢) K_,(2)

in respective cases. (Use the fact that by Corollary 7.14 and Lemma
7.12 we may take y to be any isomorphism of H and K to caluculate
M,.) Write these groups as K,(2') in general; for instance p=[=1 in
case a). Let n be the order of A4; so that we have
39) k=2"1p,
Then we have M=K (2k) =K (2'n) =K,(2") DK, (n); by comparing this
with (37) we get that M,=K,(2") and (4;, —¢3) =K,(n). Therefore
(45, g8) = (4z, ) DK _,(n) with K,(2') =K,(2"), while the last condi-
tion is equivalent to: n=7n (8) (resp. (4)) if [=2 (resp. =1). From
this we get that (4z, gs) must be isomorphic to one of the following
groups: a) K(2)2PK_,(n) with n=1 (4), b) KQ2)DPK,(2)PK_,(n)
with n=2—2 (8) and ¢) V\PK_,(n) with =3 (4).

Finally, the fact that (A4g,¢s) is a discriminant form of the lattice
B imposes additional restrictions on the possible structures of (435, ¢5).
In fact, by [15, 1.10.1] (the condition 4) there in our case) we
see that in case ¢) we must have n=3 (8). (Note that in the cases
¥ and D this restriction turns out to be much stricter.) Hence
(45, 9s) must be isomorphic to one of the quadratic form groups in
Table 16 for =9,

Conversely, if (4g,¢s) is isomorphic to one of the quadratic form
groups in Table 16, then from the above arguments one sees readily
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that we can find at least one quintuple (H, K,k, 7, ¢#) in 2. Hence
by Proposition 7.11 there exists a primitive embedding j:B——L.

Proof of Theorem 7.4. Again we consider only the case &=9Q,
the case =% being similar. Let (7, G) be a maximal special pair
with G=Q and with T a singular abelian surface. Let Br——Lg(—1)
be the primitive embedding of the transcendental lattice By of T into
Ly(—1) determined by (7,G) (cf. Proposition 6.12). Let (H, Kk,
7, #) be the quintuple in 2 corresponding to this embedding (cf.
Proposition 7.11). Then, since the G-invariant Neron-Severi lattice
N% is given by N§=B+C L, by Proposition 5.9, we have N§= (2k)
by Proposition 7. 11. Hence 6=£k. We then have 6=2""'n as in (39).
It then follows readily that 6 depends only on the structure of (43, ¢s)
as in Table 16 (in fact on the order of Az) and is as listed in Table
16. This shows 1).

Next we show 2). T determines the binary positive even lattice
with fixed orientation Br, and hence, the finite group 4. Moreover,
as the proof of the previous proposition shows, even the subgroup H
of Ap is uniquely determined once A4j is fixed, hence depending only
on 7, but not on the choice of the maximal special subgroup GS Aut 7.
Hence, by Proposition 7.11 the set of isomorphism classes of maximal
special pairs (7,G,) with G;=G is in natural bijective correspondence
with the set of equivalence classes of the quintuples in Z 5. Further,
by Lemma 7.12 and Corollary 7. 14 we see that the latter in turn
is identified with the set # of isomorphisms p:M—K(20) with u's
considered modulo the following equivalence;u~pg’ if and only if
p€= 4y’ for some element £€0O (K (2)*) =&, which induces the identity
on KCK(2)® (cf. Lemma 7.12).

Let M, be the 2-torsion part of M and M; be its orthogonal
complement. Then clearly any € as above induces the identity on
M,, and if M,=K(2) or K_,(2) (cf. (38)), also on M,. Hence, under
the latter assumption . is in bijective correspondence with the set
O(K(20))/{—1), which is isomorphic as a group to €}!, d being
odd (cf. Table 16). In case M,=K, ;(4) simple computation shows
that any element of O(M,)=<—1> is induced by some & as above.
Thus # is in bijective correspondence with the set O(M;)/{—1).
Since Mj; is cyclic of (odd) order /2, the latter is isomorphic as a
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group again to €;7! (cf. 7.1, a)).

Proof of Theorem 7.5. The first assertion follows from Proposition
7.10. The values of d can be computed essentially the same way as
in the case of £; the detail will be omitted. The finiteness of G
follows from Proposition 7.11 and the finiteness of the set 2.

7.4. a) By using Theorems 7.2 and 7.4 we can give another
proof for Proposition 3.15. Indeed, generalization to certain non-
principal polarizations is also possible. For instance we have the
following:

Proposition 7.17. Let &= (resp. T, resp. D). Let (T,G) be
a maximal special pair with G=®, Then T admits a G-invariant polari-
zation of degree 0=<3 if and only if T is isomorphic to one of the singular
abelian surfaces in the table below. Conversely, given a singular abelian
surface T in the table there exists up to isomorphisms a unique “such pair
(T, G). Moreover, in this case the G-invariant polarization is unique and
is invariant also by the normalizer of G in AutT.

0] 0 T 0 T 0 T

Q E;XE; Eg X Ey; E,XEy;

T 1 Eg X By, 2 E; XE; 3 Eg X Eg;
E,xXE,

EY Eqgyp X Evs; E; XE;
Ej X Eg;

Proof. We show the first and the second assertions. Since the
case 6=1 is just Proposition 3. 15, we only consider the cases §=2 or
3. From Tables 16 and 17 we pick up the cases for which =2 or
3. As a result the possible values of invariants (m,f,,s) turn out
to be as follows: Case d=2: (2, 1, 1) if 8=9Q, (1, 1, 1) if =T, and
6, 1, 1) if 8=D. Case 0=3: (3, 1, 2) if =Q, (6, 1, 1) if =g,
and (1, 1, 1) if &=®. Then in each case the corresponding singular
abelian surface is unique and is isomorphic to one of the singular
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abelian surfaces in Table 18, and hence the assertion is proved, except
for the cases 6=2, =9 and 6=3, &=Z. In these cases the discrim-
inant forms are isomorphic respectively to K_;(6)@K_,(4) and
K;(4)PK(2)PK_,(3), which are indeed isomorphic to the discriminant
form of the lattices (4)@(6) and (2)@P(12), respectively.  Since
h(K;) =2, these exhaust the positive even lattices with discriminant
24 up to isomorphisms. Then by the same argument as in the proof
of Example 7.9 we see that in each of these cases 7" is unique and
is isomorphic to the corresponding singular abelian surface in the
table. The last assertion is proved in the same way as the correspond-
ing one in Proposition 3. 15.

b) The groups Q,¥T and D are characterized as those non-
commutative finite groups which can be realized as a subgroup of
SL(2, K,,) for some square-free positive integer m; the subgroup is
then unique up to conjugacy. More precisely, by Proposition 5. 13,
the following holds true:

® is realized as a subgroup of SL,(X,) if and only if m#—1 (8)
(resp. m#% —1 (3)) provided that &= or T (resp. D).

We consider then the problem as to when © can be realized as a
subgroup of SL,(0,), where o, is the maximal order of X,, and then
would also like to calculate the number of conjugacy classes. Since
SL,(0,) is identified with the subgroup of Aut E,XE,, v=w,,, of all
the special automorphisms, the answer is in a sense already contained
in Theorems 7.2 and 7.4. We shall state this only in the case
G=92 or €. (In the case =2, the statement becomes less simple.)

Proposition 7.18. Write m=2°p,... p,, where =0 or | and p, are
distinct odd primes. Then the necessary and sufficient condition that £
(resp. ) is realized as a subgroup of SL,(0,) is that p;=1 (4) (resp.
pi=1 or 3 (8)) for any i. Moreover, if m satisfies the above condition, then
the number of conjugacy classes under GL,(0,) of the maximal finite sub-
groups of SL,(0,) which are isomorphic to Q (resp. X) equals 2571, (When
m=2% we set s=1.)

Proof. As before we consider only the case &=£. Fixing an
embedding K,——C we obtain an elliptic curve E,:=C/0,. Set
T.,=E,XE,. Then Aut T,,=GL,(0,). With respect to this isomorphism
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we can naturally identify the set of conjugacy classes under GL,(0,)
of maximal finite subgroups of SL,(0,) which is isomorphic to G
with the set of conjugacy classes of maximal special subgroups of
AutT,. By (36) we see that the transcendental lattice B, of T, is

isomorphic to (2)@ (2m) if m=1 or 2 (4), and to (f 2}C> if m=3 (4),

where k=(m+1)/4=1. Then the corresponding discriminant forms
are given respectively by K(2)!PK,(m) if m=1 (4), KQ)PK, 4D
K, l=m/2, if m=2 (4), and K, (m) if m=3 (4). Comparing this
with Table 16 we see that T admits a maximal special action of Q
if and only if either of the following is true; a) m=1 (4) and
K_,(m)=K,(m), and b) m=2 (4) and K_,(I)=K,(l). These condi-
tions are reduced to the condition that —1 is a quadratic residue
modulo m and modulo / in cases a) and b) respectively, which in
turn is equivalent to p;=1 (4) for any i. This proves the first part
of the proposition. Since in this case d=m, the second assertion
follows from Theorem 7. 4.

Remark 7.19. Starting from Proposition 6.12 and proceeding in
the same way as in 7. 3 we can also obtain the condition for a singular
abelian surface 7" to admit a special €,-action, k=4 or 6, in terms
of the discriminant form (4z,¢s) of Br. For instance, in case of
@, the condition is: a) for any prime p with p=—1 or 5 (12), the
p-torsion part A, of Ay is cyclic and b) either the 2-torsion part 4,
of Ay is cyclic or (4,,¢,) admits K,,(2) as a direct summand. In
particular, if A is cyclic, then 7 always admits a special €s-action.
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