Publ. RIMS, Kyoto Univ.
24 (1988),99-120

Uniqueness of Products in Higher
Algebraic K-Theory
Dedicated to Professor Hirosi Toda on his 60th birthday

By
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Introduction

Let E be a higher algebraic K-theory defined on rings, that is, a
functor which assigns to each ring R a spectrum KR of algebraic K-
theory of R. Fiedorowicz uniqueness theorem [2] says that if & has
an external tensor product, then there is a natural map of spectra

f:ER—>GWR

which induces an equivalence between (—1)-connected covers of ER
and the Gersten-Wagoner spectrum GWR ([3] and [13]). May [6]
has given a similar uniquenes theorem for higher algebraic K-
theories (or, infinite loop space machines) defined on permutative (i. e.,
symmetric strict monoidal) categories: given an infinite loop space
machine E defined on permutative categories, there exists a natural
equivalence of spectra between EU and the spectrum SBU constructed
by Segal [9].

In the present article we study the multiplicativity of such natural
transformations between higher algebraic K-theories defined on per-
mutative categories, or exact categories, or rings. Here the term
‘multiplicativity’ is used in the following sense. Let E and E’ be
functors ¥ —»& from permutative categories (or exact categories, or
rings) to CW-spectra, and suppose that & (resp. E’) functorially
associates to each pairing UXV—W in € a pairing EUNEV—-EW
(resp. E'UNE'V—E'W) of CW-spectra. Then a natural transforma-
tion f: E—E’ is called multiplicative if the following square commutes
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in the homotopy category HZ;
EUNEV — EW
fAfi lf
E'UNEV — E'W.

Notice that most of the constructions of products in higher
algebraic K-theory, except for May’s [7], provide only weak pairings,
i.e., pairings in the sense of G.W. Whitehead. This notion of a
weak pairing is inadequate for sophisticated spectrum level analysis.
Hence we want to find a condition, as generous as possible, which
ensures that a given machine functorially associates ‘true’ pairings.
Thus we introduce a notion of a pairing of Sy-spectra which gener-
alizes May’s notion of a pairing of #,-prespectra [7].

We now state the results of the paper.

A CW-spectrum E= {E,|n=0} is called an Sy-spectrum if each E,
has an action by the symmetric group S, (E,is an §,-CW complex)
which is compatible with the structure maps and restricts to a homo-
topically trivial A4,-action. (See Section 1.) There is a relevant notion
of a pairing of Sy-spectra and we can show that pairings (E, F)—>G
of Sy-spectra functorially determine pairings £/AF—G in the stable
category.

We use the term higher algebraic K-theory defined on  permutative
categories to denote a functor E which assigns to every permutative
category U a connective CW-spectrum EU= {E,U|n=0} together with
a natural map 2:BU—E,U such that the composite BU->Q~E.U=
US"E,U is a group completion.

Definition. A higher algebraic K-theory E defined on permutative
categories is called multiplicative if (i) EU has a natural structure of
an Sy-spectrum, and (ii) given a pairing f:UXV—W of permutative
categories, there exists a natural pairing Ef={E, ,f}: EU,EV)—>EW
of Sy-spectra such that the following square commutes;

BUABV 2L, Bw

Wl Js

Ey of
EUNE)Y — EW .,

Thus a multiplicative higher algebraic K-theory £ functorially
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associates a true pairing Ef:EU A\EV—EW of CW-spectra.

It will be shown that both May machine M [7] and Shimada-
Shimakawa machine € [10] are multiplicative higher algebraic K-
theories defined on permutative categories. (But Segal’s machine [9]
is not,)

Now our first theorem is

Theorem A. Let E be a higher algebraic K-theory defined on permutative
categories.  Then there is a natural equivalence y:EU—CU which is multi-
plicative when B is a multiplicative higher algebraic K-theory.

Note. Because the passage from symmetric monoidal to permutative
categories preserves pairings (cf. [7, §2]), every multiplicative higher
algebraic K-theory defined on permutative categories (e.g. M) can
be canonically regarded as a multiplicative higher algebraic K-theory
defined on symmetric monoidal categories. (We omit the obvious
definition of the latter notion.) Theorem A holds true for any &
defined on symmetric monoidal categories.

Next let K denote the Waldhausen machine [14] which assigns
to each exact category U a CW-spectrum KU={BQ"U™|n=0} (cf.
[11]). Then K associates to any biexact functor f:UXV—-W a
pairing Kf: (KU, KV) KW of Sy-spectra. (This is essentially the
result of [11].) Let us denote by IsU the subcategory of all isomor-
phisms in a category U, and consider both IsU and QU as symmetric
monoidal categories.

Theorem B. There is a multiplicative natural iransformation «:ClsU
—KU defined as the composite of a nalural equivalence 7:2CQU=KU
with a natural map v:CIsU—QCQU which deloops the familiar map
BIsU—$2BQU.

Note that by the “+ = Q” theorem [4], & becomes an equivalence
if every short exact sequence in U splits.

Finally we consider higher algebraic K-theories defined on rings.
We do not know whether Loday’s pairing (GWR, GWR') -G W(RQR’)
induces a ‘true’ pairing GWRAGWR'—-GW (RQR’) or not. However

we have
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Theorem C. There exists a functor A from rings to Sx—spectra which
satisfies the followings:

(1) There is a natural pairing p: (AR, AR")>A(RQR’) of Sk
Spectra.

(2) For each n=1, there is a natural group completion f,: BIsP(S"R)—
A, R(=K,S"RX BGLS*"R*=GW,R) such that

BIsP(S™"R) \BIsP(S"R’) —— BIsP(S™"(RQR'))
fm/\fn l lf"‘""l

ARNAR’ L% Apen(RQR')

commutes. (Here P(R) denotes the category of finitely generated projective
modules over R.)
(8) The structure map A,RN\S'—A, R is given by the composite

ARNS'S A RNAZS A, (RRZ) = AR

where ¢:S'—>AZ represents the standard generator of K SZ=Z (cf. [5,
Chapitre I17]).

(4) There is a multiplicative natural transformation o:CIsP(R)—>AR
such that the induced map Q2°C.IsP(R) —>2~A.R is an equivalence.

Note that the condition (3) is similar to the description of the
structure map of GWR given by Loday [5]. From (2) we see that g, ,
is weakly homotopic to Loday’s map GW ,RAGW R’ -GW, , (RQR’).

As a consequence we have

Corollary. (Cf. Weibel [15].) The product structures in higher algebraic
K-theory of rings constructed by Waldhausen [14], May [7], Shimada-
Shimakawa [10], and Loday [5] (modified as in Theorem C) all agree
with each other.

The proofs of the above theorems are given in the final section.
In Section 1 we introduce a notion of a pairing of Sy-spectra and
prove that pairings of Sy-spectra functorially determine pairings in
the stable category. Section 2 illustrates how the machines of
Waldhausen, Shimada-Shimakawa, and May associate pairings of
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Sx-spectra, and Section 3 provides a key tool on which our proofs of
the theorems are based, that is to say, a multiplicative version of
the ‘up and across theorem’ [2,8].

§ 1. Pairings of S,-Spectra

Throughout the paper we regard §* as the one-point compactifica-
tion of R ({co} is the base-point), and denote by S* the smash product
of n copies of §'. Each $" is an §,-CW complex equipped with the
standard S,-action; ¢(s;, ..., 5,) = (sa_l(l), ceos 56_1(")) for every permuta-
tion 0 ES,.

Let E={E,|n=0} be a CW-spectrum. We say that £ is an Sy-
spectrum if each E, is a based §,-CW complex, and if the following
two conditions hold: (i) the diagram

ENS* — E,.,

a/\rl la+r

Eu/\Sh T Lpyp

commutes for all ¢ €S, and 7E€S,; and (ii) for every even permutation
64, the map o:E,—E, is homotopic to the identity. Given Sy-spectra
E and F, a function f:E—F is called a function of Sx-specira if each
JoE,—F, is S,-equivariant. A map of Sy-spectra is a map f:E—F
which is represented by a function f':E’—F of Sy-spectra for some
cofinal subspectrum E’ such that each E, is invariant under the §,-
action on E,.

If we consider Sy=11,S, as the skeletal category of finite sets and
their isomorphims, then each S,-spectrum E can be regarded as a
functor from Sy to CW-complexes. Moreover the structure maps
E, N\S"—E,., constitute a natural transformation EAS"——Eo@ where
S$%:n—S* denotes the sphere-valued functor. It follows that an -
prespectrum in the sense of May [7] restricts, via the canonical
embedding Sx— &, to an Sx-spectrum in our sense. (Strictly speaking,
S x-prespectra are not supposed to have a structure of a CW-spectrum.
But this is not serious because the passage from .#.-prespectra to the
stable category is equivalent to the process of replacing spectra by
CW-approximations.)



104 KAZUHISA SHIMAKAWA

Note that in the definition of an Sy-spectrum the condition (ii)
follows from (i) if the S,-action on E, extends to an O (n)-action (e. g.,
E is an S y-prespectrum), or if E is an almost Q-spectrum, that is,
the maps E,—%2E,,, are homotopy equivalences for n=1 (cf. [11,
Lemma 4. 1]).

Now let E, F and G be Sy-spectra.

Definition 1.1. A pairing of Sy-spectra p:(E, F)>G is a family
of maps
pm.n:Em/\Fn_éGm+u; m, ngo

such that the following diagram commutes;

En AF,ASEAS' 255G iy NS ——C it

1/\1/\11 11+=+1
E, /\Sk/\Fn/\Sl‘—’ m+k/\Fn+I'_ﬂ'>Gm+k+n+l

where 1+7+1 denotes the permutation

(m+1 oo m+n  m+n+1 ... m+n+k)
m+k+1...m+k+n m+1 ... m+k

Example 1.2. Let £ be an Sy-spectrum. Then the canonical
pairing &: (E, $°) - E consisting of the maps E, A\S*—E,,, is a pairing
of Sy-spectra,

We now describe the passage from pairings of Sy-spectra to
pairings in the stable category HZ.

Given an Sy-spectrum G we construct a sort of double telescope
WG as follows. For every n=0, WG, is defined as an identification
space of the union

Vitia (L X LD + AGig s AS*
V Virigaa (L) X [ 4,7+ 1D + AGia s AS*7
V Vitigaa (L, i+ 11X LD + AGis s NS
V Vitign-oGiri AM (z) \S™7772

where M (r) denotes the Thom space of a certain SO(2)-bundle =
over the 2-cell [i, i+1]X[j, j+1] and we identify
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(G, 1), 89) €LIXL4ji+1D+ AGi; AS™7 or
€ ([, i+ 11 X [ s AGiss AS™

with

(G, 1), & 5) €(EIX LD s AGi; NS5

(Gj+1), 858 €@AXL),j+1D + AGi; ASAS 7
with

(G,j+1), [8 51, 0) €I X[T+1D + AGirjn NS4
and

(G+1, 0,85 t) €L, +1IXLD + NG, ASTAS 71
with

(G+1,0),0:,le (=1's], 1) € (E+1I XD + AGipres AS*17
where

__(i+l i+2000i4j+1

MUNI42 i43eee it
(The identification of G;i; AM(z) AS*~"=2 with the part already
constructed is quite similar to that described in [1, p.175].) The
structure maps are obvious. (Compare with the definition of the smash

product of spectra [1, §4].)
If p:(E, F)—G is a pairing of Sy-spectra, then we have

#i+1.f([es (=D)L, f) ="i.i[#i.j(€,f)s (=1)’s]

for all (e, f,s) €E;/\F;/\S'. Hence there is a well-defined map
g ENF-WG.

) ESitit1e

Lemma 1.3. Pairings p: (E, F) —>G of Sy-spectra functorially determine
pairings
g ENF—-G

in the stable category HZ.

Proof. There is a sequence of natural maps of spectra

ENF—SWG—GAS———TC—G

where 7G denotes the telescope of G. To define # we have only to
prove that ¢:G/\S°>WG is a homotopy equivalence.
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Take a partition 4=BUC of an ordered set A=N, and define a
spectrum WpG as follows: for every a4 we put

WecGaw =Gﬁ(a)+r(a) >
where a(a) =#{xrEA4|x<a} etc., and identify (g, 5) EWpG, ) /\S* with

Lg, s1 €6+ @+ if aeC
058 (—1)"s]EGpw+v+r@ if aeB.

(Compare with the definition of naive smash product [1].) Now
suppose that both B and C are infinite and that y(a) is even (and
hence 04, =id) whenever a€B. Then we have a commutative
diagram

GAS —— we

:T ]:

T(GN\8cS) —— TWpeG

:l 1:

G/\BcSO — WaG

in which every vertical map is a homotopy equivalence. Since
WacG,/\S*—>WpcG,1 are homotopic to the original structure maps
G,/\S§'—G,,,, the bottom map becomes a weak homotopy equivalence.
Thus we see that e is a homotopy equivalence.

Notation. In what follows we use the same letter g to denote the
pairing E/\F—G induced from a pairing u:(E, F) —»G of Sy-spectra.

§2. Multiplicative Higher Algebraic K-Theories

2.1. Waldhausen machine. For every exact category U we have
a CW-spectrum KU= {K,U|n=0} where

KnU=BQ,”U[”]=BQ1' o 'Q,nU["]

denotes the classifying space of the n-fold category obtained by
applying Q on every component of the n—fold exact category U™ of
commutative n-cubes in U (cf. [11]). Note that KU is the set oU
of all objects of U. (This differs from the definition given in [11] in
which KU is defined to be £2BQU.)

We have shown in [11] that the evident S,-action on U™ induces
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an S,-action on BQ"U™ with respect to which KU becomes an Sy-
spectrum. Moreover any biexact functor f:UXV-—W induces a
natural map

K, .f: BQ"U™ A BQ*V"— BQm+n}y/In+nl
for each pair of integers m and n. The diagram (4.2) in [11] shows

that K,,,f define a pairing K f: (KU, KV) =KW of Sx-spectra. Thus
f functorially associates a pairing

Kf:KUNKV—>KW

in the stable category.

2.2. Shimada-Shimakawa machine. In [10] we have associated
to any symmetric monoidal category U=<U, P> a spectrum CU=
{B#"U|n=0} where # is a functor which assigns to each symmetric
monoidal (topological) category C a symmetric monoidal category #ZC
together with a natural map BCAS'->B#C. By extending the argue-
ment of [10, Lemma 2.6] we see that C,U=B#"U is identical with
the geometric realization of a I™-space BB'U defined as follows.

For each (r,..., r,) €I denote by BU @, , 0., I,) the symmetric
monoidal category with objects

laial,...,a™
where a is a function which assigns to each n-tuple (7y,...,7,) of

subsets T;Cr; an object a(7T,,...,T,) of U, a'is a family of isomor-
phisms

a(Ty, .., TOT,, .., T —a(Ts, .., Ts, .., TY®a(Ty, .., T\, .., T

satisfying the conditions similar to those of [10, Definition 2.1 (@i)],
and for any T of the form (7y,..,T°T:,.., TNIT},..,T,) the
following diagram commutes;

a(T) 2% 4 (1) Da(To) Da (Tio) Ba(Ty)

H |=

a(T)S22% 4(Top) D (Tio) D (T) a(Ty)
in which T,;=(Ty,..,T%,..,77,..,T,) (0=<¢0=<I1). Given objects
a;ay...,a"> and <b;f...,B"> a morphism f:{g;a,...,a"y—b; B,
oeo, B*> is a family of morphisms f(Ty,...,T,) :a(Ty,...,T,) —b(T},



108 KAZUHISA SHIMAKAWA

.., I,) compatible with all @’ and B’ in the sense of [10, Definition
2.1]. (Note that BU=B'U coincides with T of May [6].)
There is a canonical isomorphism
BUU@, ..oy 1) EBBU, .. ., 1) ()
natural in both U and (r,,...,r,;). Hence, as in [10, §2], we can
inductively prove that C,U=B#"U is isomorphic to the geometric
realization of the I™-space BB"U. Moreover the structure map
C.UNS*—C,,,U is described as the inclusion
[BB"U | \S'= |BB*'U(+++,1) |AS'> |BB*'U|.

We now define an §,-action on C,U. Given a I"™-category E and
ceS,, denote by E° the I™-category such that E°(r,...,r,)=
E 1 eeesTmig)- Clearly we have |BE’|=|BE| (cf. [11, 1. 14]).
Returning to our case, for every ¢ €S, there is a natural isomorphism
6 (o) :B"'U— (B"U)° which assigns to each a=<g;a),. ..,aneBU(r,,

. AN

O(c)a=<{a:&,..., d”)EB”U(rU_I(D, ey ru-l(n))

where a(T,; ..., T, )=a(Ty,...,T,) and & ¥ =a, 1Si<n. It
is easy to see that the induced maps
1BO@)1

|BB'U| —=> |B(B'U)"|=|BBU]
U] U]
[a’ S1yeeey Sn]'_-—)[@<o‘)a’ su—l(l) 3y sa—l(")]
define an S,-action on C,U with respect to which CU becomes an
Sx-spectrum.

Let f:UXV—W be a pairing of symmetric monoidal categories.
Then we define a map

fm.n:EmU(rl 9 *°) l',,,) XE"V(rnﬁl 9y rm+n) —)Bm-'-”w(rl 9°°y rm+n)
of I'™*m-categories by
fm.n(<a; als ce am>s <b7 ‘819 L] an>) =
{flaxb);d(a*x1),..,0(amx1), 8"(1XBY),..,8' (1 XD
where d(a'X1) denotes the family of composite isomorphisms
f(a(Tla L] T;HT:a °°y Tm)9 b(Tm+1> L] Tm+n))
Ef(d(Tl,..,T‘- oo !Tm)®a(T11"sTgv-'mi)vb(Tn&ls'-)Tm+n))
Ef(a(TI!--’Tir--;Tm)a b(Tm+1!"1Tm+n))
@f(a(Tl’ ey T: 9y Tm): b(Tm+1 3°°9 Tm+n))
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and 0’(1 X B) the family of isomorphisms

f(a(Tl 9°°y9 Tm)a b(Tm+1 ey Tm+iHT:n+i 9°0°y Tm+n))
E.}(‘(a(]"l 9°°y Tm)s b(Tm+1 sy Tm+i 9oy Tm+n))@
f(a(Tl sy Tm), b(Tm-H. 900y T:n+i 9o 9Tm+n))
similarly defined.
One easily checks that the induced maps
Cm.nf:CmU/\CnV‘%Cm+nW
satisfy the condition of a pairing of Sy-spectra, and that C,, f coincides
with Bf: BUABV—BW. Thus we see that the functor U—CU is a

multiplicative higher algebraic K-theory defined on symmetric monoidal
(or permutative) categories.

2. 3. May machine. May [7] has defined a functor from permutative
categories to J,-prespectra by the composite

Ur U BU +— TBU

where U denotes the functor % —Cat obtained by applying the
Street’s first construction [12] on a lax functor n—U" and T assigns
to every F-space X an S ,-prespectrum TX:VB(2Y,Cy, X). Let
us denote by MU the associated Sy-spectrum {(MU=TBU(R") |n=0}.

The canonical inclusion U—U (1) induces a natural map 1:BU—>
BU(1)>TBU({0}) =MU such that the composite BU—2~M.U is a
group completion.

By Theorems 2.1 and 6.2 of [7] we see that pairings f: (U, V) —>W
of permutative categories functorially determine pairings Mf: (MU, MV)
—MW of Sy-spectra, and it is easy to see that the following square
commutes;

BUABV — BW

ina Js

MU N\MYV— MW .

Therefore the functor UMU also becomes a multiplicative higher
algebraic K-theory defined on permutative categories.

Remark. Unfortunately, Segal machine applied to the I'-space
BBU=BU does not provide an Sy-spectrum. In fact, Segal-Woolfson
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approach to constructing pairings of spectra is much more complicated
than that described here. (Compare [16] and [9].)

§3. S,-Bispectra and Their Pairings

A CW-bispectrum is a family X={X,,|n=0,¢g=0} of CW-com-
plexes X, , equipped with cellular embeddings

Xn.q/\Sl_-)Xn+l.q ’ (x: S) '_) [x3 S]

Xn,q/\Sl—)Xn,q+1 ’ (xs 5) - [xa S] !
such that

[[x, 51, £1" =[x, 1", ]

holds for all (x,s,t) €X, ,AS'AS". Every CW-bispectrum X determines
(and is uniquely determined by) CW-spectra

Xox = {Xo01q20}, Xyo={X, ,|n=0}
and functions of spectra
Xn*/\sl_‘_’XnH*, X*q/\Sl—__>X*q+l .
For any bispectrum X we define two diagonal spectra DX and D'X
as follows (cf. [8]):
D X=X, ,=D,X;
and the structure maps d:D,XA\S'—»D,,X and ¢": D, X N\S'—>D,,, X are
given by
5(,’6‘, S) (tl 3 °°°y tm tn+1) = [[x(tl s°° ey tn)a tn+1]a J],
6,(x5 S) (tl 3°° tm tn+1) = [[x(tl 3y tn)s tm‘-l] l’ S]
for all (x,s) €2X,,\S" and (¢,,...,¢,,t+1) ES*. Then there are
maps of spectra (natural in HY) e: Xy —DX given by
eqx(tla"',tq)Z[xs tl,...,tq]
for every x€X,,; ¢ : Xyx—D'X given by
er’t.y(tly"',tn) Z[J’, tls "'9tn],
for every yEX,,; and c=a"p“1:DX—i->D’X where p7! is the homotopy

inverse of the canonical map p:TDX—DX and d:TDX—-D'X is
induced from the preternatural weak map d:DX—-D’X;

dnx(t1s°",tn) =x(_t19"'a —tn)
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for every x€D,X and (4,..., t,) €S" (Compare [8, Appendix A].)
Explicitly we fix a homotopy £,= (f;, &) :5?—S8? such that k,(u,v) =
(u,0), ky(u,v) = (v, —u) and use the following homotopies #,:d,;,0,

~6.(d,\1) to define d’;
(hn)t(x, S) (tl 30y tm tn+1) =dn+16n (xsft (S, tn+1)) (tl 9°°°y tm & (5, tn+1))

Definition 3.1. A CW-bispectrum X is called an Sy-bispectrum
if every X,x and Xy, have a structure of an Sy-spectrum, and if
X A\NS* > X 1% and Xy, /\S*— Xyp41 are functions of Sy-spectra. (Thus
each X, , has an §, X S,-action such that

(o+0a’,c+7)[[x, 5], 1" =[[(o,7) %, 0's], ="t]’
for every o€S,, t€S,, 'S, 'S, and (x,s5t) X, NSAS)

Given Sy-bispectra X, Y and Z, a pairing p: (X, Y) —Z of S,-bispectra
is a family of maps

Xm, q /\Yn q_)Zm+n.ﬁ+q

which restricts to pairings of Sy~spectra

(Xt s Yos) > Zpise and  (Xp, Yieg) > Zseprq -

For example, the CW-bispetrum 45= {§"/\S§?|n=0, =0} equipped
with the structure maps

[(x,),s]1=((x,9,), [(x0),s1'=, (,9)
for ((x,9),s) €48S,../\S"

canonically has a structure of an Sy-bispectrum, and for every Sy-
bispectrum X we have a natural pairing ¢: (X, 45) - X of S,-bispectra;
Ko p/\ (§*\S?) ——Xinpta -
U] )
(x, (S, t)) h—e[[xﬂ S]! t],

It is easy to see that if X is an Sy-bispectrum then both DX and
D’X are Sy-spectra with the §,-action

a x (g,0)

1

S” Xﬂ.ﬂ Xn.n)

on each D, X=0"X, =D, X, and also that e: X, —DX and ¢’: X~
D’X are functions of Sy-spectra. (However ¢:DX—D’X is not a
function of Sy-spectra.) Now let u:(X,Y)—>Z be a pairing of Sy
bispectra. Then the diagram

(0, 8" ——X, ) —> (8"
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ngm.m/\QnYn.n/\Sk/\Sl M ‘Qm+"zm+n.m+n/\Sk+’

lATAll ld

® 1 1
‘Qme.m/\S /\‘Q"Yn.n/\s Qm+n+k+ Zm+n+k+l.m+n+k+l
d/\dl 1+z+1
on X oty gmtktntl EQmtrtntly
mtbmts/\ n+lntl > m+ktntl, mtktntl

commutes. Hence the maps @""p: 2" X,  N\2"Y, ,—2""Z ,\ . n+n define
a pairing Du: (DX, DY)—>DZ of Sy-spectra, and similarly D’pu:
(D'X, D'Y)—D’Z. The following proposition is a multiplicative version
of the up and across theorem (cf. [2] and [8]).

Proposition 3.2. Let p:(X,Y)—>Z be a pairing of Sy-bispectra.
Then the following diagram commutes in the stable category;

X AYo—22> DXADY 2% D’ X AD'Y 2L X oo A\ Yo -

© | | |-

9

Zyw —— DZ L5 D'Z <E—  Zy.

Proof. For every m and n, we have a commutative diagram

XomA\You = Zy pin —— Zoy n/\S"

smAe”l Cmtn lem/\l

v

D, XN\D,Y 2£5D,,..Z «—D,ZA\S".

Noting that ¢ is a map of Sy-spectra (and hence induces We:
WZ, —WDZ), we can easily show that the left-hand square in (%)
commutes.

Quite similarly we can prove the commutativity of the right-hand
square in (*).

Finally, to prove the commutativity of the middle square, let us
take a partition of N=BUC, and denote n’=8(n), n"=y(n) for every
nEN. Then there is a canonical inclusion T (DX A\pcDY)—>TDX \sc
TDY which sends [£k]:/A\(DuvXA\DpY) NS *CT,(DX/\sDY) to
(LE' T ADu XNASY YN UK T ANDwYN\SY¥) T, .DXN\T,DY, and we
have a commutative diagram
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DX NAscDY-2L5TDX N\ peTDY 225 D' X N\scD'Y

Dp T (DX /\ scDY) Dy
, ¥ _ i
WBCDZ — TWBcDZ —_ WBC-D 'Z

in which Wged’ is defined by using the natural homotopies

dn+1(Wﬂca)n: (Wﬁcal)n(dn/\l) H
p _[ h, if neC
" o wh LA (=1)™) if neB.

From this and the similar diagram with p replaced by ¢:(Z, 4S8)—Z,
we see that

Dy

DXADY -2 wpz™.. DZADAS

M,l le

’ ’ D’y yp D/ETY ’ ’
D'XA\D'Y —WD'Z— D'ZA\D'4S
commutes in the stable category. Because the composite TDZ—
DZN\DAS—-WDZ (resp. TD'Z—D'ZA\D'4S—-WD’'Z) coincides with

TDZ—-DZNS*—-WDZ (resp. TD'Z—-D'ZN\S*->WD’Z), we conclude
that the middle square in (*) commutes.

§4. Proofs of the Theorems

4.1, Proof of Theorem A. Let U be a permutative category.

Then we have a bispectrum XU = {X, , U |n=0, ¢=0} defined as follows:
X, U is the geometric realization of the I'"-space
EBU: (r, yooosTy) |—>E,,I§4U(rr1 NS A

the structure maps X, UAS'-X,,,,U and X, UAS'-X, U are
given by the evident maps

EBUI|NS' = |EBUNS' |- |E,.BU|,
[E,,B"U[/\Slz IE,,B“IU(“ ., 1) |ASI— |E,,B“’1U[

respectively.
By the definition we have X, U=EU and there is a natural map
CU—-X,,U given by
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= |BBU|—— |EBU|=X,,U.
Because IE,,B"U | is connected when n=1, the canonical map X, , U
—RX, ,1U is a homotopy equivalence for all n=1. Hence ¢:EU—
D’XU becomes an equivalence. Moreover, because B( )—2"E_.( )
and B( )—2~C.( ) are group completions, the composite k:CU—
X,,U——DXU also becomes an equivalence. Thus we have an equi-
valence

r=k"% " :EU-CU
natural in U.

Now suppose that £ is a multiplicative higher algebraic K-theory.
Then XU becomes an Sy-bispectrum with an §,XS,-action on X, U
induced from the S,-action on £, and the §,-action on B,

Let f:UXV—W be a pairing of permutative categories. Then
we have a natural pairing Xf: (XU, XV)—>XW of S,-bispectra
consisting of the maps X,, ,UAX, ,V—Xnin+,/W induced by the map
of I'*%-spaces

E, [o0oE BU®, ..., v) NEBYV (Tpe1,.ee, g
B BW (X, Ty, By e e ey Targ).
By Proposition 3.2 and by the multiplicativity of 1:B( )—E,( ),
we see that the following diagram commutes in H%;

EUNEV 2L, Ew

l l

X UNX)YV  — X W

T |

cUNCV =L cw. Q.E.D.

4.2. Proof of Theorem B. Let U be an exact category. We first
define an equivalence 7:2CQU—-KU. By [10, Lemma 4.2] every
BwW(r,,...,r,) has a natural structure of an exact category. Hence
we can define an Sy-bispectrum XU by

Xn.qU= lKanU l = I (rl y° ey l'q) '_>BQ,”(BqU(r1 goeeg rq))[”] |'
Clearly X, U=KU, and by [10, Corollary 4.5] we have
X,«U={|BQBU | [n20}
= {|BBQU | |n=0} =CQU.
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Now let us endow X'U={2X,,, ,U|n=0, =0} with the structure
of an Sy-bispectrum such that the maps

X, U—0X,,, U, x = (s 00,[x,5])
give rise to a function ¢: XU—->X'U of Sy-bispectra. Then XuU=
2X,,U=2CQU and it is easy to see that the maps e: X U—-DX'U,
¢ X, U-»D'X'U and ¢: X, ;U—X,U are homotopy equivalences.
Thus we have a natural equivalence 7:2CQU—KU defined as the
composite

X U— DX U= D XU~ XU~ XU
Next consider the natural sequence of spectra
CIsU—CLU—CQU
associated with the sequence of symmetric monoidal categories IsU—

LU—-QU (cf. [14, §91). As in the proof of [11, Theorem 3. 1], there
are adjunctions

t A
BLUG,,...,v,) == BJUG,...,1r,) =0
h

natural in both U and (r,,...,r,). Therefore we have a null
homotopy on every C, LU= |BB"LU| which is compatible with the
structure maps of CLU, and is natural in U. Since the composite
CIsU—C,QU is the constant map, we have a natural map v:CIsU—
QCQU, and hence the composite

=7 :CIsU—KU.

We now prove that & is multiplicative. Let ftUXV—W be a
biexact functor. Then, as in the proof of Theorem A, there is a
natural pairing Xf: (XU, XV)—>XW of Sy-bispectra such that X, ,U/\
X, V=X, ins+sW is induced from the (m+n)-fold functors

Qr(BEU(ryy v, 7)) ILQ BV {rpsr,y e oo, Fprg) )™
_____>Q’m+n (BP+qW(P°1, ceas rp+q))[m+n]

associated with the biexact functor fp,,,:B"U(rl yeeosTp) XBW (241,
eensPorg) B (r, seeesTpyg) (cf. [11, §41). It is easy to see that
the composite maps

2xf

QX 4 m s UNDX g V=X i mi14n 040 W—52 K s i praW
define a pairing of Sy-bispectra X'/ (X'U, X'V)—>X'W where
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X'W={2X,,, ,W|n=0, =0} is equipped with the structure of an
Sx-bispectrum evidently defined. Thus we have a commutative
diagram

QCQUNRCQV — QCO*W™

KUNKV =L Kw
where 22CQ?W ™ denotes XpW =22X,,W, and # the composite
X W — XoWW —X, W,
We now define a natural map 9:CIsW—->QCQ?W™ such that the
following diagram commutes in the stable category (cf. [14, 9.2]);
CIsUNCIsV — CIsW
.1 wl 1,;
QCQUNR2CQV— QCQ*WH

As stated in [11, §3], any biexact functor g:C X D—E defines a 2-fold
functor CIID—E™ which induces a commutative diagram

IsCIIIsD — LCIIIsD — QCIIIsD

1 l i

I?2E® —— LIsE™® —— QIsE™
natural in g. (We denote Is?=IsIs,, LIs=LIs, and QIs=Q,Is,. Cf.
[11].) Applying this construction to biexact functors
FoatBU @y oo, 0)) XBW (2 ooy Tps) =B W (21, o0, i),

and then realizing the associated I'*‘-spaces, we have a commutative
diagram

CilsUNC]IsV — C,LUNCJIsV — C,QUANCIsV

- he | J#he
CorJstW®  —— C, LIsW? —— C,, QlsW™

[ I [
|BIs?(B*+w)@ | |BLIs(Br*w)@|  |BQIs(Br W) |

for all p, ¢=0. Since p;, is compatible with the null homotopies,
the following diagram commutes;
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CIUACISV — QC,QUNA]IsV
fp,q l l 9";.41
CprdsW?  — OC,, QI W3,

By the definition, {0, and {p;, are pairings of Sy-spectra, and
hence we have a diagram

CIsUACIsV — CISW™
(4.2) "“j. l
QCQUACIsV — QCQIsW™

which commutes in the stable category.
Similarly we have a commutative diagram

CQUACIsV — CQIsW™
(4.3) 1/\qu lw
CQU ARCQV—> QCQW

associated with the natural sequence

QUIIsV — QUIILV —s QUIIQV

| i l

QIsW®¥ — QLWW —8 QW
By [14, 9.2.3] we see that the following diagram commutes up
to natural homotopy
CIsUNCIsV — CIsW
(4.4) I |+
CIUNCIsV — CIs*W&
where u,,:C,,IsW—:—>C,,ISZW[2] denotes the canonical inclusion
| BIsB"W | = | BIs,0,(B"W)™ | — | BIs*(B"W) 2 |,
From (4.2), (4.3) and (4.4), we see that (4.1) commutes if we
put 9= (2v")v'u. Moreover, from the commutative diagram

CsW > Q00W —— X,.W — X, W ,

N B
Clew® 2 QCQIsW® -2 Xr. W —s XL, W
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in which u’ consists of the canonical inclusions u.:|BQo(B'W)®|—
| BQIs (B"W)™ |, we see that the composite 79:CIsW—-QCQ*W™H—KW
coincides with #=nzv. Therefore the diagram

CIsUNCIsV -2Ls CIsw

KUNKV =L Kw
commutes in the stable category. Q.E.D.

4.3. Proof of Theorem C. Given a ring R, we define AR as
follows. For each n=0,

A, R=02"C IsP(S"R)
where S"R=RE (Q”<)SZ ) (cf. [5]); and the structure map A,RAS'—

A, R is defined as the composite

A, RNS'2520C IsP (S*R) \2C,IsP (SZ)
Qn+l

£ Y gen,, 1sP(S*'R) = A, R
where f denotes the evident pairing

IsP(S"R) X IsP(SZ) —IsP (S"RQSZ) =IsP (S**'R),
and

¢:8'——BIsP (8Z) Cc2C\IsP (SZ)

the cellular inclusion corresponding to the ‘l-cell’

0 00
1 00
010 eGL,SZ.
0 0 1

Note that ¢ represents a generator of K\SZ=K,Z=Z (cf. [5]).
Using the standard §,-action on é)SZ, we define an §,-action on
AR by
(z, §* ==C,IsP(S*R)) — (S"r—_l>S" —~5C,IsP(RR® (@SZ)
2C_IsP(1®7) n
"= CIsP(RR(RSZ))).
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Then it is easy to see that AR becomes an Sy-spectrum with respect
to this action.
Given rings R and R’ we have a natural pairing
IsP(S™R) XIsP(S"R") =IsP(S"RQS"R") =IsP(S™"(RQR'))
of symmetric monoidal categories, and this in turn induces a map
A RNAR =2"C,IsP(S"R) \2"C IsP(S§"R’)
—— Q" C ISP (S™ T (RQR')) = Apin (RQR).
Thus we have a natural pairing
p: (AR, AR")— A(RQR’)
of Sy-spectra.
If n=1, then the canonical inclusion f,:BIsP(S*R)—&2"C,IsP(S"R)
is a group completion, and hence there is a homotopy equivalence
A,R=K,S"RX BGLS"R*=GW R,
By the definition we see that the square
BIsP(S™R) \BIsP (S§"R’) —BIsP (S™*"(RQ®R’))

fm/\f”‘l lfm+n

ARNAR %A, (R®R)
commutes, and that the structure map 4,RAS'—A4,.,R coincides with
the composite g,;(1/\¢). Hence the conditions (2) and (3) hold.
We now define a CW-bispectrum XR as follows.
X, R=2°C,. IsP(S°R) ;
and the structure maps are given by
X, RAS'=02°C, IsP(S'R) \S!
—'_-):Qan+q+IISP(SqR)

Qqa”
5 0C 11 IsP (S'R) = X, R
and

X, RAS'252C,, IsP (S'R) \QC Is (SZ)
'—)Qq+1Cﬂ+q+IISP (Sq+lR) =X”.q+1R.

It is easy to see that XR becomes an Sy-bispectrum if each X, ,R is
endowed with the §,XS§,-action

((0,7), S==2C, s ISP (STR) ) —s (S——> 51— C, , TsP (S'R)
(0+r)C”+quP(1®r)
C,i JsP(S°R)).
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Since ¢:X,,=AR—DXR is a homotopy equivalence, we have a

natural map
a:CIsP(R) =X, ,R— AR

(natural in H%).

Finally the maps X, ,RAX, R'—>X,ins+s(R®R’) defined as the
composite

2C, ., IsP (§°R) N\2°C, . IsP (SR’)
—_—)Qp+qcm+ﬁ+n+q IsP(§***(R®R"))

b+4
QPHEatetD) prgqy

mintpre ISP (S?*(R®R"))

determine a natural pairing (XR, XR')—>X(R®R’) of Sy-bispectra.
Hence a becomes a multiplicative natural transformation.

Q,E.D.
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