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Introduction

Let E be a higher algebraic K-theory defined on rings, that is, a
functor which assigns to each ring R a spectrum ER of algebraic K-
theory of Rm Fiedorowicz uniqueness theorem [2] says that if E has
an external tensor product, then there is a natural map of spectra

f:ER-*GWR

which induces an equivalence between ( — 1)-connected covers of ER
and the Gersten-Wagoner spectrum GWR ([3] and [13]). May [6]
has given a similar uniquenes theorem for higher algebraic K-
theories (or, infinite loop space machines) defined on permutative (i. eB,
symmetric strict monoidal) categories: given an infinite loop space
machine E defined on permutative categories, there exists a natural
equivalence of spectra between EU and the spectrum SBU constructed
by Segal [9].

In the present article we study the multiplicativity of such natural
transformations between higher algebraic K-theories defined on per-
mutative categories, or exact categories, or rings. Here the term
^multiplicativity5 is used in the following sense,, Let E and E' be
functors *% —>&* from permutative categories (or exact categories, or
rings) to CW-spectra, and suppose that E (resp. E') functorially
associates to each pairing UxV-^W in ^ a pairing EU/\EV-^EW
(resp, E'U/\E'V-»E'W) of CW^-spectra. Then a natural transforma-
tion f:E-*E' is called multiplicative if the following square commutes
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In the homotopy category

EU/\EV - » EW

E'U/\E'V - > E'W.

Notice that most of the constructions of products in higher
algebraic K-theory9 except for May's [7], provide only weak pairingss

i. eB9 pairings in the sense of G0 W0 Whitehead. This notion of a
weak pairing is inadequate for sophisticated spectrum level analysis-
Hence we want to find a condition? as generous as possible,, which
ensures that a given machine functorially associates 6true' pairings,,
Thus we introduce a notion of a pairing of ^-spectra which gener-
alizes May's notion of a pairing of J^-prespectra [?]„

We now state the results of the paper.
A CW^-spectrum E= [En\n^Q] is called an 5^-spectrum if each En

has an action by the symmetric group Sn (En is an Sn-CW complex)
which is compatible with the structure maps and restricts to a homo-
topically trivial ^-action, (See Section 1.) There is a relevant notion
of a pairing of 5^-spectra and we can show that pairings (E9 F) -»G
of 5^-spectra functorially determine pairings E/\F->G in the stable

category,,
We use the term higher algebraic K-theory defined on permutative

categories to denote a functor E which assigns to every permutative
category U a connective CPF-spectrum EU= {EnU\n^O} together with
a natural map A:BU-*EQU such that the composite BU-^Q°°EJJ=

\jQnEJJ is a group completion
n

Definition, A higher algebraic K-theory E defined on permutative
categories is called multiplicative if (i) EU has a natural structure of
an ^-spectrum, and (ii) given a pairing/: Ux V-^W of permutative
categories9 there exists a natural pairing Ef= [EminJ] : (EU,EV)-*EW

of ^-spectra such that the following square commutes;

BU/\BV

E0U/\E0V -^E0W.

Thus a multiplicative higher algebraic K-theory E functorially
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associates a true pairing EfiEU '/\EV-»EW of CPF-spectra.
It will be shown that both May machine M [7] and Shimada-

Shlmakawa machine C [10] are multiplicative higher algebraic K-
theories defined on permutative categories,, (But Segal's machine [9]
is not.)

Now our first theorem Is

Theorem Ae Let E be a higher algebraic K-theory defined on permutative
categories. Then there is a natural equivalence yiEU^CU which is multi-
plicative when E is a multiplicative higher algebraic K-iheorya

Note, Because the passage from symmetric monoidal to permutative
categories preserves pairings (cf. [7, §2])9 every multiplicative higher
algebraic K-theory defined on permutative categories (e. gB M ) can
be canonically regarded as a multiplicative higher algebraic K-theory
defined on symmetric monoidal categories. (We omit the obvious
definition of the latter notion0) Theorem .4 holds true for any E
defined on symmetric monoidal categories.

Next let K denote the Waldhausen machine [14] which assigns
to each exact category U a CW-spectrum KU= [BQ?UM \n^0} (cf.
[11]). Then K associates to any biexact functor f:UxV-+W a
pairing Kf:(KU,KV)-^KW of S*-spectra. (This Is essentially the
result of [11].) Let us denote by IsC7 the subcategory of all isomor-
phisms in a category U, and consider both Is £7 and QU as symmetric
monoidal categories.

Theorem Be There is a multiplicative natural transformation iti
—>KU defined as the composite of a natural equivalence yj:QCQ
with a natural map v:Cl$U->QCQU which deloops the familiar map

Note that by the "+= Q,39 theorem [4], K becomes an equivalence
if every short exact sequence In U splits.

Finally we consider higher algebraic K-theories defined on rings.
We do not know whether Loday3s pairing (GWR, GWR') ~^GW(R®R/)
Induces a 'true3 pairing GWR/\GWR'-*GW(R®R') or not. However
we have



102 KAZUHISA SHIMAKAWA

Theorem Ca There exists a functor A from rings to S^-spectra which
satisfies the followings :

(1) There is a natural pairing ft: (AR, AR')->A(R®R') of S*-
spectrae

(2) For each n^I, there is a natural group completion fn : BIsP (SnR) ->
AnR(~K0S

nRxBGLS*R+ = GWnR) such that

- > BIsP(Sm+»(R(S)R'))
A«A/ I I fm n \fm+n

* +

AmR/\AnR' — Am+n(R®R')

commutes, (Here P(R) denotes the category of finitely generated projective

modules over J?.)
(3) The structure map AnR/\S1—»An+lR is given by the composite

Arf/\Sl^AHR/\A£-^An+l(R®Z) =An+1R

where c:Sl-*AlZ represents the standard generator of K^SZ—Z (cf. [5,
Chapitre //]).

(4) There is a multiplicative natural transformation a:CIsP(R)-*AR

such that the induced map Q°°C00IsP(R')->QoaA00R is an equivalence.

Note that the condition (3) is similar to the description of the
structure map of GWR given by Loday [5]B From (2) we see that /*min

is weakly homotopic to Loday's map GWmR/\GWnR'-*GWmiH (/Z(g)/Z0.
As a consequence we have

Corollary. (Cf. Weibel [15].) The product structures in higher algebraic
K-theory of rings constructed by Waldhausen [14], May [7], Shimada-
Shimakawa [10], and Loday [5] (modified as in Theorem C) all agree

with each other.

The proofs of the above theorems are given in the final section,,
In Section 1 we introduce a notion of a pairing of 5^-spectra and
prove that pairings of 5^-spectra functorially determine pairings in
the stable category0 Section 2 illustrates how the machines of
Waldhausen, Shimada-Shimakawa, and May associate pairings of
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a, and Section 3 provides a key tool on which our proofs of
the theorems are based, that is to say, a multiplicative version of
the 6up and across theorem9 [2,8],

§ 1. Pairings of &*-Spectra

Throughout the paper we regard S1 as the one-point compactifica-
tion of R ({00} is the base-point), and denote by Sn the smash product
of n copies of Sl. Each Sn is an Sn-CW complex equipped with the
standard Sn-action°, G(SI, ..., sn) = ($0-i(1 ? -. -> ̂ -i(}) for every permuta-

tion 0&Sn.
Let E= [En\n^Q] be a CW^-spectrum, We say that E is an S*-

spectrum if each En is a based Sn-CW complex, and if the following
two conditions hold: (i) the diagram

En/\S
k > En+k

E,n+k

commutes for all a^Sn and r&Sk] and (ii) for every even permutation
@^An the map a:En-*En is homotopic to the identity,, Given 6^-spectra
E and F, a function f:E-*F is called a. function of S ̂ -spectra if each
fn\En—*Fn is 5re-equi variant. A map of S ̂ -spectra is a map f\E-*F
which is represented by a function /':E"-»F of 5^-spectra for some
cofinal subspectrum E' such that each E'n is invariant under the Sn-
action on En.

If we consider S* = IInSn as the skeletal category of finite sets and
their isomorphims, then each 5^-spectrum E can be regarded as a
functor from S* to CP'K-complexes. Moreover the structure maps
Em/\Sn-^Em+n constitute a natural transformation E/\S°—°—*Eo® where
S°:nt-*Sn denotes the sphere-valued functor. It follows that an */"*-
prespectrum in the sense of May [7] restricts, via the canonical
embedding £*-*</#, to an 5^-spectrum in our sense. (Strictly speaking,
J^-prespectra are not supposed to have a structure of a CW^-spectrum0

But this is not serious because the passage from J^-prespectra to the
stable category is equivalent to the process of replacing spectra by
CM^-approximations.)
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Note that in the definition of an 5^-spectrum the condition (ii)
follows from (i) if the 6^-action on En extends to an 0 (ri) -action (e. g.,
E is an i/^-prespectrum), or if E is an almost £?-spectrum, that is,
the maps En-^QEn+l are homotopy equivalences for n^l (cf. [11,
Lemma 4. 1])0

Now let E9 F and G be S^-spectra,,

Deinition 1.1. A pairing of ^-spectra p : (E, F) ->G is a family
of maps

(Jim.niEm/\Fn - »Gm+n; HI, n^O

such that the following diagram commutes;

1ATA1 1+tr+l

Em/\Sk/\Fn/\S
l - »Em+k/\Fn+l-^

where 1+r + l denotes the permutation

m + l 6 „ o m + n m + n + l 80e m-{-n + k\

m + l ... m + k /

Example 1. 20 Let E be an -S^-spectrum, Then the canonical
pairing e: (E, SQ)-»E consisting of the maps Em/\Sn-»Em+n is a pairing
of 5^-spectra,

We now describe the passage from pairings of ^-spectra to
pairings in the stable category H£P0

Given an S^-spectrum G we construct a sort of double telescope
WG as follows. For every 7?^;03 WGn is defined as an identification
space of the union

V Vm*,-i(P] X
ys-iCP, i+ 1] x

where M(r) denotes the Thorn space of a certain SO (2) -bundle T
over the 2-cell [t, i + 1] X [j, j + 1] and we identify
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(d,j),S, J) e ([i] x [j,j+l])+AG,.+,A5"-^ or
e ([i, i + 1] x U])+AG,+,AS»-'-'

with

( (i, j) , ft J) e ([i] x [/]) + AGI+, AS*-'-' :

( f t j + D.ft *> 0 e ([«] x U'J+l])+ AG.
with

( d, j+ 1), [ft *], 0 e ([i] x [j + 1])
and

( (i+ 1 , j), & *, 0 e ([i, + 1] x [ j]) +

with

where

(The Identification of Gi+J/\M(T) /\S*-*-J-2 with the part already
constructed is quite similar to that described in [1, p. 175].) The
structure maps are obvious. (Compare with the definition of the smash
product of spectra [1, §4].)

If fi : (E, F) ->G is a pairing of 6Vspectra5 then we have

for all (e,f, s) &Ei/\Fj/\Sl. Hence there is a well-defined map

Lemma L 3e Pairings p: (E, F) ->G of S*-spectrafunctorially determine
pairings

fi:E/\F-»G

in the stable category H&a

Proof, There is a sequence of natural maps of spectra

where TG denotes the telescope of G. To define p. we have only to
prove that siGA^0"^^^ is a homotopy equivalencee
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Take a partition A = B(JC of an ordered set A=N, and define a
spectrum WBCG as follows: for every a&A we put

where a(a) =#{*^4 !*<*} etc., and identify (g, j) eWBCGa(fl) A^1 with

if fl^C
if a£EB.

(Compare with the definition of naive smash product [1].) Now
suppose that both B and C are infinite and that f(d) is even (and
hence a0Wir(a^id) whenever a&B. Then we have a commutative
diagram

WG

TWBCG

1=
G/\BCS° - > WBCG

in which every vertical map is a homotopy equivalence. Since
WBcGn/\S

l-*WBcGn+i are homotopic to the original structure maps
Gn/\S

l-»Gn+l , the bottom map becomes a weak homotopy equivalence.
Thus we see that e is a homotopy equivalence.

Notation. In what follows we use the same letter JJL to denote the
pairing E/\F-*G induced from a pairing fjt:(E,F)-*G of ^-spectra,

§ 2. Multiplicative Higher Algebraic K- Theories

2. 1. Waldhausen machine. For every exact category U we have
a CW-spectrum KU= {KnU\n^O} where

denotes the classifying space of the 72-fold category obtained by
applying Q, on every component of the ?z-fold exact category UM of
commutative fl-cubes in U (cf. [11]). Note that KQU is the set oU
of all objects of U. (This differs from the definition given in [11] in
which KQU is defined to be QBQU.}

We have shown in [11] that the evident Sn-action on UM induces
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an Sn-2iCtion on BQ?UM with respect to which KU becomes an
spectrum. Moreover any biexact functor f:UxV-*W induces

natural map

for each pair of integers m and n. The diagram (4.2) in [11] shows
that Km,nf define a pairing Kf: (KU, KV) -»KW of ̂ -spectra. Thus
/ functorially associates a pairing

Kf:KU/\KV-+KW

in the stable category.

2. 2a Shimada-Shimakawa machleee In [10] we have associated
to any symmetric monoidal category £/=<£/, 0> a spectrum CU=
{B&nU\n^Q} where & is a functor which assigns to each symmetric
monoidal (topological) category C a symmetric monoidal category 38 C
together with a natural map BC/\S1~>B^Ce By extending the argue-
ment of [10, Lemma 2a 6] we see that CnU = B^nU is identical with
the geometric realization of a P-space BBnU defined as follows.

For each (rl , . . . , rB) GP, denote by BnU(ii , . . . , rn) the symmetric
monoidal category with objects

(a\a\...,a*y

where a is a function which assigns to each w-tuple (Tl , . . . , Tn) of
subsets T£Cr£ an object a ( T l ^ o e o j T n ) of <73 a

1' is a family of isomor-
phisms

satisfying the conditions similar to those of [10, Definition 2. 1 (i)],
and for any T of the form (Tl9 . . , T^IIT] , . . , TflIT} 9 . . , TJ the
following diagram commutes;

in which 7;,= ̂ , . . ,r?,.. ,rj, . . ,?;) (0^e,8^1). Given objects
<<2; cr1,..., an> and <6 ;^X

9 ..., ̂
n> a morphism /: <^; a1,..., an>-^><6; ̂ S1,

0 8 0 3 / 3 K > is a family of morphisms f(Tl9 ..., Tn) :a(r i 9 . . . , 7;)->i(Ti,
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. . . , !Tn) compatible with all a1 and f$l in the sense of [10, Definition
2, 1]. (Note that BU=£1U coincides with U of May [6].)

There is a canonical isomorphism

^Ufr , . . . , rn+1) =B(BnU(T, , . . . , rn) ) (r.+1)

natural in both U and (r l5 . . . , rn+1). Hence, as in [10, §2], we can
inductively prove that CnU=B3$nU is isomorphic to the geometric
realization of the P-space BB"U. Moreover the structure map
CnU/\Sl-*Cn+lU is described as the inclusion

\BBnU\/\Sl= 1 5£n+1£/( '••,!) \/\Sl-*\BBn+lU\e

We now define an 5B-action on CnU. Given a P-category E and

n, denote by Ea the P-category such that £ff(rl5 . . . , rB) =
.-la),...,Vlw). Clearly we have |AE"| = \BE\ (cf. [11, 1. 14]).

Returning to our case, for every 0&Sn there is a natural isomorphism
&(a}\BnU-*(BnUY which assigns to each a = <a; a1, . . . , a*y

where a(r_1(i) , . . . , r _I(B)) =a(Tl9..., Tn) and a^"lw =a*, 1 ̂ i^n. It

is easy to see that the induced maps

UJ UJ
[a, jx , . . . , jji - >[e(cr)n, ja_1(l) , . . . , Jff_1(n)]

define an 5n-action on C^C/ with respect to which CU becomes an

Let fi U X V— > W be a pairing of symmetric monoidal categories,,
Then we define a map

fM:&U(Ti , . . , r J x &V(rm+l , . . , rm+n) ̂ B^^C^ 9 8 . , rm+J

of rm+n-categories by

where 5 ( a £ Xl) denotes the family of composite isomorphisms

J(a(Tlt .., TiUTl, .., TJ, b (Tm+1 , . . , Tm+n»
=f(a(T, ,..,Tlt.., TJ®a(T, ,..,Tl,.., TJ,b(Tm+1 ,.., Tm+n

, . . , T, , . . , TJ, b(Tm+1 ,.., Tm+n))
0(a(r l f . . , r; , . . , TJ
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and ^'(1 X^O the family of isomorphisms

f(a(T, 9 e e 9 Tm),b(Tm+l , . . , Tm+ilirm+i ? . . ? Tm+M))
=f(a(T, , . . , Tm), b(Tm+1 ,a.9Tm+i9009 Tm+n))©

f(a(Ti , . . , Tm), b(Tm+l 9 o . , T'm+i ye o , rm+n))

similarly defined.
One easily checks that the induced maps

satisfy the condition of a pairing of ^-spectra, and that C0>0/ coincides
with Bf: BU/\BV-»BW. Thus we see that the functor U\-*CU is a
multiplicative higher algebraic K-theory defined on symmetric monoidal
(or permutative) categories.

20 30 May machine,, May [7] has defined a functor from permutative
categories to e/^-prespectra by the composite

U H U H BO H TBU

where 0 denotes the functor J^^>Cat obtained by applying the
Street's first construction [12] on a lax functor n|— >f/"9 and T assigns
to every J^-space X an </*-prespectrum TX\V\-*B(SV, Cv , X). Let
us denote by MU the associated 5^-spectrum (MnU = TBU(Rn) \n

The canonical inclusion C/-»C7(i) induces a natural map
B&(l)-»TBU({Q})=M0U such that the composite BU-*Q~MJJ is a
group completion.

By Theorems 2. 1 and 6. 2 of [7] we see that pairings /: ([/, F)— »K/r

of permutative categories functorially determine pairings Mf\ (MU, MV}
-*MW of Sfc-spectra, and it is easy to see that the following square
commutes ;

BU/\BV - - BW

M0U/\MQV - >M0W.

Therefore the functor U\->MU also becomes a multiplicative higher
algebraic K-theory defined on permutative categories.

Remark. Unfortunately, Segal machine applied to the P-space
BBU=BU does not provide an 6'^-spectrum. In fact, Segal- Woolfson



110 KAZUHISA SHIMAKAWA

approach to constructing pairings of spectra is much more complicated
than that described here. (Compare [16] and [9].)

§3. $*-Bispectra and Their Pairings

A CW-bispectrum is a family X= [XHtq\n^Q9 q^Q} of CW-com-
plexes Xniq equipped with cellular embeddings

Xn,q/\S
l-*Xn+l,q, (*,J)H[*,J]

such that

[[*,*], «'=[[*, *]',']

holds for all (*, s, t) ^Xniq/\S
l/\Sl. Every CHM>ispectrum X determines

(and is uniquely determined by) CW^-spectra

Xn*={Xn.q\q^Q}, X*,= {Xn,q\n:>Q}

and functions of spectra

For any bispectrum X we define two diagonal spectra DX and D'X
as follows (cf. [8]):

DHX=Q*XHtn=D'HX',

and the structure maps d'.DnX^S^-^D^X and d'lD^X^S^^D^X are
given by

3(X, 5) (t, , . . . , tm tn+1) =[[*(*!,..., O, ^n+l]5 J]'

for all (^ j) efi^^A^1 and (^ , . . . , tn, tn+l} ^Sn+1. Then there are
maps of spectra (natural in H&>) e:XQ*-*DX given by

eqx(tl,...,tq) = [x,tl,...,tj

for every x^XQiq
m, e':X*Q-»D'X given by

for every jveJTni0; and c = d'p~l'.DX - >D'X where p~l is the homotopy
inverse of the canonical map p:TDX->DX and d'\TDX-*D'X is
induced from the preternatural weak map d\DX-*D'X;

dnx(tl9...9tH)=x(-tl9...9 -O
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for every x^DnX and (tl9...9 tn) ̂ Sn. (Compare [8, Appendix A].)

Explicitly we fix a homotopy kt = (ft ,ft) :S2-»S2 such that k0(u,v) =

(u9 0), kl(u, v} = (v, — M) and use the following homotopies hn:dn+ldn

~d'n(dn/\l) to define </';

(AB) * (x9 *)(*! , . . . , tm tn+l) =dn+ldn(x9ft (s9 tn+l) ) fo , . o . , ^ ^ (j, *B+1) )

Definition 30 1. A CW^-bispectrum Jf is called an 6^-bispectrum

if every Xm* and X*p have a structure of an S*- spectrum, and if
l-*XmJrl* and X^p/\S

1->X^p+l are functions of ,SVspectra8 (Thus

each Xni9 has an Sn X ̂ -action such that

[[*, j], fl'= [[(u, r)^, o's], r'tj '

for every a^Sn, r^Sq, a's=Sk, r'^Sr and (x9 s, t) ^Xn>q/\S
k /\Sr.)

Given 5^-bispectra X, Y and Z5 a pairing //: (Z, F)-»Z of 5^-bispectra

is a family of maps

which restricts to pairings of S* -spectra

(Xm* -> Yn*) -*Zm+n* and

For example, the CPK-bispetrum AS= [Sn/\Sq\n'^09 q^Q] equipped

with the structure maps

[ (*, JO , *] = ( (x,s) , y) , [ (x, y) , 5] ' - (*, (y,s))
for ((X,y),

canonically has a structure of an ^-bispectrum, and for every S#-

bispectrum X we have a natural pairing s : ( Jf, J51) -*X of 5^-bispectra ;

OJ UJ

(x, (5,0) — »[[*,j],t]'

It is easy to see that if X is an 6^-bispectrum then both DX and
D'X are ^-spectra with the 5n-action

on each DnX=QnXnin = D'nX, and also that e:XQ*-»DX and g':^0->

D'X are functions of 6^-spectra. (However c:DX->D'X is not a

function of ^-spectra.) Now let f j i : ( X 9 Y ) - + Z be a pairing of S*-
bispectra. Then the diagram
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lArA1

Q-X.

Qm+kV
M Am

11+r+l

Qin+k+n+l

1

/. wi+fc+n+J

commutes. Hence the maps Qm+n/*:QmXmim/\QnYntn-»Qm+nZm+nim+n define
a pairing Dpi (DX, DY)-*DZ of ^-spectra, and similarly D'/m
(D'X, D'Y)-*D'Z. The following proposition is a multiplicative version
of the up and across theorem (cf. [2] and [8]).

Proposition 3.2. Let f j t : ( X , Y ) - * Z be a pairing of S*-bispectra.
Then the following diagram commutes in the stable category ;

Proof. For every m and w, we have a commutative diagram

Noting that ^ is a map of ^-spectra (and hence induces We:
WZ^-^WDZ)^ we can easily show that the left-hand square in (#)
commutes.

Quite similarly we can prove the commutativity of the right-hand
square in (*).

Finally, to prove the commutativity of the middle square, let us
take a partition of JV=5UC, and denote n' = j l ( n ) , ri' = y(n) for every
n^N. Then there is a canonical inclusion T(DX/\BCDY}-»TDXf\BC

TDY which sends \K\+/\(DvX/\DvY) /\Sn-kC.Tn(DX/\BCDY} to

([r]+AA>*ASn/-*OA([^
have a commutative diagram
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DX/\BCDY-^»TDX/\BCTDY — D'X/\BCD'Y
U

T(DX/\BCDY) D'p

i 4
Wnrd>

WBCDZ «-£- TWBCDZ -^ WBCDfZ

in which WBcd
f is defined by using the natural homotopies

- , hn if n^C
h« =

From this and the similar diagram with (JL replaced by e: (Z, JS) -»Z,
we see that

DX/\DY —

ffAc

:£2ll D'Zt\D'AS

commutes in the stable category. Because the composite TDZ-*
DZ/\DAS-»WDZ (resp. TD'Z^D'Zf\DfAS-*WD'Z) coincides with
TDZ->DZ/\SQ-»WDZ (resp0 TD'Z-*D'Z/\S°-+WD'Z), we conclude
that the middle square in (*) commutesB

4 1. Proof of Theorem A0 Let U be a permutative category,,
Then we have a bispectrum XU— {XnigU\n^Q? q^Q} defined as follows:

Xn,qU is the geometric realization of the P?-space

E&U: (FX , . . . , r,) H— >j&>C/(ri , . . . , r<) ;

the structure maps XniqU/\Sl-*Xn+liqU and XHtqU/\S1-*Xntq+lU are
given by the evident maps

respectively0

By the definition we have X^U=EU and there is a natural map
X^U given by
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CJJ=

Because \EjfrU \ is connected when ft^l, the canonical map XniqU
-»QXniq+lU is a homotopy equivalence for all ftgrL Hence e'\EU->
D'XU becomes an equivalence. Moreover, because B( )-^Q°°EOQ( )
and B( )-*Q°°C00( ) are group completions, the composite k:CU-*

XQ*U e >DXU also becomes an equivalence. Thus we have an equi-
valence

natural in U.
Now suppose that E is a multiplicative higher algebraic K-theory0

Then XU becomes an 6^-bispectrum with an Sn X ̂ -action on XHiqU
induced from the 5B-action on En and the ^-action on Bq.

Let f'Ux V-+W be a pairing of permutative categories. Then
we have a natural pairing Xf: (XU, XV) -*XW of S^-bispectra
consisting of the maps XmipU/\XniqV-*Xm+ntp+qW induced by the map
of r>+*-spaces

By Proposition 3. 2 and by the multiplicativity of A:B( )-^>EQ( ),
we see that the following diagram commutes in

EU/\EV -Z-+ EW

CU/\CV -2-* CW. Q, E. Da

48 2. Proof of Theorem B0 Let U be an exact category0 We first
define an equivalence f]:QCQU-*KU. By [10, Lemma 4.2] every
BqU(ri 3 ..., r?) has a natural structure of an exact category. Hence
we can define an .S^-bispectrum XU by

Xn.qU= \KnB"U | = | (i,,..,, r.) i >5£»(^£7^,..., r f))w |.

Clearly X*JJ=KU, and by [10, Corollary 4. 5] we have
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Now let us endow X'U= [@Xl+niqU \n^Q, q^>Q] with the structure
of an S* -bi spectrum such that the maps

give rise to a function $:XU-*X'U of 5#-bispectra0 Then Xf
Q*U=

QXvtU—QCQU and it is easy to see that the maps em.XfQ*U-*DX'U>
e'\X'wU-*D'XfU and <p:X^0U-^>X^0U are homotopy equivalences.
Thus we have a natural equivalence 7]'.QCQU—*KU defined as the
composite

Next consider the natural sequence of spectra

CIsU - >CLU - >CQU

associated with the sequence of symmetric monoidal categories
LU-+QU (cf. [14, §9]). As in the proof of [11, Theorem 3, 1], there
are adjunctions

, . . . , r.) ;=± &JU fa , . . . , r.) ±=; 0

natural in both U and ( r l 5 . . . , r B ) . Therefore we have a null
homotopy on every CnLU= \BBnLU\ which is compatible with the
structure maps of CLU, and is natural in U. Since the composite
Cnl$U->CnQU is the constant rnap? we have a natural map
QCQU, and hence the composite

We now prove that tc is multiplicative. Let f:Ux V->W be a
biexact functor. Then9 as in the proof of Theorem A, there is a
natural pairing Xf: (XU, XV) -^XW of 5^-bispectra such that XmipU/\
XniqV-^>Xm+nip+qW is induced from the (m + 7z)-fold functors

associated with the biexact functor fpiq:B
pU(il , . . . , r^) xBqV(rp+1 ,

ao., rp+q) -*&+*W(rl ? . 0 0 9 rp+q) (cf. [1 1, §4]). It is easy to see that
the composite maps

define a pairing of 5^-bispectra X'f:(X'U,X'V)^-X"W where



116 KAZUHISA SHIMAKAWA

X"W= [Q2X2+niqW\n^Q^ g^O] is equipped with the structure of an
5^-bispectrum evidently defined. Thus we have a commutative
diagram

QCQU/\QCQV

9

KU/\KV — KW

where QPCQFW™ denotes Xl*W=Q2X2*W, and ij the composite

We now define a natural map v:CIsW-^Q2CQ?W™ such that the
following diagram commutes in the stable category (cf0 [14, 9.2]);

> CIsW

(4. 1) wJ L

QCQUf\QCQV -

As stated in [11, §3], any biexact functor g:CxD-*E defines a 2-fold
functor CIIZ)— >£t23 which induces a commutative diagram

natural in ^. (We denote Is^lsjls^ LIs = L1Is2 and QIs = QrlIs2. Cf.
[!!]„) Applying this construction to biexact functors

fpt9:&U(Tl9 . . . , r,) xB^F(r,+1 9 0 0 B , r,+9) ->^+W(ri 9 0 0 a 3 r,+g)9

and then realizing the associated P^-spaces, we have a commutative
diagram

/\C9I*V - > CpLU/\CqIsV - > CpQU/\CqIsV

I " !Pp'q Pp'q

for all /?, £^08 Since p"Piq is compatible with the null homotopies9

the following diagram commutes;
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CtlsU/\C9lsV - •• QCpQU/\,lsV

By the definition, {pp,t} and [p'tit} are pairings of ^-spectra, and
hence we have a diagram

ClsU/\ClsV -

(4. 2) .Ail U

QCQU/\ClsV - » QCQIsW™

which commutes in the stable category.
Similarly we have a commutative diagram

CQUf\ClsV - * CQlsW™

(4. 3) IA. I I -

CQU/\QCQV - > flC^M^1

associated with the natural sequence

QUUlsV - > QUULV - > QfJUQV

I I
QlsW™ - > QLW™

By [14, 9.2.3] we see that the following diagram commutes up
to natural homotopy

ClsU/\ClsV

(4. 4) II

ClsU/\ClsV

where un:CnlsW - >Cxls
2Wia denotes the canonical inclusion

From (4.2), (4.3) and (4.4), we see that (4.1) commutes if we
put v=(Qv")v'u. Moreover, from the commutative diagram

ClsW -?-» QCQW ==. X'^W — X'^W *
"I = U ">JT*oW

V * xy 4T

-Z-+ QCQisW™ -^> X^PF -^-> Z;OPF
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in which u' consists of the canonical inclusions u'n: \BQo(BnW)™\-»
\BQIs(BnW)™\, we see that the composite iji):CIsW-»Q2CQ?W™-»KW
coincides with K = T]V. Therefore the diagram

CIsU/\CIsV — CIsW

K/\K\ \K

* 1

KU/\KV -2-* KW

commutes in the stable category. Q. Ee D0

48 38 Proof of Theorem C8 Given a ring R, we define AR as
follows. For each

where S"R = R®(®SZ) (cf. [5]); and the structure map AnR/\Sl

An+lR is defined as the composite

R) =An+lR

where / denotes the evident pairing

IsP(SnR) XlsP(SZ)

and

c : S1 - >5IsP (SZ) c flCJsP (5Z)

the cellular inclusion corresponding to the '1-celP

O 0 0

1 0 0
0 I 0

0 0 1

Note that ^ represents a generator of K1SZ=KQZ=Z (cf. [5]).
R

Using the standard ^-action on 05Z, we define an 5n-action on
AnR by

(r, S" -^
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Then It is easy to see that AR becomes an ^-spectrum with respect
to this action.

Given rings R and Rf we have a natural pairing

of symmetric monoidal categories9 and this in turn induces a map

+nlsP (Sm+n (

Thus we have a natural pairing

p: (AR, AR') - *A(R®R')

of 5^-spectra.
If 72^1, then the canonical inclusion fn:BIsP(SnR)-»QnCnI$P(SnR)

is a group completion, and hence there is a homotopy equivalence

By the definition we see that the square

BlsP (SmR) /\B^P ($nR') —»BIsP (Sm+n

AmR/\AnR' - A m

commutes, and that the structure map AnR/\S1-*An+1R coincides with
the composite ^ n > 1 ( lAO» Hence the conditions (2) and (3) hold.

We now define a CPF-bispectrum XR as follows,,

and the structure maps are given by

and

7,1s (SZ)

It is easy to see that XR becomes an S^-bispectrum if each Xn,qR is
endowed with the Sn X 53-action

((ff, r), S<—CB+,IsP (PR) ) i »(5'
(0+rtC , IsP(l®r)
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Since e:XQ^=AR-^DXR is a homotopy equivalence, we have a
natural map

a:CIsP(K) = X*QR - »AR

(natural in H&)0

Finally the maps XmipR/\XniqR
f-*Xm+nip+q(R(g)R') defined as the

composite

QtCm+tLtP(S*R) A&C^IsP^R')
- >Qt+'Cm+p+n+, IsP (S>+« (R®R') )

determine a natural pairing (XR,XR')-*X(R<S)R") of ^-bispectra.
Hence a becomes a multiplicative natural transformation.

a E. D.
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