Uniqueness of Products in Higher Algebraic K-Theory

Dedicated to Professor Hirosi Toda on his 60th birthday

By

Kazuhisa SHIMAKAWA*

Introduction

Let \mathcal{E} be a higher algebraic K-theory defined on rings, that is, a functor which assigns to each ring R a spectrum $\mathbb{E}R$ of algebraic Ktheory of R. Fiedorowicz uniqueness theorem [2] says that if \mathbb{E} has an external tensor product, then there is a natural map of spectra

$f: ER \rightarrow GWR$

which induces an equivalence between (-1)-connected covers of $\mathbb{E}R$ and the Gersten-Wagoner spectrum \mathbb{GWR} ([3] and [13]). May [6] has given a similar uniquenes theorem for higher algebraic Ktheories (or, infinite loop space machines) defined on permutative (i. e., symmetric strict monoidal) categories: given an infinite loop space machine \mathbb{E} defined on permutative categories, there exists a natural equivalence of spectra between $\mathbb{E}U$ and the spectrum $SB\overline{U}$ constructed by Segal [9].

In the present article we study the multiplicativity of such natural transformations between higher algebraic K-theories defined on permutative categories, or exact categories, or rings. Here the term 'multiplicativity' is used in the following sense. Let E and E' be functors $\mathscr{C} \to \mathscr{S}$ from permutative categories (or exact categories, or rings) to CW-spectra, and suppose that E (resp. E') functorially associates to each pairing $U \times V \to W$ in \mathscr{C} a pairing $EU \land EV \to EW$ (resp. $E'U \land E'V \to E'W$) of CW-spectra. Then a natural transformation $f: E \to E'$ is called multiplicative if the following square commutes

Received April 27, 1987.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

in the homotopy category $H\mathscr{S}$;

$$\begin{array}{ccc} EU \land EV \longrightarrow EW \\ f \land f & & f \\ E'U \land E'V \longrightarrow E'W. \end{array}$$

Notice that most of the constructions of products in higher algebraic K-theory, except for May's [7], provide only weak pairings, i. e., pairings in the sense of G. W. Whitehead. This notion of a weak pairing is inadequate for sophisticated spectrum level analysis. Hence we want to find a condition, as generous as possible, which ensures that a given machine functorially associates 'true' pairings. Thus we introduce a notion of a pairing of S_* -spectra which generalizes May's notion of a pairing of \mathscr{I}_* -prespectra [7].

We now state the results of the paper.

A CW-spectrum $E = \{E_n | n \ge 0\}$ is called an S_* -spectrum if each E_n has an action by the symmetric group S_n (E_n is an S_n -CW complex) which is compatible with the structure maps and restricts to a homotopically trivial A_n -action. (See Section 1.) There is a relevant notion of a pairing of S_* -spectra and we can show that pairings $(E, F) \rightarrow G$ of S_* -spectra functorially determine pairings $E \land F \rightarrow G$ in the stable category.

We use the term higher algebraic K-theory defined on permutative categories to denote a functor E which assigns to every permutative category U a connective CW-spectrum $EU = \{E_n U | n \ge 0\}$ together with a natural map $\lambda: BU \rightarrow E_0 U$ such that the composite $BU \rightarrow \Omega^{\infty} E_{\infty} U = \bigcup \Omega^n E_n U$ is a group completion.

Definition. A higher algebraic K-theory E defined on permutative categories is called *multiplicative* if (i) EU has a natural structure of an S_* -spectrum, and (ii) given a pairing $f:U \times V \rightarrow W$ of permutative categories, there exists a natural pairing $Ef = \{E_{m,n}f\} : (EU, EV) \rightarrow EW$ of S_* -spectra such that the following square commutes;

$$\begin{array}{ccc} BU \bigwedge BV & \stackrel{Bf}{\longrightarrow} & BW \\ & & & \downarrow^{\lambda} \\ & & & \downarrow^{\lambda} \\ E_0 U \bigwedge E_0 V & \stackrel{E_{0,0}f}{\longrightarrow} & E_0 W \end{array}$$

Thus a multiplicative higher algebraic K-theory E functorially

associates a true pairing $Ef: EU \land EV \rightarrow EW$ of CW-spectra.

It will be shown that both May machine M [7] and Shimada-Shimakawa machine C [10] are multiplicative higher algebraic K-theories defined on permutative categories. (But Segal's machine [9] is not.)

Now our first theorem is

Theorem A. Let E be a higher algebraic K-theory defined on permutative categories. Then there is a natural equivalence $\gamma: EU \rightarrow CU$ which is multiplicative when E is a multiplicative higher algebraic K-theory.

Note. Because the passage from symmetric monoidal to permutative categories preserves pairings (cf. [7, §2]), every multiplicative higher algebraic K-theory defined on permutative categories (e.g. M) can be canonically regarded as a multiplicative higher algebraic K-theory defined on symmetric monoidal categories. (We omit the obvious definition of the latter notion.) Theorem A holds true for any \mathbb{E} defined on symmetric monoidal categories.

Next let K denote the Waldhausen machine [14] which assigns to each exact category U a CW-spectrum $KU = \{BQ^nU^{[n]} | n \ge 0\}$ (cf. [11]). Then K associates to any biexact functor $f: U \times V \rightarrow W$ a pairing $Kf: (KU, KV) \rightarrow KW$ of S_* -spectra. (This is essentially the result of [11].) Let us denote by IsU the subcategory of all isomorphisms in a category U, and consider both IsU and QU as symmetric monoidal categories.

Theorem B. There is a multiplicative natural transformation κ :CIsU $\rightarrow KU$ defined as the composite of a natural equivalence η : $\Omega CQU \cong KU$ with a natural map ν :CIsU $\rightarrow \Omega CQU$ which deloops the familiar map BIsU $\rightarrow \Omega BQU$.

Note that by the "+ = Q" theorem [4], κ becomes an equivalence if every short exact sequence in U splits.

Finally we consider higher algebraic K-theories defined on rings. We do not know whether Loday's pairing $(GWR, GWR') \rightarrow GW(R \otimes R')$ induces a 'true' pairing $GWR \land GWR' \rightarrow GW(R \otimes R')$ or not. However we have **Theorem C.** There exists a functor A from rings to S_* -spectra which satisfies the followings:

(1) There is a natural pairing $\mu: (AR, AR') \rightarrow A(R \otimes R')$ of S_* -spectra.

(2) For each $n \ge 1$, there is a natural group completion $f_n: BIsP(S^nR) \rightarrow A_nR(\simeq K_0S^nR \times BGLS^nR^+ = GW_nR)$ such that

commutes. (Here P(R) denotes the category of finitely generated projective modules over R.)

(3) The structure map $A_n R \wedge S^1 \rightarrow A_{n+1}R$ is given by the composite

$$A_{n}R \wedge S^{1} \xrightarrow{1 \wedge \iota} A_{n}R \wedge A_{1}Z \xrightarrow{\mu_{n,1}} A_{n+1}(R \otimes Z) = A_{n+1}R$$

where $\iota: S^1 \rightarrow A_1 \mathbb{Z}$ represents the standard generator of $K_1 S\mathbb{Z} = \mathbb{Z}$ (cf. [5, Chapitre II]).

(4) There is a multiplicative natural transformation $\alpha: CIsP(R) \to AR$ such that the induced map $\Omega^{\infty}C_{\infty}IsP(R) \to \Omega^{\infty}A_{\infty}R$ is an equivalence.

Note that the condition (3) is similar to the description of the structure map of GWR given by Loday [5]. From (2) we see that $\mu_{m,n}$ is weakly homotopic to Loday's map $GW_nR \land GW_nR' \rightarrow GW_{m,n}$ $(R \otimes R')$.

As a consequence we have

Corollary. (Cf. Weibel [15].) The product structures in higher algebraic K-theory of rings constructed by Waldhausen [14], May [7], Shimada-Shimakawa [10], and Loday [5] (modified as in Theorem C) all agree with each other.

The proofs of the above theorems are given in the final section. In Section 1 we introduce a notion of a pairing of S_* -spectra and prove that pairings of S_* -spectra functorially determine pairings in the stable category. Section 2 illustrates how the machines of Waldhausen, Shimada-Shimakawa, and May associate pairings of

 S_* -spectra, and Section 3 provides a key tool on which our proofs of the theorems are based, that is to say, a multiplicative version of the 'up and across theorem' [2, 8].

§ 1. Pairings of S_* -Spectra

Throughout the paper we regard S^1 as the one-point compactification of R ($\{\infty\}$ is the base-point), and denote by S^n the smash product of n copies of S^1 . Each S^n is an S_n-CW complex equipped with the standard S_n -action; $\sigma(s_1, \ldots, s_n) = (s_{\sigma^{-1}(1)}, \ldots, s_{\sigma^{-1}(n)})$ for every permutation $\sigma \in S_n$.

Let $E = \{E_n | n \ge 0\}$ be a CW-spectrum. We say that E is an S_* -spectrum if each E_n is a based S_n -CW complex, and if the following two conditions hold: (i) the diagram

$$\begin{array}{cccc} E_n \bigwedge S^k & \longrightarrow & E_{n+k} \\ & & & \downarrow^{\sigma+\tau} \\ E_n \bigwedge S^k & \longrightarrow & E_{n+k} \end{array}$$

commutes for all $\sigma \in S_n$ and $\tau \in S_k$; and (ii) for every even permutation $\sigma \in A_n$ the map $\sigma: E_n \to E_n$ is homotopic to the identity. Given S_* -spectra E and F, a function $f: E \to F$ is called a *function of* S_* -spectra if each $f_n: E_n \to F_n$ is S_n -equivariant. A map of S_* -spectra is a map $f: E \to F$ which is represented by a function $f': E' \to F$ of S_* -spectra for some cofinal subspectrum E' such that each E'_n is invariant under the S_n -action on E_n .

If we consider $S_* = \coprod_n S_n$ as the skeletal category of finite sets and their isomorphims, then each S_* -spectrum E can be regarded as a functor from S_* to CW-complexes. Moreover the structure maps $E_m \land S^n \to E_{m+n}$ constitute a natural transformation $E \land S^0 \xrightarrow{\cdot} E_0 \oplus$ where $S^0: \mathbf{n} \mapsto S^n$ denotes the sphere-valued functor. It follows that an \mathscr{I}_* prespectrum in the sense of May [7] restricts, via the canonical embedding $S_* \to \mathscr{I}_*$, to an S_* -spectrum in our sense. (Strictly speaking, \mathscr{I}_* -prespectra are not supposed to have a structure of a GW-spectrum. But this is not serious because the passage from \mathscr{I}_* -prespectra to the stable category is equivalent to the process of replacing spectra by GW-approximations.) Note that in the definition of an S_* -spectrum the condition (ii) follows from (i) if the S_n -action on E_n extends to an O(n)-action (e.g., E is an \mathscr{I}_* -prespectrum), or if E is an almost Ω -spectrum, that is, the maps $E_n \rightarrow \Omega E_{n+1}$ are homotopy equivalences for $n \ge 1$ (cf. [11, Lemma 4.1]).

Now let E, F and G be S_* -spectra.

Definition 1.1. A pairing of S_* -spectra $\mu: (E, F) \to G$ is a family of maps

$$u_{m,n}: E_m \wedge F_n \longrightarrow G_{m+n}; \quad m, n \ge 0$$

such that the following diagram commutes;

where $1 + \tau + 1$ denotes the permutation

$$\begin{pmatrix} m+1 & \dots & m+n & m+n+1 & \dots & m+n+k \\ m+k+1 & \dots & m+k+n & m+1 & \dots & m+k \end{pmatrix}$$
.

Example 1.2. Let E be an S_* -spectrum. Then the canonical pairing $\varepsilon: (E, S^0) \to E$ consisting of the maps $E_m \wedge S^n \to E_{m+n}$ is a pairing of S_* -spectra.

We now describe the passage from pairings of S_* -spectra to pairings in the stable category $H\mathscr{S}$.

Given an S_* -spectrum G we construct a sort of double telescope WG as follows. For every $n \ge 0$, WG_n is defined as an identification space of the union

 $\bigvee_{i+j \leq n} ([i] \times [j])_{+} \wedge G_{i+j} \wedge S^{n-i-j}$ $\bigvee \bigvee_{i+j \leq n-1} ([i] \times [j, j+1])_{+} \wedge G_{i+j} \wedge S^{n-i-j}$ $\bigvee \bigvee_{i+j \leq n-1} ([i, i+1] \times [j])_{+} \wedge G_{i+j} \wedge S^{n-i-j}$ $\bigvee \bigvee_{i+j \leq n-2} G_{i+j} \wedge M(\tau) \wedge S^{n-i-j-2}$

where $M(\tau)$ denotes the Thom space of a certain SO(2)-bundle τ over the 2-cell $[i, i+1] \times [j, j+1]$ and we identify

PRODUCTS IN HIGHER ALGEBRAIC K-THEORY

$$((i,j),g,s) \in ([i] \times [j,j+1])_{+} \land G_{i+j} \land S^{n-i-j} \quad \text{or} \\ \in ([i,i+1] \times [j])_{+} \land G_{i+j} \land S^{n-i-j}$$

with

$$((i,j),g,s) \in ([i] \times [j])_{+} \land G_{i+j} \land S^{n-i-j};$$

$$((i,j+1),g,s,t) \in ([i] \times [j,j+1])_{+} \land G_{i+j} \land S^{1} \land S^{n-i-j-1}$$

with

$$((i,j+1), [g, s], t) \in ([i] \times [j+1])_{+} \land G_{i+j+1} \land S^{n-i-j-1};$$

and

$$((i+1,j),g,s,t) \in ([i,+1] \times [j])_{+} \land G_{i+j} \land S^{1} \land S^{n-i-j-1}$$

with

$$((i+1,j), \sigma_{i,j}[g, (-1)^{j}s], t) \in ([i+1] \times [j])_{+} \land G_{i+1+j} \land S^{n-i-1-j}$$

where

$$\sigma_{i,j} = \begin{pmatrix} i+1 & i+2 \cdots i+j+1 \\ i+2 & i+3 \cdots & i+1 \end{pmatrix} \in S_{i+j+1}.$$

(The identification of $G_{i+j} \wedge M(\tau) \wedge S^{n-i-j-2}$ with the part already constructed is quite similar to that described in [1, p. 175].) The structure maps are obvious. (Compare with the definition of the smash product of spectra [1, §4].)

If $\mu: (E, F) \rightarrow G$ is a pairing of S_* -spectra, then we have

$$\mu_{i+1,j}([e,(-1)^{j}s],f) = \sigma_{i,j}[\mu_{i,j}(e,f),(-1)^{j}s]$$

for all $(e, f, s) \in E_i \wedge F_j \wedge S^1$. Hence there is a well-defined map $\mu: E \wedge F \rightarrow WG$.

Lemma 1.3. Pairings $\mu: (E, F) \rightarrow G$ of S_* -spectra functorially determine pairings

$$\tilde{\mu}: E \wedge F \rightarrow G$$

in the stable category $H\mathcal{S}$.

Proof. There is a sequence of natural maps of spectra

$$E \land F \xrightarrow{\mu} WG \xleftarrow{\overline{\epsilon}} G \land S^0 \xleftarrow{\simeq} TG \xrightarrow{\simeq} G$$

where TG denotes the telescope of G. To define $\tilde{\mu}$ we have only to prove that $\overline{\epsilon}: G \wedge S^0 \rightarrow WG$ is a homotopy equivalence.

Take a partition $A=B\cup C$ of an ordered set $A\cong N$, and define a spectrum $W_{BC}G$ as follows: for every $a\in A$ we put

$$W_{BC}G_{\alpha(a)} = G_{\beta(a)+\gamma(a)},$$

where $\alpha(a) = \#\{x \in A \mid x < a\}$ etc., and identify $(g, s) \in W_{BC}G_{\alpha(a)} \land S^1$ with
 $[g, s] \in G_{\beta(a)+(\gamma(a)+1)}$ if $a \in C$
 $\sigma_{\beta(a),\gamma(a)}[g, (-1)^{\gamma(a)}s] \in G_{(\beta(a)+1)+\gamma(a)}$ if $a \in B$.

(Compare with the definition of naive smash product [1].) Now suppose that both B and C are infinite and that $\gamma(a)$ is even (and hence $\sigma_{\beta(a),\gamma(a)}\simeq id$) whenever $a \in B$. Then we have a commutative diagram

$$\begin{array}{cccc} G \bigwedge S^{0} & \stackrel{\mathfrak{g}}{\longrightarrow} & WG \\ \simeq & & & \uparrow \simeq \\ T(G \bigwedge_{BC} S^{0}) & \longrightarrow & TW_{BC}G \\ \simeq & & & \downarrow \simeq \\ G \bigwedge_{BC} S^{0} & \longrightarrow & W_{BC}G \end{array}$$

in which every vertical map is a homotopy equivalence. Since $W_{BC}G_n \wedge S^1 \rightarrow W_{BC}G_{n+1}$ are homotopic to the original structure maps $G_n \wedge S^1 \rightarrow G_{n+1}$, the bottom map becomes a weak homotopy equivalence. Thus we see that $\overline{\epsilon}$ is a homotopy equivalence.

Notation. In what follows we use the same letter μ to denote the pairing $E \wedge F \rightarrow G$ induced from a pairing $\mu: (E, F) \rightarrow G$ of S_* -spectra.

§2. Multiplicative Higher Algebraic K-Theories

2.1. Waldhausen machine. For every exact category U we have a CW-spectrum $KU = \{K_n U | n \ge 0\}$ where

$$\mathbf{K}_n U = BQ^n U^{[n]} = BQ_1 \cdots Q_n U^{[n]}$$

denotes the classifying space of the *n*-fold category obtained by applying Q on every component of the *n*-fold exact category $U^{[n]}$ of commutative *n*-cubes in U (cf. [11]). Note that K_0U is the set oUof all objects of U. (This differs from the definition given in [11] in which K_0U is defined to be ΩBQU .)

We have shown in [11] that the evident S_n -action on $U^{[n]}$ induces

an S_n -action on $BQ^nU^{[n]}$ with respect to which KU becomes an S_* -spectrum. Moreover any biexact functor $f: U \times V \rightarrow W$ induces a natural map

$$\mathbb{K}_{m,n}f:BQ^{m}U^{[m]} \wedge BQ^{n}V^{[n]} \rightarrow BQ^{m+n}W^{[m+n]}$$

for each pair of integers *m* and *n*. The diagram (4.2) in [11] shows that $\mathbb{K}_{m,n}f$ define a pairing $\mathbb{K}f:(\mathbb{K}U,\mathbb{K}V) \to \mathbb{K}W$ of S_* -spectra. Thus *f* functorially associates a pairing

in the stable category.

2.2. Shimada-Shimakawa machine. In [10] we have associated to any symmetric monoidal category $U = \langle U, \bigoplus \rangle$ a spectrum $CU = \{B\mathscr{B}^n U | n \ge 0\}$ where \mathscr{B} is a functor which assigns to each symmetric monoidal (topological) category C a symmetric monoidal category $\mathscr{B}C$ together with a natural map $BC \land S^1 \rightarrow B\mathscr{B}C$. By extending the arguement of [10, Lemma 2.6] we see that $C_n U = B\mathscr{B}^n U$ is identical with the geometric realization of a Γ^n -space $B\hat{B}^n U$ defined as follows.

For each $(\mathbf{r}_1, \ldots, \mathbf{r}_n) \in \Gamma^n$, denote by $\hat{B}^n U(\mathbf{r}_1, \ldots, \mathbf{r}_n)$ the symmetric monoidal category with objects

$$\langle a; \alpha^1, \ldots, \alpha^n \rangle$$

where a is a function which assigns to each *n*-tuple (T_1, \ldots, T_n) of subsets $T_i \subset \mathbf{r}_i$ an object $a(T_1, \ldots, T_n)$ of U, α^i is a family of isomorphisms

$$a(T_1,\ldots,T_i\amalg T'_i,\ldots,T_n) \xrightarrow{\cong} a(T_1,\ldots,T_i,\ldots,T_n) \oplus a(T_1,\ldots,T'_i,\ldots,T_n)$$

satisfying the conditions similar to those of [10, Definition 2.1 (i)], and for any T of the form $(T_1, \ldots, T_i^0 \coprod T_i^1, \ldots, T_j^0 \amalg T_j^1, \ldots, T_n)$ the following diagram commutes;

in which $T_{\varepsilon\delta} = (T_1, \ldots, T_i^{\varepsilon}, \ldots, T_j^{\delta}, \ldots, T_n)$ $(0 \le \varepsilon, \delta \le 1)$. Given objects $\langle a; \alpha^1, \ldots, \alpha^n \rangle$ and $\langle b; \beta^1, \ldots, \beta^n \rangle$ a morphism $f: \langle a; \alpha^1, \ldots, \alpha^n \rangle \rightarrow \langle b; \beta^1, \ldots, \beta^n \rangle$ is a family of morphisms $f(T_1, \ldots, T_n) : a(T_1, \ldots, T_n) \rightarrow b(T_1, \ldots, \beta^n)$

..., T_n) compatible with all α^i and β^i in the sense of [10, Definition 2.1]. (Note that $\hat{B}U = \hat{B}^1U$ coincides with \overline{U} of May [6].)

There is a canonical isomorphism

 $\hat{B}^{n+1}U(\mathbf{r}_1,\ldots,\mathbf{r}_{n+1})\cong\hat{B}(\hat{B}^n U(\mathbf{r}_1,\ldots,\mathbf{r}_n))(\mathbf{r}_{n+1})$

natural in both U and $(\mathbf{r}_1, \ldots, \mathbf{r}_{n+1})$. Hence, as in [10, §2], we can inductively prove that $C_n U = B \mathscr{B}^n U$ is isomorphic to the geometric realization of the Γ^n -space $B\hat{B}^n U$. Moreover the structure map $C_n U \wedge S^1 \rightarrow C_{n+1} U$ is described as the inclusion

 $|B\hat{B}^{n}U| \wedge S^{1} \cong |B\hat{B}^{n+1}U(\cdots, 1)| \wedge S^{1} \to |B\hat{B}^{n+1}U|.$

We now define an S_n -action on C_nU . Given a Γ^n -category E and $\sigma \in S_n$, denote by E^{σ} the Γ^n -category such that $E^{\sigma}(\mathbf{r}_1, \ldots, \mathbf{r}_n) = E(\mathbf{r}_{\sigma^{-1}(1)}, \ldots, \mathbf{r}_{\sigma^{-1}(n)})$. Clearly we have $|BE^{\sigma}| = |BE|$ (cf. [11, 1.14]). Returning to our case, for every $\sigma \in S_n$ there is a natural isomorphism $\Theta(\sigma): \hat{B}^n U \to (\hat{B}^n U)^{\sigma}$ which assigns to each $\boldsymbol{a} = \langle a; a^1, \ldots, a^n \rangle \in \hat{B}^n U(\mathbf{r}_1, \ldots, \mathbf{r}_n)$,

$$\Theta(\sigma)\boldsymbol{a} = \langle \hat{a} : \tilde{\alpha}^1, \ldots, \tilde{\alpha}^n \rangle \in \hat{B}^n U(\mathbf{r}_{\sigma^{-1}(1)}, \ldots, \mathbf{r}_{\sigma^{-1}(n)})$$

where $\tilde{a}(T_{\sigma^{-1}(i)}, \ldots, T_{\sigma^{-1}(n)}) = a(T_1, \ldots, T_n)$ and $\tilde{\alpha}^{\sigma^{-1}(i)} = \alpha^i$, $1 \leq i \leq n$. It is easy to see that the induced maps

$$\begin{array}{c} |B\hat{B}^{n}U| \xrightarrow{|B\Theta(\sigma)|} |B(\hat{B}^{n}U)^{\sigma}| = |B\hat{B}^{n}U| \\ \bigcup \\ [a, s_{1}, \ldots, s_{n}] \longmapsto [\Theta(\sigma)a, s_{\sigma^{-1}(1)}, \ldots, s_{\sigma^{-1}(n)}] \end{array}$$

define an S_n -action on C_nU with respect to which CU becomes an S_* -spectrum.

Let $f: U \times V \rightarrow W$ be a pairing of symmetric monoidal categories. Then we define a map

$$f_{m,n}:\hat{B}^m U(\mathbf{r}_1,\ldots,\mathbf{r}_m)\times\hat{B}^n V(\mathbf{r}_{m+1},\ldots,\mathbf{r}_{m+n})\rightarrow\hat{B}^{m+n} W(\mathbf{r}_1,\ldots,\mathbf{r}_{m+n})$$

of Γ^{m+n} -categories by

$$f_{m,n}(\langle a; \alpha^{1}, \ldots, \alpha^{m} \rangle, \langle b; \beta^{1}, \ldots, \beta^{n} \rangle) = \\ \langle f(a \times b); \delta(\alpha^{1} \times 1), \ldots, \delta(\alpha^{m} \times 1), \delta'(1 \times \beta^{1}), \ldots, \delta'(1 \times \beta^{n}) \rangle$$

where $\delta(\alpha^i \times 1)$ denotes the family of composite isomorphisms

$$f(a(T_1, ..., T_i \amalg T'_i, ..., T_m), b(T_{m+1}, ..., T_{m+n}))$$

$$\cong f(a(T_1, ..., T_i, ..., T_m) \oplus a(T_1, ..., T'_i, ..., T_m), b(T_{m+1}, ..., T_{m+n}))$$

$$\cong f(a(T_1, ..., T_i, ..., T_m), b(T_{m+1}, ..., T_{m+n}))$$

$$\oplus f(a(T_1, ..., T'_i, ..., T_m), b(T_{m+1}, ..., T_{m+n}))$$

and $\delta'(1 \times \beta^i)$ the family of isomorphisms

$$f(a(T_1,...,T_m), b(T_{m+1},...,T_{m+i}\amalg T'_{m+i},...,T_{m+n})) \cong f(a(T_1,...,T_m), b(T_{m+1},...,T_{m+i},...,T_{m+n})) \oplus f(a(T_1,...,T_m), b(T_{m+1},...,T'_{m+i},...,T_{m+n}))$$

similarly defined.

One easily checks that the induced maps

$$C_{m,n}f:C_mU\wedge C_nV\rightarrow C_{m+n}W$$

satisfy the condition of a pairing of S_* -spectra, and that $C_{0,0}f$ coincides with $Bf: BU \land BV \rightarrow BW$. Thus we see that the functor $U \mapsto CU$ is a multiplicative higher algebraic K-theory defined on symmetric monoidal (or permutative) categories.

2.3. May machine. May [7] has defined a functor from permutative categories to \mathcal{I}_* -prespectra by the composite

$$U \mapsto \tilde{U} \mapsto B\tilde{U} \mapsto TB\tilde{U}$$

where \tilde{U} denotes the functor $\mathscr{F} \to \mathbb{C}at$ obtained by applying the Street's first construction [12] on a lax functor $\mathbf{n} \mapsto U^n$, and T assigns to every \mathscr{F} -space X an \mathscr{I}_* -prespectrum $TX: V \mapsto B(\Sigma^V, \hat{C}_V, X)$. Let us denote by $\mathcal{M}U$ the associated S_* -spectrum $\{\mathcal{M}_n U = TB\tilde{U}(\mathbb{R}^n) \mid n \ge 0\}$.

The canonical inclusion $U \rightarrow \tilde{U}(1)$ induces a natural map $\lambda: BU \rightarrow B\tilde{U}(1) \rightarrow TB\tilde{U}(\{0\}) = M_0U$ such that the composite $BU \rightarrow \Omega^{\infty} M_{\infty}U$ is a group completion.

By Theorems 2.1 and 6.2 of [7] we see that pairings $f: (U, V) \to W$ of permutative categories functorially determine pairings $Mf: (MU, MV) \to MW$ of S_* -spectra, and it is easy to see that the following square commutes;

$$\begin{array}{ccc} BU \bigwedge BV \longrightarrow BW \\ & & & \downarrow \lambda \\ & & & \downarrow \lambda \\ M_0 U \bigwedge M_0 V \longrightarrow M_0 W \, . \end{array}$$

Therefore the functor $U \mapsto MU$ also becomes a multiplicative higher algebraic K-theory defined on permutative categories.

Remark. Unfortunately, Segal machine applied to the Γ -space $B\hat{B}U=B\bar{U}$ does not provide an S_* -spectrum. In fact, Segal-Woolfson

approach to constructing pairings of spectra is much more complicated than that described here. (Compare [16] and [9].)

§ 3. S_* -Bispectra and Their Pairings

A *CW-bispectrum* is a family $X = \{X_{n,q} | n \ge 0, q \ge 0\}$ of *CW*-complexes $X_{n,q}$ equipped with cellular embeddings

$$X_{n,q} \land S^1 \to X_{n+1,q}, \quad (x,s) \mapsto [x,s]$$
$$X_{n,q} \land S^1 \to X_{n,q+1}, \quad (x,s) \mapsto [x,s]'$$

such that

$$[[x, s], t]' = [[x, t]', s]$$

holds for all $(x, s, t) \in X_{n,q} \land S^1 \land S^1$. Every CW-bispectrum X determines (and is uniquely determined by) CW-spectra

$$X_{n*} = \{X_{n,q} | q \ge 0\}, \ X_{*q} = \{X_{n,q} | n \ge 0\}$$

and functions of spectra

$$X_{n*} \wedge S^1 \longrightarrow X_{n+1*}, \ X_{*q} \wedge S^1 \longrightarrow X_{*q+1}.$$

For any bispectrum X we define two diagonal spectra DX and D'X as follows (cf. [8]):

$$D_n X = \Omega^n X_{n,n} = D'_n X;$$

and the structure maps $\delta: D_n X \wedge S^1 \rightarrow D_{n+1} X$ and $\delta': D'_n X \wedge S^1 \rightarrow D'_{n+1} X$ are given by

$$\delta(x, s) (t_1, \ldots, t_n, t_{n+1}) = [[x(t_1, \ldots, t_n), t_{n+1}], s]'$$

$$\delta'(x, s) (t_1, \ldots, t_n, t_{n+1}) = [[x(t_1, \ldots, t_n), t_{n+1}]', s]$$

for all $(x, s) \in \Omega^n X_{n,n} \wedge S^1$ and $(t_1, \ldots, t_n, t_{n+1}) \in S^{n+1}$. Then there are maps of spectra (natural in $H\mathscr{S}$) $e: X_{0*} \to DX$ given by

$$e_q x(t_1,\ldots,t_q) = [x,t_1,\ldots,t_q]$$

for every $x \in X_{0,q}$; $e': X_{*0} \rightarrow D'X$ given by

$$e'_{n} y(t_{1}, \ldots, t_{n}) = [y, t_{1}, \ldots, t_{n}]'$$

for every $y \in X_{n,0}$; and $c = d'\rho^{-1}: DX \xrightarrow{\simeq} D'X$ where ρ^{-1} is the homotopy inverse of the canonical map $\rho: TDX \rightarrow DX$ and $d': TDX \rightarrow D'X$ is induced from the preternatural weak map $d: DX \rightarrow D'X$;

$$d_n x(t_1,\ldots,t_n) = x(-t_1,\ldots,-t_n)$$

for every $x \in D_n X$ and $(t_1, \ldots, t_n) \in S^n$. (Compare [8, Appendix A].) Explicitly we fix a homotopy $k_t = (f_t, g_t) : S^2 \to S^2$ such that $k_0(u, v) = (u, v), k_1(u, v) = (v, -u)$ and use the following homotopies $h_n : d_{n+1}\delta_n \simeq \delta'_n(d_n \wedge 1)$ to define d';

$$(h_n)_t(x, s)(t_1, \ldots, t_n, t_{n+1}) = d_{n+1}\delta_n(x, f_t(s, t_{n+1}))(t_1, \ldots, t_n, g_t(s, t_{n+1}))$$

Definition 3.1. A CW-bispectrum X is called an S_* -bispectrum if every X_{m*} and X_{*p} have a structure of an S_* -spectrum, and if $X_{m*} \land S^1 \rightarrow X_{m+1*}$ and $X_{*p} \land S^1 \rightarrow X_{*p+1}$ are functions of S_* -spectra. (Thus each $X_{n,q}$ has an $S_n \times S_q$ -action such that

$$(\sigma + \sigma', \tau + \tau') [[x, s], t]' = [[(\sigma, \tau)x, \sigma's], \tau't]'$$

for every $\sigma \in S_n$, $\tau \in S_q$, $\sigma' \in S_k$, $\tau' \in S_r$ and $(x, s, t) \in X_{n,q} \land S^k \land S^r$.) Given S_* -bispectra X, Y and Z, a pairing $\mu: (X, Y) \to Z$ of S_* -bispectra is a family of maps

$$X_{m,q} \wedge Y_{n,q} \rightarrow Z_{m+n,p+q}$$

which restricts to pairings of S_* -spectra

 $(X_{m*}, Y_{n*}) \rightarrow Z_{m+n*}$ and $(X_{*p}, Y_{*q}) \rightarrow Z_{*p+q}$.

For example, the CW-bispetrum $\Delta S = \{S^n \land S^q | n \ge 0, q \ge 0\}$ equipped with the structure maps

$$[(x,y), s] = ((x, s), y), \quad [(x,y), s]' = (x, (y, s))$$

for $((x, y), s) \in \Delta S_{n,q} \land S^{1}$

canonically has a structure of an S_* -bispectrum, and for every S_* -bispectrum X we have a natural pairing $\tilde{\epsilon}: (X, \Delta S) \to X$ of S_* -bispectra;

$$\begin{array}{ccc} X_{m,p} \wedge (S^n \wedge S^q) \longrightarrow X_{m+n,p+q} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & (x, (s, t)) & \longmapsto [[x, s], t] \end{array}$$

It is easy to see that if X is an S_* -bispectrum then both DX and D'X are S_* -spectra with the S_n -action

$$(\sigma, S^n \xrightarrow{x} X_{n,n}) \longmapsto (S^n \xrightarrow{\sigma^{-1}} S^n \xrightarrow{x} X_{n,n} \xrightarrow{(\sigma,\sigma)} X_{n,n})$$

on each $D_n X = \Omega^n X_{n,n} = D'_n X$, and also that $e: X_{0*} \to DX$ and $e': X_{*0} \to D'X$ are functions of S_* -spectra. (However $c: DX \to D'X$ is not a function of S_* -spectra.) Now let $\mu: (X, Y) \to Z$ be a pairing of S_* -bispectra. Then the diagram

commutes. Hence the maps $\mathcal{Q}^{m+n}\mu: \mathcal{Q}^m X_{m,m} \wedge \mathcal{Q}^n Y_{n,n} \rightarrow \mathcal{Q}^{m+n} Z_{m+n,m+n}$ define a pairing $D\mu: (DX, DY) \rightarrow DZ$ of S_* -spectra, and similarly $D'\mu: (D'X, D'Y) \rightarrow D'Z$. The following proposition is a multiplicative version of the up and across theorem (cf. [2] and [8]).

Proposition 3.2. Let $\mu: (X, Y) \rightarrow Z$ be a pairing of S_* -bispectra. Then the following diagram commutes in the stable category;

$$(*) \qquad \begin{array}{c} X_{0*} \wedge Y_{0*} \xrightarrow{e \wedge e} DX \wedge DY \xrightarrow{c \wedge c} D'X \wedge D'Y \xleftarrow{e' \wedge c'} X_{*0} \wedge Y_{*0} \\ \downarrow \mu & \qquad \qquad \downarrow D_{\mu} & \qquad \qquad \downarrow D'_{\mu} & \qquad \qquad \downarrow \mu \\ Z_{0*} \xrightarrow{e} DZ \xrightarrow{c} D'Z \xleftarrow{e'} Z_{*0} . \end{array}$$

Proof. For every m and n, we have a commutative diagram

$$\begin{split} X_{0,m} \bigwedge Y_{0,n} & \xrightarrow{\mu} Z_{0,m+n} \xleftarrow{\varepsilon} Z_{0,m} \bigwedge S^{n} \\ e_{m} \wedge e_{n} & \downarrow^{e_{m+n}} & \downarrow^{e_{m} \wedge 1} \\ D_{m} X \bigwedge D_{n} Y & \xrightarrow{D_{\mu}} D_{m+n} Z \xleftarrow{\varepsilon} D_{m} Z \bigwedge S^{n} . \end{split}$$

Noting that e is a map of S_* -spectra (and hence induces We: $WZ_{0*} \rightarrow WDZ$), we can easily show that the left-hand square in (*) commutes.

Quite similarly we can prove the commutativity of the right-hand square in (*).

Finally, to prove the commutativity of the middle square, let us take a partition of $N=B\cup C$, and denote $n'=\beta(n)$, $n''=\gamma(n)$ for every $n \in \mathbb{N}$. Then there is a canonical inclusion $T(DX \wedge_{BC}DY) \rightarrow TDX \wedge_{BC}TDY$ which sends $[k]_+ \wedge (D_{k'}X \wedge D_{k''}Y) \wedge S^{n-k} \subset T_n(DX \wedge_{BC}DY)$ to $([k']_+ \wedge D_{k'}X \wedge S^{n'-k'}) \wedge ([k'']_+ \wedge D_{k''}Y \wedge S^{n''-k''}) \subset T_{n'}DX \wedge T_{n''}DY$, and we have a commutative diagram

in which $W_{BC}d'$ is defined by using the natural homotopies

$$d_{n+1}(W_{BC}\delta)_n \simeq (W_{BC}\delta')_n (d_n \wedge 1);$$

$$\tilde{h}_n = \begin{cases} h_n & \text{if } n \in C \\ \sigma_{n',n''}h_n (1 \wedge (-1)^{n''}) & \text{if } n \in B. \end{cases}$$

From this and the similar diagram with μ replaced by $\tilde{\epsilon}: (Z, \Delta S) \rightarrow Z$, we see that

$$\begin{array}{ccc} DX \land DY & \xrightarrow{D\mu} WDZ \xrightarrow{D\overline{c}^{-1}} DZ \land DdS \\ & & \downarrow \\ & & \downarrow \\ D'X \land D'Y & \xrightarrow{D'\mu} WD'Z \xrightarrow{D'\overline{c}^{-1}} D'Z \land D'dS \end{array}$$

commutes in the stable category. Because the composite $TDZ \rightarrow DZ \land D\Delta S \rightarrow WDZ$ (resp. $TD'Z \rightarrow D'Z \land D'\Delta S \rightarrow WD'Z$) coincides with $TDZ \rightarrow DZ \land S^0 \rightarrow WDZ$ (resp. $TD'Z \rightarrow D'Z \land S^0 \rightarrow WD'Z$), we conclude that the middle square in (*) commutes.

§4. Proofs of the Theorems

4.1. Proof of Theorem A. Let U be a permutative category. Then we have a bispectrum $XU = \{X_{n,q}U | n \ge 0, q \ge 0\}$ defined as follows:

 $X_{n,q}U$ is the geometric realization of the Γ^q -space

$$\mathbb{E}_n \hat{B}^q U$$
: $(\mathfrak{r}_1, \ldots, \mathfrak{r}_q) \longmapsto \mathbb{E}_n \hat{B}^q U(\mathfrak{r}_1, \ldots, \mathfrak{r}_q)$;

the structure maps $X_{n,q}U \wedge S^1 \rightarrow X_{n+1,q}U$ and $X_{n,q}U \wedge S^1 \rightarrow X_{n,q+1}U$ are given by the evident maps

$$\begin{aligned} |\boldsymbol{E}_{n}\hat{B}^{q}\boldsymbol{U}| \wedge S^{1} &= |\boldsymbol{E}_{n}\hat{B}^{q}\boldsymbol{U} \wedge S^{1}| \rightarrow |\boldsymbol{E}_{n+1}\hat{B}^{q}\boldsymbol{U}|, \\ |\boldsymbol{E}_{n}\hat{B}^{q}\boldsymbol{U}| \wedge S^{1} &= |\boldsymbol{E}_{n}\hat{B}^{q+1}\boldsymbol{U}(\cdots,1)| \wedge S^{1} \rightarrow |\boldsymbol{E}_{n}\hat{B}^{q+1}\boldsymbol{U}| \end{aligned}$$

respectively.

By the definition we have $X_{*0}U = \mathbb{E}U$ and there is a natural map $\mathbb{C}U \rightarrow X_{0*}U$ given by

$$C_n U = |B\hat{B}^n U| \xrightarrow{|\lambda|} |E_0 \hat{B}^n U| = X_{0,n} U.$$

Because $|E_n \hat{B}^q U|$ is connected when $n \ge 1$, the canonical map $X_{n,q}U \rightarrow \Omega X_{n,q+1}U$ is a homotopy equivalence for all $n \ge 1$. Hence $e':EU \rightarrow D'XU$ becomes an equivalence. Moreover, because $B() \rightarrow \Omega^{\infty} E_{\infty}()$ and $B() \rightarrow \Omega^{\infty} C_{\infty}()$ are group completions, the composite $k:CU \rightarrow X_{0*}U \xrightarrow{e} DXU$ also becomes an equivalence. Thus we have an equivalence

$$\gamma = k^{-1}c^{-1}e': EU \to CU$$

natural in U.

Now suppose that E is a multiplicative higher algebraic K-theory. Then XU becomes an S_* -bispectrum with an $S_n \times S_q$ -action on $X_{n,q}U$ induced from the S_n -action on E_n and the S_q -action on \hat{B}^q .

Let $f: U \times V \to W$ be a pairing of permutative categories. Then we have a natural pairing $Xf: (XU, XV) \to XW$ of S_* -bispectra consisting of the maps $X_{m,p}U \wedge X_{n,q}V \to X_{m+n,p+q}W$ induced by the map of Γ^{p+q} -spaces

$$E_{m,n}f_{p,q}:E_{m}\hat{B}^{p}U(\mathbf{r}_{1},\ldots,\mathbf{r}_{p})\wedge E_{n}\hat{B}^{q}V(\mathbf{r}_{p+1},\ldots,\mathbf{r}_{p+q})$$
$$\longrightarrow E_{m+n}\hat{B}^{p+q}W(\mathbf{r}_{1},\ldots,\mathbf{r}_{p},\mathbf{r}_{p+1},\ldots,\mathbf{r}_{p+q}).$$

By Proposition 3.2 and by the multiplicativity of $\lambda: B() \to E_0()$, we see that the following diagram commutes in $H\mathscr{S}$;

4.2. Proof of Theorem B. Let U be an exact category. We first define an equivalence $\eta: \Omega CQU \rightarrow KU$. By [10, Lemma 4.2] every $\hat{B}^{q}U(\mathbf{r}_{1}, \ldots, \mathbf{r}_{q})$ has a natural structure of an exact category. Hence we can define an S_{*} -bispectrum XU by

$$\boldsymbol{X}_{n,q}U = |\boldsymbol{K}_{n}\hat{B}^{q}U| = |(\boldsymbol{r}_{1},\ldots,\boldsymbol{r}_{q}) \longmapsto BQ^{n}(\hat{B}^{q}U(\boldsymbol{r}_{1},\ldots,\boldsymbol{r}_{q}))^{[n]}|.$$

Clearly $X_{*0}U = KU$, and by [10, Corollary 4.5] we have

$$X_{1*}U = \{ |BQ\hat{B}^nU| | n \ge 0 \}$$
$$= \{ |B\hat{B}^nQU| | n \ge 0 \} = CQU.$$

Now let us endow $X'U = \{ \Omega X_{1+n,q} U | n \ge 0, q \ge 0 \}$ with the structure of an S_* -bispectrum such that the maps

$$X_{n,q}U \longrightarrow \Omega X_{1+n,q}U, \ x \mapsto (s \mapsto \sigma_{0,n}[x,s])$$

give rise to a function $\psi: XU \to X'U$ of S_* -bispectra. Then $X'_{0*}U = \Omega X_{1*}U = \Omega CQU$ and it is easy to see that the maps $e: X'_{0*}U \to DX'U$, $e': X'_{*0}U \to D'X'U$ and $\psi: X_{*0}U \to X'_{*0}U$ are homotopy equivalences. Thus we have a natural equivalence $\eta: \Omega CQU \to KU$ defined as the composite

$$X'_{0*}U \xrightarrow{e} DX'U \xrightarrow{c} D'X'U \xrightarrow{e^{-1}} X'_{*0}U \xrightarrow{\phi^{-1}} X_{*0}U.$$

Next consider the natural sequence of spectra

$$CIsU \longrightarrow CLU \longrightarrow CQU$$

associated with the sequence of symmetric monoidal categories $IsU \rightarrow LU \rightarrow QU$ (cf. [14, §9]). As in the proof of [11, Theorem 3.1], there are adjunctions

$$\hat{B}^n LU(r_1,\ldots,r_n) \xleftarrow{t}{\longleftrightarrow} \hat{B}^n JU(r_1,\ldots,r_n) \xleftarrow{t}{\longleftrightarrow} 0$$

natural in both U and $(\mathbf{r}_1, \ldots, \mathbf{r}_n)$. Therefore we have a null homotopy on every $C_n L U = |B\hat{B}^n L U|$ which is compatible with the structure maps of CLU, and is natural in U. Since the composite $C_n \mathrm{Is} U \to C_n Q U$ is the constant map, we have a natural map $\nu: C \mathrm{Is} U \to \Omega C Q U$, and hence the composite

$$\kappa = \eta \nu : C \text{Is} U \longrightarrow K U.$$

We now prove that κ is multiplicative. Let $f: U \times V \to W$ be a biexact functor. Then, as in the proof of Theorem A, there is a natural pairing $Xf: (XU, XV) \to XW$ of S_* -bispectra such that $X_{m,p}U \wedge X_{n,q}V \to X_{m+n,p+q}W$ is induced from the (m+n)-fold functors

associated with the biexact functor $f_{p,q}:\hat{B}^{p}U(\mathbf{r}_{1},\ldots,\mathbf{r}_{p})\times\hat{B}^{q}V(\mathbf{r}_{p+1},\ldots,\mathbf{r}_{p+q})\rightarrow\hat{B}^{p+q}W(\mathbf{r}_{1},\ldots,\mathbf{r}_{p+q})$ (cf. [11, §4]). It is easy to see that the composite maps

$$\Omega X_{1+m,p} U \bigwedge \Omega X_{1+n,q} V \xrightarrow{\Omega^2 X_f} \Omega^2 X_{1+m+1+n,p+q} W \longrightarrow \Omega^2 X_{2+m+n,p+q} W$$

define a pairing of S_* -bispectra $\mathbb{X}'f: (\mathbb{X}'U, \mathbb{X}'V) \to \mathbb{X}''W$ where

 $X''W = \{\Omega^2 X_{2+n,q}W | n \ge 0, q \ge 0\}$ is equipped with the structure of an S_* -bispectrum evidently defined. Thus we have a commutative diagram

$$\begin{array}{ccc} \Omega CQU \land \Omega CQV \longrightarrow \Omega^2 CQ^2 W^{[2]} \\ & & & & & \downarrow^{\eta} \\ & & & & & & \downarrow^{\eta} \\ KU \land KV & \xrightarrow{Kf} & KW \end{array}$$

where $\Omega^2 C Q^2 W^{[2]}$ denotes $X_{0*}'' W = \Omega^2 X_{2*} W$, and $\tilde{\eta}$ the composite

$$X_{0*}'' W \xrightarrow{\simeq} X_{*0}'' W \xrightarrow{\simeq} X_{*0} W.$$

We now define a natural map $\tilde{\nu}: CIsW \rightarrow \Omega^2 CQ^2 W^{[2]}$ such that the following diagram commutes in the stable category (cf. [14, 9.2]);

As stated in [11, §3], any biexact functor $g:C \times D \rightarrow E$ defines a 2-fold functor $C \prod D \rightarrow E^{[2]}$ which induces a commutative diagram

natural in g. (We denote $Is^2 = Is_1Is_2$, $LIs = L_1Is_2$ and $QIs = Q_1Is_2$. Cf. [11].) Applying this construction to biexact functors

$$f_{p,q}:\hat{B}^{p}U(\mathbf{r}_{1},\ldots,\mathbf{r}_{p})\times\hat{B}^{q}V(\mathbf{r}_{p+1},\ldots,\mathbf{r}_{p+q})\rightarrow\hat{B}^{p+q}W(\mathbf{r}_{1},\ldots,\mathbf{r}_{p+q}),$$

and then realizing the associated Γ^{p+q} -spaces, we have a commutative diagram

for all $p, q \ge 0$. Since $\rho_{p,q}''$ is compatible with the null homotopies, the following diagram commutes;

$$\begin{array}{ccc} \mathcal{C}_{p} \mathrm{Is} U \wedge \mathcal{C}_{q} \mathrm{Is} V & \longrightarrow & \mathcal{Q} \mathcal{C}_{p} Q U \wedge_{q} \mathrm{Is} V \\ & & & & \downarrow & & \downarrow & \\ \rho_{p,q} & & & & \downarrow & & \\ \mathcal{C}_{p+q} \mathrm{Is}^{2} W^{[2]} & \longrightarrow & \mathcal{Q} \mathcal{C}_{p+q} Q \mathrm{Is} W^{[2]} \,. \end{array}$$

By the definition, $\{\rho_{p,q}\}$ and $\{\rho'_{p,q}\}$ are pairings of S_* -spectra, and hence we have a diagram

which commutes in the stable category.

Similarly we have a commutative diagram

associated with the natural sequence

$$\begin{array}{cccc} QU\Pi IsV \longrightarrow QU\Pi LV \longrightarrow QU\Pi QV \\ \downarrow & \downarrow & \downarrow \\ QIsW^{[2]} \longrightarrow QLW^{[2]} \longrightarrow Q^2W^{[2]}. \end{array}$$

By [14, 9.2.3] we see that the following diagram commutes up to natural homotopy

$$(4.4) \qquad \begin{array}{c} \mathcal{C} \mathrm{Is} U \wedge \mathcal{C} \mathrm{Is} V \longrightarrow \mathcal{C} \mathrm{Is} W \\ \| & \qquad \downarrow^{u} \\ \mathcal{C} \mathrm{Is} U \wedge \mathcal{C} \mathrm{Is} V \longrightarrow \mathcal{C} \mathrm{Is}^{2} W^{[2]} \end{array}$$

where $u_n: C_n Is W \xrightarrow{\simeq} C_n Is^2 W^{[2]}$ denotes the canonical inclusion

$$|B\mathrm{Is}\hat{B}^nW| = |B\mathrm{Is}_1o_2(\hat{B}^nW)^{[2]}| \to |B\mathrm{Is}^2(\hat{B}^nW)^{[2]}|.$$

From (4.2), (4.3) and (4.4), we see that (4.1) commutes if we put $\tilde{\nu} = (\Omega \nu'') \nu' u$. Moreover, from the commutative diagram

$$\begin{array}{cccc} C\mathrm{Is}W & \xrightarrow{\nu} & \mathcal{Q}CQW & \longrightarrow & X'_{0*}W \xrightarrow{\simeq} & X'_{*0}W \\ \downarrow & & \downarrow & & \downarrow \simeq & \downarrow \simeq & \swarrow \\ C\mathrm{Is}^{2}W^{[2]} & \xrightarrow{\nu'} & \mathcal{Q}CQ\mathrm{Is}W^{[2]} & \xrightarrow{\mathcal{Q}u''} & X''_{0*}W \xrightarrow{\simeq} & X''_{*0}W \end{array}$$

in which u' consists of the canonical inclusions $u'_n : |BQo(\hat{B}^n W)^{[2]}| \rightarrow |BQIs(\hat{B}^n W)^{[2]}|$, we see that the composite $\tilde{\eta}\tilde{\nu}: CIsW \rightarrow \Omega^2 CQ^2 W^{[2]} \rightarrow KW$ coincides with $\kappa = \eta \nu$. Therefore the diagram

$$\begin{array}{ccc} C \mathrm{Is} U \wedge C \mathrm{Is} V & \stackrel{cf}{\longrightarrow} & C \mathrm{Is} W \\ & & & \downarrow^{\kappa} \\ & & & \downarrow^{\kappa} \\ & & K U \wedge K V & \stackrel{Kf}{\longrightarrow} & K W \end{array}$$

commutes in the stable category.

Q. E. D.

4.3. Proof of Theorem C. Given a ring R, we define AR as follows. For each $n \ge 0$,

$$\boldsymbol{A}_{\boldsymbol{n}}\boldsymbol{R} = \boldsymbol{\Omega}^{\boldsymbol{n}}\boldsymbol{C}_{\boldsymbol{n}}\boldsymbol{\mathrm{Is}}\boldsymbol{P}\left(\boldsymbol{S}^{\boldsymbol{n}}\boldsymbol{R}\right)$$

where $S^n R = R \otimes (\bigotimes^n SZ)$ (cf. [5]); and the structure map $A_n R \wedge S^1 \rightarrow A_{n+1}R$ is defined as the composite

$$A_{n}R \wedge S^{1} \xrightarrow{1 \wedge \iota} \Omega^{n}C_{n} \mathbb{I}SP(S^{n}R) \wedge \Omega C_{1} \mathbb{I}SP(S\mathbb{Z})$$
$$\xrightarrow{\Omega^{n+1}C_{n,1}f} \Omega^{n+1}C_{n+1} \mathbb{I}SP(S^{n+1}R) = A_{n+1}R$$

where f denotes the evident pairing

$$IsP(S^{n}R) \times IsP(S\mathbb{Z}) \longrightarrow IsP(S^{n}R \otimes S\mathbb{Z}) = IsP(S^{n+1}R),$$

and

$$\iota: S^1 \longrightarrow BIsP(SZ) \subset \Omega C_1 IsP(SZ)$$

the cellular inclusion corresponding to the 'l-cell'

0 م	0	0	۰	•)
1	0	0	•	0	
0	1	0	•	•	$\in GL_1SZ.$
0	0	1	o	•	
	۰	0	•	ر •	

Note that ι represents a generator of $K_1 SZ = K_0 Z = Z$ (cf. [5]).

Using the standard S_n -action on $\bigotimes^n S\mathbb{Z}$, we define an S_n -action on $A_n\mathbb{R}$ by

$$(\tau, S^{n} \xrightarrow{x} C_{n} \mathrm{Is} P(S^{n} R)) \mapsto (S^{n} \xrightarrow{\tau^{-1}} S^{n} \xrightarrow{x} C_{n} \mathrm{Is} P(R \otimes (\bigotimes^{n} S\mathbb{Z}))$$
$$\xrightarrow{\tau^{C} C_{n} \mathrm{Is} P(R \otimes (\bigotimes^{n} S\mathbb{Z}))).$$

Then it is easy to see that AR becomes an S_* -spectrum with respect to this action.

Given rings R and R' we have a natural pairing

$$\operatorname{Is} P(S^{m}R) \times \operatorname{Is} P(S^{n}R') \to \operatorname{Is} P(S^{m}R \otimes S^{n}R') \cong \operatorname{Is} P(S^{m+n}(R \otimes R'))$$

of symmetric monoidal categories, and this in turn induces a map

$$A_{m}R \wedge A_{n}R' = \mathcal{Q}^{m}C_{m} \mathrm{Is}P(S^{m}R) \wedge \mathcal{Q}^{n}C_{n} \mathrm{Is}P(S^{n}R')$$
$$\longrightarrow \mathcal{Q}^{m+n}C_{m+n} \mathrm{Is}P(S^{m+n}(R \otimes R')) = A_{m+n}(R \otimes R').$$

Thus we have a natural pairing

$$\mu: (AR, AR') \longrightarrow A(R \otimes R')$$

of S_* -spectra.

If $n \ge 1$, then the canonical inclusion $f_n: BIsP(S^nR) \to \Omega^n C_n IsP(S^nR)$ is a group completion, and hence there is a homotopy equivalence

$$A_n R \simeq K_0 S^n R \times BGL S^n R^+ = G W_n R.$$

By the definition we see that the square

commutes, and that the structure map $A_n R \wedge S^1 \rightarrow A_{n+1}R$ coincides with the composite $\mu_{n,1}(1 \wedge \iota)$. Hence the conditions (2) and (3) hold.

We now define a CW-bispectrum XR as follows.

$$X_{n,q}R = \mathcal{Q}^{q}C_{n+q} \mathrm{Is}P(S^{q}R);$$

and the structure maps are given by

$$X_{n,q}R \wedge S^{1} = \Omega^{q}C_{n+q} \operatorname{Is}P(S^{q}R) \wedge S^{1}$$

$$\longrightarrow \Omega^{q}C_{n+q+1} \operatorname{Is}P(S^{q}R)$$

$$\xrightarrow{\Omega^{q}\sigma_{n,q}} \Omega^{q}C_{n+1+q} \operatorname{Is}P(S^{q}R) = X_{n+1,q}R$$

and

$$\begin{array}{c} X_{n,q}R \wedge S^{1} \xrightarrow{1 \wedge \iota} \mathcal{Q}^{q}C_{n+q} \mathbb{I}_{S}P(S^{q}R) \wedge \mathcal{Q}C_{1} \mathbb{I}_{S}(S\mathbb{Z}) \\ \longrightarrow \mathcal{Q}^{q+1}C_{n+q+1} \mathbb{I}_{S}P(S^{q+1}R) = X_{n,q+1}R. \end{array}$$

It is easy to see that XR becomes an S_* -bispectrum if each $X_{n,q}R$ is endowed with the $S_n \times S_q$ -action

$$((\sigma,\tau), S^{q} \xrightarrow{x} \mathcal{C}_{n+q} \mathbb{I}sP(S^{q}R)) \longmapsto (S^{q} \xrightarrow{\tau^{-1}} S^{q} \xrightarrow{x} \mathcal{C}_{n+q} \mathbb{I}sP(S^{q}R))$$
$$\xrightarrow{(\sigma+\tau)\mathcal{C}_{n+q} \mathbb{I}sP(\mathbb{I}sr)} \mathcal{C}_{n+q} \mathbb{I}sP(S^{q}R)).$$

Since $e: X_{0*} = AR \rightarrow DXR$ is a homotopy equivalence, we have a natural map

$$\alpha: CIsP(R) = X_{*0}R \longrightarrow AR$$

(natural in $H\mathscr{S}$).

Finally the maps $X_{m,p}R \wedge X_{n,q}R' \rightarrow X_{m+n,p+q}(R \otimes R')$ defined as the composite

$$\mathcal{Q}^{p}C_{m+p}\mathrm{Is}P(S^{p}R) \wedge \mathcal{Q}^{q}C_{n+q}\mathrm{Is}P(S^{q}R')$$

$$\longrightarrow \mathcal{Q}^{p+q}C_{m+p+n+q} \mathrm{Is}P(S^{p+q}(R\otimes R'))$$

$$\xrightarrow{\mathcal{Q}^{p+q}(1+\tau+1)} \mathcal{Q}^{p+q}C_{m+n+p+q} \mathrm{Is}P(S^{p+q}(R\otimes R'))$$

determine a natural pairing $(XR, XR') \rightarrow X(R \otimes R')$ of S_* -bispectra. Hence α becomes a multiplicative natural transformation.

Q. E. D.

References

- [1] Adams, J. F., Stable homotopy and generalised homology, The University of Chicago Press, 1974.
- [2] Fiedorowitz, Z., A note on the spectra of algebraic K-theory, Topology, 16 (1977), 417-421.
- [3] Gersten, S., On the spectrum of algebraic K-theory, Bull. Amer. Math. Soc., 78 (1972), 216-219.
- [4] Grayson, D., Higher algebraic K-theory II (after D. Quillen), in Algebraic K-theory: Evanston 1976, Lecture Notes in Math., 551, Springer, 1977.
- [5] Loday, J.-L., K-théory algébrique et representations de groupes, Ann. Scient. Éc. Norm. Sup., 9 (1976), 309-377.
- [6] May, J. P., The spectra associated to permutative categories, *Topology*, 17 (1978), 225 -228.
- [7] —, Pairings of categories and spectra, J. Pure and Appl. Algebra, 19 (1980), 299-346.
- [8] May, J. P. and Thomason, R., The uniqueness of infinite loop space machines, Topology, 17 (1978), 205-224.
- [9] Segal, G., Categories and cohomology theories, Topology, 13 (1974), 293-312.
- [10] Shimada, N. and Shimakawa, K., Delooping symmetric monoidal categories, Hiroshima Math. J., 9 (1979), 627-645.
- Shimakawa, K., Multiple categories and algebraic K-theory, J. Pure and Appl. Algebra, 41 (1986), 285-304.
- [12] Street, R., Two constructions on lax functors, Cahiers de Topologie et Géometrie Differentielle, 13 (1972), 217-264.
- [13] Wagoner, J., Delooping classifying spaces in algebraic K-theory, Topology, 11 (1972), 349-370.
- [14] Waldhausen, F., Algebraic K-theory of generalized free products, Ann. of Math., 108 (1978), 135-256.
- [15] Weibel, C., A Survey of products in algebraic K-theory, in Algebraic K-theory: Evanston 1980, Lecture Notes in Math., 854, Springer, 1981.
- [16] Woolfson, R., Hyper Γ-spaces and hyperspectra, Quart. J. Math., 30 (1979), 229-255.