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Moments and Reduction for
Symplectlc Groupoids

By

Kentaro MlKAMI* and Alan WEINSTEIN**

§ 0. Introduction

A hamiltonian action of a Lie group G on a symplectic manifold
M is generated by a momentum map J:M-*Q* which is equivariant
with respect to the coadjoint representation. The reduction procedure
of Meyer [14] and Marsden and Weinstein [13] consists of forming
the quotient M^ =J~l (//) /G^ where /£ is an element of Q* and G^ is
its coadjoint isotropy group.

In recent years (see [6], for example) a property of / already
known to Lie [9] has been recognized as essential: J is a Poisson
map from M to g* with its Lie-Poisson structure. This suggests the
problem of replacing g* by an arbitrary Poisson manifold P3 but
the question immediately arises as to what object will play the role of
the group G. This object having just been identified by Karasev [7]
and one of us [3] [20] as a symplectic groupoid^ the purpose of the
present paper is to extend the reduction procedure to symplectic
groupoid actions.

An important stimulus for our work has been the reduction theory
for Poisson Lie group actions developed in [16]. Using Drinfel'd's
notion of Poisson Lie group [4], Semenov-Tian-Shansky explained
the hamiltonian behavior of the dressing transformations which arise
from the inverse-scattering approach to completely integrable systems.
A new theory was necessary because dressing transformations do not
preserve the Poisson structure of the spaces on which they act. In
a sequel to this paper5 we hope to study how Poisson Lie groups and
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their actions can be lifted to symplectic double groupoids and symple-
ctic groupoid actions, so that at least part of the reduction theory in
[16] can be understood in our terms.

Our paper is organized as follows. In §1, we review the basic
properties of groupoids, both as algebraic and symplectic objects. The
remaining two sections can be read independently. In §2, we discuss
actions of groups as automorphisms on symplectic groupoids, observing
that in many cases the groupoid structure implies that the action has
a momentum mapping of a very special form. §3 contains the discus-
sion of reduction. We observe that this construction, usually thought
of as "symplectic93, has a counterpart in the purely algebraic setting
of groupoid actions [2] [5],

Most of the work reported here was completed before V. P. Maslov
kindly called to our attention Karasev's paper [7], in which some of
our results are anticipated. In particular, we wish to acknowledge
that symplectic groupoids were already studied in [7], where they
were called "Lie pseudogroups". Although this name effectively
identifies these objects as generalized Lie groups, it carries other
connotations related to the general theory of pseudogroups, so we
have chosen to keep our terminology.
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§ 1. Basic Properties of Symplectic Groupoids

In this section, we review for completeness some of the material

from [3] [7] and [20]. (Also see [22].) Briefly, a groupoid is a

category whose morphisms are all invertible, and a syrnplectic groupoid

has a symplectic structure for which the graph of the product map is

lagrangian.

Definition 1. L A groupoid F over (a set) F0 is a pair (T, F0)

equipped with:

(i) surjections a, ft : F-*FQ (called the source and target maps

respectively) ;
(ii) m : /Y-»F (multiplication) , where F2 := { (*, y} e F X F \ ft (#) =

a 00} ; each pair (x9 y) in F2 is said to be composable',

(iii) an injection e:F0-»F (identities);

(iv) i'.F-^r (inversion).

These maps must satisfy:

(1) (associative law) m(m(x,y)^ z) = m(x, m(y, z)) (if one is de-

fined, so is the other) ;

(2) (identities) for each x, (e(a(*)), x) eT2? (x9 e(]8(^))) eF2 and

m(e(a(x))9x) = m ( x 9 e ( f l ( x ) ) ) =x;
(3) (inverses) for each x9 (x9 i (x) ) e F29 (c(x)9x)^F23 m(x9 c ( x ) )

=e(a(*)), and m(c(x), x) =e(ft(x))e

We summarize some properties of these mappings, obtained directly

from the definition.

o 2a (i) aoe = ft°£ = idrQa

(ii) a(m(x9 jO) =aM <™d ft(m(x, j;)) =
(iii) For each u^FQ3 m(e(u)9 e(w)) =e(M).

(iv) (cancellation) If m(xy y-^ =m(x, y^) or m(y^ z) =fn(y2^ z)9 then

^2*
(v) c°c = idr.

(vi) aoc = ft and ft°e = ae

With the same notation as in Definition LI, we state:
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Definition 1. 3. A groupoid F over FQ is a Lie groupoid if F and
FQ are differentiable manifolds, a and j8 are differentiable submersions
so that F2 is a differentiable submanifoid of the product manifold
FxF, e is a differentiable embedding, and m and c are differentiable.
We call F a- [simply] connected if the fibres of a (and hence of £)
are [simply] connected. (By definition, simple connectivity includes
connectivity.)

Definition L40 A symplectic groupoid F over FQ is a symplectic
manifold (/", Q) with a Lie groupoid structure over FQ such that the
graph uf := { (*, jy, m (#, j>) ) eT x F x F | (x,y) eF2} of the groupoid
multiplication m is a lagrangian submanifoid of

Denote the a- and /3-fibres through x by a* and & ; i. e., a,:=

a""1^*)) and Px'-=P~l(fiW) respectively. Directly from Definition
1.4, we can prove :

Proposition 1.5. (i) e(F0) is a lagrangian submanifoid of (F,,Q)0

(ii) The inversion c is an anti- symplectic diffeomorphism of (F, fi) .
(iii) For each x&F, the tangent spaces of ax and f3x are symplectically

orthogonal at x.

Proof, (i) It follows from (*, s°^ (x) ,x}<=JZ that (dx9 T(eo^) (fe) s ^)
^TJi and (a^, r(eo^) (3^), d'x) <=.TJ[, where ^ and d'x are tangent
vectors to F at A:. Since ^ is lagrangian, we have

Q=O(dx, 8'x)

Letting fe and ^'^ be tangent to e(FQ) and using Proposition 1.2 (i),
we conclude that e(F0) is an isotropic submanifoid. Now 3dimF =
2 dim Ji = 2 {dim T + dim ̂ } =2 {dim F+ (dim T-rank £)} - 2(2 dim F
-dim ro) = 4 dim F - 2 dim ro, i. e., dim F = 2 dim F0 = 2 dim s(ro) .

Thus, eCT0) is a lagrangian submanifoid of F,
(ii) Similarly, since (*(#),#, eo^(^))e^ implies that

(7>(fe), 3Ar, jT(eoj8)(3*))erur and (Ti^'x), fl'x, r(eoj8) («'*)) e TUT,
we have
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, Tc(d'x)) +Q(dx,d'x) -Q(T(*°fi (dx), T(e°$) (3'*))
= Q(Tc(dx), Tc(d'x)) +Q(dx, d'x).

(iii) Let dx and d'x be arbitrary tangent vectors at x to ax and
fix respectlvely9 and let c(t) be a curve in ax with c(Q)=dx. Since
(e°a (x) ,c(t),c (t) ) ̂ JP, we have (0, dx, dx) e TJl. Likewise, we have

Since Ji is isotropic, Q(dx,d'x) must be zero, H

Theorem 1. 60 (i) Txax = [Xpf (x) |/e C°° (F0) } and Txfix = (Xa*f (x) \f
, where the notation XF means the hamiltonian vector field of Fa

(ii) a*C°° (F0) and /3*C°° (F0) commute with one another in the Lie
algebra C°°(F) with respect to the Poisson bracket induced from the
symplectic structure Q. If F is a-connected, then a*C°°(FQ) and j8*C°° (FQ)
are the full centralizers of one another.

(iii) There exists a unique Poisson structure on FQ such that a and ft
are Poisson and anti-Poisson mappings.

To prove Theorem 1. 65 we need some preparation,, For two
subsets A and B of F9 let A*B denote the set {m(x9y) \x^A9 y^B,
(x9y)^F2}. We say that a submanifold 2 of F is horizontal^ if a\s

and j8|£ are embeddings onto open subsets of FQo A horizontal sub-
manifold 2 defines two local transformations on F as follows:

*s:p-l(a(I))-*p-l(p(Z)) ; x*-*[x] -I (right translation),
and

; x>-»I° {x} (left translation).

We leave to the reader the exercise of proving the following
elementary results.

Proposition 1. 7e (i) ao*s = a9 f)o/s=p.

(ii) If £ and %f are horizontal, then %»%' and %'°2 are horizontal,

*z°*s' = *s>*si and /s°/z/ = /£.£/. (Equality of two local transformations
means in part that their domains^ possibly empty^ are equaL)

(iii) If 2 is horizontal, then 2~l is also horizontal and

where 2~l:=c(2). (Here, when we write «rl
9 we mean domain (*rl) =

1) A horizontal manifold is called a "bissection" in [3],
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range (*) and vice versa?)

(iv) *r°/2/ = /2/°*£.

Lemma 1. 8. (i) If a horizontal submanifold I is lagrangian, then

*z and /% are local symplectic diffeomorphisms.
(ii) Conversely, if *.s or /s is symplectic, then 2 is a lagrangian

submanifold.
(iii) &-={*s \2 horizontal lagrangian submanifold} and J^7— {/^ | J?

horizontal lagrangian submanifold] form commuting pseudogroups of symplectic
transformations of F whose orbits are the a- and fi-fibres respectively.

Proof. Fix an arbitrary point xQ^^~1(a(I))a There is a unique
local section o of a around /3(#0) such that Im((j)c2T and $°a is a
diffeomorphism. For each x near XQ, ^s (x) = m (#, a (/3 (x) ) , i. e.9
(*, *G8(*)), *s(x})<=J! and so (dx9 T(a*p)8x, T*s(dx))9 (8'x, T(o^)dfx,
T*s(d'x))^T^. Since Jl is lagrangian, we have

Q=O(dx, d'x) +Q(T(aofi}dx, T(aop)d'x) -Q(T*s(dx), T*s(B'x)).

(i) If I and so Im(er) is lagrangian, then

Q=Q(dx,3'x) -Q(T»s(3x), T*s(d'x}}.

Therefore, »S*Q=Q. Similarly, /S*Q=Q.

(ii) Conversely, assume that *s is symplectic. Then the equation
above implies

i.e., Im(ff) is lagrangian. A similar argument applies to /^.
(iii) It follows from (i), (ii), and Proposition 1.7 that &t and

3? form pseudogroups of symplectic transformations of F9 that ^ and
3? commute, and that ^[^] leaves each a- [/3-] fibre invariant.
Given any elements y$ and yl in aX9 choose horizontal lagrangian
submanifolds St for i = Q, 1, such that Sir\ax=[yl] for each i. Then

we have ^^(^^^(^o) =*s-ifS (yo) =y\. Thus, each a-fibre is an

^ -orbit. Likewise, each /3-fibre is an £f -orbit. H

Proof of Theorem 1.6. (i) By Lemma 1.8 (iii), for each
the ^ -orbit (*j(#) \S horizontal lagrangian} equals the a-fibre axo

For an arbitrary tangent vector dx to ax at x, take a curve c (0 e ax

such that c(0)=x and c(Q)=3x. For each t, choose a horizontal



SYMPLEGTIC GROUPOIDS AND REDUCTION 127

lagrangian submanifold depending smoothly on t, say It , such that
Stnax={c(t)}e Then we have ** o^r) '1 ( * ) = * ( * ) =*(0- The

' dfamily {(pt] = [*s° C^)"1} * defines a local vector field Y=—j—<pt]t=Q

around x with Y(x) = 5*. Since [<pt] is a family of local symplectic
diffeomorphisms, there is a local hamiltonian F such that Y=XFe

Since Y is tangent to a-fibres, it follows from Proposition 1. 5 (iii)
that Q=Q(Y9 Tyfiy) =Tyf)yldF for y near x, i.e., F is constant along
^-fibres. Therefore, F=fi*f near x for some /e C°° (F0), and d# =
X p f ( x ) . By exchanging the roles of a and £ and right and left
translations, we get the second half of assertion (i).

(ii) From Proposition 1.5 (iii), it follows that

{a*C-OT0), j8*C-(r0)}=0.

Now let FeC-OQ satisfy {F, j8*C°°(r0)} =0. (i) yields that F is
locally constant along a-fibres. Therefore, F=a*f for some /eC°°CFo)
if the a-fibres are connected.

(iii) By Lemma 1.8 (iii), a*(C°°(ro)) consists of the ^-invariant
functions on F and so it is closed under the bracket { , } ; this
induces a bracket { , }0 on FQ for which a is a Poisson map.
Since fi = a°e and i is antisymplectic, /3 is anti-Poisson. H

Hereafter for simplicity we usually denote m(x^y) by A>J, c(x)
by x~\ ( r , f l )x(r ,O)x(r , -f l ) by r©r0r, and its symplectic
structure by Q@QQQa Note that the equation x»y=z means that x
and y are composable and that the product x»y is equal to z. Some-
times we identify ^o with the submanifold e(FQ) of Fa

§ 20 Group Actions on Symplectic Groupoids

In this section, we present some simple examples of symplectic
groupoids in the course of studying momentum mappings,,

Let it(M) be the fundamental groupoid over the topological space
M, i.e., n(M):=\jVXty/'^9 where Vx,y'= {continuous <j:[0, l]->Af|u(0)

x,y
= x^ ^(1)=^} and "'̂ " is the homotopy equivalence relation. We
define a([ff])~ff(0), j8([(7]):=a(l),e(^):= the homotopy class of the
constant path at #, and multiplication [0] • [r]: =[<r « r], where a°r is
the usual concatenation of curves a and r such that (a°r) (0) =0(0),
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(<j-r) (1) =r(l). aX(}:x(M)-*MxM is a groupoid homomorphism,
where M xM is the coarse groupoid over M (cf. Example 2.2 below).
Since aX/3 is a covering map, if M is a differentiable manifold, then
7r(M) has a Lie groupoid structure such that aX/3 is a differentiable
covering map. Now assume that M is a symplectic manifold with
a symplectic structure <w. Then n(M) is a symplectic groupoid with
the symplectic structure Q'.= (aXfi)*(a)Qa)) ; the induced Poisson
structure on M is just the usual bracket associated with co.

Theorem 2. 1. Let a Lie group G act on a symplectic manifold (M, oi).

The natural lift of G to the fundamental groupoid n(M) over M always
has an equivariant momentum mapping J which is a groupoid homomorphism

in the sense that J([a~\*[r~\) =/(M) +/(W) whenever M'M is defined.

Proof. Define /:*(M)->g* by </([>]), O==-\ £*> for Me
Jo

rc(Af), f eg, where g is the Lie algebra of G, g* is the dual of g, and
?M is the vector field on M defined by the action of ?. This is well-
defined on homotopy (in fact, homology) classes of paths. Clearly

To see that / is coadjoint equivariant, we note that for each

a. (aM (a (0 ) (f M, T (fljf) a (0 ) dt
O

Finally, we prove that / is a momentum mapping. Take arbitrary
(VJe7r(Af) and Fe7\ff]7r(M). Then, there is a variation ^:[0, 1]
X (-e, e)->Af of ey such that F(0 =TJ(d/3j) (^, 0), where j is the
variable in (-e,e). Denote TS(3/3t) (t, 5), TI(d/ds) (t, s) by V^t, s},

V2(t9s) respectively. Now
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K£M, TI(d/dt)}dt = }

S=OJO JO

2, £„], 70

FJ)

On the other hand, since «X/3(a- [<r]) = (a°ff (0)s fl-a(l)) and so

(r(«X/3))f,c(M)([<7]) = (fM( (r(0)) ) ^ ( f fd) ) ) , we find

=<»(£*(</ (0)), F1(0,0))-a.(fM

Therefore, <</(f) =f,(M)Jfl. D

Although symplectlc reduction can be carried out for momentum

mappings which are not coadjoint-equivariant (see [10], for instance) ,

the equivariant case is much simpler,, Given the theorem above,

then, it is natural to ask the following question: Let a Lie group G

act on a symplectic groupoid F by symplectic groupoid automorphisms 0

Does G always have a coadjoint equivariant momentum mapping which

is a groupoid homomorphism? We show in the next example that

the answer to existence may be no9 and then we prove a positive

result with an extra hypothesis,,

Example 2e 2. Let (Af, co) be a symplectic manifold and let G act

on M as symplectic automorphisms. Let F be the coarse groupoid over

M, I e03 F:=M X M, F^M, a (p9 q) :=p, ft (p, q) i=q, e (p) := (p, p) , (/>, q)
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• (g, r) '=(p, r), (p, q) ~l'= (q, p) , and Q:=(t)Q(o. G acts on F diagonally
as symplectic groupoid automorphisms. It is easily seen that, if the
action of G on M does not admit a momentum mapping, neither does
the action of G on MxM, In particular, we may let M and G be
the standard 2-torus with the action defined by addition.

Theorem 20 3* Let the Lie group G act by automorphisms on the
connected and a-connected symplectic groupoid Fa If the action of G has
any momentum mapping at all, then it has a coadjoint equivariant momentum
mapping J:F-»Q* with J(x*y) =/(*) +/0>).

Proof. Since the action of G preserves the multiplication of the
groupoid F9 it leaves FQ invariant and commutes with a and $, In
particular each generating vector field £r f°r £ e8 is tangent to FQ.
Let Ji be a momentum mapping for G. Since FQ is lagrangian and
?r is tangent to FQ, JUf) is locally constant on F0 for each feg.
Since F is connected, so is F0, and so Ji(0 is constant on F0.
Therefore, if we define ,/(£) by J, (f ) -J, (f ) (ro) , then /rl^g* is a
momentum mapping which satisfies /=0 on f 0.

From the general theory of momentum mappings ([1] [18]),
J°ar — as*°J is a locally constant map on F for each ^eG, where <2p
is the corresponding symplectic automorphism on F and a^ = Ad(a~1)*
(coadjoint action) „ Since J vanishes on F0 and G leaves FQ invariant,

J°ar — as»°J vanishes for all 0GEG, and so J is coadjoint equivarianta

/ defines a map K'.Jt-^§* by K(x,y,x*y):=J(x)+J(y)-J(x*y).
For each tangent vector FeT^, we have

<V]dK, f> =

Q@) (f rxrxr? F) ,

where F-(Fb F2, F3) and f/-xrxr= (fr, fr, fr). The action of G
preserves the multiplication of J7, i. e., it leaves J£ the graph of the
multiplication invariant, and frxrxr is tangent to Jta Since ^ is
lagrangian, we have V_\dK=Q', that is, K is locally constant on Ji.
Now the fibres of the map (x^y^z)^>x from J£ to FQ are diffeomorphic
to the a-fibres and so are connected. Since K(u, u^ u) =Q for all M,
we conclude that ^=0 on F and J(x*y) =J(x)
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Corollary 20 48 Every action of a Lie group G by automorphisms of a

connected and a-simply connected symplectic groupoid F has a coadjoint

equivariant momentum mapping J with J(x°y) =Jr(#) +«/( y).

Proof. It Is enough to show that the action of G has a momentum

mapping. Fix an arbitrary fEEg 0 Since frj^ Is a closed 1-form,

there exists a local hamiltonian for fr on some connected neighborhood

of each point, unique up to a constant,, Take an arbitrary point

U&FQ. Then we have a local hamiltonian f(u) for gr on a connected

neighborhood <% u In F with f { u } ( u ) =00 Since FQ is lagrangian and

£r is tangent to F0, /
(w) Is constant on ^flA, that Is, / (M)=0 on

^ M H/V Thus, we have a well-defined local hamiltonian / for f on

a neighborhood JV—U {^J^ero} of F0 in F satisfying /=0 on F0o

For each KEiF, we can get a unique local hamiltonian f(x) on a

connected neighborhood In F from f on TV by the continuation method

along a continuous curve in the a-fibre ax. It is a standard argument

that this definition is independent of the choice of a continuous curve

In the a-fibre because each a-fibre Is simply connected,, Even if x

andjy belong to different fibres,/U) and/00 coincide on the intersection

of their domains because the base function f is identically zero along
F0. Thus, we have a global hamiltonian /(f) for £r such thatj(f) =0

on F0; that is, we have a momentum mapping y:F-»g* satisfying

J(u)=0 for each u^FQo Applying Theorem 20 3, we complete the

proof of the corollary. E3

Example 28 5. The cotangent bundle T*Q of any manifold Q, can

be regarded as a symplectic groupoid whose symplectic structure is

the cannonical one, a, fl are the bundle projection JT, and the multi-

plication is the addition in each fibre. Each fibre is difTeomorphic

to jKdimQ and hence simply connected. The cotangent lift of the

group action of G on Q Is a symplectic groupoid action on T*Q,

Therefore, Corollary 2. 4 applies to this example, with the following

well-known result.

Corollary 20 6 ([17]). Let a Lie group G act on a manifold Q. Then

the cotangent lift of G to T*Q has a coadjoint equivariant momentum mapping

which is linear on each fibre.
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Remarks 28 7. (i) The results above are consequences of a general
theory of "lifting" from Poisson manifolds to symplectic groupoids,
which we hope to present in a future paper.

(ii) There is an intriguing resemblance between the results in
this section and some of the material on cocyles and actions on C*-
algebras in [15], Can this resemblance be attributed to some kind of
"quantization"?

§3» Symplectic Groupoid Actions and Reduction

In this sections we begin by observing that the cotangent bundle
of any Lie group G is a symplectic groupoid, We then interpret
momentum mappings J.Q-*Q* in terms of this groupoid, so that g*
can be replaced by the base of any symplectic groupoid.

Example 3. 1. (See [3] for details.) Let G be a Lie group. The
natural lift to T*G of the action of G on itself by left translations has
a coadjoint equivariant momentum mapping jL°'T*G-*tfL, and the lift
of the right action has a coadjoint equivariant momentum mapping
JR'.T*G-*Q+, where g± is the dual space g* with the ± Lie-Poisson
bracket (cf. [12]). T*G is a symplectic groupoid over g* with JR,JL

as the source and target maps. Using the identification of T*G with
g*xG by right translations and the notations 5//eT^g*r±g*, dg^TgG,

dg*h~T(Rh)dg, and fJt'g'=f£°Ad(g) =Ad(g)*(fjt)9 we may describe the
symplectic groupoid structure as follows:

«(ft*)=ft P(P,g)=pg, * 00 = (/*,*),
(ft g) • G"'ft A) = (ft &) , (ft g) "' = G"'ft g"1) '

the cotangent symplectic structure Q in this representation is

The induced Poisson structure on g* is the ( + ) -Lie-Poisson

structure: {/i9/2}o(/0 =<ft [«?/i/^ft ^/2/^]>5 and the hamiltonian vector
field Xf(fi) equals —fjt°ad(df/dfji), where 8f/dfji is the differential of/
at fjt, considered as an element of g~g**0

Let G act on a symplectic manifold M with a coadjoint equivariant
momentum mapping /, so that J:M-*Q* is a Poisson map. One
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defines an "action93 of T*G±fg*xG on M by (&g)*m~g*m when
J(m)=fJia This action turns out to be "symplectic33 In the sense that
Its graph {((fJt,g),m, (n,g)°m)} Is lagrangian in T*G@MQM.

The situation above is a special case of the following general
notion of groupoid action. (See [2], [3], [5] or [15].) Let I1 be a
groupoid over FQ with source map a and target map /3. Let M be
a set, and let / be a map from M to FQ. Let

FxM\@(x)=J(m)} and

L 2e A left action of F on M with moment® J is a
mapping (x9m)*-*x<>m from FxM to M satisfying:

(i) J(x°m)=a(x)

(ii) (x*y)*m=X'(yni)
(iii) e ( J ( m ) ) * m = m

for x9y^F9 m^Me (In (ii), each side is defined if the other is, by
virtue of (i).)

Right actions are defined similarly.

A space on which F acts is called a /"-space. Equivariance of
maps between F-spaces is defined in an obvious way5 compatibility
of the moments being part of the definition.

3o 3o (i) Any groupoid F acts on itself from both sides
by multiplication. The moments are a and /3 for the left and right
actions respectively.

(ii) Any groupoid F acts on FQ from both sides with moment
idrQ. The left action is x°u = a(x), and the right action is u°x=

2) We hope by this nomenclature to resolve In a retroactive fashion the long-standing
disagreement over the English translation of Souriau's French term moment for a Poisson
map to the dual to a Lie algebra. Thinking of moment as a generalization of moment
dnetique (angular momentum), Abraham and Marsden [1] chose the translation "mo-
mentum"3 which we still believe to be most appropriate. On the other hands Guillemin
and Sternberg [6] chose the model terms "moment of momentum" and "moment of
inertia" to justify the translation "moment". With the terminology introduced here? a
momentum mapping becomes a special case of a moment, and so all the previous
literature is made consistent.

This leaves open the question of the appropriate French translation of the English
"moment" in the groupoid context: we propose that the French moment be retained,
with its meaning simply extended.
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The proof of the following simple result is left to the reader.

Proposition 3. 40 (i) a and jl are equivariant maps from F to F0

with the left or right actions of F in Example 30 3.
(ii) More generally, if (M,J) is any left {right} F- space ', then the

moment J:M-*FQ is equivariant with respect to the left [right"] action

Example 3. 5* Let a Lie group G act on F0 from the right,
that F0xG~F~ {(u,g, v) \u*g=v] is a groupoid by

« (X & v)=u, fl (u9 ft v) =v, e (u) = (n, e, u) ,

so

This is called a transformation groupoid. (Compare Example 30 1.)
Let M be a right G-space and /:M~»F0 an equivariant map.

Then F acts on M in the following way:

When J(m) =a(u, g, v) =u, m* (u,g, v) =m*ga

On the other hand, if F0xG acts on M with moment /:Af— »F0, then
for any meAf, ^^G9 we have m» (J(m), g, J(m) *g) defined. One may
check that this is an action of G on M9 making / equivariant In
fact, for each G-space F09 there exist inverse functors between the
categories ([2] [5]) :

(i) G-spaces M equipped with an equivariant map J:M-*FQ.
(ii) .F-spaces M, where F is the transformation groupoid FQxGa

We may call these spaces (F^ G)-spaces0

Remarks 3B 60 (i) If we let (Fo, G) vary as well, we get a bigger
category. (Compare the discussion in [21].)

(ii) All of the above may be generalized to the case where G is
a groupoid (see, [2] [5]).

Definition 3. 7. Let F be a symplectic groupoid and let (M9 /)
be a F-space such that M is a symplectic manifold0 The action of
F on M is called symplectic if the graph {(#, m, x^rn) \f)(x) =J(m)}
of the action is lagrangian in F@MQM, (Af,/) is then called a
symplectic F-space,



SYMPLECTIG GROUPOIDS AND REDUCTION 135

Theorem 3* 80 If (M, /) is a symplectic F-space^ then the moment

J:M->rQ is a Poisson map.

Proof. Since J*(hJ] (m) = Xf(J(m» ]dh and \J*h9J*f] (ni) =
Xrf(m)]dJ*h = T J ( X j » f ( m ) ] d h , it suffices to show that TJ(Xrf)=Xf

for each /eC°°(To)* So consider a tangent vector of the form
(Xp*f9 — X7»/, 0) in FxMxM and tangent vector (dx9dm9dx»m + x^drn)
to the graph j/ of the action0 We have T@(dx) = TJ(dm), and hence

- Xj*f 9 0) 3 (8x9 $m,Sx°m+x° dm) )

= 0

Thus, (Xp/9 — Xj*f9 0) e (Tre5/)-L = Tj/ because j/ is lagrangian,

Therefore, T^X^f) =TJ(-Xj.f). But Tp(Xpf) = -Xf since ]8 is
anti-Poisson9 and so TJ(Xrf)=Xfi LG^ J is a Poisson map, II

30 9* Let a Lie group G act on a symplectic manifold
M with a coadjoint equi variant momentum mapping JQ. We can
define an action of the groupoid T*G over g* on M by (fag) 9m~g*m

if j8 (ft 5) — /o (HZ) . Since F*G is a transformation groupoid, it follows
from Example 3. 5 and the coadjoint equivariance of JQ that the
conditions of Definition 3, 2 are satisfied for this action0 It is
already known that the coadjoint equivariance of a momentum map-
ping JQ is equivalent to JQ being a Poisson map, or to the graph
U/ote 'wO,ftro,£-tfO IgeG, wzeAf} being lagrangian in T*G@MQM
(see [1] [18]). Therefore, the action of T*G on M induced by the
coadjoint equivariant momentum mapping is a symplectic action
having the momentum mapping as its moment

The moment of a symplectic groupoid action is thus a generaliza-
tion of a coadjoint equivariant momentum mapping, so it is natural
to try to generalize the symplectic reduction procedure from momenta
to moments, i.e., from groups to groupoids. Remarkably, the
definition and many properties of reduction turn out to be purely
groupoid-theoretic, involving no symplectic geometry at all.

Let F be a groupoid over F0? and let (M9 J) be a F-spacea For
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0, the "isotropy group" Fu:=a~l(u) nfi~l(u) acts on J~l(u), so we
can form the reduced space Mui=J~l(u)/Fu,

Example 3.10. With F acting on F from the right (/=j8),
J~l(u)/Fu is naturally isomorphic to the orbit of u in F0 (by the
map x*-*a(x)),

In the case of a transformation groupoid F = FQxG, the isotropy
subgroup Fu = {(u, g, u} \u«g=u} is naturally isomorphic to the isotropy
subgroup Gu for the G-action8 Reduction of a (JT0, G) -space M thus
gives Mu=J~l(u)/Gu for each u^FQa

We shall now explain how the larger reduced spaces of Marie
[10] (see also [8]) can be obtained for general groupoid actions,, Let
F be a groupoid over F0, (M,/) a F-space, Let Mr be the (disjoint)
union \j Mu of the reduced spaces. Then there is an obvious diagram

«er0

M - > Mr

A A

Proposition 3.11. Let x^F. Then there is a well defined map

*(*}00 =y*x from MaM to M$(x} which is the same for all z^.axnf$x,
These maps define an action of F on Mr with moment Jr.

The action in Proposition 3. 1 1 gives a natural trivialization of the
bundle Jr'-Mr-*F0 over each orbit 0 dFQ of F, In other words, if
we restrict the groupoid F to F0 over 0 , then F0 acts on J~l (0),
and the reduced space J~l(0)rG has a natural product structure

0 X Af*9 where M° is isomorphic to J~l (u) /FK for any u e 0 . This
is our version of Marie's reduction [10],

We denote by M/F the union of the M° for all orbits 0 . Note
that M/F is isomorphic to the quotient of M by the equivalence
relation m^n if and only if n=x«m for some x^F. There is a
natural map M/F-*F0/F which makes M/F a "bundle" over the
orbit space FQ/F with fibres the reduced spaces M0 .

In the case M = F, we have Fr~ {(u, v) ̂ FQ\u^-v}^ the orbit
equivalence relation, while F/F~FQo For M=FQ, we have (FQ)r = FQ,
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while ro/P is the orbit space, as it should be0

Now we insert some symplectic structure,,

Theorem 3*12, Let the symplectic groupoid F act symplectically on M

with moment J. Assume that u is a clean value of J and that J~l (u) /Fu

is a differentiate manifold such that the projection £u''J~l(u)-^J~l(u)/Fu is

a submersion. Then there exists a unique symplectic structure Qu on

J~l(u)/Fu such that £*@U=£U@M, where tu denotes the inclusion map of
J"l(u) into M,

Proof, As in the usual reduction theorem [13] [14], it suffices to
show that the null space of the closed 2-form c*QM on J~l(u~) equals
the tangent space to the /Vorbit at each point m^J~l(u), Differen-
tiating (#, m, #°;TZ) GJ/ with respect to x^Fu at u^F0, we have
(Su, 0, du*m) eTW, where du*m, the image of the tangent vector du
by the differential with respect to x the map of (x9 m) *-*x * m, is the
general tangent vector to the orbit Fu*m. Differentiating (u9 rc, ?z)
with respect to n^J~l(u) at m, we have (0, dm, dm) e 7W. Since
is lagrangian, we get QM(du*m9dm) =Q9 i.G.9 fe°me[r/~1(w)]J

the tangent space to the /Vorbit is contained in the null space of

tf0*.

Next we show that if dm belongs to the null space TJ~l(u) fl

\TJ-l(u}Y, then dm^T(FU-orbit). Since dm^iTJ~l(u)1\ dm = Xrf(m)
for some/eC^C-To). In fact, dm]Q annihilates TJ~l(u), so it is dh(m)
for some h9 which may be chosen to be the form /*/. Note that
Xf(u) =0 because dm^TJ~l(u) and J is a Poisson map (Theorem 3B 8).
Since a is a Poisson map as wells Xa«f is everywhere tangent to the
a-fibre of x. In addition, X^f is tangent to all ^-fibres (Theorem 1. 6),
so it is tangent to Fu, Now the function F(y^ m, n) =/(a(jv)) —/(/(w))
vanishes on jtf because of the property J(yrri) =a(y} of the moment
map /0 Since jtf is lagrangian, XF(x, m,x»m) = (Xa*f(x)9 0, Xrf(x°m))
belongs to 7W. Thus, Xj«f(x«m) and in particular dm = Xrf(m) is
tangent to the /V-orbit H

3.13. (i) Let FQ be a symplectic manifold, F = 7r(F0)B

Any Poisson map J:M-^FQ is a submersion such that the orthogonal
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spaces to the fibres are tangent to a foliation transversal to the fibres
of J. Assume that the holonomy of this foliation gives globally defined
maps between fibres. The resulting action of 7r(F0) on M is then a
symplectic action whose moment is /„

Now J~l(u) is a symplectic manifold on which the (discrete)
fundamental group 7rCF0)a acts symplectically; the reduced manifold
Mu is just the quotient J~l (u) /ic (F0) u.

If FQ is connected, then F is transitive on F0, so the full quotient
M/r as well as Mr all equal J~l(u) A(ro)«.

(ii) Let FQ=a Poisson manifold X with trivial Poisson structure,
F = T*X. If J:M-»X is a Poisson map, then the reduced space Mu

represents a "localization" of M to the point u^X. For instance, if
P-*B-*X is a principal G-bundle, and Q is a symplectic manifold, the
phase space M for a classical particle on X with internal variables in
the hamiltonian G-space Q, admits a Poisson mapping J:M->X, (See
[21].) The reduced space Mu in this case is just the copy of the
fibre Q, associated with u&X.

(iii) If F is an a-connected symplectic groupoid over F0, then
the reduced manifolds for the action of F on itself are just the sym-
plectic leaves of F0. (Example 3. 10.) (This was observed in [13] for
the case of T*G over g* as one of the first examples of reduction.)

To close this section, we show how the reduction procedure for
Poisson maps can be carried out without the use of groupoids. Let
J:P'-*P be a Poisson map. If u^P is any element, let gu be the
transverse Lie algebra (cf. [19]).

Proposition 3» 14. g« acts on J'1 (u).

Proof. We identify gM with the conormal bundle to the symplectic
leaf 0 u through M, i. e.5 with the differentials df(u) of functions vanish-
ing on 0u. Let/ be such a function. Then Xf leaves u fixed,
and so Xrf leaves J~l(u) invariant since / is a Poisson map.

Now we must show that the restriction to J~l (u) of Xj»f depends
only on the differential of / at u. But this follows immediately from
the fact that Xrf depends only on d(J*f)=J*df. B
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Definition 30 15. (Compare [3].) If Y is a vector field on a
manifold M9 and m^M, let t_(Y,m) and t+(Y9m) denote the end-
points of the interval on which the integral curve of Y through m is

defined,
We say that the Poisson map/:P'-»P is complete if t±(Xf,J(x))

= t±(Xj.f,x) for every

Corollary 3, 16. If Gu is the simply connected Lie group of gU9 then
Gu acts on J~l (u) if J is complete.

Proof. For / vanishing on 0M9 t±(Xf, u) = ±oo0 Now use standard
results on transformation groups,, B

Theorem 3* 17. If J is complete and P is symplectic, then J~l(u)/Gu

is symplectic (under the usual assumptions of clean value^ etc. to make

J'l(u)/Gu a manifold).

Proof. We must show that, for x^J~l(u), S~[Xj*f(x) \f vanishes
on @u] = Ker(7\/) fl [Ker 71,/]-1-. We already know from Proposition
3. 14 that SdKerTJ and from the proof of Theorem 3. 12 that

[Kcrrj]J-= POvOO l/eC-(P)} . Therefore, we have 5 = Ker (TJ) fl

Remarks 3B 18. (i) Notice that this reduction will coincide with
that of Theorem 3, 12 when P is the base of a symplectic groupoid,
but we don't need the groupoid to do it.

(ii) The Poisson reduction theorem of [11] can also be applied
here.
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