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Let FQ, Vv — , Vn^C%(Md, Rd). Let F,.e£(J£rf) be defined by 7,=
J . o

2 Fi - , /e{0? 1, ••-,«}, and let L denote a second order differential op-
;=i ^J

erator written in Hormander's form

r __ 1 ^i I>2 i I>
^ -- — Zj r *-r "o •

2 i=l

Assume that at every x^B,d, F05 F1? • • - , FM satisfy the Hortnander condition:
For some v > 1

I linear span {[Fio, [F,w, [-, [FlV F.-J

1 Jie{l, -, 4, /„•»,/.£ {0,1,- -,«}} =r,(JZO.

Then it is well-known that the heat equation — =L has the smooth heat kernel
a/

(^fundamental solution) p(t, x, y). We are concerned with the diagonal
short time asymptotics of it. In the case when V0 = 0, under the assumption
(1), they were obtained by Leandre [11] and Ben Arous [1]:

p(t, x, x)~rNM* f ] b a l a as t \ 0 .
c = 0

Here N(x) Is a positive Integer defined in terms of [V , [Via_^ [°°°, [F,-2, F?-J
•••](x)9 /u /2, ° ° - 5 ff le {1, ••• , w}, l<a<^ (more precisely, it Is defined by (5.14)).
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170 SATOSHI TAKANOBU

Previous to them, Bismut [2] discussed the not only diagonal but off diagonal
short time asymptotics of p(t, x, y) under the suitable conditions as an application
of Wiener functional analysis; the splitting of the Wiener space and the use of
an implicit function theorem. This approach by Bismut has been refined
and expanded by Kusuoka [8] who introduced the notion of generalized
Malliavin calculus. On the other hand, S. Watanabe [17], to solve this problem,
introduced the notion of asymptotic expansions of generalized Wiener functionals.

It should be noted that Leandre [11] further discussed the off diagonal short time
asymptotics.

In this paper, following the way of S. Watanabe [17], we shall discuss the
diagonal short time asymptotics in the general case (i.e. FOEJE()). This outline
is as follows : Let ( Wl, P) be the /z-dimensional Wiener space. For the operator
L, we consider the following stochastic differential equation (SDE) of Stra-
tonovich type on Rd :

where s>Q and vi/=(wj)e ^o- Then the unique solution X\t, x) of this SDE
is smooth in the Malliavin sense, and further, by virtue of the assumption (1),

Xs(l, x) is non-degenerate in the Malliavin sense (cf. [4], [9], [16], [17]). Hence,

for the Dirac delta-function dx (<=<S'(Rd)), 8X(X*(1, x)) is defined as a gener-

alized Wiener functional and the probabilistic expression of p(e2, x, x) is given:

(2) p(e>9x,x) = E[ds(X\l,xy)]

(cf. [4], [16], [17]). First, for the integrand dx(X*(l, x)) in (2), we shall show
the following asymptotic expansion (cf. [17]):

(3). Wf(l,*))~«-*wS«'0. as £JO
« = 0

provided that V0(x) belongs to the linear subspace of Tx(M
d) spanned by V^x),

[Vj, Vk}(x\ /, /, Are {1, -, n} (cf. Theorem (5.31));

( 3 )b ^(^e(l5 x)) = 0(sm) as e I 0 for any m>l

provided that VQ(x) does not belong to that linear subspace (cf. Theorem (5.34)).

Second, from (2), (3)a, (3)b and some observations, we shall show the short time

asymptotic of p(t, x, x) (cf. Theorem (6.8)):
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p(t, x, x)^rNM/z 2 taE[B2a] as t), 0, in the case (3)a,
(4) \ a=°

= O(lm) as t | 0 for any m> 1, in the case (3)b.

Our argument seems to be simpler than Leandre's and Ben Arous', though it is
based on the same idea as them.

As to another study of p(t, x, y), there is the global estimate of it. This
problem closely related to the above problem is investigated in many papers
[3], [5], [10], [12], [13] etc. Among these, particularly, Kusuoka-Stroock [10]
has obtained nice results by using the Malliavin calculus.

The organization of this paper is as follows: In § 1, § 2 and § 3, we shall
give some preliminaries for § 4, § 5 and § 6. In particular, "a key" proposition
in this paper will be presented in (3.9). In § 4, with the aid of this proposition,
we shall prove Proposition (4.4) which gives another look at Taylor's expansion
of X*(19 x) with respect to e. In §5, by this proposition and by adopting
Leandre's idea, the above (3)a and (3)b will be proved. In § 6, the above (4)
will be proved.

Warning. Throughout this paper3 we freely use the notion, notations
and the way of representations in [4], [16] and [17]. For details, refer to these
papers.

§ I. Algebraic Preliminaries

Throughout this paper, let n>\ be fixed. In this and the next section, we
follow Yamato [18]. Set

E: = {0,1, ...,»},

l<a<oo.
»=i

For /=(/!, •••, ia)^E(oo), we introduce the following notations:

|/| = the length of /:=*, </):= #{6e {1, -, a} ; ib = 0} ,

Set

E(d):= E(d)\{(0)}, E((d)}:=

Let
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R(E) := the linear space with basis E ',

T(E): = the tensor algebra generated by R(E)

L(E):= the Lie subalgebra of T(E) generated by E '.

Here the bracket product in T(E) is defined by [a, b] = a®b—b®a, a,
T(E). We define ft, < • • , ia]<=L(E) for (il9 — , zfl)e#(oo) by

ft]:= /j, ft, —, ij:= [ft, —, /f l_J, /J a>2

inductively. Each ft, •••, ia] is expressed as

and coefficients c|j;::;;^ are uniquely determined by (1.1). Note that

'(i) d = di for i,jGE9

(1.2) - (ii) c / = 0 if | / | = t = | / | ,

.(iii) c/ = 0 if

Set r,:=rank[(c/)/e^i/SjSJ ^>1. Then rc>l for any a>!3 and it is easy to
see that

[ For each a>\, there exist FadEa and GaC.Ea with

I ^a = K = ra such that (c/)JeCflf /SFfl is invertible .

Clearly Fl=Gl=E by (1.2) (i). For each 1 <a< oo, set

G(d):= \jGb, F(d):=
b=l

G(a):= C(fl

C((a)) := G(d) n ̂ ((a)) , F((fl)) := F(a

From (1.1), (1.2) and (1.3), we have the following, the proof of which is an
elementary exercise of the linear algebra :

Proposition 1.4. For each a>\, the following holds:

(i) For a pair (I, J)=(E(d), C(*)), (E(a), fe(a)), (E((d)\ G((d)) ) and (E((d)\
G((d))\ respectively, {[/]; J^J} form a basis of the linear subspace (of L(E))

spanned by {[/] ; / e 1} .
A

(ii) Further, the linear subspace spanned by {[/] ; / e- ̂ (fl)} coincides with one
spanned by {[(i, /)]; / e {1, — , »}, /e {0} U^(a-l)}. ffere (f, /)eJF(oo) £y
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defined by

<• n _ J ( 0 if I=(t>

(l> 1) 1 , . . . v •/" F / • • \

l ( l , /I, —, **) if I=(ll9—,lb).

Let X(I2r) be the totality of C°°-vector fields on Itf with the bracket product

[X, 7]=AT—KT, X, 7e3e(JT). Let JTfeX(JR1), /eJS' be given. For 7e

^(oo), define JTj;,] e X(J?) as follows:

Also, we define a differential operator Xf of order 171 :

X . TV- TV" 'f T /_• • \

J *— i\ ° * * i — \ 1' ° ° * 5 ft) '

Then, as a corollary to (1.1) and (1.4), we have the following:

Corollary 1.5. (i) For each I^E(co),

Xr I = V1 CJX

(ii) For each a> I,

"/.it.5* /.s a^ abbreviation for "linear span".

§ 2o U''(v) as a Lie Gro

Throughout this section, we take an arbitrary v>L and fix it. Set

We identify the linear spaces (over R)

} and {(MO/eG(v); w'

with I29(V) and Rr(V\ respectively. The coordinate systems on Rq(^ and

are also denoted by y1, I^E(y) and it1, I^G(v), respectively. Define
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69°:= T+ 2 A""""'*

For I<=E(oo), Qm^1(RqW) is defined in the manner introduced in § 1.
Then, owing to Y. Yamato [18]5 we can state the following:

Proposition 2.1. (i) For (il9 • • -, i

S cij;-::; Jj
'

(ii)

Let g = gv be the Lie subalgebra of X(R*(V)) generated by
Then, from the above proposition, g is nilpotent of step v and g=/.^.
J?M}. Further, by (1.4)

(2.2) 2[j], / G: (S(y) /orm a ^a^w in g .

As one more corollary to (2.1), we have the following: Let rj denote the
coordinate system on Mq(v\ i.e., p?7(( j>7)/es<v)) : = j7, J^E(v). Then

Corollary 2030 For a>l and J e ^»,

fi if I JI — I Ii I + °B ° + I la I > where J is expressed as

J=(Ja, • •• , /j) with \Ja\ = \Ia\, •••, |/!| = |/!|,
/i37*« z/ I /1 > I/j | +...-f |ia |, wfere / is expressed as

J=(Ka, Ja, ->", Jj) with \Ja\ = \Ia\,
 o o ° 5 |/!| = |/i |o

We denote by E\p(tQ) the integral curve of a complete vector field Q

(eXCB3(v))). That is, for each j>=G>0/e*(v)S-R*(v)j ExP(^2)(j) is the unique
solution of

7f ~ (j7^ )/eJ£(v)

rfr

where Qf
9 J^E(v) stand for the components of Q. The following is a con-

sequence of (2.2) and (2.3):
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Corollary 2.4. If Q&Q, then, for each J^E(v) and y^y

In particular,

We define 0=0^C°°(Rr^xMq('"\ JT(V)) and <p=%>v^C°°(Mr(-v\ JR*™) as
follows :

<Z> v (M,j ; ) :=Exp( S
leGOO

?„(«) := *„(«, 0) = Exp(
JeGCV)

Then (Z>(w, °) is a dlffeoniorphism on JS9(V) for each weJSr(v)
5 and particularly^

0(0, «) is the identity mapping. By the Campbell-Hausdorff formula, for

u,v^Mr(v) we define a product iiXv^Mr(^ so thai ®(uxv, 0=(2>(w> @fe °))
holds. With this multiplication, I^r(v) can be regarded as a Lie group with 0
as its identity. Let Ij=ljv denote the right invariant Lie algebra of Mr(v) and

let R~R(^^V be such that l?f-(0)=( - •) , z'eJ?. Then g is isomorphic to
\ du* /o

§ under the correspondence: Q^R.. Furthermore, if jRefj is an element
corresponding to 2 eg, then it holds that

(2.5)

Note that for each /e €?(*/), J?[/]e§ is expressed as

(2.6) RLn=

Also, the following holds: For ^4=0, we define an isomorphism T§}: ^r(

by

Then, for any J £E G(y)

(2.7) (rg
Because 2[/] has the same property: For each

(2.8) (Sg
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where £(«feEHom(jr(V)
? Mq™) is defined similarly to T{§>\

To conclude this section, we make some remarks: (i) As a corollary to
(2.4), we have that for each

(2.9) 9v(W)* = 2 i.
a=1 «!

(ii) From (2.8) and (2.9), the following is derived by the same way as in Lemma
(A.5) of Kusuoka-Stroock [10]:

(2.10) 9?v is one-to-one .

(iii) For P> v> 1, define JI^Hom(Mq^\ Mq™) and P*'eEHom(jr(v/)
? 1T<V))

as follows :

Then it holds that

(iv) Let jR^j, 7eC(y) denote the components of .Rffteljv. Then

(2.12) inf{l] 2] ( 2 ^^)](0)/02; S (/O'=l}"

Here we shall show (2.12) only: Suppose that for any /£{!,••-,«} and

V1

By (1.5) (ii), this implies that for any

2

Since, by (2.6), R^(G)=—f(vxOy\v=0=dr
f, /, JeC(j/), this implies that //=0

for / e <?(*/). Thus (2.12) follows immediately.

§ 5o Tlie Continuous Process I7f} OH Rr^

Let (PF^J^gjP) be the ^-dimensional Wiener space. Then a generic
element w=(wi) of W is clearly a realization of an ^-dimensional Brownian
motion starting at Q^Mn under the measure P. Define the multiple Wiener
integrals wf, /el^(oo) by
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Here and hereafter, we set w?:=r for convenience. Then, for each v>\9 the

following holds :

Proposition 3.1. (Y. Yamato [18]). The continuous process [(wO/e#(v>;
t >0] o?z J22(V) w £/z£ unique solution of

( dYt = 2 e9»(r,)orfM>{
J ?e^
( F0 - OEEjr(v) .

The proof of (3.1) is obvious from the definition of Q(?\ i eJ57.

Let v>\ be fixed arbitrarily. We consider the following stochastic

differential equation (SDE) on Rr™:

\dUt=
(3.2) ]

I u0 =
We denote by C/(

f
v) the unique solution of this Then

for each />0. Let Yt and Z^ be the unique solutions of the following SDE's

on Rrw®Rrv\ respectively:

(3.3)

ID

=- 2
(3.4)

Then Z/y/=(^)J§/eC(v). Further the following is well-known (cf. [4], [9], [16]):

Let cr(v5=r(^v/)j,/ec?(v) be the Malliavin covariance of £/iv):

7,

Setr(v)=(Ti/)/f7eC(v):

rj7 := 2
2=1 JO

Then cr(v)= ̂ r^C^)*. Note that for any w,

(3.5) (wxw) f ' = ttf'+w'

This is easily verified by viewing the Campbell-Hausdorff series :
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2 (Hx*)'fiffi = 2 (*/+«l)fiffi
O JeG(v)

+-[ 2 *m 2 n

Combining (3.5) with (2.6), we see that Rps(*)=di, iJeJK Hence, in view of
(3.2) and (3.3)

(3.6) tfp°' = wf, ri/ = ^> jGE,JGG(v).

Since Z^F#=7fZ#=(^)/s/eG(v)3 we further see that Z j
t

J = d j
f , jeE,

Thus, if we set

then we have

f1 °1 -I"1

•o o "i ro o
™= 0 *,

(3.7)

Now, owing to Kusuoka-Stroock [9], we can state the following: Set

A(v):=inf{<rf(v)UA>;/=(/0/6&(v) such as 2 (/0*=1}.

Then

Proposition 3a80 A holds that £(V)>0 a.^0 (P) and

Proof. First of all, set

fiM := inf {<#(»/, />; /'= (/0«&v) such as S (F)2 =1}.
A A A

It is sufficient to show (3.8) for /3(v). For, we observe by (3.7) that for

such as S (/02=1
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Noticing that IK^)*]) £!,«,_ by (3.4), we see (3.8) for £(v) at once,
Now we shall prove (3.8) for p^. In view of (3.2) and (3.4), we observe

by Ito's formula that

23 [R%, 4
ii^E

23 [*?

where we have used the fact: [J?^, [jR^, — , [^_l9 ^]— ]=0 for any a>
Since, in general, it holds that

23

the above is equal to

Here, for convenience sake, we set that |0 1 :=0, wf : = 1 and

if 7=0

23

' (k°"»*i ) if ?=(hi°°°>Q.

Hence, recalling (3.7) and the definition of r(V), we see that for

» fi
/A j ;v 'sr-i | f -̂ -̂
\r(v) h * / = 2^ \ v -2_j

Thus, setting
A n

^(0 := 23 23 (23

we have

^( )>-— inf V-VM)* 2

r r»i
Xinfin f{f (

^ J o

Consequently, from Theorem (A.6) in Kusuoka-Stroock [9] and (2.12), (3.8)
for p(v) follows. //

The following proposition is a key in this paper, though its proof is easy,
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3o9o For each I e E(v),

tf = 23 -V 23 tf P*- ufl=1 ^«? 7i,-,/.eGOO

Proo/. Let/e C°°(lg?(v)). By (3.2) and (2.5), we observe

rf/(9v(tf?°)) = 23 JWopv)(^)°^{ = 23
i

By (3.1), this implies

(3.10)

from which and (2.9), (3.9) follows at once. //

Let ^'>^>1. Recalling (2.11), we can state a relation between U^ and

Proposition Soil. PU=U<?> r>0.

Proof, By (2.11), we observe

By (3.10), this implies that 9^(U^)=^(P^V^\ Hence, (3.11) follows from
(2.10). //

By virtue of (3.11), we can define a continuous process [C/(r5;

on J8"=={(«0rec(-); w'elZ1, JeG(°o)} so that P^U^=U^ for any v^l.
Let U't, 7eG(oo) be the components of t/^. For ^^0, an isomorphism

g~->^~ is defined by

Then

Proposition 3,12. (i) [T((^U^; t>0] is equivalent in law to [U$; t>0].
(ii) For any

Proof. Letv^l be fixed arbitrarily. Let FC/A)) denote the unique solu-
tion of

, = * 23 #?°(F
1 = 1

Then, from (2.7) and (3.2), it is easy to see that

(3.13)
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On the other hand, from the scaling property of (wj')fe{i,•».„}> It Is clear that
[F<(x^; t>Q] Is equivalent in law to [E7?°; t>0\. Hence, combining this and
(3.13), we have the assertion (i). For (ii), If we take l= — l, then F^(~1))(w)=

(—w), and thus, this, together with (3.13), Implies the assertion (II). //

We end this section with the following remark: Set

1 xm^K:= max ^
2 «=i

v>K

Note that mVtK>09 since ^.v)J(0)=£f, leJS, /e <?(*>)• Then, by the standard
procedure due to Stroock-Varadahn [15], we can obtain that for any 0< t<
1 K

2 r O / H v *

Thus, by putting this and (3.12) (i) together, the following estimate holds: For

( 1 K- \ lfZ

_! -- * — )
2 r ( p ) m t )

(3.14)

4. The Smooth (in the MalfaiYle Sense)
Wiener Functional XS(19 x)

Let FieCrOW, -Srf), ieJ^. Define V^^Sf), i<=Eand a second order
differential operator L on Urf as follows:

Let (fF=^o, P) be, as before, the ^-dimensional Wiener space. For
6>05 we consider the following SDE on Rd:

(4.1)

We denote by Xs(t, x) the unique solution of this SDE. Then, for each t > 0 and
d, X*(t, x)<=B°°(Rd). Further, the following is well-known as Taylor's
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expansion of X*(ty x) with respect to e (cf. [9], [17]): Let C be the coordinate

system on Rd, i.e., C(x)=xi for i e {1, —, d}. Then, for each a>\

2 (Fj

(4.2)

By using (3.9), we shall rewrite (4.2). For this, we introduce Fl(t, x), Rl(t, x)

(4.3)

Fl(t, x} := S - S (^"^"C/iO - (s'^'^XF^ ... F[/a]C) W,
«=1 fl!/lf».f

^vft Jc) := 2 -
n G(j/)\ n

6 = 1 6 = 1

S ^ f*V+l

orfwj^ + i I o^wjv

..,.---..,_,.. ..,_. o +1 Jo(?15 •"i**V + l)€=-Sv + l

Here recall that U*9 7eC(oo) are the components of U*r> defined in § 3. Then

Proposition 4B4e It holds that

X\t, x) = x+Fl(t, x)+Rl(t, x) .

Proof. Let v> 1 be fixed arbitrarily. By virtue of (3.9), we observe that

s

= 23^7 2 ^i-^{- S *ll/M(^/OW(ef?.j0=1 a\ /^-../.

Since, by (2.3)
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o if I / I=H/ I I+ -+ I / . I
c{* ... c/^ if I / 1 = l / j l +•••+ |/J , where /is expressed as

/=(/„, -, /,) with | /.| = |/.| , -, |/xl = |/,| ,

the above is equal to

S- S ub-u1,-

x

S~ S0=1 a! /L-.

x

.. f// ... 0(x) .
»=1 a /i.-.

Here the last equality has come from (1.5) (i). Thus, putting (4.2), (4.3) and
the above together, we obtain (4.4) immediately. //

For /eJS'(oo), let K[/]=(F['/J),.e(ip...>(J)eCr(^S<', ^) denote the components

of Yw^(®d)-Vm^'vin~- Define V ̂ ...j, = (¥!{,..,, )u^,...,d

CT(Rd, Rd®Rd) for 71; -, 7se^(co) and a>l by

For convenience, we set V$°.=IRd if 1=0. Then we easily see that for
lea-^land/p.-s/.eJJCoo)

(4.5) ^3-" ^^ = 2^^.^.

For each i/>l, we define av=(<J).e[l)...>(f}>/eG((v))eCr(^5 ^®12r((v))) and
as follows:

-TTT- S
« = i f l + l ) ! /L-.^/.e

Here, as before, we identify
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with JT«V» = J?«o-». Set FJx, u) : = M^(x, u)av(x)u e C~ (J8* X JT«V

Then, from (4.3) and (4.5), we have

Proposition 4.6. It holds that

K(r,*) = Fv(*,TO£/(/v))).

Here t/?v)> :=(^Wv» and T[^]e Hom(jr«v», JT«V») is defined by

Now we consider the following condition: For some integer ^> 1,

(4.7) U. {Fm(x); /e= JSXM)} = /A {Fw(%

Note that the first equality in (4.7) always holds from (1.5) (ii). We denote by

PQ=VQ(X) the smallest v satisfying (4.7). The following proposition is due to
Kusuoka-Stroock ([9]):

Proposition 4.8. If the condition (4.7) is satisfied at x^.Rd, then X8(J, x)e

D°°(Rd) is non-degenerate in the Malliavin sense. More precisely, there exist a

positive integer k depending only on VQ=VQ(X) and, for eachp>l, a positive con-

stant c=c(p, x) such that

for all

Here ox*dtX) stands for the Malliavin covariance of X*(l, x).

Thus, if the condition (4.7) is satisfied at jce/8rf, then for any T<=S'(Rd\

T(X\l, x}}<=B-°° is defined for every e>0 (cf. [4], [16], [17]). In particular,

dy(X\l9 xj) is defined for every y^Rd and the generalized expectation

E[dy(X*(l, x))] coincides with p(s2
3 x, y), where p(t, x, y) is the fundamental

solution of the heat equation — =L.H at

§ 5. The Asymptotic Expansion of dx(X*(l9 x}} as © ], 0

We shall continue working in the preceding section. Throughout this

section, we fix x^Rd and set for simplicity:

X\t) := X\t, XQ) , Fl(t) := Fft, x0) , Rl(t):= Ufa, XQ) ,
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Suppose that for some v>\, the condition (4.7) is satisfied at xQ^Rd. In this

section, we study the asymptotic expansion of dXQ(X\l)) in JDT00 as e | 0. VQ=

^0(^0) is the smallest integer v satisfying (4.7), i.e., it is a natural number such
that

From this, we can find an Hc.G((y$) with $H=d such that for each a= 1, • • « , v0

(5.1) U. {Fm(*0); /e <£((*))} = /A {FW(*0); / e <?((«)) n M} .

We fix such an H to proceed with our discussion. Set

(5.2) ft := (Vin(x0))ie{lf...id}J^ff^Md®Md .

Clearly ft is invertible. Define r=(r//)/eJff,/e^((co))^^®^00 as follows:

Then, from the choice of H, r has the following properties:

IJ = dr
r if

(5'3) if

In the following, unless otherwise stated, we assume that V>VQ, Set

Then f((V))(f «*)))* >Q bY (5-3)- Recalling the definition of Mv(-) and Fv(-)
given in § 4, we easily see that

Mv(0) = V > (9/

Thus, we can choose a small *„>() such that for any we.^™ such as |w| </cv

(5.4)

(5.5) aeiMvW^y .

Firstly, from (5.4) we shall present the following lemma: For this, let
j^(TO-i)) and set

:= inf {<tf(W)/, />; / = (/0/efe(W) such as S (/O2 = 1}.
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Here (7((V» is the Malliavin covariance of ^i(v)). Since d«v»=(0r
v
J)r,f<=G(M)> we

see from (3.8) that jr((V))>0 a.s. (P) and

(5.6)

Also, from (3.6) we see

Now, for simplicity, let us denote by a*v the Malliavin covariance of F*(l). Then

Lemma 5.8. For 0<e< 1, it holds that

))* a.s. on

. Let 0< e < 1 . Since, by (4.6) and (5.7)

D(Fi''(iy)= 2
7€=G(

- 2

we observe that for /, j e {1, ••- , d}

= s

Hence, for any l^Rd it holds that

d
/Ge I jy __ yi ((7eyV/*7J

» f j

= s c

2

2 (S
' '

Consequently, combining this with (5.4), we obtain (5.8). //

The following is an immediate consequence of (5.6) and (5.8): For

0<e<l, det al>0 a.s. on {| T^C/Pl </cv> and
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e ( ( v ^ c c v o ) ) ) ) * P -

Secondly, we choose an AeC00^1) such that 0</z<l, A(x)=l if |x| < —

and A(x)=0 if | % | > 1 . Set hv(x) :=h(x/(tcJ2)2) and define xl e I}00 by

Let <50 be the Dirac delta-function at Q(=Md. Then S0(X
S(1 )-.%», j"^0(Z

s(l)

— *0)eir~ (in fact, <E n I?72ax/23+1)). By (4.8) and (3.14), we can prove the
P>I

following in the same way as in [17]:

LemnM 5.10. For any V>VQ and p>l, there exist positive constants q
and c2 independent of e such that

as e|0.

By virtue of (5.9), for any T^S'(Rd), ^•J(F'(l))eJp-~ is defined simi-
larly to T(X\l)— x0). More precisely, the mapping <j> e S(Rd') i-» xl

U°° can be extended uniquely to a linear mapping

such that its restriction T^3_2mt-*zl°T(Fl(l))^Bj2m is continuous for every

/>e(l, oo) and w=0, 1, 2, - (cf. [4], [16]). In fact, ^ 7X^(1)) <= IT" for
every T<=S'(Rd). In particular, if we take J=50, ^- 50(^(l))e n

ji

From (4.3) and (4.4)? we note that

Xl-xQ-F(l = 0(ev+1 in D°°Rd as e j 0

(cf. [17]). By this, (5.9) and (4.8), we can also prove the following in the same
way as in [17]:

Lemma 5.11. There exists an increasing sequence {Iv=lv(d, %)K^v0 such

that
(i) lim/v= + oo,

Vfoo

(ii) for anyp>\, ||4^0(^
8(l)-x0)-^^0(^(l))||,,_2([^j+2) = O(£'v) as e J 0.

Thus, from (5.10) and (5.11), it follows that for any p>\ and v >v0

(5.12) ||50(Z
8(l)-x0)-^.50(^(l))||#,_2([,/2]+2) = 0(£'v) as *|0.
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Thirdly, we shall present an available expression of j*°£0(F *(!)). As

before, it is assumed that y>y0- First of all, we note that for any Gel}00,

(5.13)
$+Q

For £>0, the following matrices are defined:

= 2 a(dim^.{F[7

Set

(5.14)

Then, by recalling (5.3), the following is easily verified:

Lemma 5015e The following holds:

(i) av=

00 ^Cv))=[flf 4%))L ^((v))
LU

(iii) lim^(
8

(v))=>l((v)).
8^0

(iv) i((v))U((v)))*>0 owrf R((v))] w invertible.
L^((v))-l

(v) r«E)) w invertible and det T<£»=e».

Thus, from the above (iii) and (iv), there exists an e0=e0(v)>0 such that
for every 0 < e < £Q

4v)) U((v)))* >

r "f(S(v)) T ̂ (S(v)) i * > -
L^((V))JL^((y))J 2

And, from (ii), it is easy to see that
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f?, „ 77(oor
((v)) C/(!(v)) =

(5.17)

i

Consequently, putting (5.6), (5.16) and (5.17) together, we have that

[ ^ £/(oo)~|
A

((v)) A* are uniformly non-degenerate

(cf. [17]). Also, from (4.6), (5.15) (i), (ii), (5.16) and (5.17), it is easily seen that
s moor

(5.19) 1

where C((v)):-P'(v))l is invertible for 0<5<50 by (5.16).
L#((v)) J

Now, as to ^va^0(^v(l))? we present the following: Set /veC7(^r((v))) as

follows :

detMv(i/)

which is well-defined from (5.5) and the definition of hv. Then we have

Lemma 5820o For each 0<e<e0

xl • «F;(1)) = ^ I det ̂  | -

^o is the Dime delta-function at

Proof. Let 0<e<£0. For simplicity, set

T := TO , Ta := r^s» , C: = Cj(v)) ,

Choose a ^^Co(Rd) so that i^>0 and \ VrO'Xv= 1- For ^ >0, set
J*1*

(v/X). Let G eU~ be fixed arbitrarily. By (5.13),

= lim
X^O

On the other hand, by (5.19) we observe that
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= E[Ghv(\TC-1
V
1
w

-I
F F
w

w

I2)
w

w

(by a change of variables: v\-^>(THYlv and (5.15) (v))

(by the definition of

H\ v i2)

w

(by a change of variables:

Hence, letting /I j 0, we see
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X i
. w

0"

w

(by a change of variables:
w

(«•)*= 1)

(by the definition of /v)

Here the last equality has come from the fact:

0
-iMTC

Thus, since G e I?00 is arbitrary, we obtain

from which and the fact:

(5.20) follows at once. //

Noting that FO(XO)-I] r^K^jcb), we define

by the fact:

(5.21) ^0:

Here max{0} :=0 for convenience. From its definition, the following is clear:
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r (i) Tm = o for / s=H such as

1 (ii) , then r/(0)4=0 for some /eflT with ||/||=

In the following, individually, we think of the case (A) and (B) :

{ (A) The case where /i0<2 .

(B) The case where &Q>3 .

First, we consider the case (A). From (5.20) we shall present the asymptotic

expansion of zl«80(Fl(l)) in B~°° as e J 0 (cf. [17]): Note that by (5.22) (i),

i. We define «. = (vJ)

and Ea<=B-°°, a>0 as follows:

(5.23)
2

il = ll/ll+

2-r 2 2 0i1
1-tf{-(/=i /! jj.-.j O- f l i * i

Putting 4(v)) in place of va, we similarly define S^eU"08, a>0. Since

is non-degenerate by (5.6) and (5.15) (iv), and so, Ba,

a>0 are well-defined. Note that v(^=va for ®<a<v— ̂ 0 and hence

(5.24) 5W» = Ea for any

From (5.3), (5.22) (i) and the definition of y4(
£

(v)), it is easy to see that

«=o

Thus, by applying the general theory due to S. Watanabe ([17]), from this and

(5.18), it follows that

(5.25) d0(Al(v» C/P)-S«v))+eSp) + £
2^>+ ... in D as e \ 0 .

Next, as to the asymptotic expansion offv(T$l}} £/i(v)))5 we easily see that it is
given by

(5.26) /v(rO UP)-f P+ef P+e^f P + - in B~ as e j 0 ,

where fPe/?", a>0 are defined as follows:
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1 ,

£ L 2 (8 ...
1 = 1 l\ Zp-.lj

- - 2 ]/=i /» v-.i/eecoo)
ii j^ii +-+111/11=*

Therefore, putting (5.20), (5.25) and (5.26) together, we have the asymptotic

expansion of %l»dQ(Fl(lJ):

(5.27) zl-d£Fl(l))~e-»\

in U~°° as e^O.

Now, as to Mv, we make a few remarks: Here, for a moment let

Define */lt..../,(/) for /e^(oo), /13 -, /,e {0} U^(oo) by

if/£=/and J19 ° ° ° , /?-_15 Ji+1, • • « , Jd =

for some i e{l, °8° , rf},

10 otherwise.

Then it is easy to see that for any Il9 ••- , Ia^E(oo) and a> 1

97l ••• ̂ /a det M*

(5.28) • ^^D,...,^),...

Xde t l

Here Mv§y denotes thej-th column of Mv and we set d^\= the identity operator
if /=#. On the other hand, from the definition of MV9 we also easily see that for

^-l, J19 -.., /.e {0} U^G») and v'>v

Hence, from this and (5.28) it follows that for ®<a<v— 1, 119 —, Ia

and ^>^,

(97l - a/fl det Mv)(0) - (^ -. dlm det M,,)(0) .

In view of the explicit expression of dfl •»- o1^ - in terms of e?7i ••« djb X
det -/K!^

detMv, l<,b<a, Jlt —,Jb e -{/j, —,/„}, this implies that for 0 < a < v — 1,
(»/)) and v'^j;
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(5.29) (dh... s, —L--)(0) = (dh... 0,. T-
V ' det Mv / V * * det A

We continue the discussion in the case (A). We shall present the asymptotic

expansion of 5.(0(Z
8(l))=50(Z

e(l)-^0) in IT" as e \ Q. Let v>v0 again. Set

), a>\ by

and define fa^D°°, a> 0 by

•— 1D • A 9

(5-30) ^ . i

Then, from (5.29) and the definition of £«"», we see that

f (cv)) = ^ yor awj o<a<^-^

Hence, by virtue of this and (5,24), (5.27) implies that

*+«=« i>i D~°° as s I 0 ,

that is, there exists an s=s(v)>Q such that for any/?>l

ii^W(i))-*-"idet/M-^o+vi:;V s f.-sjii,...
«=i 6,c;>o

6 + c = a

= O(ev-vo+1-^) a^ s j 0 .

Thus, combining this and (5.12), we have that for any p>l

\l»-e-» | det ft | -X*o+2 «' S £v*,)IU-

0 .

Consequently, noting that by (5.11) (i), (/V+7V)A(^— ̂ o+l) tends to infinity as
v \ oo, we obtain the following theorem:

Theorem 5.31. Let F0, F1? —, VnGC?(&, Rd) and xQSERd. Let X\t, XQ)

denote the unique solution of (4.1) (for these Vi9 i=Q, 1, ••-, n) starting at x0.

Suppose that the condition (4.7) is satisfied at XQ and that #0 defined by (5.21) is
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less than or equal to 2, Then dXQ(X*(l, XQ)) has the following asymptotic ex-

pansion in D~°° as e j 0:

dXo(X\\, *„)) ~ e~« I det ft | -1 S e'y.
a = 0

^B"00, a> 0 are gz'raz 6y

y 0 =*o* Wa= 2 £*•** «>!<
6sc^0
6 + c = c

JV, j5, efl am/ ^fl are de^nerf l?j (5.14), (5.2), (5.30) anJ (5.23), respectively,

Second, we consider the case (B). In this case, we observe by (5.22) that

**0

Z>8: - e^'

= S ̂
«<^o

— (<" r/(0))/e^ - :^=NO as e i 0 .

So we can take an e^Q such that

(5.32) |Z> f |>— 16|>0 for any 0<e<^.

By (5.20) and (5.17),

(5.33) ^-«F!(1)) = ^^|det^|-yv(rOl7P^_g-^

Recall that J(
s
(v)) l^/i^^ is uniformly non-degenerate. From this fact, the follow-

ing is easily seen: For any p>l and

Hence, combining this with (5.32) and (5.33), we see that for any p>l, m>\
and

» | det

x||*-i-^-a
-i 2 \«

I £7 | /

SUp

sup ^

This asserts that \\^l^Q(Fl(l))\\p>_2ad/2j+l) = O(£m) as e | 0 for any /?>! and



196 SATOSHI TAKANOBU

w>LThus, putting this and (5.12) together, we obtain the following theorem:

Theorem 534 Let F0? Vl9 — 9 Vn<=C7(&9 R
d) and xQ<=Rd. Let X\t, XQ)

denote the unique solution 0/(4.1) starting at XQ. Suppose that the condition (4.7)
is satisfied at XQ and that JUQ is more than 2. Then it holds that for any p>l
andm>l

\\dXQ(X\l, *0))IU-2([<//2]+i) = 0(O as elO.

§ 6» Diagonal Time Asymptotics

Suppose that F0, V19 —, Vn<=C?(Rd, Rd) satisfy the condition (4.7) at
xQ^Md. Let X\t, XQ) be the unique solution of (4.1) for Vi9 i=09 1, —, / i
starting at xQ&Rd. By (4.8),

(6.1)

where p(t, x, y) is the fundamental solution of — = — S F?+F0. In this sec-
dt 2 i'=i

tion, we study the short time asymptotic of p(t, XQ) XQ). Let VQ be the smallest
integer v satisfying (4.7) at XQ and let ^ be a nonnegative integer defined by
(5.21).

First, in the case (B), i.e., the case where /*0>3, we easily see from (6.1)
and Theorem (5.34) that

p(t5 XQ, XQ) = O(tm) as t I 0 for any m> I .

Next, as to the case (A), i.e., the case where #0<2. By (6.1) and Theorem
(5.31), we have obviously

(6.2) p(e\ x0, xJ~e-» \ det ft \ ~l fj ea E[¥ a] as ^ 0 .
a = 0

Recall (3.12) (ii). From this fact, we easily see that

(0 £.(->f) = (-!)'*. Of)

where Tfn^Rom(Rd, Rd) is defined by T^)\(af),^\=(^I^^)lea. Here,
note that in general, it holds that for />0, Iv •••,

Hence, combining this with (6.3) (ii), we also see that
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Thus, from this and (6.3) (i), it follows that ¥a(-w)=(-l)a ¥a(w) for a>0,
and as its consequence, we have that

(6.4) E[Va] = Q if a is odd,

because the mapping wh-> — w preserves the measure P. Therefore, by (6.2)
and (6.4)5 we obtain that

p(t, x0, xJ-^t-Mlltetpl-iElVdt* as t\ 0.
6 = 0

It remains to study the positivity of the first constant c0 appearing in this asymp-
totic expansion, that is, the positivity of E[dQ(vQ)]. But, under the case where
ju0<2 only, we are not able to show that. For this, we consider the following
strong condition (A)' or (A)" :

I On some neighborhood W of XQ, VQ is represented as VQ= S g* Vi
( A. ) \ • ~'= i

1 where g^eC-OF), \<i<n ,

(A)" *0<3 and

In what follows, under the condition (A)' or (A)", we shall show the positivity
of E[d0(v0)] : First of all, recall v0^D°°(R$H) given in (5.23) :

(6.5)

First we consider the case (A)'. Set E"(v):= {I&E(v)\ a(/)=0} and
ffV):=-^°MnG!(v). Ill this case, it is easy to see that for each
there exist g1J^C°*(W)9 J&E°(\I\) such that

(6.6)

And, we can see from (6.6) that for each v>\

Since, in particular, it follows from this that

an H appearing in (5.1) can be chosen in GQ(vQ): HC.G\VQ). From (6.6) and
this choice of H, (5.3) is rewritten as follows:
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{<!!> £l? IC6'7) I ,»x TT ~ if

Hence, combining (6.7) (ii) with (6.5), we have that

Note that rank [(d\y{ r70/efl;/e^(v0)]=##==<* by (6.7) (i). Thus, from this fact
and Proposition (A.13), the positivity of E[d0(v0)] follows immediately.

The positivity of E[dQ(vQ)] in the case (A)" can be shown in the same way
as above by noting that rank A((VQ»=$H= d.

Consequently, summarizing all the above, we have the following theorem:

Theorem 6.8. The short time asymptotic ofp(t, x, y) at the diagonal (#0, XQ)
is as follows:

(i) If #0<C2, then

P\t9 XQ) XQ)'***'* ^ i Cb t aS t ty U
6 = 0

with cb=\detft\ ~lE[W2b], b>0. Here N and ft are defined by (5.14) and (5.2),
respectively, and Wa is given in Theorem (5.31). Further, if either the condition

(A)' or (A)" holds, then c0 is positive.
(ii) Ifju0>3, thenp(t, xQ9 x0)=O(tm) as tl^for any m>l.

The condition (A)' on F0 is just one in Kusuoka-Stroock [10], and it clearly
contains the case where F0=0, which was treated by Leandre [11] and Ben

A A

Arous [1], Also, in the elliptic case, i.e., the case where VI(XQ), "°, FM(x0)
span the tangent space at x0, this condition is automatically satisfied for any F0.
The following is a simple example satisfying the condition (A)" but not the
condition (A)':

Example. (Kolmogorov [6]). Let J=2, n=l and Vl=\ L F0= I.
L_ U —I 1— X —1

Then it is easily checked that for every x=\ X \^R\ (i) the condition (A)' is

not satisfied, (ii) N(x)=4, vQ(x)=3 and

0 if x1 = 0

3 if x^O.

Hence, by applying Theorem (6.8), we can obtain the diagonal short time asymp-

totic of the heat kernel p(t, x, y) of — =— ix<?+;c1^-7. But, in this case,
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p(t, xy x) is concretely evaluated :

So, when xl3=Q, Theorem (6.8) (ii) is, for example, restated as follows:

lim-r logp(t, x? x) = 6(x1)2>0.
t$Q

This example suggests to us that Theorem (6.8) (ii) has room for improvement.

Appendix

First of all, following Kusuoka-Stroock [9], we introduce the following
notations for I=(fl9 — , ia)^E(oo):

(0 i f a -
:=!., / ':={,. . ,U*i, —,*.-i)

if a=l

i f a > 2 .

Let us fix v> I and let IaE(v) be a non-empty set satisfying the following:

f If (il9 — , 4) el, then (/1? — , ij), (/m, — , i.) el for any

1 l<b<a— 1, and (I^Q), - 9 - , j^)) el for any permutation

Putting J in place of E(v), we trace our discussions in § 1, § 2 and § 3 : Set

Note that

(A. 1) G\v) = G r(v) if (0) $ 1 .

As before, we identify

and the coordinate system on J2*J is also denoted by y1, Jel. We understand

similarly to ^»J Define QI<=1(R^ t ̂ E by

fif:=
S J 7 / 7 if
;/*=! ^J

o if

where 3;*: = ! for convenience, and denote by g/ the Lie subalgebra of
generated by gf, i e JF. Then it holds that
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JBf(?J(v) can be regarded as a Lie group with a multiplication x

defined by means of the Campbell-Hausdorffformula, and if$r(A 21 •
denotes the right invariant Lie algebra of R*®1^, then g/ is

isomorphic to §/ under the correspondence

Here

I
/ n) \

an element of §j such as R!(0) = ( ) if (i
\dut/o

0

Since Q{n=0 for /eE.S*(oo)\/and (/7/)*e?° = £??, where H
is a projection to J2*J

? the following follows from (A.2):

(A.3) Rfa = 0 for

(A.4) (Pi)*R&i = R*n for any

where Pv
ft=Hom(M^v\ J2tG!j<v>) is a projection to J$Gl™. Let

b/ := the Lie subalgebra generated by R*9 i e {1, ° B ° , n}

I/ : = the Lie subalgebra generated by R*, i e {0, 1, ••• , 75

t/ : = the ideal in I/ generated by 1£(, i"e {1, • • - ,«} .

Then it is easy to see that

( (0 I /=b/ ,
(A.5) j (ii) b /=I J=t / if (0)$J,

((iii) dim i, = #(?'(*) = #G^) -1 if (0) e /.

Next, recalling J7(°°'=((/{)/eG(=o) introduced in §3, we define

By (A.I) and (3.6), it is easy to see that

( &*, if (0)et=7
(A.6) ( /{=| r /- |

if (0)eJ.
( Lt/{J v ;

Since U^PjU^, by combining (A.4) and (3.2), C/f is the unique solution of

' dUt = "S

Generally, for each u&.Itf0"-'"'1, Ur
txu is the unique solution of the above SDE
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starting at u. So, from this fact., we see that for any t, s >0

(l.A)

On the other hand, by Proposition (3.8), {(e!?00^*00)) is non-degenerate
in the Malllavin sense, and generally so Is $( for />0. Hence, for each f >05

$1 has a smooth density pt with respect to the Lebesgue measure on

Thus, combining this with (A.6), we have

\pt(u)du if(0)$I,
(A.8) P(Z7ferfi/)= '

where ji=f w°l i^eU1, defl1^10, for
LK J

We further view the case when (0)$J. In this case, from (A. 7) and (A.8),
we easily see that for any t, s>0 and M

(A.9) ft+J(«) = , CWA(«X (-o))/».(o)| del 0s(i/x
o< J2

On the other hand, from (A. 5) (I), (II), the support of P(C/fe») coincides
with J2SG/(V) for t>Q (cf. [7], [14]). Hence, from this and (A.9), It follows imme-
diately that />,(M)>O for any t>0 and t^elgS6fJ(V).

Next we view the case when (0)e 1. To this end, define a smooth function
/: R1xK1xl&ifrWxI&&<»-+If°IW such that the following holds: For

and

Then it is easily seen that
(i) for fixed w°, ^elZ1 and fleJ?^,^, < ^3 •) is diffeomorphic,
(ii) for fixed u\ v^M1 and vtER^I(v\f(u\ v°, • , d) is also diffeomorphic.
Further, putting (A.7), (A.8) and (A, 10) together, we see that for any /, s>Q

s, -s,fi, -v)\dv.

On the other hand, if we assume that
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(A.12) [b/, yOOcb/w) for every w

then, by applying Theorem 6.1 in Kunita [7], this together with (A. 5) (i), (iii)
implies that the support of P(&* e •) coincides with jRSc?/(v). Hence, under the
assumption (A.12), it follows from this and (A.ll) that pt(ti)>0 for any t>0

{/GE^O); a(/)=0> is in the case when (O)ejE J; Jff((2)) and
are in the case when (0)eJ, and by virtue of (A. 3), in these cases, the assump-
tion (A.12) is satisfied. Therefore, from the above, we can state the following:

Proposition A8130 For each t>0, (C7{)/e^o(v)nG(v), v>\, (Z/0/efc<fe))

have positive smooth densities.

The author wishes to express sincere gratitude to Professor S. Watanabe
and Professor S. Kotani for their encouragement.
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