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Diagonal Short Time Asymptotics of Heat
Kernels for Certain Degenerate Second
Order Differential Operators of
Hormander Type

By

Satoshi TAKANOBU™

Intreduction
Let V,, Vy, -, V, € C5(R?, R?). Let 7, %(R?) be defined by ;=
4 .
Vi —a-a—j, ie{0, 1, -, n}, and let L denote a second order differential op-
= X

erator written in Hormander’s form

A

Assume that at every x&R?, IA/(,, Vi, e, F/}',, satisfy the Hormander condition:
For some »>1

]”“](X); [<a<v,

" {linear span {[V;, Vi, o[ Vip Vs,
e{0,1, .-, 1}} = T(RY).

LeEAL, e, n}, 0y o0, 0,
Then it is well-known that the heat equation g—:L has the smooth heat kernel
f

(=fundamental solution) p(z, x, y). We are concerned with the diagonal
short time asymptotics of it. In the case when V,=0, under the assumption
(1), they were obtained by Léandre [11] and Ben Arous [1]:

p(t, x, X)~t V@233 p ¢ as 0.
a=0

Here N(x) is a positive integer defined in terms of [IA/,a, [IA/i“_ ol sza IA/il]
<o), 7y By ooy i, E {1, oo, m}, 1< @<y (more precisely, it is defined by (5.14)).
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Previous to them, Bismut [2] discussed the not only diagonal but off diagonal
short time asymptotics of p(#, x, y) under the suitable conditions as an application
of Wiener functional analysis; the splitting of the Wiener space and the use of
an implicit function theorem. This approach by Bismut has been refined
and expanded by Kusuoka [8] who introduced the notion of generalized
Malliavin calculus. On the other hand, S. Watanabe [17], to solve this problem,
introduced the notion of asymptotic expansions of generalized Wiener functionals.
It should be noted that Léandre [11] further discussed the off diagonal short time
asymptotics.

In this paper, following the way of S. Watanabe [17], we shall discuss the
diagonal short time asymptotics in the general case (i.e. ¥3;=3=0). This outline
is as follows: Let (W73, P) be the n-dimensional Wiener space. For the operator
L, we consider the following stochastic differential equation (SDE) of Stra-
tonovich type on R?:

dX, = ¢ 31 Vi(X,)odw+2Vy(X)dt
i=1
(X, = xR,
where ¢ >0 and w=(w!)& W% Then the unique solution X*(¢, x) of this SDE
is smooth in the Malliavin sense, and further, by virtue of the assumption (1),
X°*(1, x) is non-degenerate in the Malliavin sense (cf. [4], [9], [16], [17]). Hence,

for the Dirac delta-function 8, (€S'(R?)), 6,(X*(1, x)) is defined as a gener-
alized Wiener functional and the probabilistic expression of p(e%, x, x) is given:

(2) p(e x, x) = E[5,(X*(1, x))]

(cf. [4], [16], [17]). First, for the integrand 0,(X°(1, x)) in (2), we shall show
the following asymptotic expansion (cf. [17]):

(3)a 0,(X*(, x))~e™ V& i ea@a as €40
a=0

provided that IA/O(x) belongs to the linear subspace of T,(&*) spanned by IA/,-(x),
[ﬁ'j, I/},,](x), i, j, ke {l, ---, n} (cf. Theorem (5.31));

(3), 8.(X%(1, x)) = 0(™) as €} 0 forany m>1

provided that IA/O(x) does not belong to that linear subspace (cf. Theorem (5.34)).
Second, from (2), (3),, (3), and some observations, we shall show the short time
asymptotic of p(z, x, x) (cf. Theorem (6.8)):
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p(t, x, x)~t~ V@2 i t°E[6,,] as t}0, in the case (3),,
( 4 ) a=0
= o™ as t} 0 foranym>1,in the case (3),.

Our argument seems to be simpler than Léandre’s and Ben Arous’, though it is
based on the same idea as them.

As to another study of p(¢, x, y), there is the global estimate of it. This
problem closely related to the above problem is investigated in many papers
[31, [51, [10], [12], [13] etc. Among these, particularly, Kusuoka-Stroock [10]
has obtained nice results by using the Malliavin calculus.

The organization of this paper is as follows: In §1, §2 and §3, we shall
give some preliminaries for §4, § 5and § 6. In particular, “a key” proposition
in this paper will be presented in (3.9). In §4, with the aid of this proposition,
we shall prove Proposition (4.4) which gives another look at Taylor’s expansion
of X*(1, x) with respect to e. In §5, by this proposition and by adopting
Léandre’s idea, the above (3)a and (3), will be proved. Tn §6, the above (4)
will be proved.

Warning. Throughout this paper, we freely use the notion, notations
and the way of representations in [4], [16] and [17]. For details, refer to these
papers.

§ 1. Algebraic Preliminaries

Throughout this paper, let n>>1 be fixed. In this and the next section, we
follow Yamato [18]. Set

E:= {O’ 1, oos, n}-,
E,:= {(ila AR NI azl,
E(a);: UaEb 1<a<co.

5=1

For I=(i,, -+, i,) E(c0), we introduce the following notations:
| 7| = the length of I:=a, a(J):= #{b= {1, :--,a}; i, = O},
ll:= 1] +ea(I).
Set
E(@):= E@Q\{O}, B(@):= {{€E(=); || <a} CE(@),
E((@):= E(@)\{0}.
Let
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R(F) := the linear space with basis &,
T (E):= the tensor algebra generated by E(Z)
= ROR(E)D(R(E)QR(E)D-- ,
L (E):= the Lie subalgebra of 7'(#) generated by & .

Here the bracket product in 7'(Z) is defined by [a, b]=aQb—bQa, a, be
T(E). We define [ij, -+, i,]€ L(E) for (i, +-*, i,) E E(co) by

[il]:: il > [il’ ot ia]:z [[ila °t% ia—l]’ ia] a=2
inductively. Each [i, «--, i,] is expressed as
(1.1) [y, oo, 1] = P B QR
o+ i) EE(0)
and coefficients c¢ji:+i are uniquely determined by (1.1). Note that
(i) ci=20i for i,jEE,
(1.2) (i) ¢ =0 it |I|=]J],
(i) ¢/ = it |I[=111 -

Set r,:=rank [(c{),EEa,]EEa] a>1. Thenr,>1 for any a>1, and it is easy to
see that

For each a>1, there exist F,C E, and G,C E, with
#F, = 4G, =r, such that (c{)cq, cF, IS invertible .

(1.3)

Clearly F,=G,=FE by (1.2) (i). For each 1<a<co, set
G(a):= }:{Gb , F(a):= bglm ,

G(@):= G@\{O)}, F@@):= F@\{0)},
E(@):= G@NE(@). F(@):=F@NE@),
&(@):= G(@N\{O}, F(@):= F(@N\{O)} -

From (1.1), (1.2) and (1.3), we have the following, the proof of which is an
elementary exercise of the linear algebra:

Proposition 1.4. For each a>1, the following holds:
(i) For a pair (I, 1)=(E(@), G(a)), (E(a), G(@)), (B(@), ¢(@)) and (E((@),
G((a))), respectively, {[J]; JE J} form a basis of the linear subspace (of L(E))
spanned by {[I]; IE€I}.
(ii) Further, the linear subspace spanned by {[J]; J EGAr'(a)} coincides with one
spanned by {[G, D];i€{l, -, n}, I€{¢} UE(@—1)}. Here(i,])E E(xo)is



DIAGONAL SHORT TIME ASYMPTOTICS 173

defined by

@O i I=9¢

(ia ils °°% Zb) Uf I:(il, °°%y lb) .

Let %(R") be the totality of C*=-vector fields on B with the bracket product

[X, Y]=XY—-YX, X, YEX(R). Let X,;eX(R’), icE be given. For I&
E(c0), define X;jeX(R") as follows:

@n={

X[i111= X;

12

Xtige,i1'= [Xtiy, i 3 Xl a>2.
Also, we define a differential operator X; of order |7]:
X=X, X, if I=(@y,-,1).
Then, as a corollary to (1.1) and (1.4), we have the following:
Corollary 1.5. (i) For each I € E(co),
Xin=_ > clX;.
JEE()

(ii) For each a>1,

ladXy; IEE(@} = LaAXin; 1€G(a)},

La. Xt Ieﬁ(a)} = la{Xrp; IE(A}(a)}

= la{Xig,p1; i€A{L, -, n}, € {¢} UE(@— 1)},
laAXip; IEE(@)} = LaAXin; I€G (@)},

Lo {Xin; I€B(@)} = La{Xin; IEG(@)}-

Here ““/.4.”’ is an abbreviation for “linear spai’.

§2. Regarding B'™ as a Lie Group
Throughout this section, we take an arbitrary y>{ and fix it. Set
q@) :=#E@), @) =460 =4F(@).
We identify the linear spaces (over &)
{0Nrepm; Y ERL IEEW)}  and  {()ieem; ' ER', 1€G(V)}

with B*™ and R'™, respectively. The coordinate systems on R'™ and B'™
are also denoted by y!, I E(v) and u!, I €G(v), respectively. Define Q;=
OV € X(R'™), i € E by
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Q(iv) = _a_ yjl."',.ia 2

oy* a+1<y dyiv et '
JuJ.EE

For I€E(x), OinseX(R'™) is defined in the manner introduced in § 1.
Then, owing to Y. Yamato [18], we can state the following:

Proposition 2.1. (i) For (i}, ---, i,) € E(v),

s = cj-l"::"’-a (——-— E : k]’m’kb ———-—————'——.—) N
Q[u, ,ig] i ---E,jaEE 13, i, ayjl'm"r“ + bia<y Y ayk:l""’kb’jl""’fa
ki kpe E

(ll) For (il’ 70ty la)EE(OO)\E(V), Q[il,---,ialzo'

Let g=g, be the Lic subalgebra of X(&’™) generated by 0¥, i€ E.
Then, from the above proposition, g is nilpotent of step v and g=24. {Qrn; I €
E@)}. Further, by (1.4)

2.2) O, 1€GW) forma basising .

As one more corollary to (2.1), we have the following: Let  denote the
coordinate system on R*™, i.e., 2/(3);eem):=y/, JEE(). Then

Corollary 2.3. For a>1 and JE E(v),

Ortr,1 Orran’
0 if |TI<|L|+-+1L],
cla e cfy if | J|=|L|+-+]|1,], where J is expressed as
= J=(p -, J) with |J,| = L], =, | )| =|1],
cla el if |J|>|L|+---+|1,|, where J is expressed as
J=(Kyy Jgy oo, J) with | J| =L, -, | /1| = |4].

We denote by Exp(tQ) the integral curve of a complete vector field O
(€X(R'™)). That is, for each y=(");cpn ER'™, Exp(tQ)(y) is the unique
solution of

Ve = (yt])JeE(v)

%y! —0/(y) JEEW

=Y

where @/, J& E(v) stand for the components of 9. The following is a con-
sequence of (2.2) and (2.3):
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Corollary 2.4. If QeEq, then, for each J € EY) and y=(y)ierm ER'™,

Exp(Q0) = 3£ (@ 1)0).
In particular,
Ep @) =3 @7, JEEE).

We define 8=0, = C=(B' ™ x B'™, B'™) and ¢p=¢,& C*(R ™, R'™) as
follows:

Dy(u, y) == Exp( 2 w' O (),
IeG»
o) 1= Oy, 0) = Exp( 2} ' Qr)(0).
IeGv)
Then @(u, -)is a diffeomorphism on B!™ for each uR"™, and particularly,
®(0, -) is the identity mapping. By the Campbell-Hausdorff formula, for
u, 7€ R ™ we define a product uXveER ™ so thai ®(uxv, «)=0(u, O(v, -))

holds. With this multiplication, B ™ can be regarded as a Lie group with 0
as its identity. Let =Y, denote the right invariant Lie algebra of B'®™ and

let R;=R{&Y, be such that R,-(O)z(%) , i€ K. Then g is isomorphic to
u’o

% under the correspondence: Q«R;. Furthermore, if REY is an element
corresponding to Q &g, then it holds that

2.5) R(fee) = (@f)ep  fECR').

Note that for each J €& (v), R1€Y) is expressed as

0 17l
2. Ry = e T ymp— -
(2.6) =2 - (Xxu)' |, o

Also, the following holds: For 20, we define an isomorphism 7%3}: "™ —
B'™ by

T (@) ree) 1= M) eqq) -
Then, for any J €G(v)
@7 (T")sRen = AR .
Because Qry1 has the same property: For each J € E(v)

(2.8) (SEsQr1 = AN Oy
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where S{3” € Hom (R*'™, R'™) is defined similarly to T'{.
To conclude this section, we make some remarks: (i) As a corollary to
(2.4), we have that for each K = E(v)

29  pwr=>1

wt e ulo(Qf) 1 - OF) 17%)(0) .
=1 al J,, -, L€G )

(ii) From (2.8) and (2.9), the following is derived by the same way as in Lemma
(A.5) of Kusuoka-Stroock [10]:

2.10) ¢, is one-to-one .
(iii) For »'>v>1, define 7Y € Hom(R*™", R'™) and P! € Hom (R ™, B'™)
as follows:
n I'((y’)femw) = (iepvy, P :/((ul)tea(v')) = ()reaw -
Then it holds that
(2.11) I} o, = @,oPY .

(iv) Let R®);, I €@G(v) denote the components of R%;€H,. Then
i/1 /1

(2.12) inf{ﬁ M ( Z} RE‘RIK)](O)I’)Z; S_A_,‘ 2 =1}>0.
=1 Ke{$}UEW—1) 1) IeGWw)

Here we shall show (2.12) only: Suppose that for any i {l, ---, n} and
Ke{s; UE(r—1)

3 RiExn@F=0.
IeGW)

By (1.5) (ii), this implies that {or any J Effv‘(y)

51 REAO)I=0.
IeGy)

Since, by (2.6), RE“}‘;(O)z%(va)’ =%, I, J € G(v), this implies that /=0
k)

for J Eé’(u). Thus (2.12) follows immediately.

§3. The Continuous Process U on B

Let (W=W3, P) be the n-dimensional Wiener space. Then a generic
element w=(w}) of W is clearly a realization of an n-dimensional Brownian
motion starting at 0&R” under the measure P. Define the multiple Wiener
integrals wi, I € E(co) by
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WD r= wir,  wlrrie) = § wliria-Dodyle a>2.
0
Here and hereafter, we set wl:=¢ for convenience. Then, for each v>1, the

following holds:

Proposition 3.1. (Y. Yamato [18]). The continuous process [(Wi)cew;
t >0] on R*™ is the unique solution of

{dYt=,2 QW(Y,)odw;

el
Y, =0&R'™,
The proof of (3.1) is obvious from the definition of O, i € E.

Let v>1 be fixed arbitrarily. We consider the following stochastic
differential equation (SDE) on B"™:

dU, = 33 R{P(U)edw;
(3.2) iEE
U,=0R ™.

We denote by U the unique solution of this SDE. Then UM e DR ™)
for each 1 >0. Let Y, and Z, be the unique solutions of the following SDE’s
on B'MQQR"™, respectively:

dY, = 31 9RV(U)Y,edwi
3.3) { ek

Yy = (01, 7e6m >

dZ, = — 3V Z,0R(UM)odw!
(3.4 { i€E

Zy= (6[])1, JeGw) -

Then Z,Y,=(0%);,7e¢n. Further the following is well-known (cf. [4], [9], [16]):
Let 0¢y=(037);,7eqe be the Malliavin covariance of U{":

oll := (DU, DUP"S L JEG().

I .
Set 7= (TV])I,/EG('U) .

7 1
@ =3[ @ ROy ERI VYIS LIS6E).

1=1dJ0

Then o(,y=Y,7,5(¥)*. Note that for any u, v B ™
(3.5) (wxo) = i+ iekE.

This is easily verified by viewing the Campbell-Hausdorff series:
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> wxo)ofh= 3 '+u)ofh
) IeG((v)

IeGy,

+il s o 3 woRl+e .
2 1eGW) IEGW)

Combining (3.5) with (2.6), we see that R (-)=64, i,jE. Hence, in view of
(3.2) and (3.3)

(3.6) U =wi, Yil=06, jJeE JeG().

Since Z,Y,=Y,Z,=(87);,7ccw, We further see that Zi/ =6}, j€E, J€G(v).
Thus, if we set

Y, = Y rreem > 2= (Z)retm

8oy 1= (001 7etts  ton = @) retom »

1 0 1 0
Yt = A | Zt = A s
% Y, % L,

G.7) 00 7 [0 0 }
Oy = , T = R
@ o b J P70

2, Y= (0D retmr s Soy = Yitey(F)*.

then we have

Now, owing to Kusuoka-Stroock [9], we can state the following: Set

foy 1= inf {8l I35 = (Nsetn suchas 33 (0P =1},
IeG(v)
Then

Proposition 3.8. It holds that n(,y>0 a.s. (P) and
(ﬁ(y))_IGLx_ = nLﬁ .
>1
Proof. First of all, set

by = inf {twl, %5 [ = (Neten suchas 33 () =1}.
IeG(v)

It is sufficient to show (3.8) for 4¢). For, we observe by (3.7) that for

I=(I")eem such as 3} (I7)2=1
IeGw)

ooy 1> = Fgen(P)*] 1> = Gea(T)L (D>

e A e AL
=I ?l.*ll z-‘ll ( 1 A 9 1 S
) <”|(1ﬁ)*l| |<ff,)*ln>
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> [ (P12 ey = I(Z)* I 780

Noticing that ||(Z,)*|| € L., by (3.4), we see (3.8) for 7z, at once.
Now we shall prove (3.8) for 4. In view of (3.2) and (3.4), we observe
by It6’s formula that

Z, R(US)
= RPO)+ 3 [RY, ROIOwi+ 33 [RY, [RY, RYNO)wir's

LeFRE i,5,EF
+'"+ 2 [-R(zvl)a [-R(,lgy o0ty [R(i?_p R(i”)]“"](o)wl’;l'm'i”_l 9

il)"')iV—IEE

where we have used the fact: [R{, [RY), -+, [RS—‘;’_l, R’T-+-]1=0 for any a>v-1.
Since, in general, it holds that

[RY, [RY, -+, [RY), R¥]-+-] = (—1)° RY

[i.ia.-".il] B

the above is equal to

Ie{¢} sza(v—n (DR, 1w} .

Here, for convenience sake, we set that |¢|:=0, wt:=1 and
;. { ® if I=¢
. (iaa °e0, 11) if I= (ila °00, ia) .
Hence, recalling (3.7) and the definition of z(,), we see that for lA=(l’) redo)

A A n 1
Gol=3{C 5 5 (OwRE gy,
i=1J0 Ke{¢JUE(WV—-1) IEC{A;(V)

Thus, setting

CV(?) :Zﬁ 2 2 R(‘:). 10112, [A= 1y >
Y i=1 KE{¢}UE(V—1)(IE(AF(V) 010 (Phrez

we have

mz—}‘;inf{cv,,(f); Sy =1}

IeGW)
1
xinf {g (ST bewRPds; S (b= 1} ,
0 Ke{¢}UE(W—1) Ke{g}UEW-1)

Consequently, from Theorem (A.6) in Kusuoka-Stroock [9] and (2.12), (3.8)
for 4y follows. //

The following proposition is a key in this paper, though its proof is easy.
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Propesition 3.9. For each I € E(v),

1 a
=3l m uphe g, 00,
Y Jun J.EGQR)

Proof. Let feC~(R'™). By (3.2) and (2.5), we observe

df(p(U)) = _EEE R (fop) (U)edw; = _EEE (@D (@ UP)edw; .

)
.’.I.
Q

By (3.1), this implies
(3.10) (W{)IEE(V) = ¢V(U$v)) s
from which and (2.9), (3.9) follows at once. //

Let »">»>1. Recalling (2.11), we can state a relation between U & and
oM.

Proposition 3.11. PYU=U{ t>0.

Proof. By (2.11), we observe

I (@(US) = (P U .
By (3.10), this implies that ¢,(U)=¢,(PYU"). Hence, (3.11) follows from
(2.10). /]

By virtue of (3.11), we can define a continuous process [U{™; ¢t >0]
on R*={(u");cgw; W' ER!, IEG(0)} so that PTUM=UY for any v>1.
Let Ul, I€G() be the components of U{. For 230, an isomorphism
T : R=— R~ is defined by

T (uh)1eqte) = (A1) 1 e -
Then

Proposition 3.12. (i) [T U{);¢>0] is equivalent in law to [U3); t >0].
(i) For any I €G(c0), Ul(—w)=(—DIUL(w).

Proof. Let y>1 be fixed arbitrarily. Let V{® denote the unique solu-
tion of

AV, = 23 RO(V,)odwi -+ 2RO(V,)dt
i=1
V,=0€sR ™.
Then, from (2.7) and (3.2), it is easy to see that
(3.13) Y = T U® >0,
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On the other hand, from the scaling property of (Wf)eq,...n, it is clear that
[V§<;gg; t>0] is equivalent in law to [U{?; t>0]. Hence, combining this and
(3.13), we have the assertion (i). For (ii), if we take A=—1, then V{2 (w)=

U®(—w), and thus, this, together with (3.13), implies the assertion (ii). //
We end this section with the following remark: Set

My, 1= max % 1 ORP (1)« RO @)+ RP(1) | +max 31| R¥(w)|
i1 jejse i=1

ul<k
Note that m, >0, since R (0)=0!, i€E, IG(v). Then, by the standard
procedure due to Stroock-Varadahn [15], we can obtain that for any 0<<¢ <

_1_ i
2 r()my,.

2
P(max|UP| > k)< 2r(v) exp<~—i P L) .
<<t 8 r(wymy, t

Thus, by putting this and (3.12) (i) together, the following estimate holds: For

1
t>0 and 0<eg(i ~"—> 2,
2 r(¥)my

G4 Pax| T U= < 2@ exp (-1 L LY,
<s<t

§4. The Smooth (in the Malliavin Sense)
Wiener Functional X (1, x)

Let V,=Cy (R, RY), icE. Define V,€%(R?), i E and a second order
differential operator L on B¢ as follows:

A 4 .9
Vii=21Vi— i€E,
=1 ox!
=13 Vitv,.
2 i=1

Let (W=W3, P) be, as before, the n-dimensional Wiener space. For
e>0, we consider the following SDE on R&*:

dX, = & 3 V(X,)odwi+e*V,(X,)dt
@.1)
X, =x=R".

We denote by X*(¢, x) the unique solution of this SDE. Then, for each >0 and
xR, X(t, x)€ D>(R?. Further, the following is well-known as Taylor’s
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expansion of X*(¢, x) with respect to e (cf. [9], [17]): Let ¢ be the coordinate
system on R?, i.e., {i(x)=x* for i€ {l, ---,d}. Then, for each a>1

Xt x)=x+ 3 (7,0l
( IcE(a)

c s ¢ . tas1 .
(42) + E el iz Dl 5 OdW;::{ SO“ odw;: voo

@1, 1 la+ ) E Bty 0

iy A .
SR Te S (HP) Y
0

By using (3.9), we shall rewrite (4.2). For this, we introduce F3(, x), R}(Z, x)
e D~(R%, v>1:

v A A
Fi(t, x) 1= 2; 7‘1—' .. ; - )geHIIHU{x) e (MU (P o+ Py 10) ()
a= e v

Ri(t, x) := S i by ellIyll+=+111al1
' a a
Ly L)€ I GON L G(O)

w3 XUt oo UV 3 -+ Virg1€) ()
' zv_“ 1 N gl +llali ] ... U{‘(ﬁ[ra]'"f}[rllc) (x)
a=1 g! lIlIbm,IaIEIﬁ;(V)'I'l
AR RREN VAP’

s ¢ . tyi1 .
+ o3 et {Codwfre | oty -
0 0

(81, -y 8v+1) EEv+1

| 2P iy 0O (K, )00l
Here recall that U, I € G(c0) are the components of U{ defined in §3. Then
Propositien 4.4. 1t holds that
X(t, x) = x+Fi(t, x)-+Ri(¢, x) .
Proof. Let v>1 be fixed arbitrarily. By virtue of (3.9), we observe that

3 (PO e ling

JEE(®)
- 5 ;omanns L > Bes UL(Q; -+ OfPn7)(0)
IEEW) a=iql 1, LeGw) ‘ !
PAESEN) A RS
v 1 A
=5 3 Uk Ul 3 0008, 0 0).
=l a. L, -, ,eG ) ]EE(V)

PARSREI VALY
Since, by (2.3)
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(8l Oar)O
0 if |[Jl=|L|++]L]
=4 cfs e cfs if |J|=|L|+---+|1,|, where J is expressed as
J=(Jp oo, J) with | | =], -, || =4,
the above is equal to
1 > Ul oo Uls

1al L, LeGy)
II]l +eee II,,I <y

A
X 7 }EEE( ) ell(Iﬂ""’]I)H(V(I Ty C) (x)c cIa
1" Ja 19
FARIVANA VAR A
sl P e+ +LI L oo Ula
a=1 gl .., LeG)
| L) 4+ L) <v

X X (V) e (VO
Ju - J.€EW)

v A A
- Eq ; , IE ) e+l ... Ul['a(V[Ia] V[IJ]C)(X) .
=t al I, LEGW
JARRSENIAES

Here the last equality has come from (1.5) (i). Thus, putting (4.2), (4.3) and
the above together, we obtain (4.4) immediately. //

For I € E(c0), let Vin=(Vin)icq,..a € C5(R?, R?) denote the components
A A d . 0 ..
of V[I] = %(Rd)i V[I] :_E V'[’l]a—xj. Define VII"":Ia = (V}i,...,la)i,jeu,...,d) =
Cr(R?, REQR?) for I, -+, [, E(c0) and a>1 by
V;f,---,la = aj(f}[l'l] °ee ﬁ[lalci) l:]E {1: °°%y d} .

For convenience, we set Vy:=Ige if I=¢. Then we easily see that for
i€{l, -, d}and I, -+, [,€ E(c0)

(4-5) V[11] V[I,,]C’ E V[Il] VIZ, I e

For each v>1, we define a,=(ai);cq,...a,1can ECr(R?, RIQR ™) and
=(MP); jen -0 EC(REX B'™, R'QR?) as follows:
(%) :== Vin),

MU, @) rean) i= 3431 , 2 Ve (s woe e
a= 1(a—l—1) I, I,eG)

~

Here, as before, we identify
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{@)reciom; W ER, IEG((v)}

with RN = REO)  Set F,(x, u): = M,(x, u)a,(x)u € C*(R* X B"™, R?).
Then, from (4.3) and (4.5), we have

Proposition 4.6. It holds that
Fi(t, x) = Fy(x, TERU) .
Here U™ :=(Ulcey and T{)E Hom(R'OD, R'(CY) s defined by
TEY @D rean) ="l regon-
Now we consider the following condition: For some integer v>1,
@D LadVia(); I€E(O)} = LadVin(); I€GON} = TRY).

Note that the first equality in (4.7) always holds from (1.5) (ii). We denote by
vy=v,(x) the smallest v satisfying (4.7). The following proposition is due to
Kusuoka-Stroock ([9]):

Proposition 4.8. If the condition (4.7) is satisfied at x€ R?, then X*(1, x)E
D=(R?) is non-degenerate in the Malliavin sense. More precisely, there exist a
positive integer k depending only on vy=y(x) and, for each p>1, a positive con-
stant c=c(p, x) such that

[I(det oyeq )7 Y|, <ce™®  forall e>0.
Here oy, ,y Stands for the Malliavin covariance of X*(1, x).

Thus, if the condition (4.7) is satisfied at x& R?, then for any T €&'(RY),
T(XE(1, x))eD = is defined for every e>>0 (cf. [4], [16], [17]). In particular,
0,(X°(1, x)) is defined for every y= R? and the generalized expectation
E[0,(X°*(1, x))] coincides with p(¢’ x, y), where p(t, x, y) is the fundamental

solution of the heat equation a—at=L.

§5. The Asymptotic Expansion of 3,(X°(1, x)) ase | 0

We shall continue working in the preceding section. Throughout this
section, we fix x,&R? and set for simplicity:

X5(0) = X(t, %), Fi(t) :=Fi(t, %), R(t):=R(t, %),
@, 1= a, () ERQR | My() i= My(x,, *)EC=(R', RIQR?),
Fy(0) i= F\(xp, *) = My(-)a,- EC=(R'), R?).
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Suppose that for some v>1, the condition (4.7) is satisfied at x,R°. In this
section, we study the asymptotic expansion of 8, (X*(1)) in D™= as ¢ | 0. »y=
vo(x%,) is the smallest integer v satisfying (4.7), i.e., it is a natural number such
that

Lo AVin(x); T EG (o=} Sla Vinlx); IEC(} = To(RY).
From this, we can find an HC é((uo)) with #H=d such that for each a=1, +--, ,
(5.1) LaAVin(x0); IEG(@)} = L4.{Vin(xy); I EG(@) N H} .
We fix such an A to proceed with our discussion. Set
(5.2) B = (Vin(*)iet,.a,1eca=ER' QR? .
Clearly g is invertible. Define 7=(r"");cm sea()n ER*QR™ as follows:

7 1= BV in(%0)iet, a0, 1e6(w -
Then, from the choice of A, r has the following properties:

(5.3) {Tuza’f if JEH,

P =0 if [[]|>]|J]| and JEG(y) -
In the following, unless otherwise stated, we assume that »>v,. Set

7o = T remiecn » T = 0 iemreto -

Then 7)) (F ) >0 by (5.3). Recalling the definition of M,(-) and Fy(-)
given in § 4, we easily see that

My0) = Iga, (8;Fi0)icn, a1t = BT vy -
Thus, we can choose a small £, >0 such that for any v B"™ such as |u| <z,

(O,F i(t))ict, 0, reton(Or Fy(icq...a1, reéovgn)*

(5.4) ! .
2—2— Bt v (BF cvg))* >0,

1
(5.5) det M,,(u)27 .

Firstly, from (5.4) we shall present the following lemma: For this, let
0= (U reton© DB ™) and set

Ty = inf {6l I>5 1 = (I)retcon suchas 33 (117 =1}.
IeG(v)
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Here 8y is the Malliavin covariance of U§{™. Since 8¢y)=(0%7);,7cbn> We
see from (3.8) that z(,) >0 a.s. (P) and

(5.6) () ' E Lo -

Also, from (3.6) we see

t
) —
(5.7) U™ = [ l?ﬁ‘””} .

Now, for simplicity, let us denote by ¢ the Malliavin covariance of F;(1). Then

Lemma 5.8. For 0<e<1, it holds that

1 A A
0527 07 B (Bt ) a.s.on  {| TERU | <ny}.

Proof. Let 0<<e<1. Since, by (4.6) and (5.7)

DFy ()= _ 3 0, F(T{ERUM)eDU]
IEGL)

— 3 8, FYTERUMNDUL el -, d},
I€G()

we observe that for i, j& {1, ---, d}
(a7 = <D(F5 (1)), DF (1))

= 3 O FUTERUMO, FUTERUelinal)
LJeG(v)

Hence, for any / € R? it holds that
ol Iy = 33 @ FD
ij=1

— X% (R IMIaFATEIU) (S Fel1 0, FT(RU))
A i=1 ji=1

Iv]EG((V))
d - .
2oy 3 SN FO FYTERU))
IeG((v) =

d : :
>rane® 3 (X F, FITERUC)Y
IEG(v)

= e | ((Or FUTERU)ietr, a1, 1eec)* 2.
Consequently, combining this with (5.4), we obtain (5.8). //

The following is an immediate consequence of (5.6) and (5.8): For
0<e<]1, det oy >0 a.s. on {|TEYU| <#,} and
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5.9 { (El(det 0)7*; | T{ERUL™ | < w2

<24(det A7 (Bt o)) @) e e p>1.
Secondly, we choose an he C*(R") such that 0<<AL 1, A(x)=1 if | x| S%
and A(x)=0if |x|>1. Set hy(x):=h(x/(x,/2)? and define y;= D> by
% = h(| TERU]?) .
Let §, bfihe Dirac delta-function at 0&R?. Then 0,(X*(1)—x,), x5+ F5(X (1)
—Xx )€ D™ (in fact, eﬁglﬂ;z‘['”z]“)). By (4.8) and (3.14), we can prove the

following in the same way as in [17]:

Lemma 5.10. For any v>v, and p > 1, there exist positive constants c,
and c, independent of € such that

[10s(X *(1)—xp)— 25 ° O(X!(l)_xn){'p,—z([d/z]+1)S 5] exP(“—:’Z‘> as ¢|0.

By virtue of (5.9), for any T €S8 (R?), x5+ T(F ﬁ(l))E_/Z’);; is defined simi-
larly to T(X*(1)—x,). More precisely, the mapping ¢ € S(BRY)+— xi-¢(Fi(1) e
D> can be extended uniquely to a linear mapping

TeSRY - x-T(F()eD™

such that its restriction T € 9_,,, > x5 T(F3(1))ED;*" is continuous for every
pE(, ) and m=0, 1, 2, --- (cf. [4], [16]). In fact, xi-T(Fy1)e D™= for
every TES'(R%). In particular, if we take T=06,, x5+ 0y(Fs(1))E N Dy2CA+D,
»>1
From (4.3) and (4.4), we note that
X (D) —xy—Fiy(1) = O(e"™Y) in D=(R?) as ¢|0
(cf. [17]). By this, (5.9) and (4.8), we can also prove the following in the same

way as in [17]:

Lemma 5.11. There exists an increasing sequence {l,=1,(d, vo)} >y, such
that

(1) lim =+ o0,
V4o

(ii) for any p>1, |25+ 06(X *(1)—x0) — 5 So(F3(D)lp, -2tae1ear=0(™) as € | 0.
Thus, from (5.10) and (5.11), it follows that for any p>1 and v>v,

(5:12) 118X ") —x0)— 23 - Oo(F5 (D)l ~2taeremy = O(e™)  as €] 0.
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Thirdly, we shall present an available expression of xiedy(Fy(1)). As
before, it is assumed that v>v,. First of all, we note that for any G € D",

(5.13) E[G 5+ 0((Fy(1))] = iirrsl E[Gxy-y(Fy(1))].
B
For ¢>0, the following matrices are defined:

Ay 1= (VNN g reaton s
Al 1= (VNN i »
a* := (A )rer = (M) ep,
Ay = @l remscbon »
By = (09 1eacomm, 1 »

By = 0D rebommrcbon »

&) . ;
T = ("N oY) en jen -

Set
N = N(xp) := 2 [1]]
Ieg
(5.14) _ ﬁ a(dim L. {Vin(x); I € E(@)}

—dim Ls.{Vtn(x); 1€ E(@—1)}) -
Then, by recalling (5.3), the following is easily verified:

Lemma 5.15. The following holds:
(@ a=Brw-

.. A 1 0
(ii) Aiwy=I[a" Al B((v)):[ A Jand TenTER=TE" A
0 By
(i) lim Agy= 4.
240
(iv) An(dn)*>0 and [‘2“*»] is invertible.
«
(V) T is invertible and det T$g=e".
Thus, from the above (iii) and (iv), there exists an e;=¢gy(v)>0 such that
for every 0<e<¢,

Ay (Aipn)* = > Ain(Aw)*>0,

[/f(s(v» ][ Alon ] s L[é(w»][ff«m]‘* ~0.
Byl By 2 LBy LBy

And, from (ii), it is easy to see that

(5.16)
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€ vV
4 Aoy UL
g A
[ B((“)):IU O = L1 Ja Al US® = a*+ diy U1,
(5.17) ((v) By 19-(1(\0)

':{1\5(»)) u E:i;] = [ae]_f_[fiff(v))]ﬁgm).
By U 0 B
Consequently, putting (5.6), (5.16) and (5.17) together, we have that

Ay U

(5.18) Aoy U and [A 0 ((V))] are uniformly non-degenerate
(o Ui

(cf. [17]). Also, from (4.6), (5.15) (i), (i), (5.16) and (5.17), it is easily seen that

Aoy UL
(5.19)  Fy(1) = My(TEYClom™ . 1[} ) VBT Al UL 0<e<g,
LBy U™

where C{uy :=[;““”] is invertible for 0<e<e¢, by (5.16).

D)
Now, as to x;-8,(F;(1)), we present the following: Set f,EC7(R ™) as

follows:

- hy(ul® = RTOD
Sl : det M,(u1) ! ’

which is well-defined from (5.5) and the definition of 4,. Then we have
Lemma 5.20. For each 0<e<g
25 8(FE(1) = ¥ [det ] " ATER UL - 0(Aly US?)
where 8, is the Dirac delta-function at 0€ R*=R*E,
Proof. Let 0<e<e, For simplicity, set

P € . g . 3
T :=T§}, Tu:=TF, C:=Cly,
V = Ajy U € {(@")1ent = R?,
A
W = By U1 € {(W) retscoonet = B4

Choose a v CF(R?) so that >0 and X dxlr(v)dvz 1. For 2>0, set y,(v)
R
:=1/2¢ 4(v/2). Let G € D" be fixed arbitrarily. By (5.13),
E[Gxy - 0y(F3(1))] = 1;?01 E[Gx3-yr(F3 )] -

On the other hand, by (5.19) we observe that
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E[G x5+ y(F3(D)]

V V
= E[Ghy(| TC"[ 1 }Iz)%(My(TC'{ 1 :!)ﬁTHV)]
w w

v

v
- SRJ SRr((VD—l—-d h"(l TC_I[ 1 :l |2)‘3[1'}‘(M,,(TC—1|: 1 :l ),BTH'U)
w

w

X<G. 8y ( ;’V)>dvdw

(Te)™ v ,
=< SR" SRr((v))_l_dhv(lTC_l 1 3

w

"l‘l)

(T,
X%(M,,(Tc-{ 1 })ﬂv)(G, 6[(TH)_1U](VII//>>dwdw

w

(by a change of variables: v+—(Ty) v and (5.15) (v))

- . (Te) o .
= LdLr«vn-l_,,hv(lTC vlv B

w

(Ta)™
X-Zl;w(M,,(TC‘l[ 1 ”} )ﬂ%)<G’ 6[(T§))_lv](;>>dvdw

(by the definition of )

-N . (TH)—IZ‘U ]
- SBd SRf((V))—l_th(l TC ‘I'v I )

7 v

(T v
xw(M,(TC‘I{ 1 J)ﬂv)(G, 6[(TH)‘1A0:I(W)>dvdw

w

(by a change of variables: v 2v).
Hence, letting 2 | 0, we see

E[G xy04(F(1))]

=& SRa Skr((v))—l—d h(TC™ i: (1) } 1)

w

0
x«,b(M.,(TC‘{ 1 } )Bv)<G, o) (;’V>>d«a dw

w

— N Ser_Hhvu TC! { (1) } 19<6. oo ](;/V)>dw

w
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0
xS dw(Mu(TC“[ 1 J)ﬁv)a’v
R w
3 410 %
- ¢ §Rr<<v>)—1—dh"(l c \:‘L:ll <G, 8[9«] <W>>
0
% | det B -¥(det M,,(TC‘ll: 1 ] N-tdw
w

0

(by a change of variables: vH(Mv(TC‘II: 1 J )8) ' and by the fact:

w
| v@da=n
R
0
=eV|det £ SRA(»))-x—df”(TC—l{ L :' )<G, 6[?u](11’/V>>dw
W

(by the definition of f,)

— e - M. V)
= ¢ Nldetﬂl 1<G,f,,(TU1 ) SR’((VD)‘I_da[?g]<W dw> .

Here the last equality has come from the fact:

fw(TC“[z} <G, op (1 > = <G,f,,(Tc-{g opn1(

-~ nrom gy

Thus, since G € D* is arbitrary, we obtain

- - 14
L8 (PR 1 oy,
2y 0y(Fu(1)) = e7¥|det B| 71 L, (TU™) ngccw)q—da[g,](W)dw ’

from which and the fact:

gnrccv))—l—aa[g,]<;/)dw = (),

(5.20) follows at once. //

Noting that I"/o(xo)==2 r! (")IA/[,](xo), we define
Ieg

(5.21) #o :=max {|[7]|; '@ =0} .

191

Here max{¢} :=0 for convenience. From its definition, the following is clear:
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(i) 779 = 0 for /€ H such as ||I[|>u, .

5.22
(522 {(ii) If 2,>1, then /@ =0 for some I €M with |[I]||=x,.

In the following, individually, we think of the case (A) and (B):

{ (A) The case where #,<2.
(B) The case where #,>3.

First, we consider the case (A). From (5.20) we shall present the asymptotic
expansion of zi-8,(Fi(1)) in D~ as ¢} 0 (cf. [17]): Note that by (5.22) (i),

lim a'=a:= @' ®)req. We define o, = ()rem o™ =@ )ren & D" (BY)

and E',,EE: =, a>0 as follows:

vg 1= > Ui  IeHd,
TE6 T 7 |I= 1Tl +a

o= > ru{ IeH,

(5.23) TEGY { IITII=IITIl +a

Ey:= 0y(vy) »

- a1

=3 3 ST vl e vgte(8y, -+ 81,00) (vg) a>1.
=1 l! Ilr"':IIEH a8y 21

ayteet8y=a
Putting »{™ in place of v,, we similarly define £ D=, a>0. Since
A
vy = o™ = G+A((yo)) O'g(vo)) ,

v,=v" & D™(R?) is non-degenerate by (5.6) and (5.15) (iv), and so, &,, &M,
a>0 are well-defined. Note that 2 =g, for 0<a<v—y, and hence

(5.24) EM =5 forany 0<a<v—y,.
From (5.3), (5.22) (i) and the definition of Ay, it is easy to see that

V-1
e
Alop U = 37 9 |

a=0

Thus, by applying the general theory due to S. Watanabe ([17]), from this and
(5.18), it follows that

(5.25)  8y(Alyy UMY~ BED e B L 28 4. in D= as ¢ | 0.

Next, as to the asymptotic expansion of /(T3 U{™), we easily see that it is
given by

(5.26)  SATERUD)~ECD 4 eEN 426D - in D~ as €0,

where EM e D=, >0 are defined as follows:
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Eg(”)) =1,

1
g . 8y, - 31,fv)(0) Ubi oo Ul
=1 ] 1,..1E60000
4|1+ +11l=a

[

1

; (
1 > 8, -8
I I
s S S r=r0 ) ! ! det M,
HIyl1+ -+ 1Tl =a

Il

>(o) Ul UL a>1.

Therefore, putting (5.20), (5.25) and (5.26) together, we have the asymptotic
expansion of x5 0,(Fi(1)):

(5.27) 25+ 8o(FE(1))~eN |det #] “HE+ 3 & 3 £ )
e=1 »C=
b+c=a

in ./5:" as ¢} 0.
Now, as to M,, we make a few remarks: Here, for a moment let v>1.
Define e, ..., ;,(I) for I E E(0), Jy, -+, J,E {¢} U E(c0) by
] 1fJ;=Iand Jl’ ceo, Ji-l’ ];_H_, co0y Jd=¢
ey ad) 1= for some i {1, «-- , d},
0 otherwise.

Then it is easy to see that for any 7, ---, I,E E(c0) and a>1

8y, 8y, det M,

(5.28) s, 1Py »- ey, ;o)

T, gD, 5, T ) U B

Xdet [ajgl) coe 8]§a>M,,,1, cee, 3,511) coo ajga)My'd] .

Here M, ; denotes the j-th column of M, and we set 94:=the identity operator
if J=¢. On the other hand, from the definition of M,, we also easily see that for
0<a<v—1,J,, -+, J, € {¢} UE((»)) and v'>v

@5, +++ 87, M3)(0) = (8, -+ 8;, M) (0).

Hence, from this and (5.28) it follows that for 0<a<v—1, I}, -, I, E E((+))
and v'>v,

(61.1 a[a det M,,)(O) = (6'11 31‘, det M,,I)(O) .

In view of the explicit expression of 9, --- 9, in terms of 8; --- 9y, X

a b

v
det M,, 1<b<a,J,, -, Jy{L}, ---, I}, this implies that for 0 <a<v—1,
I, -, ,eFE((v)) and v'>v



194 SATOSHI TAKANOBU

(5.29) (a,1 by, det T )(0) (a,1 0y, < th)( ).

We continue the discussion in the case (A). We shall present the asymptotic
expansion of 0, (X*(1))=0y(X*(1)—xp) in D™ as ¢ | 0. Let v>y, again. Set
fII.---.I,,ERls I]a A Ia EE(OO)’ az> 1 by

1
Frot i= (a .y )(0),
vt i e get Mt

and define £, D>, a> 0 by

Eo = 1 3
5.30 s
( ) é-a: = “L 2 fll.“'JlU{l vee U{’ a>1.

=1 ]! e, [EG((o0))

I,
1)+ 1T =a
Then, from (5.29) and the definition of £{*”, we see that
EM =¢,  forany 0<a<v—y,.
Hence, by virtue of this and (5.24), (5.27) implies that
v-Yq
23 84FY(D) = e[ det ] (Fot 3 ¢, 33 £+ 5)+0(7 0 Y)
bvee=a  in D™ as e /0,
that is, there exists an s=s(v)>0 such that for any p>1
v-vg
125+ 8o(FS (D) =€~ | det £ “Eurt 3¢, T &+ E .-,

btc=a

= Q(e¥~Vt1~N) as ¢€}0.

Thus, combining this and (5.12), we have that for any p>1

V-Yg
[18,,(X(1))—e~¥|det 8| ~H(Eo+ = eab % €52 Elp, - svattaszlean

b+c=a

= O(eWTMAC=Y DNy gg ¢ 0.

Consequently, noting that by (5.11) (i), (,+N) A (v—ye+1) tends to infinity as
v 1 oo, we obtain the following theorem:

Theorem 5.31. Let Vy, Vy, -+, V,EC(R?, R?) and x,R°. Let X*(t, x,)
denote the unique solution of (4.1) (for these V;, i=0, 1, -+, n) starting at x,.
Suppose that the condition (4.7) is satisfied at x, and that u, defined by (5.21) is



DIAGONAL SHORT TIME ASYMPTOTICS 195

less than or equal to 2. Then &,(X*(1, x,)) has the following asymptotic ex-
pansion in D™ as ¢ |, 0:
8, (X1, X))~ eV |det B| 1 33 &P,
a=0
and ?P‘aef)::“, a> 0 are given by

To=5,, ¥,= &8, a>1.
b,c20
b+c=a

Here N, B, &, and E, are defined by (5.14), (5.2), (5.30) and (5.23), respectively.

Second, we consider the case (B). In this case, we observe by (5.22) that
Ko
bt = eMo2g® — EF'O_ZE ez-—a(aylurl(O))teH
= 3OOt OU T ) e
<o

— @ 7" )eg = b+0  as e} 0.

So we can take an ¢, >0 such that

(5.32) 5] >—;—|bl >0  forany O<e<e,.

By (5.20) and (5.17),

(5:33)  23-8,(F3(1)) = e™¥|det B] AT UL)5_e-cto-2e(iy U )
0<e<g,.

Recall that Ag,;, U™ is uniformly non-degenerate. From this fact, the follow-

ing is easily seen: For any p>1 and m>1,

sup sup (1+|o] z)m”au (AA(E(v)) ﬁ(l(y)))”p,—z([d/ﬂ-}-l) <+oo.

veR? o<e<e,
Hence, combining this with (5.32) and (5.33), we see that for any p>1, m>1
and 0<e<e,A¢g
(123 = So(F3(D)) |p,~2(CazaTe1)
<e ¥|det | - Cp,d”f\l(TEgiB U(l(v)))”zp.z([d/z]ﬂ)

x||o —e-“‘o-Z)bE(A(E(v))(? (1(”»)”21;,-2([,1/21+1)

oy _ 2 2m
e det f1 (2 )" Co 338 IATER U e
0

xsup sup (14 |2]9"[|8,(4 fon US)lap, —2ttapen -
vER® 0<E<E,

This asserts that [|x;«6o(Fy(D)ll,,—2aarz1en=0(¢") as &} 0 for any p>1 and
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m>1.Thus, putting this and (5.12) together, we obtain the following theorem:

Theorem 5.34. Let V, Vy,---, V,ECF(R?, R%) and x,R®. Let X*(t, x,)
denote the unique solution of (4.1) starting at x,. Suppose that the condition (4.7)
is satisfied at x, and that p, is more than 2. Then it holds that for any p>1
and m>1

185X *(1s XDy, -2tapreny = O(™)  as €} 0.

§ 6. Diagonal Short Time Asymptotics

Suppose that ¥, V,, -, V,EC7(R? R?) satisfy the condition (4.7) at
xER?. Let X°(¢, x,) be the unique solution of (4.1) for V;, i=0, 1, -, n
starting at x,&R’. By (4.3),

(61) p(eza Xo5 xo) = E[axo(XE(lb xo)) 4
where p(¢, x, y) is the fundamental solution of %=%$ II}'?—{—I/}(,. In this sec-

tion, we study the short time asymptotic of p(z, x,, x,). Let v, be the smallest
integer v satisfying (4.7) at x, and let x, be a nonnegative integer defined by
(5.21).

First, in the case (B), i.e., the case where #,>3, we easily see from (6.1)
and Theorem (5.34) that

p(t, xp, x) = O(t™) ast | 0 foranym>1.

Next, as to the case (A), i.e., the case where #,<<2. By (6.1) and Theorem
(5.31), we have obviously

(6.2) P(E%, Xy, Xg)~e~N |det B i; CE[T,] aselO.

Recall (3.12) (ii). From this fact, we easily see that

(6.3) {(i) E(—w) = (—1E,(w)  a=0,

() v, (—w) = (—D*TEVo,w)  a=0,

where T’ €Hom (R?, R?) is defined by T$((v);er):=(A"""o!),cy Here,
note that in general, it holds that for / >0, L, -+-,  EH and v R*

(Br, + B AT Va0 = |2 VA QT +ULID@, -v- B, 3rip ) (o) 2+0.

Hence, combining this with (6.3) (ii), we also see that
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Ea('"'w) =(_ l)aEa(w) (120 .
Thus, from this and (6.3) (i), it follows that ¥ (—w)=(—1)*% ,(w) for a>0,
and as its consequence, we have that
6.4) E7,)=0 ifais odd,

because the mapping wr— —w preserves the measure P. Therefore, by (6.2)
and (6.4), we obtain that

o

P, X, X))~V 33| det B| T E[ylt* ast 0.
b=0

It remains to study the positivity of the first constant ¢, appearing in this asymp-
totic expansion, that is, the positivity of E[d,(z,)]. But, under the case where
2#,<2 only, we are not able to show that. For this, we consider the following
strong condition (A)’ or (A)”:

(AY { On some neighborhood W of x,, I/}o is represented as IA/0= i‘; gt IA/,.
i=1
where gf€ C=(W), 1<i<n.
(AY" v,<3 and g,<2.

In what follows, under the condition (A)’ or (A)”, we shall show the positivity
of E[8,(v,)]: First of all, recall v,& D>(R*¥) given in (5.23):

A A 1
(6'5) Yy = a—i—A((,,o)) 0&('“0)) = [a, A((Vo))]liﬁg(vo))} ’
[a, Awn] = [V ) e, G T )1, rebom] -
First we consider the case (A). Set E(v):={I€E(); a(l)=0} and

G(v):=E°(»)N G(v). In this case, it is easy to see that for each I & E (o),
there exist g/ C=(W), JEE®(|I|) such that

(6.6) Vin=_ X gV onW.
JeE(|I)

And, we can see from (6.6) that for each v>1
La{Vin(n); I€GEN} = Le{Vin(x); IEG° W} .
Since, in particular, it follows from this that
ToR?) = LaAVin(x); IEG()}

an H appearing in (5.1) can be chosen in G%v,): HCG%y,). From (6.6) and
this choice of H, (5.3) is rewritten as follows:
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67 { (i 7’ =0L if JEH,

i) r7=0 if |I|=|J]+1.
Hence, combining (6.7) (ii) with (6.5), we have that

U = (5{I]l| TU)IEH,IEG"(VO)(Ull)]eao(vo) .

Note that rank [(0}7, 777);ca,7ec®0p]=#H=d by (6.7) (i). Thus, from this fact
and Proposition (A.13), the positivity of E[d,(7,)] follows immediately.

The positivity of E[d,(z,)] in the case (A)” can be shown in the same way
as above by noting that rank A\((\,o))Z#H =d.

Consequently, summarizing all the above, we have the following theorem:

Theorem 6.8. The short time asymptotic of p(t, x, y) at the diagonal (x,, X,)
is as follows:
(@) If 1,2, then

p(ta Xo» x())'\’t-N/2 E Cbtb ast \', 0
b=0

with c¢,=|det 8| E[¥,], b>0. Here N and f are defined by (5.14) and (5.2),
respectively, and ¥, is given in Theorem (5.31). Further, if either the condition
(A) or (A)” holds, then c, is positive.

(i) If #y=>=3, then p(t, x5, x,)=0(t") as t |0 for any m>1.

The condition (A)’ on IA/D is just one in Kusuoka-Stroock [10], and it clearly
contains the case where II>O—=‘O, which was treated by Léandre [11] and Ben
Arous [1]. Also, in the elliptic case, i.e., the case where Vl(xo), ceo, I'\/,,(xo)
span the tangent space at x,, this condition is automatically satisfied for any IA/O.
The following is a simple example satisfying the condition (A)” but not the
condition (A)’:

Example. (Kolmogorov [6]). Let d=2, n=1 and V1=I:(1):|, V0=[?Cl].

1
Then it is easily checked that for every x=[ ;:JER”, (i) the condition (A) is
not satisfied, (ii) N(x)=4, yy(x)=3 and

0 if x*=0

#o(x) = {3 if X120 |

Hence, by applying Theorem (6.8), we can obtain the diagonal short time asymp-

2
totic of the heat kernel p(z, x, y) of o1 & 1.0

x'—. But, in this case,
ot 2 9(xh? ox®
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p(t, x, x) is concretely evaluated:

V31 ( 6(x")? [x’}
t = X - —_—— t 0, = B
p(t, x, x) —— 75 %P p ) >0, x=| ",

So, when x'+=0, Theorem (6.8) (ii) is, for example, restated as follows:
lim—¢ log p(¢, x, x) = 6(x%)*>0.
t40

This example suggests to us that Theorem (6.8) (ii) has room for improvement.

Appendix

First of all, following Kusuoka-Stroock [9], we introduce the following
notations for I=(i,, :++, i,) € E(c0):

) ifa=1

I* = ia s I':= { \ .
(s =o*s Iymy) if a>2.

Let us fix v>>1 and let #C E(v) be a non-empty set satisfying the following:

If (il:v °tty ia)EI9 then (i15 °t%y ib)’ (ib+1’ °0% l',,)EIfOI' any
1<b<a—1, and (iyq, ***, izy) E X for any permutation =&, .

Putting 7 in place of E(v), we trace our discussions in § 1, §2 and §3: Set
G10) = INGE), G):= F\{O)} .
Note that
(A1) Gy) = GIy)  if (0)&T.
As before, we identify
{yDren Y'ER, IET} = RY,

and the coordinate system on R¥ is also denoted by y’, I&7. We understand
R¥'™ and R} similarly to B, Define Q! %(R¥), i = E by

w2 it wer,

Ql:={Ief;L,=i 0y

0 if ()&l

where y¢:=1 for convenience, and denote by g; the Lie subalgebra of ¥(R¥)
generated by O, i €E. Then it holds that
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R*'™ can be regarded as a Lie group with a multiplication x
defined by means of the Campbell-Hausdorff formula, and if §;

A2
(4.2 denotes the right invariant Lie algebra of R¥'®™), then gy is
isomorphic to Yy under the correspondence Q% R? .
Here
RI; = | an element of §; such as R{(0) = (;’-) if G)erl,
u'/o
0 if (&1L,

Since Q=0 for I € E(c0)\T and (11),0 =0, where Iy Hom (B*¥™, RH)
is a projection to R¥, the following follows from (A.2):

(A.3) R =0 for T€eE(o)\1.
(A4) (P})*RE’})] = R[II] for any /€ E(c0),

where Py Hom (R*™, R¥™) is a projection to R}'™, Let

b; := the Lie subalgebra generated by RY, i {1, ---, n} ,
I; : = the Lie subalgebra generated by RY, i {0, 1, ---, n} ,
i; : = the ideal in {; generated by Rf, i {1, ---, n} .

Then it is easy to see that

@ Y =by,
(A.5) () b=l =1 if O)&7,
l (i) dim i, = #G10) = #GI(»)—1  if (0)e1.

Next, recalling U{™=(U});eq(w introduced in § 3, we define
Ul i= (Uecty» UF: = (UDettn -
By (A.1) and (3.6), it is easy to see that
U1 if 01

(A.6) Ul— [

o if (0)e1.

Since UL=P};U, by combining (A.4) and (3.2), U¥ is the unique solution of

ek

{ dU, = 3} RI(U,)odwi
Uy=0.

Generally, for each u€ R¥ ™, Ul xu is the unique solution of the above SDE
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starting at u. So, from this fact, we see that for any 7, s >0

(LA)  P(Ui €du) = S PUIedux(—o)P(UiEd)  ucRH™.

I
Fracase

On the other hand, by Proposition (3.8), U {(E/D”(R“A;[(“))) is non-degenerate
in the Malliavin sense, and generally so is U I'for +>0. Hence, for each >0,
U* has a smooth density p, with respect to the Lebesgue measure on R,

POTedt) = pM)ds, LR
Thus, combining this with (A.6), we have

piw)du if )1,

(A8) PUied) = {a;(du")pt(a)da if O,

0 A
where u=[ 1f J, LERY, he REM, for ue R,
i

We further view the case when (0)é=Z. In this case, from (A.7) and (A.8),
we easily see that for any 7, >0 and ues R¥™,

(A9 i) = |, X (0D, (©)] dot 0, (—2) o

On the other hand, from (A.5) (i), (ii), the support of P(U{& ) coincides
with R¥'® for t>0 (cf. [7], [14]). Hence, from this and (A.9), it follows imme-
diately that p,(u) >0 for any >0 and u< R,

Next we view the case when (0)=7Z. To this end, define a smooth function
i R x R x RO 5 BRI _, RRIO) guch that the following holds: For
W, R and #, d& R

(A.10) [ ”0} x [ ”0] _[ e ] .

217l e 1@, o, . 9)
Then it is easily seen that
(i) for fixed u°, L*ER" and heE RO £ @, 2° &, <) is diffeomorphic,
(i) for fixed u°, "€ R and éER*‘A"("), f@, <, -, 9)is also diffeomorphic.
Further, putting (A.7), (A.8) and (A.10) together, we see that for any 7, s>0
and fE RO

by pt(f([+S5 -4, ﬁ, _6))175(13) ' det aﬁ.//‘({—i_sﬂ -5, f{, _‘UA) ' d‘Zj

riG™

(A1) i@ = |

On the other hand, if we assume that
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(A.12) [by, 1) )  for every us R¥H'™

then, by applying Theorem 6.1 in Kunita [7], this together with (A.5) (i), (iii)
implies that the support of P(UZ& -) coincides with R’ Hence, under the
assumption (A.12), it follows from this and (A.11) that p,(#)>0 for any >0
and n& R,

E%v):={I€E(»); a(I)=0} is in the case when (0)£Z; E((2)) and E((3))
are in the case when (0)E 7, and by virtue of (A.3), in these cases, the assump-
tion (A.12) is satisfied. Therefore, from the above, we can state the following:

Proposition A.13. For each t>0, (U})ex0neey =1, (UDretue) and
(UD;etey have positive smooth densities.
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