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The canonical forms of bounded unitary operators in Krein spaces, with respect to funda-
mental decompositions, are generalized to the case of unbounded unitary operators. In con-
nection with this there are also investigated unbounded selfadjoint projections and unbounded
symmetries in Krein spaces.

§ 0. Introduction

Unbounded unitary operators in Krein spaces have been considered in
[16] in connection with maximal extensions of isometric operators and in [17]
in connection with unbounded selfpolar norms (however, the definition in [4]
of a unitary operator is too large for our setting). On the other hand, bounded
unitary operators have certain canonical forms with respect to fundamental
decompos tions ([8], [9], [1]5 [2]). The aim of this paper is to show that these
kind of canonical forms can be carried over, with appropriate modifications, to
this general setting (see our Theorem 5.5 and Corollary 5.6). Let us briefly
present our approach: First, by reformulating the Cartan decompositions of
a unitary operator [17] one can reduce the problem to find canonical forms of
unbounded positive symmetries. So, a study of these unbounded symmetries is
needed. Further, from these we reach unbounded selfadjoint projections in a
Krein space (formally these operators were introduced in [17]).

This article is divided in five sections. Apart from results about the geom-
etry of selfadjoint projections, positive symmetries, and unitary operators, which
we need in order to solve our problem, we have considered in the third section a
characterization of the non-degeneracy of the closed linear span of a non-
decreasing sequence of non-degenerate subspaces of a Krein space in terms of
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the convergence of the corresponding sequence of selfadjoint projections., Also,

in the first section there is a specification of notation and terminology of Krein

space theory which will be used in this paper.
The referee has pointed out that something similar to our problem was

already considered in [12] (where [13] is also quoted) and that unbounded unitary

operators are used also in [14], From [12] one can obtain canonical forms of
unbounded unitary operators in a Krein space provided a certain regularity

condition is assumed. From our main result it follows, in particular, that this

regularity condition is automatically satisfied by any unitary operator in a Krein

space.

We thank the referee for making a useful observation which contributed to

a better formulation of our results.

§ 1. Notation and Terminology

Let JC be a Krein space and denote by [., .] the inner product of JC. If J_

stands for the orthogonality with respect to this inner product then a funda-

mental decomposition (in brief f.d.) of JC is a decomposition

c/L = eji, ~\~JC

where JC+, JC~~ are linear submanifolds ofJC such that JC+±_JC~ and (JC+, [.,.]),

(JC", —[.,.]) are Hilbert spaces. Usually we write

JC = JC+[+]JC-

in order to mark the orthogonality of the components. Also one denotes

*+(JC) = dim JC+ and /c~(JC) = dimJC~. The cardinal number *(JC) =

minK~(JC), K+(JC)) is called the rank of indefiniteness of the Krein space.

A fundamental symmetry (in brief f.s.) of JC is a linear operator / on JC

such that J2=I and the identity

(x, y)j = [Jx, y], x5y^JC

defines a positive definite inner product on JC such that (JC, (., .)/) is a

Hilbert space. The corresponding norm is called a unitary norm. Any two

unitary norms on JC are equivalent.

If we denote by «£(JC) the algebra of bounded linear operators in JC then

uniform, strong operator and weak operator topologies have the usual mean-

ing, with respect to an arbitrary unitary norm on JC.
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A subspace of JC Is a closed linear submamfold of JC. A subspace Jl of
JC is non-negative (positive) if [x, ;x]>0, xeX, ([x, x]>0, x^J?\{0}). X Is
uniformly positive if for some (equivalently for any) unitary norm ||«|| there
exists a >0 such that

[x, x]^a\\x\\2 , x^X .

Let JC =JC+[+]JC~ be a f.d. of JC, Then the associated f.s. is /=
J+—J~ where J± Is the projection of JC onto JC± along JC+. Also let ||°||
denote the corresponding unitary norm. If X is a non-negative subspace of
JC then J?+=J+J?is a subspace of JC+, the linear mapping

K:

is well defined, Kis a contraction, i.e.

and JC is the graph of K

Kis called the angular operator of _£ with respect to the f.d. JC= JC+[+]JC~.
Moreover, J2 is a positive subspace if and only If K Is a strict contraction, i.e.

Jl Is a uniformly positive subspace If and only If K Is a uniform contraction I.e.
||J^||<1. Xis a maximal non-negative subspace if and only If J+J?=JC+.

If °U Is an arbitrary subspace of J£ then ^U-1-^ {x^JClx^LV} denotes
its orthogonal companion and cU° = cUr\cU'±~ Its Isotropic subspace. V is
non-degenerate If <U°= {0} . ^U is regular If JC=cU+cU^a

Let c^! and JC2 be Krein spaces. If T is a densely defined operator,
)^Jil and Si(T)^JC2, then we let T* denote Its adjoint

[Tx, y] = [x,

If/,- is a f.s. on JC{, i= 1, 2, then T** denotes the (/15 /2)-adjoint operator of T, i.e.

(Tx, y)j2 = (x, r*j)7l , xt=3)(T) , y
Then

also holds. As a rule, positive operators, selfadjoint operators etc. on a Krein
space JC are understood with respect to the indefinite inner product of JC. If
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/ Is a f.s. on JC then /-positive operators, /-selfadjoint operators etc. are refer-
ring to the positive definite inner product (. , .)/.

§ 2c Selfaijoint Projections

Let JC be a Krein space. A linear operator P in JC is called a selfadjoint
projection if it is selfadjoint and idempotent, I.e.

Observe that with this definition a selfadjoint projection can be unbounded
(the meaning of the equality P2=P Is as follows: jR(P)c.0(P) and P2x=Px

for all x<=3)(P)).

2elo Proposifloiio A sub space J2 of the Krein space JC is the range of a
selfadjoint projection if and only if Jl is a non-degenerate subspace.

Proof. Let _£ be a non-degenerate subspace of JC. Then X+-£SJ~ is a
dense linear manifold in JC. We define a linear operator P in JC as follows :

and

Then P is correctly defined, 3L(P)=£ and P2— P. Observing that

it follows P c P*. In order to prove the converse inclusion let y be a vector in
jg>(P*). Then

[P*3 y] = [x,

Taking %e^ it follows y—P*y<=£^- while letting x^X^ we get
Therefore

Conversly, let P be a selfadjoint projection in JC. Then /— P Is also a self-
adjoint projection and jR(P) = ker (/— P), in particular 5i(P) is closed. In
order to prove that jR(P) is non-degenerate let %e5i(P)0. Then
and

0 - [x, Pj] - [P^5 y] = [x, y] ,

hence ^=0 follows since S>(P) is dense In JC.
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2,2 Remarks, a) Considering the following correspondence: to each
selfadjoint projection we let correspond the subspace determined by Its range,
then this Is a bijective correspondence between non-degenerate subspaces and
selfadjoint projections. Also, by the closed graph principle, It follows that
in this correspondence the regular spaces are precisely the ranges of bounded
selfadjoint projections.

b) If _£is a non-degenerate subspace of JC and P denotes the correspond-
ing selfadjoint projection onto Xthen I—P Is the selfadjoint projection onto
£-*-. X is a positive (negative) subspace If and only if P is a positive (negative)
operator. «£ is maximal positive If and only if P is positive and I-P is negative.

c) The existence of unbounded selfadjoint projections in JC depends
on wether ic(JC) is finite or not, more presisely, /c(JC) is finite (i.e. JC is a Pon-
tryagin space) If and only if any selfadjoint projection in JC Is bounded. This
follows from the well-known fact that Pontryagin spaces are characterized
within Krein spaces by the condition that any non-degenerate subspace is
regular (see e.g. [2], [3]).

d) Let us assume that &(JC) is infinite. Then, it was proved in [11] that
there exist two subspaces V and <3J in JC such that ^U is positive, ^ is
negative, ̂ Jj^ and the linear manifold T/H-^V is dense in JC, but neither ̂ U
is maximal positive nor cy is maximal negative. If we let O denote the linear
operator in JC defined as follows: 3)(Q)=CU+^V and

Q(x1-^x2) = x19 x^V, Xz^cV,

then Q Is a positive, closed, densely defined projection in JC which Is not self-
adjoint.

e) Let P be an unbounded selfadjoint projection in eX(from c) we neces-
sarily need /c(JC)=°o). Then ap(P)= {0, 1} and oe(P)=C\{Q9 1}, in particular
a(P) covers the whole complex plane. Q

For a maximal uniformly definite subspace X of the Krein space JC there
is an explicit formula of the corresponding bounded selfajoint projection onto
X in terms of its angular operator with respect to a certain f.d. of JC (cf. [5],
see also [10], [2]). The following result Is a generalization of this fact to the case
of maximal definite subspace, dropping the assumption on uniformity.

Let X be a maximal positive subspace of JC and K its
angular operator with respect to a f.d. JC=JC+[+]JC~'. We denote

(2.1) &+
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where I± is the identity operator on J(r. Then the selfadjoint projection onto Jl
is the closure of the following linear operator

HI^-K^K)-1 -K*(I_-KK*)~l 1
P= \ w.r.t.

K*K)-1 -KK*(I_-KK*)-1]

Proof, If X is a maximal positive subspace of JC then JE^ is a maximal
negative subspace, hence K and K* are strict contractions, equivalently I+—K*K
and I_—KK* are one-to-one. So the block-matrix operator P0 makes sense.

Let z be an arbitrary vector in J2)(P0)5 i.e.

z = (I+-K*K)x+(I_-KK*)y

for certain x e JC+ and y e JC~ . Observing

where P denotes the selfadjoint projection onto ^ it follows

P0Z = (jc-^^+^JC-^*^) = PZ ,

hence P0 c P. Therefore P0 c P holds.

In order to prove the converse inclusion let z denote an arbitrary vector
in S)(P). Then z=x+y for some x^X and y^J^ hence the representation

z =

for certain x+^JC+ and j~e JC"3 follows. We consider now the operator

"/+ -K*'
T =

-K
w.r.t. JC = JC+[+]JC~ .

Then Tis bounded and /-selfadjoint, where /denotes the f.s. determined by the
considered f.d.. Making use of the well-known factorization

r_, - -**i r7*-™ °
'.o /. J LO /..

and observing that the extremal operators in the right side are invertible, it
follows that T has dense range in JC. In particular there exist two sequences
(xn)neNc:JC+ and (y^)neNc:Ji~ sucht hat

xn—K*yn -> x+ , yn—Kxn -» y~ (w->oo).

Then take the sequence (zn)ne
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and notice that

zn ~ (%n •"- ,

-* x++Kx++y~+K*y- = z (n-~> oo)

and

PA = (xu-K*yJ+K(xn-K*yJ -> x++Kx+ (n-» oo

therefore P^P0 also holds.

Let (~Cn)n€=N be a non-decreasing (i.e. Xn^«£n+l, n^N) sequence of sub-
spaces of the Krein space JC and let X denote the subspace spanned by _£,,
n^N. The problem is to decide wether X is non-degenerate or regular, (Also,
let us observe that if the sequence of subspaces (-Cn)n(=N is non-increasing, the
problem of wether fl Xn is a non-degenerate or a regular subspace can be

n(=N

reduced to the above case by considering the orthogonal companions). It can
be shown by examples that even when all the subspaces J?n are regular (or, more
restrictively, _£*n are all non-degenerate and JC is a Pontryagin space) the sub-
space _£* can be degenerate (see [2], [3], [9]).

In this section we will give an equivalent characterization for the non-
degeneracy of _£ when all the subspaces JCn are assumed non-degenerate. In
order to do this we recall first the definitions of strong and v/eak graph con-
vergences (cf. [6], see also [15]).

Let (Cn)n^N be a sequence of linear operators in <JC. Then one can define
two linear submanifolds Gs((Cn)nE=N) and Gw((Cn)neN) of JCx J{ as follow: a
pair of vectors (x9 y)^JCxJC belongs to Gs((Cn)nGN) (respectively to Gw((C}J)n^N))

if there exists a squence (x^nezM^^ such that for any n^W, xnG£D(Cn) and

xn->x, Cnxn-*y (n-*oo)

strongly (weakly). In general these linear manifolds are not graphs of oper-
ators. If there exists an operator C in JC such that Gs(CH)nGN) = G(C)—thQ
graph of the operator C—(respectively, Gw((Cn)n^N) = G(CJ) one says that the
sequence (Cn)neN converges in the strong graph sense (in the weak graph sense,
respectively) to the operator C. Clearly, if the strong graph limit (or the weak
graph limit) of the sequence (Cn)neN exists then it is uniquely determined.
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In the following we shall consider the order relation on selfadjoint pro-

jections in JC determined by the inclusion of ranges, more precisely if P and Q

are two selfadjoint projections in JC then P<Q if 3l(P)c.<R(Q).

3ol0 Lemma, Let (P^n&N be a non-decreasing sequence of selfadjoint

projections in JC and^C the subspace generated by 3l(P^),

Then

G.((PJnm) = <?.((P.W)

Proof, It is sufficient to prove the inclusions

Since me TV is arbitrary we get

z-xe n 3KPJ-1- - X"- ,

The first inclusion is obvious. For the second, let (z, x) G Gw((Pn)n^, hence

there exists a sequence of vectors (zn)neN such that zn

and the weak convergences

Z M - > Z , PnZn~>X («->cx>)

hold. In particular X^L«£. If m e N is fixed then for any

[z, -P.Z., t] -> [z-^? fl (w-* oo) .

But, considering only n^mwe have

[z.-PA, r] = [(/-PJz., Pmr] - o ,
hence

i.e. z=x+j for some

In order to prove the last inclusion let x^^C and y^^C^-. Then

n SL(P^= n k
«ejy «e^V

Also, there exists a sequence of vectors (xn)neN, xn^<R(Pn)9 n^N such that

xn-*x (n-*oo)

strongly, hence the strong convergences
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hold, i.e. (x+ y, x) e G,((PJn6N). H

3.2. Proposition. Let the assumption of Lemma 3.1 A0W. The following

assertions are equivalent :

( i ) The subspace X is non-degenerate,

(ii) The sequence (P^n&N converges in the strong graph sense.

(ill) The sequence (Pn)nGN converges in the weak graph sense,

Moreover, if one (hence all) of these assertions holds then the limits from (ii) and

(iii) coincide with the selfadjoint projection onto the non-degenerate subspace X.

Proof. (i)=Kii) If X is non-degenerate let P be the selfadjoint projection
onto X Then

G(P} =

hence, by Lemma 3.1, the sequence (Pn)nGN converges in the strong graph to P.

(ii)=^(iii). Obvious, also by Lemma 3.1.

(iii)=^>(i). If (PH)neN converges in the weak graph sense then Lemma 3.1

says that the linear manifold

is the graph of an operator, i.e. x+y=®, x^X and je X^ implies #=0,
hence X°=Xn X^= {0} , i.e. X is a non-degenerate subspace. H

3.3. CoroISary8 Let (Pn}n^N be a non-decreasing sequence of bounded

selfadjoint projections in <JC and denote

Then X is regular if and only if the sequence converges in the strong graph (equiv-

alently, in the weak graph) to an everywhere defined linear operator.

We end this section by showing that in the situation from Corollary 3.3 one

cannot use, in general, neither the strong operator nor the weak operator

topology.

3.4e Lemma* Let (Pn)ne]v- be a non-decreasing sequence of bounded self-

adjoint projections in JC. The following assertions are equivalent:

( i ) (Pn)n<=N *s uniformly bounded.

(ii) (P^)n<=N converges in the strong operator topology.
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(ill) CPB)wSjv converges in the weak operator topology,

Proof. (i)=i>(il) Let || ° || denote a unitary norm on JC and assume

M=sup||PJ|< + oo.
»e=2V

We prove first that the sequence (Pn)neN converges in the strong graph. Let
(xn)*GN be a sequence of vectors in JC such that

for some j>e JC. Then, for any n^NwQ have

and letting n-^-oo we get y=Q. Hence, by Proposition 3.2 it follows that the
subspace V ^V^ *s non-degenerate, in particular the linear manifold

«e^

3) = U PnJC+ n (I-PJJC

is dense in JC. Observing that for any x^^D the sequence of vectors (Pnx)neN

converges and taking account of the uniform boundedness of (Pn)new it follows
that (Pn)n€=N converges in the strong operator topology.

(ii)=^>(iii) O bvious.
(iii)=^>(i) This is a consequence of the uniform boundedness principle in

Hilbert space. ffi

3.5 Remark. The proof of the implication (i)=^(ii) in Lemma 3.4 can be
done also by means of Alaoglu Theorem but we prefered this very elementary
way.

>Ie0 Let M be a separable, infinite dimensional Hilbert space
and {gk}keN an orthonormal basis of M* Take <K=M@M and the symmetry
/ defined as follows :

Then, defining the inner product

IX y] = (Jx, y) , x, y^JC ,

(JC3 [. , .]) is a Krein space and / a f.s. on JC. We consider two sequences
of vectors of JC.
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k=rk+l

and the non-degenerate subspaees

-£ = <*!>,
£k = <el9 .», eh;f19

It is easy to see that the linear manifold

is dense in <j£, hence, if we let Ph denote the selfadjoint projection onto JC^

k^.N, (Pk)k<=N converges in the strong graph (and in the weak graph, too) to
the identity operator on JC. Let us remark that the subspaees -Ck are all
regular, hence the operators Pk are bounded.

On the other hand, it is easy to see that

hence

Pt(gk®-g

therefore

By means of Lemma 3.4 this means that (Pk)k<=N cannot converge in the weak
operator topology.

§4, Positive Symmetry Operators

A densely defined linear operator U from J^ into J£2> where JCX and JC2

are Krein spaces, is called unitary if it is one-to-one and

U® = U~l

(cf. [16] and [17]). A unitary operator is always closed but in general unbounded.
A linear operator S in a Krein space JC is called a symmetry operator if it

is selfadjoint and unitary, i.e.

s = s9 = s-1 .
4.1. Remarks a) A linear operator S in the Krein space JCis a symmetry
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operator if and only if the operator

is a selfadjoint projection. In this case

S = 2P-I

also holds and this relation defines a bijective correspondence between sym-
metry operators and selfadjoint projections. Moreover, denoting «£=jR(P)
then 2)(S)=j:-}-J:-1- and

A.3 \^i i~ -%2s == *^1 "^2 "> *^1 ̂ ^ "^ ? • '̂2 ^^ •E" -̂' °

Also we have

X = ker (8-1) , .X^ - leer (S+J)

b) The symmetry 5 is bounded if and only if the subspace ker (5— /) is
regular.

c) The symmetry S is positive if and only if the subspace ker (S—I) is
maximal positive.

d) A linear operator is a fundamental symmetry of the Krein space JC
if and only if it is a bounded positive symmetry operator in JC.

e) Let JC be a Krein space. The following statements are equivalent:
( i ) ic(JC) is finite.
(ii) each symmetry operator in JC is bounded.
(iii) each positive symmetry operator in JC is bounded.
f) Assume /c(JC) infinite and let S be an unbounded symmetry in JC.

Then ap(S)={-l, 1} and </c(S)=C\{-l, 1}.

Positive symmetries were also considered in [17] (in that paper they are
introduced under the name of ^-positive ^-unitary operators) in connection
with some other geometrial aspects of Krein spaces (see also [7] for related
ideas).

In the remaining part of this section we focus on producing some canonical
forms of positive symmetries in terms of angular operators.

4o20 Lemma Let X be a maximal positive subspace of JC, K its angular

operator with respect to af.d. JC=JC+[+]JC~ , and the linear manifolds 13)+ and
3)^ defined by (2.1). Then the positive symmetry S which corresponds to J?
(i.e. such that J?=kQT(S— /)) is the closure of the following linear operator
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° "" \2K(I+-K*KTl -(I_+KK*)(I_-KK*)~

w.r.t.

Proof. Let P denote the positive self adjoint projection onto _£. By
Proposition 2.3 P is the closure of the operator P0 defined at (2.2). It remains
to notice that S0=2PQ—I. [7j

4.3. Lemma Let S be a positive symmetry in the Krein space JC. Then,
for any maximal uniformly positive (maximal uniformly negative) subspace ^
ofJC, <D(S) fl V is dense in V and S(3)(S) fl V) is a maximal positive (maximal
negative, respectively) subspace.

Proof. Let *U be a maximal uniformly positive subspace of JC and denote
JC+=cUandJC~=cU^. Then JC= JC+[+]JC~ is a f.d. of JC. Taking j?=
ker(S— 7) it follows that Jl is a maximal positive subspace of JC. Let J^ be
its angular operator with respect to the f.d. JC=JC+[+]JC~ . Then Kisa strict
contraction. According to Lemma 4.2 S is the closure of the operator SQ

defined in (4.1). Since

$(s) n JC+ 2^(5o) n JC+ = $+ 5

(recall that $)+=!R(I+—K*K) Is dense in JC+) the first part of the lemma is
proved.

Further, it is easy to see that

= {x+2K(I++K*K)~1x\x^J{+}

and

(4.2) S(3)(S) n JC+) = SQ3)+ = {x+2K(I++K*K)~lx \ XSE JC+} ,

i.e. the angular operator of the subspace S(*D(S) n JC+) is the operator
2K(I+4-K*K)~1. It remains to prove that this operator Is a strict contraction,
i.e.

(4.3) \\2Kx\\<\\(I++K*K)x\\ , *EEJ£+\{0> ,

(||° || Is the unitary norm associated to the f.d. JC=JC+[+]JC~). It is easy
to see that this is equivalent with

(4.4) \\(I+-K*K)x\\> 0 , *e JC+\iO} ,

which is evidently true since K is a strict contraction. [3
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4.4. Remark. It will be proved in Lemma 5.4 that the above fact holds for
any unitary operator.

4§o Proposition., Let S be a maximal positive subspace of the Krein space
JC and T its angular operators with respect to the f.d. JC=JC+[Jr]JC'', Then
there exists a unique positive symmetry S in JC such that S(£D(S)r\JC+)=<S and

this is the closure of the following linear operator :

[-(/_,_ -r*rr1/2 _r*(/ -
(4.5) S0 = ' , , w.r.t.

lT(i+-T*T)~1/2 -(/_-ir*)-1/2 J
where we have denoted £)+= &((!+- T*T)l/2^JC+ and ^_=

Proof. Let S be a positive symmetry in JC such that S(<D(S) ft JC+)= <S
holds. Then, representing S as the closure of the operator S0 defined in (4.1)
with a strict contraction K, it follows from (4.2) that

(4.6) T = 2K(I++K*K)~l .

So we are led to prove that there exists a unique strict contraction K which
satisfies (4.6). To this end we first observe that if K satisfies (4.6) then

\T\ =

where, as usually, | T\ =(T*T)1/2. Considering the function 9: [0, 1]->[0, 1]

we have

\T\=v(\K\),

(e.g. by continuous functional calculus). But <p is invertible, more precisely,
"1 is continuous and

9 "= t '
( 0, t = 0

hence, also by continuous functional calculus, we have

On the other hand, (4.6) implies that kerl^kerA: and <R(T)=(R,(K) hence
it is easy to see that the partial isometries which correspond by left polar de-
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compositions to T and K respectively must coincide. If X denotes this
partial isometry then

K=X9~\\T\)

is the unique strict contraction which satisfies (4.6). Indeed, K is clearly a
contraction and it is strict since (4.3) is equivalent to (4A).

It remains to show that if (4.6) holds then the operator SQ has the block-
matrix representation (4.5). Indeed

hence

(/+-r*r)-1/? - (
and then

T(I+-T*T)-l/2=2K(I+-K*K

Similary we get

and

r*(/_-7T*)-1/2 = 2K*(I_-

therefore 50 has the representation (4.5) in terms of T. [7]

In this section we let JCj and JC2 denote Krein spaces.
At the beginning of the preceding section we have specified what we mean

by a unitary operator in Krein spaces.
We state first, for the readers' convenience, a result which was proved

essentially in [17] (the so-called Cartan decompositions).

Solo Theorem Let U be a unitary operator from J^ into JC2 and Jf f.s. of

JCif 1=1,2. Then U admits the following representations

U= VAl = A2V

where V, Alf A2 are uniquely determined by the following properties:

(a) V is a unitary and (Jv J^-unitary operator from JC1 into JC2 (in particular

V is bounded).

(b) A{ is a J ̂ positive, J^se If adjoint, unitary operator in <JCif /=!, 2.

Proof. Consider U as a closed, densely defined operator from the Hilbert
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space (JC19 ( . , . )/1) into the Hilbert space (JC2, ( . , . )/2). We factor U accord-
ing to the polar decompositions

U= VAl = A2V

where
A,. = (U*U)l/z , A2 =

and V is a (/1? /2)-unitary operator. Since U is unitary,

U~l= U* =

it is easy to verify the following equalities

u^u-1* = u-lu*-1 = (u*U)-1 ,

i.e. JlA\Jl=(Ai1)2. Therefore, since

J \A\JI = (J \A-iJ i)
holds and J^A^ is /^positive J^selfadjoint, from the uniqueness of the square
root operator property we infer A^1=J1A1J1, i.e. A1 is a unitary operator in
JCr Similary one shows that ^2 is a unitary operator in JC,. Then, for
arbitrary x9 y^JCi we have

[A,xl9 A,y] = [x, y] = [Ux, Uy] = [VAlX, VA.y] ,

hence V\3l(A^ is isometric. But Si(A^ is dense in cXx and V is bounded
invertible (since it is (/15 /2)-unitary operator) hence V is also unitary. H

For our purposes it is convenient to reformulate this theorem as follows:

5.20 Lemma Let U, Jl and J2 be as in Theorem 5.1. Then U has the re-
presentations

u

where W, Slr S2 are uniquely determined by the following properties:

(a) W is a unitary and (Jlt J2)-unitary operator from JCi into JC2.

(ft) S{ is a positive symmetry operator in JCi9 z=l, 2.

Proof. We consider the representations of U obtained in Theorem 5.1 and
define

W = VJ, = J2V, S, = J,A, , S2 = A^

Then W is unitary and (Jlt J2)-unitary. Also, it is easy to verify
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and

hence Sl is a symmetry operator in cKv Moreover

[J^x, x] = (A&, x)fl>Q ,

therefore Sl Is a positive symmetry operator. Similary one proves that S2 is
a positive symmetry operator in JC2. D

5.3. Remarks a) In order to exist unitary operators from J^ Into JC2 it

is necessary and sufficient that K+(JC1)=/c+(JC2) and K~(JC1)=K~(JC2).
b) Let JC denote a Krein space. Then tc(JC) Is finite If and only if any

unitary operator in <3C is bounded.
c) A linear submanifold 3) of a Krein space <K is the domain (equivalency,

the range) of some unitary operator if and only If 3)=-C+J2J~ for some maximal
positive subspace J2 of JC.

5o4a Let U be a unitary operator from Jfx into JC2 and *!] a
maximal uniformly positive (maximal uniformly negative) subspace of JCV Then

^(U^nV is dense in °0 and U(*D(U)r\ C0) is a maximal positive (maximal
n-egative, respectively) subspace of JC2.

Proof. Considering the representations obtained in Lemma 5.2 we notice
that 3)(U)=3)(Sd and

Then use Lemma 4.3 and take account that W Is bounded unitary operator. Q

5.5 Theorem Assume j:±(JC1)=x±(JC2) and consider twof.d. JC,-= JC?[+] JCr
z=l, 2. Let Jibe a maximal positive subspace of JC2, T its angular operator with

respect to thef.d. JC2=JC2[+]JC2 and denote

Then, the following assertions are equivalent:
(i) The unitary operator U from J^ into JC2 satisfies U(*D(U) n JCi)=-C.
(ii) U is the closure of the linear operator U0

/+ - r* r)-1/2 v+ r*(/_ - ir*)-1/2 v_UQ ~

w.r.t.



222 AURELIAN GHEONDEA

V+(=j:(JCl, JC1), F_e^(JCr? JCz) unitary operators.

Proof. If U is an arbitrary unitary operator from J^ into JC2 let

be the representation obtained in Lemma 5.2. Since W is unitary and (J19 /2)-
unitary operator it follows

w.r.t. JCt = JCn+]JCT , i=l,2.
rw+ o "

w = LO w__

Define V+=W+ and V_ = -W_. Observing that U(3)(U)n<K1)=-C if and
only if S2(<3)(S^ n J£t)=-£ it remains only to apply Proposition 4.5. ffl

5.6 Corollary Assume /c^(JC1) = K±(JC2) and consider two f.d. JCi==

cXt[-\-]JCT i=l,2. Let J? be a maximal positive subspace of JClt T its angular

operator with respect to the f.d. JC1=JCi+JCr and denote

Then the following assertions are equivalent:
(i) The unitary operator U from JCX into JC2 satisfies
(ii) U is the closure of the linear operator

__
0 ~~ - v_ T(i+ - T* iy1/2

, JC2
+), F_e^(JCr, o^F) are ww/farj operators.

5.1 Remark The canonical forms obtained in Theorem 5.5 and Corollary
5.6 can be also regarded as parametrizing the class of unitary operators from
JQ into JC2, when K±(JC1)=K±(JC2) are assumed (in [8] this was the original
motivation to obtain them, when only Pontryagin spaces are considered; later it
was observed that they hold for arbitrary bounded unitary operators in Krein
spaces and their geometric interpretation was also added, [1]). If instead of
using the canonical form of a positive symmetry in (4.5) we use (4.1) then dif-
ferent parametrization formulae of the class of unitary operators from J^ in JC2

can be obtained (we leave to the reader to write down explicitely these state-
ment). But the geometric interpretation is less clear in this case.

We end by some simple observations concering spectra of unitary operators.
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5.8 Remarks a) The symmetry of the spectrum of a bounded unitary

operator (e.g. see [3]) Is preserved also for unbounded unitary operators, I.e. if

<JC is a Krein space, U Is a unitary operator in JC, X ̂ 0 is a complex number

and A* = — then:

implies **Gop(U)\Jar(U) .

X <E ar(U) implies

l<=oc(U) implies

implies

b) Let JCbe a Krein space, U and A linear operators In JC, e, f eC7 such

that |e|=l and f={=f. Then the following relations are equivalent (e.g. see

[3]):

(i) kerG4-£/)={0}, U=e(^-
(ii) ker(C/-5/)={0}5 ^=(fC7

Assuming these relations satisfied It follows that U Is unitary and s^ap(U) If

and only If A is selfadjoint and %^oc(A) U p(/4).

c) In [3] It is constructed a bounded selfadjoint operator A in a Krein space

such that it possesses a value 5^ac(A), f= t= f . Then we let 27 denote the

Cayley transformation of A corresponding to f and 5=1, conform Item b).

Taking account of the behaviour of spectra under the Cayley transformation

(see also [3]) it follows that U is an unbounded unitary operator in JC with non-

void resolvent set (compare with Remark 2.2. e) and Remark 4.1. f)).
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