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Takeuti and Titani [15] have demonstrated that, given a manifold B with topology Q =
O(B), the internal notion of an apartness vector space in F^ and the external notion of a vector
bundle over B are no more than two representations of the same entity. The principal objective
of this paper is, first of all, to internalize fibre bundles on the lines of Takeuti and Titani [15],
and then to establish various internal-external interconnections around this. For example,
we show that the external notion of integration over the fibre corresponds to the usual in-
tegration on internalized manifolds within V^i. The paper attains its climax as we discuss
the internal and external aspects of an internalized version of celebrated Stokes theorem.

§1. Introduction

The notion of a fibre bundle plays a significant role in geometry of manifolds
and the main purpose of this paper is to demonstrate that many constructions
and concepts on fibre bundles have their natural interpretation in Heyting valued
set theory. Let f=(E9 n, B, F) be a smooth fibre bundle, where E Is the total
space, B Is the base space, K\ E-+B is the projection, and F Is the typical fibre.
In the first place, after reviewing some rudiments of Heyting valued set theory
in Section 2, we show, on the lines of Takeuti and Titani [15], that the total
space E can be regarded as a smooth manifold E°° in F(/3) with Q being
the topology of the base space B, which will be done In Section 3, In Section
4 we show that every vector bundle Z over E can be Internalized as a vector
bundle Z°° over E°° In F(J3). As an application of this idea, we will find out
what the tangent and orientation bundles of E°° look like externally. Section 5
is devoted to differential forms with a result on the existence and uniqueness
of exterior differentiation in V(Q^. The first main result of Section 6 Is that the
well-known external notion of fibre-compact support corresponds to the Internal
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notion of compact support, whose definition requires some elaboration, since
closed sets are not well-behaved creatures in intuitionistic topology. Then
we can define integration of differential forms with compact supports on ori-

ented smooth manifolds in F(/?). As an application of this idea, we will show

that the well-known external notion of integration over the fibre has its internal

counterpart. Just as differential calculus and integral calculus of high school

mathematics are related in the fundamental theorem of calculus, Stokes'

theorem is the crystalization of relationship between differentiation and inte-

gration on manifolds. Thus Section 7 is devoted to Stokes' theorem In V(Q\

There we will demonstrate that the well-known commutativity of exterior

differentiation and Integration over the fibre, say,

is an external restatement of an Internal version of Stokes9 theorem In disguise,,
The final section is reserved for an open problem.

As Is well-known, not every classically equivalent definition yields an

intuitionistically equivalent definition. Therefore we agree that we should try

to make it clear which classical definition we adopt as our internal one. How-

ever we will usually neglect to write out the appropriate apartness relation on

each occasion, though we prefer apartness. As far as this paper is concerned,

to provide such a definition would always be a routine, and its details are often

cumbersome both for the author to write out and for the reader to make out.

Thus we have chosen to be loose In this matter. Last but not least, since we

deal with two set theories ZFC and ZFI5 we feel it a must to make it explicit

which set theory our definitions and theorems are made with respect to, though

most of them are made within ZFC.

§2, Intuitionistic Set Theory

In this section we review some rudiments of Heyting valued set theory of

Takeuti and Titani [13, 15] and intuitionistic linear algebra of Ruitenberg [11].

2.1. Intuitionistic Set Theory

By ZFZ we mean a first-order Intuitionistic theory with a unary relation

symbol E and two binary relation symbols e and = satisfying the following

nonlogical axioms :

(Al) Equality axioms: u=u,
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-*?>(v)5 and (Eu\/ Ev-*u=v)-*u=v.

(A2) Extensionality :

(A3) Pairing: §z v;

(A4) Union: ^v^x(

(A5) Power sets: §v

(A6) e -induction:

(A7) Infinity: ^v(^

(A 8) Separation: g

(A9) Collection: 3v(v*Gw 3y<p(x, y)-^^x^u 3y&v<p(x, yj).

In the above list v*°'° and 3%°°- are abbreviations of Vx(Ex-*"°) and 3x

(ExA°-). Since Vx and 3* will usually appear in these forms, we will often

write Vx and 3x simply for y* and 3 :̂.

Let V be a standard universe of ZFC and let Q be a complete Hey ting

algebra. For each ordinal a we define V^ inductively to be the set of all order-

ed pairs <X Euy such that:

(1)
(2) u is an J2-valued function defined on a subset 3)(u) of V^ for some ordinal

(3)

Now V^ is defined to be the class \]^0nV
(°\ which is to be called an (Q-

valued) sheaf model, can be considered to be a Heyting valued model of ZFX by
defining l[Eu]\ with

(1)

and by defining [[z/evj and [[w=v]] with the following simultaneous induction

(2) QH e vl = V >e <D(v) (v(y) A ffw - j^I),
(3) [[w = vj — A^e^)(M) («(^)->[T^evI] A

and then by assigning a Heyting value H<p]] to each nonatomic sentence 9 in-

ductively as follows :

(4) I-
(5) ff<
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(7)
(8)

(9)

Now we have

Theorem 2.2.1. V™ is a model

The class F can be embedded into F(/3) by transfinite induction as follows :

y = {<Jc, 1> I x^y} and E y = 1 for j<E F .

For we F(j?) and j7e«0? we define u\ p to be the element of V(Q} such that

= v {«(OA/>I /e^?(w), trp = *\~p} for
and E(u\~~p) = Eu/\p.

In the sequel we implicitly identify je, j; e F(^} time and again provided

2.3. Sheaves over Complete Hey ting Algebras
A presheaf over a complete Heyting algebra & is a triple <S, £, f~> of a set

S1 and two functions E: S-*£ and F: Sxti->S with the following properties:

(1)
(2)
(3)
(4)

For convenience we often say simply that S is a presheaf over Q without
mentioning E and f~ explicitly. Members a, A of a presheaf S over J2 are said
to be compatible whenever a[~ Eb=bV~ Ea. A subset F of 5 whose members
are pairwise compatible is called compatible, A presheaf S over J2 is called a
.s/sea/ over <0 if for any compatible subset F of S there exists a unique g^S
such that:

(1) /e=F implies gn3f = /,
(2) Eg=ViEf\fGF}.

The subset {aeS|£'a=Jp} is denoted by r(p, S).

Theorem 2.3.1. For any weF(«, u={xGVm\^_xGu]\=EX} is a sheaf
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to be called the sheaf represented by u. Conversely, for any sheaf S over Q, there
is an element t/e F(j2) such that the sheaf u represented by u is isomorphic to S,

Similarly we have

Theorem 2.3.2. Let ul9 u2<= V(Q\ Then any function f: u^u^ in F(j2) ren-
ders a unique function f: Ui~*u2 such that for each at=ul9

E~U1 a = E~J(d) = ff<X /(a)>e/a .

This gives a bijective correspondence between functions /: ul-^>u2 in J7^ and
functions g : iij— >fi2 such that

E~1a = E~2g(d) and g(a) \~ p = g(a [~»

for any p^@ and

2A Intuitionlstic Linear Algebra

Befmitioii (ZFj). A relation =|= on a set S is called apartness if for any
a, b, c^S, we have:

(1)

(2) a=
(3)

ition (ZFj). A ring S with apartness =|= is called an apartness ring
if for a, b, c^S, we have:

(1)
(2) a^pbAc^Q -* ac^bc.

ffiitioii (ZFj). An apartness ring 5 with 1 is called an apartnes field
if for any a^.S, we have:

(1) 1*0;
(2) a*0 -» 3a~1(a~1^=QAaa~^ = l),

Definition (ZFj). Let F be an apartness field. Then an F-module T with
apartness * is called an apartness vector space over F provided for any a, a' c
and any u, u', v, vr GE T, we have:

(1) au^pa' u' -> a^a'
(2)

Definition (ZFj). Let T be an apartness vector space over an apartness
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field F. A finite set {el9
 a~,en} of vectors is called an apartness basis if

(1) {ev ° ° ° , e n } is apartness linearly independent, i.e.,

V{a15 .-., an} cFfa^O -> a, e,+ ̂ +an

(2) T is generated by {e19 • • • ,<?„} , i.e.,

Theorem 20401 (ZFj). Le/ r &e arc apartness vector space over an apartness

field F. If {el9 • • • , em} and {e{, • • • , e£} are bases for T, then m=n.

Definition (ZFj). Let Tx and T2 be apartness vector spaces over an apartness

field F. A mapping 99 : Ti— > T2 is called a homomorphism if

Vw, verx Va, b^F(<p(au+bv) = a<p(u)-\-b<p(v)) .

A homomorphism 9: rl->r2 is called an embedding if

Vw, ve 7i(^(M) = p(v) -> w = v) .

A homomorphism 9: Tl~^T2 is called an apartness embedding if

An (apartness) embedding <p: ri->T2 is called an (apartness) isomorphism if

1
1(9(w) = v).

Let F be a standard universe of ZFC and let $ be the topology of a smooth

manifold B. Then the set R(Q) of all real numbers in V(Q} is defined to be the

set of all ordered pairs <X, C/> of subsets of Q such that

(1)

(2)

(3)

(4) Vr<=Q(r<=L *-* 3s<=Q(r<s/\s<=L)),

(5)

We denote by 12°° the subfield of R(Q} whose representing sheaf is the sheaf

of all real-valued smooth functions on open subsets of B, while the representing

sheaf of H^ is the sheaf of all real-valued continuous functions on open subsets

of J3. In most of the paper M°° plays a role of R internally, but we should note

that R°° fails to be a real-like field. Indeed, J2°° is an apartness subfield of
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containing R, but it is not complete. Therefore, in discussing integration on
manifolds internally in Section 6, we have to make a detour through R(Q}.

§3o The lEteraaltzattoii of Fibre

First of all, we recall some definitions in the arena of differentiable mani-
folds.

Definition (ZFC). An n-dimensional topological manifold is a paracompact
Hausdorff space M whose every point has a neighborhood homeomorphic to
an open subset of Rn. In this case we write n=dim M. A chart for the n--
dimensional topological manifold M is a triple (U, u, V), where U is an open
subset of M, V is an open subset of R*9 and u\ U->Vis a homeomorphism. A
chart (U, u, V) is called cubic if V is C3, where Ce= {(x\ —, xn)^Rn \ \xl \ <e,
f=l , • • • , n} for each e>0. A chart (17, M, F) is often denoted simply by (17, M),
since F is determined completely by the former data. An atlas on the n-

dimensional topological manifold M is a family of charts {(Ua, u^}a<=Jl with

(ZFC). Let M be a topological manifold. Then an atlas

> w*)}aecjZ for ^ is called smooth if the map

i/^cV: ̂ (U& n t/,) - f/.cc^ n v$

is smooth (i.e., infinitely differentiable) for any a, fi^Jl. Two smooth atlases
are called equivalent if their union is again a smooth atlas. A smooth structure
on M is defined to be an equivalence class of smooth atlases on M. A topol-
ogical manifold endowed with a smooth structure is called a smooth manifold.
A chart of a smooth manifold will always mean a chart in a smooth atlas of the
smooth structure.

DeieStioe (ZFC). Let M, N be smooth manifolds with their respective
atlases {(Ua, u^}a^Jl and \(V^ v£)}0^&. Then a continuous map 9: M-*N
is called smooth if the map

v^ou-1: u^u. n p-TO) -> MF,)

is smooth for any ae^, fi^J$. A smooth map 9: M—>N is called a rfz/-
feomorphism if it has a smooth inverse 9"1: N-*M. Two smooth manifolds
M, Af are called diffeomorphic if there exists a diffeomorphism 9: M-*N.

(ZFC). Let n: E-^>B be a smooth map between smooth mani-
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folds. The map n Is said to have the local product property with respect to a
smooth manifold F if there is an open covering {U^a^JL of B with a family

of diffeomorphisms

such that

for any xe U^y^F. The system {(E/*, 9j}ae J? is called a /oca/ decomposition
of TT. A smooth fibre bundle is a quadruple (Is, TT, B, F), where TT: E-^B is a
smooth map of the local product property with respect to a smooth manifold
F. A local decomposition for n Is called a coordinate representation for the
fibre bundle. In the fibre bundle (E9 ?u9 B, F) the spaces E9 B and F are called
the total space, the base space and the typical fibre respectively. We will often
say simply that E is a smooth fibre bundle provided the other three components
7r3 B and F are clear from the context. A cross-section of a fibre bundle (£", TT,
B, F) on an open subset U of 5 is a smooth map a: U-*E such that nocs=tu.
We denote by J"(C/) the totality of cross-sections on U.

Now we recall some definitions and results of internal topologies.

Definition (ZFX). A set O(X) of subsets of X is called a topology on X if
Jfe0(X) and O(X) is a cHa with respect to binary Intersection and arbitrary
union. A special set X endowed with topology Q(X) is called a topological

space. A topological space X with apartness =1= is called a separated space if

(1) VxElX(iy^X:y*x}<EEO(X)l and
(2)

A separated space Xis said to be Hausdorffif

Vx, ytEX(x*y-»BU, V<=O(X) (x^U/\y^V/\(UftV = 0))) .

(ZFC). Let 10 be a topology O(B) and X be a separated space
in V(Q\ We define a topological space X from JSf as follows:

X= i(t,x)

where (t, x)~(t'9 xf) iff ^r'^Hx^^;']]. We denote the equivalence class con-

taining (t, x) by <V, xy. For each U^O(X)9 the corresponding subset U of X
is defined as follows:
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U= i<tyxysEX\ttE\[xzEU]\} .

Set Q(X)={Uc:x\ i/eogr)}-

Theorem 3d (ZFC) (Takeuti and Titani [15]). If Q is a topology Q(B) and
X is a separated space in V^\ then X is a lopological space with topology O(x).
In particular, M°°=BxM.

Theorem 302 (ZFC) (Takeuti and Titani [15]). Let Q be a topology 0(B}

of a Hausdorff space B and X be a separated space in V(Q^. Then X Is a Hausdorff
space in V^ iff X is a Hausdorff space,

Definition (ZFj). Let X and Y be topological spaces. Then a function
/: Jf->Fis continuous if VU<=O(Y) (f'\U)GO(X)).

Theorem 303 (ZFC) (Takeuti and Titani [15]). Let Q be a topology O(B).
IfX, Y are separated spaces and f: X—>Y is a continuous function in V(a\ then
the function f: X—> Y defined by

is continuous. Furthermore, if /is an apartness homeomorphism in V(Q) (i.e.,

^Vx9x
f^X(x^xf^f(x)^f(xf))AVy^Y3x^X(f(x)=y)Ar1: Y~>X is con-

tinuous]^!), then /: X— >Fis a homeomorphism.

(ZFj). Let X be a topological space. A subset {C//}ie/ of
0(X) is called an open covering of X if [Ji<=/U~X. An open covering
{U&i&g is said to be locally finite if there exists an open covering {Uj}j^/ of
X such that the set {i^$\ Ui fl U^<t} is finite for each j'e ^. The space X is
called paraconipact if for every open covering {U^i^/ of X there exist a locally
finite open covering {£//}/e/ of X and a function <p: $-*$ such that
for

Theorem 3 A (ZFC) (Takeuti and Titani [15]). Let B be a smooth manifold

with topology Q=0(E). Then a separated space X in Fc/2) is paracompact iff X

is paracompact.

(ZFC). Let B be a smooth manifold with topology Q=O(B).

Then the internal notion of a smooth manifold and the like within V(D) are
defined as in the previous definition merely with apparent modifications (i.e., M
should be replaced by 12°°, due consideration must be paid to apartness, etc.).
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Now we are ready to internalize fibre bundles.

Theorem 30§ (ZFC). Let (E, n, B, F) be a smooth fibre bundle with @ being
the topology Q(B) of the base space B. V/e define E°° to be the set in V^ whose
representing sheaf is

Then the set E°° can naturally be made a smooth manifold in V(Q) and E°°=E. For
each open subset U of E we write U°° for the corresponding open subset of E°° in

(i.e., U°°=U).

Proof. This is merely a special and rather easy case of Takeuti and Titani
[15; §3.5].

§4 The of Vector over Fibre

First of all, we recall

Definition (ZFC). A vector bundle is a quadruple E=(E, TC, B, F), where

(1) £ is a smooth fibre bundle;
(2) the fibres FX=TC~I(X) for x£=B are real linear spaces;
(3) F is a real linear space of the form Rn (n is called the rank of <? ) ;
(4) there is a coordinate representation {(£/*, 9j}aeJZ such that the maps

<patX: Mn-*Fx defined by <pa(x, y) for a^U^ and y^Rn are linear iso-
morphisms.

A coordinate representation for f which satisfies the above condition (4) is
called a coordinate representation for the vector bundle f . We will often say that
E is a vector bundle (over B) provided the other three components are clear
from the context.

(ZFC). Let B be a smooth manifold with topology Q=O(B).
Then the internal notion of a vector bundle in V(Q) can be defined as in the
previous definition merely with obvious modifications.

The following construction of vector bundles is well-known and highly
useful.

Theorem 4.1 (ZFC).
(1) Let B be a smooth manifold with an open covering {U^a<=Jl. Let us sup-

pose also that a family {^p}a,£e«J[ of smooth functions ^^: U^nU^-*
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GL(n; IS) is given and satisfies the following condition (in this case the family

{Vr*p}a,,0e«J[ is called a system of (n-dimensional) transition functions with

respect to the open covering {U&}a<=Jl):

(*) V'rfW = ^-p(*) lM*) for any a, ft, T^JL, *e C^H E^fl i7Y .

JAew r/ie quotient set of the disjoint union \Ja&Jl(UaxMn) by the following

equivalence relation^ can be made a vector bundle over B in the natural way,

for (jc, a) e Ua X Mn and (y, b)(=UpXM\

(x, a)—(y, b) iff x=y^U^ fl t/p and a = ^(x) b .

This vector bundle is called the vector bundle obtained from i^^}a,^JL

by pasting.

(2) Conversely, let (E, TZT, B, Rn) be a vector bundle with a coordinate represen-

tation {(t/0, 9>*)}«eJZ/0r the vector bundle. Then the family {9 /̂3 : t^fl C//3
->GL(w; R)} with <p*p(x)=<pa*xo<pptX for x^U^HUp satisfies the above

condition (*) and the original vector bundle can be identified with the vector

bundle obtained from {<?*$} at0&Jl by pasting.

Tfiieoreim 4.2 (ZFC). Let B be a smooth manifold with topology Q=O(B).

Then Theorem 4.1 with obvious modifications still holds within V(Q\

Theorem 43 (ZFC). Let (E, n, B, F) be a smooth fibre bundle with Q being

the topology Q(B) of the base space B. Then E°° is a smooth manifold in V(®\

as we have discussed in Section 3. Let us suppose further that a vector bundle

(Z, p, E, Rn) with E as its base space is given. We define the set Z°° in

whose representing sheaf is

where r'(U)={f: U->Z\f is smooth and 7copof=cu}. We also define a func-

tion p°°: Z°°— >E°° in V(Q} such that

p°°(f) = P°f for

Then they form a vector bundle (Z00, p°°? E°°y (M00)'1) in

Proof. Follows from the definitions.

Theorem 44 (ZFC). Let (E, n, B, F) be a smooth fibre bundle vrilh Q being

the topology Q(B) of the base space B. Let {U^a^JL be an open covering of

B, with respect to which a system of transition functions {^v - Ua fl Up—»

GJu(n; R)} a,p<=Jl is given. Then {^^} a,fi^Jl yields a vector bundle (Z, p, E, M'!)
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by pasting, as we have discussed in Theorem 4.1. This vector bundle then renders

a vector bundle (Z°°, p°°, E°°, (R°°)n) in V(Q\ as we have discussed in Theorem 43.

By the way, the family {^^}at0^JL yields a system {^^a^eJf of transition
/-«w

functions with respect to the open covering {UZ}a&Ji in V(Q\ where ^^(f)=

i^^°ffor any f^U^Ci U£. Then we conclude that the vector bundle obtained

from {^j}a,,£<EcJ by pasting can be identified with the above vector bundle (Z°°3

/>-, £", (M°° in

Proof. Follows from the definitions.

Now we would like to apply this general consideration to tangent bundles

and orientation bundles.

Definition (ZFC). Let M be an /^-dimensional smooth manifold with a

smooth atlas {(U^, u^}a<=JL. Then it is easy to see that the family -f^: U^f]

Up->GL(n; R)}a,p^Jl, where ^r^(x)=D(uatoup1) (u$(x)) for x^U^nUp and

D denotes the so-called Jacobian matrix, forms a system of transition functions

with respect to the open covering {Ua}a^JL and, by pasting, gives rise to the

tangent bundle T(M) of M.

(ZFC). Let B be a smooth manifold with topology Q=O(B).

Then the internal notion of the tangent bundle of a smooth manifold in V(Q^

can be defined as in the previous definition only with obvious modifications.

Definition (ZFC). Let (E, n, B, F) be a smooth fibre bundle with m-dim B

and n=dim F. We can choose a smooth atlas {(Ua, u^}a&JL for the base

space B and a coordinate representation {(U^, ^)}a^JL for the fibre bundle

with a common open covering {Ua}a^JL. Let {(F,-, vf-)}«e/ be a smooth atlas
for the typical fibre F. We define a diifeomorphism

L,i : 9a(Ua X F,) -> ua(Ua) X v,

as (uax v,)ocp~l for «e^?, i^$. We then define a diffeomorphism

«,i°fjij for «; P^Jl, iyj^g- Since £>fa,i,pj is of the form

"Ai/-.f.iu 0

with
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, and

and the Jacobian matrix of the composition of functions is the composition of
the Jacobian matrices of respective functions, the family

where Vw,^,/*)=A2/M^^././i3,;(;c)) ^or X^(P&(P<&^ ^-)n^(t/^x F}), forms a
system of transition functions with respect to the open covering {<p0(Uax

F,-)}aecjZ,*e<f of Is and gives rise to a vector bundle over £", to be called the
vertical tangent bundle of E and to be denoted by TV(E).

The equivalence between the above definition of the vertical tangent bundle
and another popular definition of the vertical subbundle of the tangent bundle
T(E) of E as the kernel of dn\ T(E)—>T(B)y which is easy and belongs complete-
ly to standard mathematics, is left to the reader.

Now we are ready to present one of the main results of this section.

Theorem 4,5 (ZFC). Let (E, TC, B, F) be a smooth fibre bundle with Q

being the topology O(B) of B. Then the tangent bundle ofE00 in V(Q) is externally

the vertical tangent bundle of E,

Proof. Once we notice that the system of transition functions in the
definition of a vertical tangent bundle gives rise to a system of transition
functions for the tangent bundle of E°° in V(Q\ the theorem follows directly
from Theorem 4.4.

Now we would like to deal with another important class of vector bundles,
say s orientation bundles.

DeiMtlom (ZFC). Let M" be a smooth manifold with a smooth atlas
{(U0U^}a&JL. Then it is easy to see that the family {-y :̂ Uaf}U^>GL
(l;JB)}a,£eJZ, where ^(z)=sgn det D(u^u~l) (u^(x)) for x^U^ClUp (sgn

stands for sign and det stands for determinant), forms a system of transition
functions with respect to the open covering {Ua}a^JL and, by pasting, gives
rise to a vector bundle to be called the orientation bundle of M and to be
denoted by 0(M).

Beftnitioni (ZFC). Let B be a smooth manifold with topology Q=O(B).
Then the notion of the orientation bundle of a smooth manifold in F(^ can be
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defined as in the previous definition with obvious modifications.

(ZFC). Under the same assumptions and notations in the
definition of vertical tangent bundle the family

^x F,.) -* GL(1;

with ^fl.ip§y(^)=sgn det D22f&>ii^(f^(x)} for *e $>,(£/« X F,)H^(^X F,)
forms a system of transition functions with respect to the open covering
•fe*(^*X Ff-)}aee^f i e/ of £ and, by pasting, gives rise to a vector bundle over
E to be called the vertical orientation bundle of E and to be denoted by OV(E),

Theorem 46 (ZFC). Let (E, n, B, F) be a smooth fibre bundle with Q being
the topology O(B) of the base space B. Then the orientation bundle of E°° in F(j3)

is externally the vertical orientation bundle of E,

Proof. Similar to Theorem 4.5.

Beinifloii (ZFC). Let M be a smooth manifold. Then a nowhere vanish-
ing cross-section of O(M) on M is called an orientation of M.

(ZFC). Let B be a smooth manifold with topology Q=0(E).

Then the internal notion of an orientation of a smooth manifold in V(Q) can be
defined as in the previous definition.

Definition (ZFC). Let (E, n, B, F) be a smooth fibre bundle. A nowhere
vanishing cross-section of 8V(E) on E is called an orientation of the smooth fibre
bundle.

Theorem 4,1 (ZFC). Let (E, n, B, F) be a smooth fibre bundle with Q being
the topology O(B) of B. Then every orientation o of the smooth fibre bundle gives
rise to an orientation o°° of E°° in F(j?) such that

<>~(/) = oof for any /ef" .

Proof. Follows from the definitions.

Remark (ZFC). Let M be a smooth manifold. Then two orientations
o, o' are said to be equivalent if o(x)=A(x) o'(x) with ^(x)>0 for any x^M.
Equivalent orientations are considered to determine the same orientation. A
chart (U, ti) of an oriented smooth manifold Mis called oriented if the standard
orientation of u(U) is equivalent to the orientation induced from that of M,
These notions apply also internally.
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§5o DSffereetial Forms

. (ZFC). Let M be a smooth manifold. The fibre TX(M) of

T(M) at xEiM is called the tangent space of M at x. For each natural number

p, the pth exterior powers /\pTf(M) of the dual space T*(M) of the tangent

space TX(M) of M at * for all x^M together form a vector bundle /\PT*(M)

over M in the well-known way. We denote by AP(M) the totality of cross-

sections of /\PT*(M) on M, whose elements are called differentia! forms of

degree p on M (or simply p-forms on M). The value G^ of a p-foim o)^Ap(M)

at xEEAf can be considered an alternating ^-linear form on TX(M). We define

A(M) to be the direct sum of Ap(MJs for allp^O.

Let E be a finite-dimensional real vector space. Then (/\pT*(M))(S)E9s

for all xeM together form a vector bundle (/\PT*(M))®E over M9 whose

cross-sections on M are called E-valued differential forms of degree p on M (or

simply E-valued p-forms on M). The totality of ^-valued p-forms on M is

denoted by AP(M; E). The value o>x of o>&Ap(M; E) at xeM can be con-

sidered an alternating ^-linear function with values in E. We define A(M ; E)

to be the direct sum of AP(M; £)?s for all j?>0.

(ZFC). Let B be a smooth manifold with topology Q=O(B).

Then the internal notion of a differential form on a smooth manifold in V(Q} and

the like can be given as In the previous definition with obvious modifications.

Let E be a finite-dimensional apartness vector space in V(Q}. Then the

internal notion of an E-valued differential form on a smooth manifold in V(Q}

and the like can be given as in the previous definition.

Theorem Sol (ZFC). Let £=(E, x, B, F) be a smooth fibre bundle, £=

(Z, p, E, Rm) be a vector bundle with the same base B, and TV(E) be the vertical

tangent bundle of £ with projection o: TV(E)-*E. Let 0: /\nTv '(£)—>£ be a

bundle map (i.e., smooth, fibre-preserving and linear on each fibre), inducing

it : E-^>R in the base manifolds. Let Q be the topology O(B) of B. Then bundle

map ^ naturally gives rise to an n-fonn a> on E°° in F(J?) such that

for any / ^ e 3 ^^TV(E)°° (l<i<n) satisfying aotf=£i(l<f<ri). This dif-

ferential form o) is denoted by d>°°.

Proof, Follows from the definitions.

Theorem 5.2 (ZFC). Let B be a smooth manifold with topology Q=O(B).



240 HlROKAZU NlSHIMURA

Then there exists a smooth function f on C3 in V(Q^ such that',

(1)
(2) f (x)= 1 for any
(3) f (x)=0 for any l(*e C2).

Proof. The existence of such a function / in the external world is well-

known. The desired f can be obtained as/00: CB->R°° in F(j2) such that

/-&)=/'£ for geC3.

Now we would like to demonstrate the existence and uniqueness of exterior

differentiation internally.

Theorem 53 (ZFC). Let B be a smooth manifold with topology Q=O(B).

Let M be a smooth manifold in V(Q\ Then there exists a unique R°°-linear map

dM: A(M)-+A(M) such that:

(1) z//e A\M)= C°°(M ) (the totality of smooth functions on M\ then dMf=

df (the differential off whose definition can be given as usual) ;

(2) if y e A\M) and ̂  e A\M\ then

(3) d2
M=0.

Proof. Now that Theorem 5.2 is available, the proof is essentially the

same as the standard one (see, e.g., Boothby [2; Chap. V, Theorem (8.1)].

We will often abbreviate dM to d. Since A(M; E)=A(M)®E with E a
finite-dimensional apartness vector space, exterior differentiation on A(M; E)

can naturally be defined as dM®cE, which we also denote by dM or d.

Remark (ZFC). In the rest of this paper we will freely use some standard

notations on differential forms and the like both externally and internally. For

example, let <p : M-*N be a smooth map between smooth manifolds and / be a
smooth function on N. Then the pull-back of /by <p is defined as/o^ and de-

noted by 9*(/). Similarly, the pull-back 9?*(a>) of a differential form o) on N

by <p can be defined both externally and internally.

Remark (ZFC). Let M and N be smooth manifolds. Then we have

the decomposition T(Xt2f)(MxN)=Tx(M)xTy(N) for any (x, y)^MxN, which

yields the derived decomposition A(MxN)=^ptq Ap'9(MxN). For example,

if <p^A*(M) and ir<=Aq(N), then n&p/\n$i/rGA*'*(MxN)9 where TCM:
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M and 7zN:MxN-*N are the canonical projections. For these matters., the
reader is referred to Greub et al. [5; pp. 121-122].

Remark (ZFC). Let M and N be smooth manifolds again. The exterior

differentiation dMXN: A(MxN)~>A(MxN) can be decomposed into the partial
exterior differentiations dM and dN with respect to M and N respectively, i.e.,

^Mxj\r=^M+<4r? f°r which the reader is referred to Greub et al. [5; pp. 148-149],

§6. Integration on Mantfelis

Definition! (ZFj). A separated space X is called compact if every open
covering has a finite subcovering.

Theorem 6.1 (ZFC). Let B be a locally compact Hausdorff space and Q
be its topology Q(B). Then a separated space X in V(Q) is compact iff Xc is
compact for every compact subset C of B, where we write XD={(t, x

for DdB,

Proof. Suppose that X is compact in V(0) and that Xc is covered by open
subsets {Ui}i<=/ of X for a compact subset C of B. Then there exists an open
covering {Pa}a^JL of C such that XcnPa is covered by a finite subcovering
{Ujli&ga for each a^Jl. Since C is compact, we can assume without loss
of generality that <JL is a finite set. Then the family {0,-l/e^, a^^JL} is a
desired finite covering of Xc. Conversely, suppose that Xc is compact for
every compact subset C of B and that P=\[{Ui}i<=/ is a covering of JTQ. Then

{£/,•} * ej? is a covering of XP. Since B is locally compact Hausdorff? every
point x^P has an open subset P' and a compact subset C such that ;ce-P'c
CcP. Since Xc is compact by assumption, we have P7^ I {£/,-}/£/ has a finite
subcovering of XJ. Thus the proof is complete.

Theorem O (ZFC). Let (E9 n, B, F) be a smooth manifold with Q being

the topology O(B) of B. Then, by assigning to each continuous function f: E°°-*>

IT the composition off: E=E°°-*ET=BxR and the projection ofBxMto the
second argument (the resulting composition is denoted by f), we obtain a bijective

correspondence between continuous functions from E°° to M°° in V^ and con-
tinuous functions from E to M.

Proof, Use a similar discussion to Takeuti [12; Chap. 39 §3] or Rousseau
[10; 2.2].

(ZFC). Let B be a smooth manifold with topology Q=O(B).
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Let M be a smooth manifold in V(0\ Then a continuous function/: M-*M°° in
F(/3) is said to be of compact support if there exists a finite family {(Ui9

of cubic charts such that

We recall

(ZFC). Let (E, n, B, F} be a smooth fibre bundle and/: E-*R
be a continuous function. Then / is said to be of fibre-compact support if for
every compact subset Cc$, the intersection n~l (C) fl supp/is compact, where
supp/ denotes the closure of

The preceding two definitions can be applied to differential forms and the
like. These two definitions, one of which is internal and the other of which is
external, are related in the following theorem,

Theorem 63 (ZFC). Let (E, x, B9 F) be a smooth fibre bundle with Q being

the topology O(E) of B. Then, under the bijective correspondence of Theorem

6.2, a continuous function f: E^-^M00 in V(Q} is of compact support iff f is of

fibre-compact support.

Proof, Follows from the definitions and Theorem 6.1.

To define integration on smooth manifolds in V(Q\ we begin with inte-

gration on (JR00)".

Theorem 6 A (ZFC). Let B be a smooth manifold with topology Q=O(B\
Then a continuous function f: (M°°)n— >R°° in V(Q^ is uniformly continuous on any

Proof, This follows from Theorem 6.2 and the well-known theorem of
standard mathematics that any real-valued continuous function on a compact
metric space is uniformly continuous.

Definition (ZFC). Let B be a smooth manifold with topology Q=O(S).
Let/: (M^f-^M00 be a continuous function in V(Q^ with the property that there
exists Cg such that/(#)=0 for any x^ Cs. Then, due to Theorem 6.4, the usual
definition of Riemann integral works well with respect to the real-like field M(Q)

and the value ff(x)dx1*"dx* is defined ras an element of R(Q\ just as Takeuti
[12; Chap. 3, §1] did for n=l.

Fortunately we have
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Theorem 6.5 (ZFC). Under the same assumptions and notations of the
above definition, we have

Proof. Follows from the well-known Leibniz's rule on differentiation of
integrals with parameters (see, e.g., Bieudonne [16; (8.11.2)]).

(ZFC). Let B be smooth manifold with topology Q=O(B).
Let M be an oriented /^-dimensional smooth manifold in V(Q\ Let © be an n-
form with compact support on M in V(Q), I.e., there exists a finite family

{(£/,-, i/,-)}«e^ of oriented cubic charts in V(^ such that

Let f be the function in Theorem 5.2. For each i'6E^, let gv=w*(/)=f °w,-, which
can be regarded as a smooth function on M in the natural way (extension by

zero). The w-form (fl,-/2,-e tffli)^ can be denned safely and denoted by coit

Let <p{ be the ^-form (uTt)*o)i on C35 which is of the form hi dxl/\°*° /\dxn,
The function h{ can be considered to be defined on (Jg°°)K in the natural way
(extension by zero). Then we define JMo> to be

Of course we need to verify

Theorem 4,6 (ZFC). The above definition of fMo> is independent of a par-
ticular choice of oriented cubic charts.

Proof. Let {(VJ9 Vj)}j^/ be another such finite family of oriented cubic
charts. Let Qj=vf(f) for each 7 e^. Let o)j be (Qj/^j^^QjJo) and 9,. be
(vj1)* o>y for each 7 e^. The w-form <p; on C3 is of the form hjdxl/\ ••• A^ for

each 7GE^. Let o>l7 be (8,-/2ye^ By) (fly/2ye^ By) ® for each i e^, je^. Let
9f-y be the «-form (uT1)* a)ij9 which Is of the form hti dx1/^*" /\dxn for each
/e^,7'e^. Let 9?y£ be the 77-form (vj1)* (yf-y, which is of the form hjt dxl/\°°°
/\dxn. By the way, the standard theorem on change of variables in Rlemann
integrals can be generalized easily to the case with parameters, which then
renders an internalized version of the theorem on change of variables. I.e., we
have

Since ShiWtte-fbf = Sye/ fhu(x)<b* — dxn and Shj(x)dxl - dxn =
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S/e / Sh/i(x) dxl°~ dxn
y we have

This completes the proof.

(ZFC). Let £=(E9 n, B, F) be an oriented smooth fibre bundle

with dim F=n and C=(Z, p, .6, Rm) be a vector bundle with the same base space.

Let us suppose further that a bundle map 0: /\nTv(E)-*C with fibre-compact

support is given, inducing n: E->B in the base manifolds. For each x&B, 0

determines a p~\x)~ valued w-form 0X on Fx=7c~~1(x)9 say,

for yew"^), ui^Ty(Fx)=T^(E). Since each <Z>, has compact support (this

follows from the assumption that 0 has fibre-compact support) and the orien-

tation of f induces an orientation on each fibre Fx, we can define a map a :

B-»Zby

*(*) ^ JF,^

for xe5. Then it is well-known that a is a cross-section in C3 to be called the

integral of® over the fibre,

Theorem 6*7 (ZFC). £/«d!er fAe ^ame assumptions and notations of the

above definition, the vector fE°° 0°°^.Z00 in V(Q} is externally the integral of 0

over the fibre, where Q is the topology O(&).

Proof, Follows from the definitions.

The following will be used in the succeeding section.

(ZFC). Let (E, x, B, F) be an oriented smooth fibre bundle

with dim F=n. Let o>GA*F
+p(E) (-the totality of (^+j?)-forms with fibre-

compact support). Then G> determines naturally a bundle map 0(a:/\
nTv(E)-^>

APT*(B), since for any xs=E, u^ vy, w^Tl(E) (l<i<n, l<j<p\ we have

®*(vl> — » Vp> UV ° 0 8 > Un) = ®,(Wi, 8 ° ° ? W,, I/19 — , t/J ,

provided dxv~dxWj(l<j<p). We define
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to be the Integral of 0W over the fibre. Then the operator fF Induces a linear

map from An
F+p(E) to AP(B). By decreeing that fFo)=Q for o)<=Aq

F(E) (Vq<ri)9

fF becomes a linear map from AF(E) (=the totality of differential forms on E

with fibre-compact support) to A(B).

§7° S'

The first main result of this section is

Theorem 7.1 (ZFC). Let B be a smooth manifold with topology £=Q(3).

Let M be an oriented n-dimensional smooth manifold in F(j3), on which a differen-
tial form o) of degree n-l with compact support is given. Then we have

fMdc» = 0 .

Proof, Since Q) is of compact support by assumption, there exists a finite

family of oriented cubic smooth charts {(£/,-, w8-)}«e^ such that Vx^M(o)x^Q

->3/e^(xew7"1(C1))). Then the standard proof of Stokes9 theorem (see, e.g.,

Boothby [2; pp. 257-258]) works well in V(Q\ since the so-called fundamental

theorem of calculus still holds internally (see, e.g., Takeuti [12; Chap. 3,

Theorem 5]) and the iterated integration theorem can easily be internalized.

The above theorem can be generalized directly to vector-valued differential

forms (i.e., differential forms with values in finite-dimensional apartness vector

spaces).

Now we are ready to demonstrate that the following well-known theorem

is the external form of an internalized version of Stokes' theorem in disguise.

Theorem 7.2 (ZFC). Let (E, n, E, F) be an oriented smooth fibre bundle,
Then exterior differentiation and integration over the fibre commute, i.e.,

d°$F = fp°d9 or exactly, dB°fF = fF°dM .

Proof. We should show that dB(fFo))=fF(dMoj) for any o)^AF(M). Since

the statement is local with respect to B and n is of local product property, we

can assume without loss of generality tbat E=BxF. Since AF(BxF)=

mp>qA
p
F

q(BxF) (see, e.g., Greub el al. [5; pp. 121-122]), we can also assume

without loss of generality that a>&Afcq(BxF). Since dM=dB+dF (see, e.g.,

Greub et al. [5; pp. 148-149]) and obviously
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It suffices to show that

fF(dFo>) = 0 ,

which Is nonlrivial only in case of dim F=q+\, when the equation follows

directly from Theorem 7.1 as an external restatement.

Just as in standard mathematics, the internal notion of a smooth manifold
and its related concepts can be generalized to that of a smooth manifold with
boundary and its related correspondents. Then, as might be expected, we have

Theorem 73 (ZFC). Let B be a smooth manifold with topology Q=O(S).
Let M be an oriented n-dimensional smooth manifold with boundary in V(Q), on
which a differential form co of degree n-l with compact support is given. Then
we have

where dM is the boundary of M with the induced orientation and i: dM-^M is
the inclusion mapping,

Proof. Essentially the same as the standard one (see, e.g., Boothby [2;
pp. 257-258]). The major difference from that of Theorem 7.1 is only that
we have to consider, besides cubic charts, the intersections of cubic charts with
the upper half plane H*= {x=(x\ — , ̂ efJB00)* \xn>Q}.

The following well-known theorem of standard mathematics stands In the
same relation to Theorem 7.3 as Theorem 7.2 does to Theorem 7.1.

Theorem 1A (ZFC). Let 8=(E, it, B, F) be an oriented smooth fibre bundle
with boundary. We denote the boundary of F by dF, the boundary of E by dE,
and the ordinary smooth fibre bundle (dE, n\^E, B, dF) by 08. Then we have

for any o)^AF(E) (=the totality of differential forms on E of degree k with

fibre-compact support}, where n=dim F and i: dE-*E is the inclusion mapping.

Proof. Proceed as In Theorem 7.2.

Let £=(E, n, B, F) be a smooth fibre bundle. We denote by Av
n(E) the

In this section we do not adhere to apartness.
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totality of bundle maps from /\nTv(E) to the product bundle BxM Inducing
?r: E-^B In the base manifolds. Then the exterior differentiation d: Al(E)-*
d%+i(E) is defined, so that we can consider vertical cohomolgy groups H%(E).

See, e.g., Greub et al. [5; p. 313].
By the way, as we have seen in Theorem 5.1, each <D^.Al(E} gives rise to

a differential form ®°° on E°° in V™, where Q is the topology Q(S) of B. Now
we conjecture the following.

Comjectare (ZFC). Let £=(E, n, B. F) be a smooth fibre bundle with Q
being the topology of B. Then the internal notion of the n-ih de Rham coho-
mology group Htt(E°°) in V(^ is externally the sheaf determined by the presheaf

where H^(TC~\U)) is the vertical cohomology group for the smooth fibre bundle
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