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Heyting Valued Set Theory and
Fibre Bundles
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Abstract

Takeuti and Titani [15] have demonstrated that, given a manifold B with topology 2=
O(B), the internal notion of an apartness vector space in V<@ and the external notion of a vectoxr
bundle over B are no more than two representations of the same entity. The principal objective
of this paper is, first of all, to internalize fibre bundles on the lines of Takeuti and Titani [15],
and then to establish various internal-external interconnections around this. For example,
we show that the external notion of integration over the fibre corresponds to the usual in-
tegration on internalized manifolds within (. The paper aitains its climax as we discuss
the internal and external aspects of an internalized version of celebrated Stokes theorem.

§1. Imtroduction

The notion of a fibre bundle plays a significant role in geometry of manifolds
and the main purpose of this paper is to demonstrate that many constructions
and concepts on fibre bundles have their natural interpretation in Heyting valued
set theory. Let E=(E, =, B, F) be a smooth fibre bundle, where E is the total
space, B is the base space, =: E— B is the projection, and F is the typical fibre.
In the first place, after reviewing some rudiments of Heyting valued set theory
in Section 2, we show, on the lines of Takeuti and Titani [15], that the total
space E can be regarded as a smooth manifold E* in V@ with £ being
the topology of the base space B, which will be done in Section 3. In Section
4 we show that every vector bundle Z over £ can be internalized as a vector
bundle Z* over E* in V. As an application of this idea, we will find out
what the tangent and orientation bundles of E> look like externally. Section 5
is devoted to differential forms with a result on the existence and uniqueness
of exterior differentiation in V», The first main result of Section 6 is that the
well-known external notion of fibre-compact support corresponds to the internal
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notion of compact support, whose definition requires some elaboration, since
closed sets are not well-behaved creatures in intuitionistic topology. Then
we can define integration of differential forms with compact supports on ori-
ented smooth manifolds in V. As an application of this idea, we will show
that the well-known external notion of integration over the fibre has its internal
counterpart. Just as differential calculus and integral calculus of high school
mathematics are related in the fundamental theorem of calculus, Stokes’
theorem is the crystalization of relationship between differentiation and inte-
gration on manifolds. Thus Section 7 is devoted to Stokes’ theorem in V(9.
There we will demonstrate that the well-known commutativity of exterior
differentiation and integration over the fibre, say,

dofp = frod
is an external restatement of an internal version of Stokes’ theorem in disguise.
The final section is reserved for an open problem.

As is well-known, not every classically equivalent definition yields an
intuitionistically equivalent definition. Therefore we agree that we should try
to make it clear which classical definition we adopt as our internal one. How-
ever we will usually neglect to write out the appropriate apartness relation on
each occasion, though we prefer apartness. As far as this paper is concerned,
to provide such a definition would always be a routine, and its details are often
cumbersome both for the author to write out and for the reader to make out.
Thus we have chosen to be loose in this matter. Last but not least, since we
deal with two set theories ZFC and ZF;, we feel it a must to make it explicit
which set theory our definitions and theorems are made with respect to, though

most of them are made within ZFC.

§2. Intuitionistic Set Theory

In this section we review some rudiments of Heyting valued set theory of
Takeuti and Titani [13, 15] and intuitionistic linear algebra of Ruitenberg [11].

2.1. Intuvitionistic Set Theory
By ZF; we mean a first-order intuitionistic theory with a unary relation
symbol £ and two binary relation symbols & and = satisfying the following
nonlogical axioms:
(A1) Equality axioms: y=u,
U=v—>v=u,
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u=v A p)—@(v), and (EuV Ev—u=v)—u=v.
(A2) Extensionality: yz(zEue—zEv) A (EuEv)—u=m.
(A3) Pairing: 3z vx(xEzeox=uV x=v).
(A4) Union: Jv yx(xevejysu(xEy)).
(A5) Power sets: 3y yx(xEvesyysu(y Ex)).
(A6) e-induction: yx(¥y € xp(y)—¢(x))—¥x0(x).
(A7) Infinity: Iv@xevAvxeviyevxey)).
(AB) Separation: Jv vx(xEveoxcsu A o(x)).
(A9) Collection: I(vxEu Aye(x, y)—=VxEu Jy Eve(x, »)).

In the above list yx--- and Jx--- are abbreviations of ¥x(Ex—---) and 3Ix
(ExA\--+). Since ¥x and 3x will usually appear in these forms, we will often
write ¥x and 3x simply for yx and Jx.

2,2, Heyting Valued Models

Let V be a standard universe of ZFC and let £ be a complete Heyting
algebra. For each ordinal & we define V{? inductively to be the set of all order-
ed pairs <u, Eu> such that:

(1) Eusg;

(2) wuis an £2-valued function defined on a subset D(u) of V§? for some ordinal
B<a;

B) VxeDw) (u(x)<Eu/Ex).

Now V@ is defined to be the class U ,ep, V', which is to be called an (£2-

a€0n” o >
valued) sheaf model, can be considered to be a Heyting valued model of ZF; by
defining [[Eu]] with

(1) [Eu]] = Eu,
and by defining [u e v]] and [Ju=v]] with the following simultaneous induction

@) Muevl = Viyeaw v@)Alu =y,
3) [u=vl= Azed@w u(x)—=[xEV] A Ay a0 0@)—=[y € ul) AN(Eues
Ev),

and then by assigning a Heyting value [J¢]] to each nonatomic sentence ¢ in-
ductively as follows:

@ [eaAel = Ie ALl
6) IeVel = [Vl
©6) [e—o.ll = [ell—=le.l,
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(1) [ell = el
®) [EAxex)] = Vzeve [p(x)],
©) [Vxe(x)] = Vzevw [o(x)].

Now we have

Theorem 2.2.1. V' is a model of ZF.

The class ¥ can be embedded into V'™ by transfinite induction as follows:

y={x, D|xsy} and Ey =1 for yeV.

For ucV® and pe 2, we define u[ p to be the element of ¥ such that

Dl p)= =l plx€DW)} ,

W p)(xI p)=V{u@Ap|teDw), t[ p=xIp} for x€Du),

and E(ul p) = EuAp.

In the sequel we implicitly identify x, y&V® time and again provided
[x=yl=1.

2.3. Sheaves over Complete Heyting Algebras
A presheaf over a complete Heyting algebra £ is a triple S, E,[ > of a set
S and two functions E: S—£2 and [ : SX 2—S with the following properties:

(1) a"0=5[0,
(2 al Ea=a,

(3 E(al p) = EaAp,

@ (al pl g=al (pAg).

For convenience we often say simply that S is a presheaf over £ without
mentioning E and [ explicitly. Members a, b of a presheaf S over 2 are said
to be compatible whenever al Eb=b[ Ea. A subset F of S whose members
are pairwise compatible is called compatible. A presheaf S over £ is called a
sheaf over £ if for any compatible subset F of S there exists a unique g€ S
such that:

(1) feFimplies gl Ef =,
(2 Eg= V{Ef|feF}.

The subset {a= S| Ea=p} is denoted by I'(p, S).

Theorem 2.3.1. For any a€V, u={xcV@|[xeul]=Ex} is a sheaf
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to be called the sheaf represented by u. Conversely, for any sheaf S over 2, there
is an element uS V' such that the sheaf ii represented by u is isomorphic to S.

Similarly we have

Theorem 2.3.2. Let u, u, & V9. Then any function f: uy—>u, in V® ren-
ders a unique function [ th,—>il, such that for each a<i,

E;, a = Eg f(@) = [Ka, f@>EfT.

This gives a bijective correspondence between functions f: w—>u, in V@ and
Sunctions g: i,—ii, such that

E; a=E;g(a and g@! p=glal p)
forany pef and ac<i.

2.4, Intuitionistic Linear Algebra

Definition (ZF;). A relation = on a set S is called apartness if for any
a, b, c& S, we have:

(1) azb— b=+a;
(2 a=be i(akd);
(3) az*+b—azkxcVb=c.

Definition (ZF;). A ring S with apartness == is called an apartness ring
if for a, b, c= S, we have:

(1) az+b— atc+b+tc;
2) a*£bAc+0— ac=*bc.

Definition (ZF;). An apartness ring S with 1 is called an apartnes field
if for any a& S, we have:

(1) 10;

2) a*+0—3JaHa*+=0Aaa'=1).

Definition (ZF;). Let F be an apartness field. Then an F-module T with
apartness == is called an apartness vector space over F provided for any a, a’ €F
and any u, u’, v, vV T, we have:

(1) ausa v —axa'Vu+u',

@) utvFu'+v - uzku' Vv,

Defimition (ZF;). Let T be an apartness vector space over an apartness
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field F. A finite set {e;, -, e,} of vectors is called an apartness basis if

(1) {e, :--, e,} is apartness linearly independent, i.e.,
Y{a, -, a,} CF(a;+0— a, ¢,+---+a,e,£0);
(2) Tis generated by {e,, -:-, e,}, i.e.,
YueT3{a, -+, a,} CF(u=a, e,+--+a,e,).

Theorem 2.4.1 (ZF;). Let T be an apartness vector space over an apariness
field F. If {e, -+, e,,} and {e1, ---, e;} are bases for T, then m=n.

Definition (ZF;). Let T, and T, be apartness vector spaces over an apartness
field F. A mapping ¢: T,—T, is called a homomorphism if

Yu, ve T, Va, be F(p(au+bv) = ap(u)-+-be(v)) .

A homomorphism ¢: 7,—7, is called an embedding if
Vu, vE Ti(p() = ¢(v) > u=7v).
A homomorphism ¢: 7;—T, is called an apartness embedding if
Vu, veT,u=sv — o) Fe()) .
An (apartness) embedding ¢: T,—T, is called an (apartness) isomorphism if
YveT,ueTi(ew) =v).

2.5, B and R

Let V be a standard universe of ZFC and let £ be the topology of a smooth
manifold B. Then the set B of all real numbers in ¥ is defined to be the
set of all ordered pairs <L, U of subsets of @ such that

(1) 3r, seQ(sLArel),

@) VYre@Q l(reUArel),

3) Vre@(rEUHasEé(s<rAsEU)),
@) VreQreL o IseQir<sAseL)),
) ‘v’r,seé(s<r—>seLVrEU).

We denote by R~ the subfield of R? whose representing sheaf is the sheaf
of all real-valued smooth functions on open subsets of B, while the representing
sheaf of R is the sheaf of all real-valued continuous functions on open subsets
of B. In most of the paper B> plays a role of R internally, but we should note
that B> fails to be a real-like field. Indeed, B is an apartness subfield of B¢
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containing }é, but it is not complete. Therefore, in discussing integration on
manifolds internally in Section 6, we have to make a detour through B,

§3. The Internalization of Fibre Bundles

First of all, we recall some definitions in the arena of differentiable mani-
folds.

Definition (ZFC). An n-dimensional topological manifold is a paracompact
Hausdorff space M whose every point has a neighborhood homeomorphic to
an open subset of B". In this case we write n=dim M. A chart for the n-
dimensional topological manifold M is a triple (U, u, ¥), where U is an open
subset of M, ¥ is an open subset of R*, and u: U—V is a homeomorphism. A
chart (U, u, V) is called cubic if V is C,, where C.= {(x}, ---, xX")ER"| |x'|<e,
i=1, ---, n} for each e>0. A chart (U, u, V) is often denoted simply by (U, u),
since V is determined completely by the former data. An atlas on the n-
dimensional topological manifold M is a family of charts {(U,, u,)} ac. 1 with
M= UacU,.

Definition (ZFC). Let M be a topological manifold. Then an atlas
{(U,, u,)} ac i for M is called smooth if the map

uyoug': ug(U, N Up) — (U, N Up)

is smooth (i.e., infinitely differentiable) for any @, S A. Two smooth atlases
are called equivalent if their union is again a smooth atlas. A smooth structure
on M is defined to be an equivalence class of smooth atlases on M. A topol-
ogical manifold endowed with a smooth structure is called a smooth manifold.
A chart of a smooth manifold will always mean a chart in a smooth atlas of the
smooth structure.

Definition (ZFC). Let M, N be smooth manifolds with their respective
atlases {(U,, u,)}ac1 and {(Vg, vg)} p=8. Then a continuous map ¢: M—N
is called smooth if the map

vgogouy': u (U, N ¢~ (V) — ve(Vp)

is smooth for any e A, f=€B. A smooth map ¢: M—N is called a dif-
Jfeomorphism if it has a smooth inverse ¢™': N—Af. Two smooth manifolds
M, N are called diffeomorphic if there exists a diffeomorphism ¢: M—N.

Definition (ZFC). Let z: E—~B be a smooth map between smooth mani-
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folds. The map = is said to have the local product property with respect to a
smooth manifold F if there is an open covering {U,}ac1 of B with a family
{@y} ac 1 of diffefomorphisms

@y U X F—z YU,
such that
7P (X, y) = x

for any x&U,, y&F. The system {(U,, ¢,)} e is called a local decomposition
of =. A smooth fibre bundle is a quadruple (E, =, B, F), where =: E—~B is a
smooth map of the local product property with respect to a smooth manifold
F. A local decomposition for = is called a coordinate representation for the
fibre bundle. In the fibre bundle (£, =, B, F) the spaces E, B and F are called
the total space, the base space and the typical fibre respectively. We will often
say simply that E is a smooth fibre bundle provided the other three components
z, B and F are clear from the context. A cross-section of a fibre bundle (£, =,
B, F) on an open subset U of B is a smooth map o: U—E such that zoo=¢;.
We denote by I'(U) the totality of cross-sections on U.

Now we recall some definitions and results of internal topologies.

Definition (ZF;). A set O(X) of subsets of X is called a fopology on X if
XeO(X) and O(X) is a cHa with respect to binary intersection and arbitrary
union. A special set X endowed with topology O(X) is called a topological
space. A topological space X with apartness = is called a separated space if

1) Vxex({yeX:y+x} €0(X)), and
Q) YVUeOX)VxeUVyeX(yeUVy=*x).

A separated space X is said to be Hausdorff if
Vx, yeX(x£y— AU, VeOX)xeUAyeVAUNV = ¢))).

Definition (ZFC). Let £ be a topology ((B) and X be a separated space
in V@, We define a topological space X from X as follows:
X = {@, x)eBxX|te[x€X]}/~,

where (7, x)~(t', x') iff t=¢t'&[[x=+x']. We denote the equivalence class con-
taining (¢, x) by {t, x>. For each U=((X), the corresponding subset U of X
is defined as follows:



FIBRE BUNDLES 233

U= {t, x>eX|telxeUT} .
Set O(X)={TCX|UcOX)}.

Theorem 3.1 (ZFC) (Takeuti and Titani [15]). If 2 is a topology O(B) and
X is a separated space in V@, then X is a topological space with topology O(%).
In particular, R°=B X R.

Theorem 3.2 (ZFC) (Takeuti and Titani [15]). Let £ be a topolegy O(B)
of a Hausdor{f space B and X be a separated space in V. Then X is a Hausdorff
space in V@ iff X is a Hausdorff space.

Definition (ZF;). Let X and Y be topological spaces. Then a function
[ X—=Yis continuous if VUEO(Y) (f{U)eO(X)).

Thesrem 3.3 (ZFC) (Takeuti and Titani [15]). Let £ be a topology O(B).
If X, Y are separated spaces and - X—Y is a continuous function in V? then
the function f: X—Y defined by

f<’9 x> = <I', f(x)>

is continuous. Furthermore, if f is an apartness homeomorphism in ¥ (i.e.,
[Vx, X €X(xEx'=>f(X)E(NDAVYyEY IxeX(f(x)=»)A\ f': Y—=X is con-
tinuous]=1), then f: X¥— ¥ is a homeomorphism.

Definition (ZF;). Let X be a topological space. A subset {U;}ieg of
O(X) is called an open covering of X if Ujeyg U;=X. An open covering
{U;}icyg is said to be locally finite if there exists an open covering {U;} jeg of
X such that the set {i€ 4| U; N\ U;= ¢} is finite for each je 4. The space X is
called paracompact if for every open covering {U;}ie g of X there exist a locally
finite open covering {U;} je g of X and a function ¢: §—4 such that U;C Uy
for anyje 4.

Theorem 3.4 (ZFC) (Takeuti and Titani [15]). Let B be a smooth manifold
with topology 2=0C(B). Then a separated space X in VP is paracompact iff X
is paracompact.

Definition (ZFC). Let B be a smooth manifold with topology £=0O(R).
Then the internal notion of a smooth manifold and the like within V'@ are
defined as in the previous definition merely with apparent mnodifications (i.e., &
should be replaced by B>, due consideration must be paid to apartness, etc.).
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Now we are ready to internalize fibre bundles.

Theorem 3.5 (ZFC). Let (E, =, B. F) be a smooth fibre bundle with 2 being
the topology O(B) of the base space B. We define E™ to be the set in V@ whose
representing sheaf is

Ue®B)— I'(U).

Then the set E= can naturally be made a smooth manifold in V? and E*=E. For
each open subset U of E we write U™ for the corresponding open subset of E* in
V@ (ie., U==U).

Proof. This is merely a special and rather easy case of Takeuti and Titani
[15; §3.5].

§4. The Internalization of Vector Bundles over Fibre Bundies
First of all, we recall
Defimition (ZFC). A vector bundle is a quadruple é=(E, =, B, F), where

(1) € is a smooth fibre bundle;

(2) the fibres F,=="%x) for x& B are real linear spaces;

(3) Fis areal linear space of the form R" (n is called the rank of &);

(4) there is a coordinate representation {(U,, ¢,)} a4 such that the maps
@y, R"—F, defined by g¢,(x, y) for a€U, and yeR" are linear iso-
morphisms.

A coordinate representation for & which satisfies the above condition (4) is
called a coordinate representation for the vector bundle £&. We will often say that
E is a vector bundle (over B) provided the other three components are clear
from the context.

Definition (ZFC). Let B be a smooth manifold with topology 2=0O(B).
Then the internal notion of a vector bundle in V' can be defined as in the
previous definition merely with obvious modifications.

The following construction of vector bundles is well-known and highly
useful.

Theorem 4.1 (ZFC).
(1) Let B be a smooth manifold with an open covering {U,}ac 1. Let us sup-
pose also that a family {V,e}ase of smooth functions vre: U,N Ug—>
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GL(n; R) is given and satisfies the jollowing condition (in this case the family
{Vupta,pe is called a system of (n-dimensional) transition functions with
respect to the open covering {U,} ac j):

#) Yl = VgD V() foramy @, B, rEA, x€U,NUpN Ty

Then the quotient set of the disjoint union Uac (U,X R") by the jollowing
equivalence relation~ can be made a vector bundle over B in the natural way;
for (x, a)€ U, x R" and (y, by Ug X R,

x, a)~(y, b) iff x=yeU,NUs and a=ax)b.

This vector bundle is called the vector bundle obtained from {yr,g}a,pe
by pasting.

(2) Conversely, let (E, z, B, R") be a vector bundle with a coordinate represen-
tation {(U,, ¢,)} ac i for the vector bundle. Then the family {p,s: U, N Uy
—GL(n; R)} with ¢a(X)=¢zx00s,, for x&U,N U satisfies the above
condition (%) and the original vecior bundle cax be icentified with the vector
bundle obtained from {@,p}a,p= 1 by pasting.

Theorem 4.2 (ZFC). Let B be a smooth manifold with topclogy 2=0O(R).
Then Theorem 4.1 with obvious modifications still holds within V',

Theorem 4.3 (£FC). Let (£, @, B, F) be a smocth fibre bundle with £ being
the topology O(B) of the base space B. Then E* is a smooth manifold in V),
as we have discussed in Section 3. Let us suppose further that a vector bundle
(Z, o0, E, R") with E as its base space is given. We define the set Z= in V@
whose representing sheaf is

Ue@B)— '),

where I'(U)={f: U—Z| f is smooth and mopof=ty}. We alsc define a func-
tion p°: Z=—E* in V@ such that

0°(f) = pof for fer'(U).
Then they form a vector bundle (£, p=, E*, (R*)") in V9,
Proof. Follows from the definitions.

Theorem 4.4 (ZFC). Let (E, =, B, F) be a smooih fibre bundle with £ being
the topology O(B) of the base space B. Let {U,}ac i be an open covering of
B, with respect to which a system of transition jfunctions {yg: U, Usg—
GL(n; R)y a,pe A is given. Then {yr,g} o, 8= A yields a vector bundle (Z, o, E, R")
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by pasting, as we have discussed in Theorem 4.1. This vector bundle then renders
a vector bundle (Z°, o=, E*, (R™)") in VP, as we have discussed in Theorem 4.3.
By the way, the family {\r g} a,pc yields a system {Vrsg}a,Be of transition
Sfunctions with respect to the open covering {UZ}ac i in VP, where 3;5"5( )=
Ygof for any fe (Z{" n [’J\E‘i Then we conclude that the vector bundle obtained
Sfrom {Yae} a,pe i by pasting can be identified with the above vector bundle (Z°,
0=, E=, (BR)") in V@,

Proof. Follows from the definitions.

Now we would like to apply this general consideration to tangent bundles
and orientation bundles.

Definition (ZFC). Let M be an n-dimensional smooth manifold with a
smooth atlas {(U,, u,)}e=.1. Then it is easy to see that the family {yrg: U, N
Us—>GL(n; R)}a,ped, where Y g(x)=D(uouz") (ug(x)) for xeU,N U, and
D denotes the so-called Jacobian matrix, forms a system of transition functions
with respect to the open covering {U,}a=.4 and, by pasting, gives rise to the
tangent bundle T(M) of M.

Definition (ZFC). Let B be a smooth manifold with topology £2=0O(B).
Then the internal notion of the fangent bundle of a smooth manifold in V'
can be defined as in the previous definition only with obvious modifications.

Definition (ZFC). Let (E, z, B, F) be a smooth fibre bundle with m-dim B
and n=dim F. We can choose a smooth atlas {(U,, u,)}aci for the base
space B and a coordinate representation {(U,, ¢,)} ac1 for the fibre bundle
with a common open covering {U,}aca. Let {(V;, v,)}ic g be a smooth atlas
for the typical fibre F. We define a diffeomorphism

f;v,i: Spm(wa V:) g LI,(U,,)X Vi(Vi)
as (u, X vy)op; for e, i 4. We then define a diffeomorphism

Janig,i Jo.{( @l Un X Vi) N @a(Ug X V) = fo, {2l Uy X V) N @ (Ug X V7))

as f,;.of 5 for @, fEe, i, j€ 4. Since Df, ;4 ; is of the form

EDu];,i,ﬁ,i 0 }
Dzlfw,i,ﬂij Dzzfa,i,ﬁ,j

with
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Dufw,i,ﬂ,jEGL(mQ R),
Dy frip,iEMm, m; B), and
Dzzj;a,i,ﬁ.iEGL(n; R) s

and the Jacobian matrix of the composition of functions is the composition of
the Jacobian matrices of respective functions, the family

Vit Pl U X V)N @g(Ug X V) = GL(1; B} a,ped,ijed -

where v, ;8 (X)=Dy, fy,:,5.;(f5,;() for x€, (U, xV;)Neg(Ugx V), forms a
system of transition functions with respect to the open covering {,(U,X
V)yac,icyg of E and gives rise to a vector bundle over E, to be called the
vertical tangent bundle of E and to be denoted by TV(E).

The equivalence between the above definition of the vertical tangent bundle
and another popular definition of the vertical subbundle of the tangent bundle
T(E) of E as the kernel of dr: T(E)—T(B), which is easy and belongs complete-
ly to standard mathematics, is left to the reader.

Now we are ready to present one of the main results of this seclion.

Theorem 4.5 (ZFC). Let (E, =, B, F) be a smooth fibre bundle with 2
being the topology O(B) of B. Then the tangent bundle of E™ in V9 is externally
the vertical tangent bundle of E.

Proof. Once we notice that the system of transition functions in the
definition of a vertical tangent bundle gives rise to a system of transition
functions for the tangent bundle of E= in 7D, the theorem follows directly
from Theorem 4.4.

Now we would like to deal with another important class of vector bundles,
say, orientation bundles.

Definition (ZFC). Let M be a smooth manifold with a smooth atlas
{(U,, u))}aca. Then it is easy to see that the family {yr,z: U,N Us—GL
(1; R} a,ped, where vr,e(x)=sgn det D(u,ouz") (ug(x)) for x€U,N Uy (sgn
stands for sign and det stands for determinant), forms a system of transition
functions with respect to the open covering {U,}a=.1 and, by pasting, gives
rise to a vector bundle to be called the orientation bundle of M and to be
denoted by ().

Definition (ZFC). Let B be a smooth manifold with topology 2=0C(B).
Then the notion of the orientation bundle of a smooth manifold in ¥ can be
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defined as in the previous definition with obvious modifications.

Definition (ZFC). Under the same assumptions and notations in the
definition of vertical tangent bundle the family

{xﬁ,i,ﬁ,j: ¢M(wa V:) n SDB(U)SX V]) - GL(la R)}a,ﬁEuq,i, ]Eg

with  x, ;g j(x)=sgn det Dy, f, ;6,;(f5,;(x)) for xE@(UyxV)Neg(UgX V)
forms a system of transition functions with respect to the open covering
{o (U, X V)}ac, icg of E and, by pasting, gives rise to a vector bundle over
E to be called the vertical orientation bundle of E and to be denoted by OV(E).

Theorem 4.6 (ZFC). Let (E, =, B, F) be a smooth fibre bundle with £ being
the topology O(B) of the base space B. Then the orientation bundle of E* in V@
is externally the vertical orientation bundle of E.

Proof. Similar to Theorem 4.5.

Definition (ZFC). Let M be a smooth manifold. Then a nowhere vanish-
ing cross-section of ®(M) on M is called an orientation of M.

Definition (ZFC). Let B be a smooth manifold with topology 2=0O(B).
Then the internal notion of an orientation of a smooth manifold in V' can be
defined as in the previous definition.

Definition (ZFC). Let (E, =, B, F) be a smooth fibre bundle. A nowhere
vanishing cross-section of ©V(F) on E is called an orientation of the smooth fibre
bundle.

Theorem 4.7 (ZFC). Let (E, =, B, F) be a smooth fibre bundle with 2 being
the topology O(B) of B. Then every orientation 0 of the smooth fibre bundle gives
rise to an orientation 0 of E* in VO such that

;’:(f) = gof for any fEE”.
Proof. Follows from the definitions.

Remark (ZFC). Let M be a smooth manifold. Then two orientations
0, 0’ are said to be equivalent if o(x)=2(x) 0'(x) with A(x)>0 for any x& M.
Equivalent orientations are considered to determine the same orientation. A
chart (U, u) of an oriented smooth manifold M is called oriented if the standard
orientation of u(U) is equivalent to the orientation induced from that of M.
These notions apply also internally.
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§5. Differential Forms

Definition (ZFC). Let M be a smooth manifold. The fibre 7,(M) of
T(M) at x& M is called the tangent space of M at x. For each natural number
p, the pth exterior powers A?T#(M) of the dual space TF(#) of the tangent
space T,(M) of M at x for all x& M together form a vector bundle A?T*(M)
over M in the well-known way. We denote by A?(}) the totality of cross-
sections of A?T*(M) on M, whose elements are called differential forms of
degree p on M (or simply p-forms on M). The value w, of a p-form w& A?(M)
at x& M can be considered an alternating p-linear form on 7T,(M). We define
A(M) to be the direct sum of 4?(M)’s for all p>0.

Let E be a finite-dimensional real vector space. Then (A?TH(M)QE’s
for all x&M together form a vector bundle (A?T*(M))QE over M, whose
cross-sections on M are called E-valued differential forms of degree p on M (or
simply E-valued p-forms on M). The totality of E-valued p-forms on M is
denoted by A?(M; E). The value o, of o€ 4?(M; E) at x& M can be con-
sidered an alternating p-linear function with values in E. We define 4(M; E)
to be the direct sum of A?(M; E)’s for all p>0.

Definition (ZFC). Let B be a smooth manifold with topology £=0(B).
Then the internal notion of a differential form on a smooth manifold in ¥ and
the like can be given as in the previous definition with obvious modifications.

Let E be a finite-dimensional apartness vector space in V9, Then the
internal notion of an E-valued differential form on a smooth manifold in V@
and the like can be given as in the previous definition.

Theorem 5.1 (ZFC). Let é=(E, =, E, F) be a smooth fibre bundle, {=
(Z, p, B, R™) be a vector bundle with the same base B, and TV(E) be the vertical
tangent bundle of & with projection o: TV(E)—E. Let ®: N*TV(E)—( be a
bundle map (i.e., smooth, fibre-preserving and linear on each fibre), inducing
n: E—B in the base manifolds. Let £ be the topology O(B) of B. Then bundle
map @ naturally gives rise to an n-form » on E* in V? such that

Bu@', -+, 0") = Oo(* A= \7")

for any AEE’;, 7rETV(E) (1Li<n) satisfying con'=p(1<i<n). This dif-
ferential form o is denoted by @>.

Proof. Follows from the definitions.

Theorem 5.2 (ZFC). Let B be a smooth manifold with topology 2=0O(B).
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Then there exists a smooth function f on C, in V' such that:

(1 0Ly
2) f(x)=1 for any xC;;
3) f(x)=0 for any 1(x&C,).

Proof. The existence of such a function f in the external world is well-
known. The desired f can be obtained as f~: C,—~R"~ in V' such that

f=(g) = fog for ged,.

Now we would like to demonstrate the existence and uniqueness of exterior
differentiation internally.

Theorem 5.3 (ZFC). Let B be a smooth manifold with topology 2=0O(B).
Let M be a smooth manifold in V9. Then there exists a uniqgue R>-linear map
dyrs A(M)—A(M) such that :

(1) iffeA(M)=C=(M) (the totality of smooth functions on M), then dy, f=
df (the differential of f whose definition can be given as usual);
Q) if €A’ (M) and = A*(M), then

dy(pN\y) = Ay ANY+(—1) e Ndy ¥;
3) di=o0.

Proof. Now that Theorem 5.2 is available, the proof is essentially the
same as the standard one (see, e.g., Boothby [2; Chap. V, Theorem (8.1)].

We will often abbreviate d,; to d. Since A(M; E)=A(M)QE with E a
finite-dimensional apartness vector space, exterior differentiation on A(M; E)
can naturally be defined as d,,Q ¢z, which we also denote by d,, or d.

Remark (ZFC). In the rest of this paper we will freely use some standard
notations on differential forms and the like both externally and internally. For
example, let ¢: M— N be a smooth map between smooth manifolds and f be a
smooth function on N. Then the pull-back of f by ¢ is defined as fop and de-
noted by ¢*(f). Similarly, the pull-back ¢*(®) of a differential form @ on N
by ¢ can be defined both externally and internally.

Remark (ZFC). Let M and N be smooth manifolds. Then we have
the decomposition T, ,(M X N)=T,(M)x T,N) for any (x, y) &M X N, which
yields the derived decomposition A(M X N)=33, , A M X N). For example,
if pe 4?(M) and v A (N), then wie An¥y-€ A2*9(M x N), where z,: M X N—
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M and zy: M X N—N are the canonical projections. For these matters, the
reader is referred to Greub et al. [5; pp. 121-122].

Remark (ZFC). Let M and N be smooth manifolds again. The exterior
differentiation dy;, y: A(M X N)—A(M x N) can be decomposed into the partial
exterior differentiations dj, and d, with respect to M and N respectively, i.e.,
dyx y=0dy+dy, for which the reader is referred to Greub et al. [5; pp. 148-149].

§6. Integration on Manifolds

Defimition (ZF;). A separated space X is called compact if every open
covering has a finite subcovering.

Theorem 6.1 (ZFC). Let B be a locally compact Hausdorff space and £
be its topology O(B). Then a separated space X in VD is compact iff X, is

compact for every compact subset C of B, where we write X,={{t, x>|tED,
xeX} for DCB.

Proof. Suppose that X is compact in V' and that X is covered by open
subsets {U;}ieg of X for a compact subset C of B. Then there exists an open
covering {P,}ac of C such that X.,p, is covered by a finite subcovering
{U;}ieg, for each e . Since C is compact, we can assume without loss
of generality that A is a finite set. Then the family {U;|i€4,, e} is a
desired finite covering of X,. Conversely, suppose that X, is compact for
every compact subset C of B and that P=[[{U;} i< 4 is a covering of X]. Then
{U;}ieg is a covering of Xp. Since B is locally compact Hausdorff, every
point x& P has an open subset P’ and a compact subset C such that x&P'C
CCP. Since X, is compact by assumption, we have P’ <[[{U;}ic 4 has a finite
subcovering of X]. Thus the proof is complete.

Theorem 6.2 (ZFC). Let (E, =, B, F) be a smooth manifold with 2 being
the topology O(B) of B. Then, by assigning to each continuous function f: E*—
R= the composition of f: E=E~—>R"=Bx R and the projection of BX R to the
second argument (the resulting composition is denoted by f ), we obtain a bijective
correspondence between continuous functions from E® to B* in V' and con-
tinuous functions from E to R.

Proof. Use a similar discussion to Takeuti [12; Chap. 3, §3] or Rousseau
[10; 2.2].

Defimition (ZFC). Let B be a smooth maaifold with topology 2=0O(B).
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Let M be a smooth manifold in ¥, Then a continuous function f: M—R> in
V@ is said to be of compact support if there exists a finite family {(U;, u)}icg
of cubic charts such that

VxeM(f(x)+0— JieIxsui () .
We recall

Definition (ZFC). Let (E, =, B, F) be a smooth fibre bundle and f: E—~R
be a continuous function. Then fis said to be of fibre-compact support if for
every compact subset CC B, the intersection =™ (C) N supp f is compact, where
supp f denotes the closure of {x&E| f(x)=0}.

The preceding two definitions can be applied to differential forms and the
like. These two definitions, one of which is internal and the other of which is
external, are related in the following theorem.

Theorem 6.3 (ZFC). Let (E, =, B, F) be a smooth fibre bundle with 2 being
the topology O(B) of B. Then, under the bijective correspondence of Theorem
6.2, a continuous function f: E*>—R> in V9 is of compact support iff f is of
fibre-compact support.

Proof. Follows from the definitions and Theorem 6.1.

To define integration on smooth manifolds in ¥V, we begin with inte-

gration on (&£~)".

Theorem 6.4 (ZFC). Let B be a smooth manifold with topology 2=C(B).
Then a continuous function f: (R*)"—R> in V9 is uniformly continuous on any
Ci(e>0).

Proof. This follows from Theorem 6.2 and the well-known theorem of
standard mathematics that any real-valued continuous function on a compact

metric space is uniformly continuous.

Definition (ZFC). Let B be a smooth manifold with topology £2=0C(B).
Let f: (B=)"—R> be a continuous function in ¥'“? with the property that there
exists C, such that f(x)=0 for any x&C,. Then, due to Theorem 6.4, the usual
definition of Riemann integral works well with respect to the real-like field B
and the value [ f(x)dx'---dx" is defined 'as an element of B, just as Takeuti
[12; Chap. 3, §1] did for n=1.

Fortunately we have
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Theorem 6.5 (ZFC). Under the same assumptions and notations of the
above definition, we have

[ fx)dxt--dx"€R> .

Proof. Follows from the well-known Leibniz’s rule on differentiation of
integrals with parameters (see, e.g., Dieudonné [16; (8.11.2)]).

Definition (ZFC). Let B be smooth manifold with topology 2=0(B).
Let M be an oriented n-dimensional smooth manifold in ¥, Let ® be an n-
form with compact support on M in V. Tle., there exists a finite family
{(U;, u;)} i of oriented cubic charts in ¥ such that

VxeM(,+0— i I(x=u7(C))) .

Let § be the function in Theorem 5.2. For each i€ 4, let g;=ufF(f)=Fou;, which
can be regarded as a smooth function on M in the natural way (extension by
zeroy. The n-form (g;/33; ¢ g g;)o can be defined safely and denoted by w;.
Let ¢; be the n-form (u7%)*w; on C,, which is of the form A; dx!A -+ Adx".
The function #; can be considered to be defined on (Z*)" in the natural way
(extension by zero). Then we define [, to be

e g Jhi()dx!-odx” .
Of course we need to verify

Theorem 6.6 (ZFC). The above definition of [y is independent of a par-
ticular choice of oriented cubic charts.

Proof. Let {(V;, v;)}je4 be another such finite family of oriented cubic
charts. Let g;=v¥(f) for each j& 4. Let w; be (gj/Ejeggj)co and ¢; be
(vi)* w; for each j& 4. The n-form ¢; on G, is of the form /;dx' A --- Adx" for
each je 4. Let w,; be 0/ 485 (8;/2 j 4 8;) @ for each ied,jed. Let
@;; be the n-form (u7")* w,;, which is of the form A;; dx'A--- Adx” for each
ied,jed. Letgj; be the n-form (v;')* w;;, which is of the form Aj;; dx' A -+
Adx”". By the way, the standard theorem on change of variables in Riemann
integrals can be generalized easily to the case with parameters, which then
renders an internalized version of the theorem on change of variables. I.e., we
have

Shijx)dxtee-dx” = [h(x)dxtee-dx" .
Since  [h;(x)dx!e-dx" = Slicg Shi(x)dx e dx®  and  [h;(x)dx' oo dx” =
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e g Jhii(x)dx'--dx", we have

Eieg fh,(x) dxl‘ ° "dxn

=icyg Shij(x)dx'e--dx"
jed

= e g Jh(x)dx'--dx"
jed

= jegfhj(x)dxlmdx”.

This completes the proof.

Definition (ZFC). Let é=(E, =, B, F) be an oriented smooth fibre bundle
with dim F=n and {=(Z, p, B, B™) be a vector bundle with the same base space.
Let us suppose further that a bundle map @: A"TV(E)—¢ with fibre-compact
support is given, inducing z: E— B in the base manifolds. For each x&B, @
determines a p~¥(x)-valued n-form @, on F,=z"%(x), say,

(ox)y(ul, R un) = q)(ul/\ e /\un)

for yer\(x), ;€ T,(F,)=T,(E). Since each @, has compact support (this
follows from the assumption that @ has fibre-compact support) and the orien-
tation of € induces an orientation on each fibre F,, we can define a map o:

B—Z by
O'(X) = sz@::

for x&B. Then it is well-known that o is a cross-section in ¢, to be called the
integral of © over the fibre.

Theorem 6.7 (ZFC). Under the same assumptions and notations of the
above definition, the vector [pe @*EZ> in V9 is externally the integral of ®
over the fibre, where 2 is the topology O(B).

Proof. Follows from the definitions.
The following will be used in the succeeding section.

Definition (ZFC). Let (E, =, B, F) be an oriented smooth fibre bundle
with dim F=n. Let wE A% ?(E) (=the totality of (n-+p)-forms with fibre-
compact support). Then w determines naturally a bundle map @,: A"TV(E)—
AP?T*(B), since for any x&E, u;, v;, w;&T1(E) (1<i<n, 1< j< p), we have

@, (v, **, Vps Ups °°% Uy) = @, (W, °o°s Wps Uy =2y U,)

provided dzv;=daw;(1< j<p). We define



FIBRE BUNDLES 245

fro
to be the integral of @, over the fibre. Then the operator f, induces a linear
map from A% ?(E) to A?(B). By decreeing that £, 0=0 for o= A%L(E) (Vq<n),
fr becomes a linear map from Ap(E) (=the totality of differential forms on E
with fibre-compact support) to 4(R).

§7. Stokes’ Theorem
The first main result of this section is

Theorem 7.1 (ZFC). Let B be a smooth manifold with topology 2=0C(B).
Let M be an oriented n-dimensional smooth manifold in V', on which a differen-
tial form o of degree n-1 with compact suppori is given. Then we have

Fudow =0.

Proof. Since w is of compact support by assumption, there exists a finite
family of oriented cubic smooth charts {(U;, u;)}ic g such that VxE M (w,==0
—JieHxsu7(C))). Then the standard proof of Stokes’ theorem (see, e.g.,
Boothby [2; pp. 257-258]) works well in V9, since the so-called fundamental
theorem of calculus still holds internally (see, e.g., Takeuti [12; Chap. 3,
Theorem 5]) and the iterated integration theorem can easily be internalized.

The above theorem can be generalized directly to vector-valued differential
forms (i.e., differential forms with values in finite-dimensional apartness vector
spaces).

Now we are ready to demonstrate that the following well-known theorem
is the external form of an internalized version of Stokes’ theorem in disguise.

Theorem 7.2 (ZFC). Let (E, =, B, F) be an oriented smooth fibre bundie.
Then exterior differentiation and integration over the fibre commute, i.e.,

dofp = frod, orexactly, dyof, = frod,, .

Proof. We should show that dy({f pw)=Fp(d),,») for any o € A (M). Since
the statement is local with respect to B and = is of local product property, we
can assume Wwithout loss of generality that E=BX/F. Since A(BXF)=
2p.q AFU(BXF) (sce, e.g., Greub et al. [5; pp. 121-122]), we can also assume
without loss of generality that o€ A4%YBXF). Since dy=dz+dr (see, e.g.,
Greub et al. [5; pp. 148-149]) and obviously

dp(fr@) = fr(dzw),



246 HIROKAZU NISHIMURA

it suffices to show that
JCF(de) = 0 )

which is nontrivial only in case of dim F=qg+1, when the equation follows

directly from Theorem 7.1 as an external restatement.

Just as in standard mathematics, the internal notion of a smooth manifold
and its related concepts can be generalized to that of a smooth manifold with
boundary and its related correspondents. Then, as might be expected, we have

Theorem 7.3 (ZFC). Let B be a smooth manifold with topology 2=0(B).
Let M be an oriented n-dimensional smooth manifold with boundary in V®, on
which a differential form o of degree n-1 with compact support is given. Then
we have

Sudo = (_1)” Jou i*o,

where O M is the boundary of M with the induced orientation and i: 0M—M is
the inclusion mapping.

Proof. Essentially the same as the standard one (see, e.g., Boothby [2;
pp. 257-258]). The major difference from that of Theorem 7.1 is only that
we have to consider, besides cubic charts, the intersections of cubic charts with
the upper half plane H*= {x=(x!, .-, x")&(R~)"| x">0}.

The following well-known theorem of standard mathematics stands in the
same relation to Theorem 7.3 as Theorem 7.2 does to Theorem 7.1.

Thesrem 7.4 (ZFC). Let 6=(E, =, B, F) be an oriented smooth fibre bundle
with boundary. We denote the boundary of F by OF, the boundary of E by 9E,
and the ordinary smooth fibre bundle (OF, |45, B, 0F) by 00. Then we have

frdo—dfrow = (1" for i*o

for any wE A%L(E) (=the totality of differential forms on E of degree k with
fibre-compact support), where n—=dim F and i: 0E—E is the inclusion mapping.

Proof. Proceed as in Theorem 7.2.

§8. Open Problem (De Rham Cohomelogy)*
Let é=(E, =, B, F) be a smooth fibre bundle. We denote by 4Y(E) the

* In this section we do not adhere to apartness.
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totality of bundle maps from A*TV(E) to the product bundle Bx R inducing
z: E—B in the base manifolds. Then the exterior differentiation d: 4} (E)—
47, .(E) is defined, so that we can consider vertical cohomolgy groups Hy (E).
See, e.g., Greub et al. [5; p. 313].

By the way, as we have seen in Theorem 5.1, each ® =4} (E) gives rise to
a differential form @* on E* in V), where £ is the topology O(B) of B. Now
we conjecture the following.

Conjecture (ZFC). Let é=(E, =, B. F) be a smooth fibre bundle with 2
being the topology of B. Then the internal notion of the n-th de Rham coho-
mology group H,(E®) in ¥V is externally the sheaf determined by the presheaf

vel- H,xY(U)),

where Hy (z~%U)) is the vertical cohomology group for the smooth fibre bundle
E l U:(n‘—l(U)’ T, U: F)'

References

[1] Bishop, E. and Bridges, D., Constructive analysis, Springer, Berlin, 1985.
2] Boothby, W.M., An introduction to differentiable manifolds and Riemannian geometry,
Academic Press, New York, 1975.
[3]1 Grayson, R.J., Concepts of general topology in constructive mathematics and in
sheaves, Annals of Mathematical Logic, 20 (1981), 1-41.
[4] ————, Concepts of general topology in constructive mathematics and in sheaves,
I, Annals of Mathematical Logic, 23 (1982), 55-98.
[S] Greub, W., Halperin, S., and Vanstone, R., Connections, curvature, and cohomology, I,
Academic Press, New York, 1972.
[6] ————, Connections, curvature, and cohomology, II, Academic Press, New York,
1973.
[7]1 Hattori, A., Differentiable manifolds (in Japanese), Iwanami, Tokyo, 1976.
[8] Matsushima, Y., Differentiable manifolds, Marcel Dekker, New York, 1972.
[91 Nishimura, H., Heyting valued set theory and Sato hyperfunctions, Publ. RIMS, 22
(1986), 801-811.
[10] Rousseau, C., Topos theory and complex analysis, Lecture Notes in Mathematics, 753
(1977), Springer, Berlin, 623-659.
[11] Ruitenberg, W.B.G., Intuitionistic algebra, theory and sheaf models, dissertation, 1982.
[12] Takeuti, G., Intuitionistic set theory (in Japanese), Kinokuniya, Tokyo, 1980.
[13] Takeuti, G. and Titani, S., Heyting valued universes of intui:ionistic set theory, Lecture
Notes in Mathematics, 891 (1980), Springer, Berlin, 189-306.
[14] ————, Globalization of intuitionistic set theory, preprini.
[15] —————, Global intuitionistic analysis, preprini.
[16] Dieudonné, J., Foundations of modern analysis, Academic Press, New York, 1960.
[17]1 Shiga, K., Theory of differeniiable manifolds (in Japanese), 3 vols, Iwanami, Tokyo,
1976.






