A New Method Using the Circles of Curvature for Solving Equations in \mathbb{R}^1

By

Bong-kyu PARK* and Sin HITOTUMATU**

Abstract

In this paper, we propose a numerical method using the circles of curvature for solving the equations in R^1 , whose order of convergence is cubic. Some numerical examples are given, for which the method works well, while there is shown an example failed by means of the Newton-Raphson's method.

§1. A New Method for Solving Equations in \mathbb{R}^1

Consider the equation

$$F(x) = 0 \tag{1}$$

in R^1 and let x_0 be an approximate solution for (1). As have been well known, the circle of curvature at the point $(x_0, y_0) = (x_0, F(x_0))$ on the curve y = F(x) is given by

$$(x - x_0 + \frac{y_0'(1 + {y_0'}^2)}{{y_0'}'})^2 + (y - y_0 - \frac{1 + {y_0'}^2}{{y_0'}'})^2 = \frac{(1 + {y_0'}^2)^3}{{y_0'}'^2},$$
 (2)

provided that $F \in C^2$. Therefore, if we define the next approximation x_1 by the x-coordinate of the point at which the circle (2) intersects the x-axis, then we obtain the following iterative procedure for solving the equation (1):

$$(x_{n+1}-x_n+\frac{y'_n(1+{y'_n}^2)}{{y'_n}'})^2=\frac{(1+{y'_n}^2)^3}{{y'_n}'^2}-(y_n+\frac{1+{y'_n}^2}{{y'_n}'})^2,$$

i.e.,

$$(x_{n+1}-x_n)^2+2B_n(x_{n+1}-x_n)+C_n=0$$
(3)

Communicated by H. Araki, June 24, 1987. Revised November 11, 1987.

^{*} Yuhan Technical College, Seoul, Korea.

^{**} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

where $y_n = F(x_n), y_n^{(i)} = F^{(i)}(x_n), i = 1, 2,$

 $B_n = y'_n(1+y'^2_n)/y''_n$

and

$$C_n = (y_n^2 y_n'' + 2y_n(1+y_n'^2))/y_n''.$$

Substituting $(y_n/y'_n)^2$ for $(x_{n+1}-x_n)^2$ in (2), we have

$$2B_n(x_{n+1}-x_n) = -C_n - y_n^2 / {y'_n}^2,$$

i.e.,

$$x_{n+1} = x_n - (y_n^2 y_n'' + 2y_n y_n'^2)/(2y_n'^3) \qquad (n \ge 0).$$
(4)

We shall call the procedure (4) as the first method of the curvature iteration.

On the one hand, if we solve the quadratic equation (3) with respect to $x_{n+1}-x_n$, then we have

$$x_{n+1} - x_n = -B_n + \operatorname{sign} (B_n) (B_n^2 - C_n)^{1/2}.$$
 (5)

To avoid the loss of significant digits, we modify (5) as follows;

$$x_{n+1} = x_n - C_n / (B_n + \text{sign} (B_n) (B_n^2 - C_n)^{1/2}), \qquad (6)$$

which we shall call the second method of the curvature iteration.

§2. Order of Convergence

To examine the order of convergence for (4), let α be a root of (1) and put

$$\varphi(x) = x - (y^2 y'' + 2y y'^2)/(2y'^3)$$
.

Then, the procedure (4) may be written in the form of $x_{n+1} = \varphi(x_n)$, so that

$$\begin{aligned} x_{n+1} - \alpha &= \varphi(x_n) - \varphi(\alpha) \\ &= \varphi'(\alpha)(x_n - \alpha) + \frac{1}{2}\varphi''(\alpha)(x_n - \alpha)^2 + \frac{1}{6}\varphi'''(\alpha)(x_n - \alpha)^3 + \cdots \\ &= \frac{1}{6}\varphi'''(\alpha)(x_n - \alpha)^3 + \cdots, \end{aligned}$$

since, as is easily seen, we have

$$\varphi'(\alpha)=\varphi''(\alpha)=0\,,$$

and

$$\varphi^{\prime\prime\prime}(\alpha) = (2y^{\prime}(\alpha)y^{\prime\prime}(\alpha) + 3y^{\prime\prime}(\alpha)^2)/(2y^{\prime}(\alpha)^2)$$

provided that $F \in C^5$. This implies that the order of convergence for (4) is

250

cubic, if $F \in C^5$.

§3. Numerical Examples

Example 1. Table 3-1 shows the results of computation for both the Newton-Raphson method and the second method applied to the equation $\sin(2.1x-0.6)=0$ with the approximation, $x_0=1$. As we have observed, the second method converges, but the Newton-Raphson's method fails. The same situation occurs for the value x_0 in the interval [1, 2].

Times of iteration	Newton Raphson	Curvature Iteration	
1	-5.7149519920349	1.69681475779063	
2	-5.6982652358711	1.78123734436566	
3	-5.6982718813119	1.78171084762747	
4	-5.6982721689230		
у	failure	(second formula) -8.7422783679D-0	

(1	a	bl	e	3	-	1))
---	---	---	----	---	---	---	----	---

* Here "1" is given as an initial approximation.

Example 2. In Table 3–2, we compare the methods (4) and (5) with the Newton-Raphson's method for the following equations.

- 1. $F(X) = X^3 X^2 1 = 0$
- 2. $F(X) = X^4 3X^3 X^2 + 2X + 3 = 0$
- 3. $F(X) = X^5 2X^4 4X^3 + X^2 + 5X + 3 = 0$
- 4. $F(X) = X^6 8X^4 4X^3 + 7X^2 + 13X + 6 = 0$
- 5. $F(X) = X^7 + X^6 8X^5 12X^4 + 3X^3 + 20X^2 + 19X + 6 = 0$

Degree Equation		Accuracy of the Last Root to Be Found			Times of Iteration		on
		Newton	First Formula	Second Formula	Newton	First Formula	Second Formula
(*1)	3	E-016	E-016	E-016	5	4	4
(*1)	4	E-016	E-016	E-016	5	3	3
(*1)	5	E-014	E-015	E-015	4	4	4
(*1.5)	6	E-015	E-015	E-015	3	2	2
(*1.5)	7	E-015	E-014	E-015	3	2	2

(Table 3-2)

(* Initial approximation)

BONG-KYU PARK AND SIN HITOTUMATU

As confirmed in Table 3–2, the number of iterations with which our method converges is fewer than the Newton-Raphson's method.

252