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An Extension of Hodge Theory to Kahler
Spaces with Isolated Singularities
of Restricted Type

By

Takeo OHSAWA*

Introduction

The present article is a continuation of the author’s previous works [15]
through [20], where degenerations of Hodge’s spectral sequences have been
observed on several non-compact Kéhler manifolds. Here we shall be con-
cerned with a problem related to a conjecture of Cheeger-Goreski-MacPherson
on the coincidence of L? cohomology and intersection cohomology of projective
varieties (cf. [C-G-M]). Let X be a compact complex space of pure dimension
n equipped with a Kéahler metric ds? let 3] be the set of singular points of X
and let Xy :=X\>].

We denote by H'(Xy), Hy(Xx) and H{,y(X), respectively the r-th de Rham
cohomology of Xy, the r-th de Rham cohomology of X, with compact support,
and the L? de Rham cohomology of Xy, all with coefficients in C. Corres-
pondingly H?%(Xy), H%(Xy) and H{(Xy) shall denote the Dolbeault coho-
mologies of type (p, q).

Our main result is stated as follows:

Theorem If dim >1=O0, then there exists a complete Kihler metric dsZ on
X, whose Kdhler class is the same as that of ds®, such that
H'(Xy) if r<nm
(1) Hp(Xs)=={ Im(H{(Xy) — H"(Xy)) it r=n
Hy(X) if r>n
H»(X) if pt+g<n—1

2 HEH(X, g{
2) BED=\ a0 it prgmnt,
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if the following condition (%) is satisfied.
(¥) dim 33=0 and there exists a desingularization =: X—X by blowing up
such that z=Y(3)) is a disjoint union of nonsingular divisors.

Corollary 1. Under the above situation, the multiplication L by the Kahler
class of ds? induces the bijections

(3) Lk HYH(Xy) — Hi (X)), k=0.
Corollary 2. Let X be as above, and let m be an odd integer. Then
(4) dimgy IH™(X)=0 mod 2,
where IH" denotes the intersection cohomology in the sense of Goreski-MacPherson.

In case dim X=2, M. Nagase [13] has established the relation (1) for the
original Kédhler metric ds® (see also [12]).

For higher dimensional varieties with isolated singularities, L. Saper [22]
establishes (1) for certain complete Kéhler metrics which are nonequivalent
to ours, although he did it under a very restrictive assumption on the singularity
as we do here. The publication of the present paper might be admitted because
we have proved (1) by a completely different method.

§ 1. L? Estimates for the Exterior Derivative

Let 4CC be the open unit disc centered at the origin, let 4,=4\ {0}, and
let (z,, -+, z,,.,) be the coordinate of C**. We put z=(z,, ***, z11), |2]| =
max|z;| and f(z)=2z,.,. The modulus of the function f will be denoted by r.
Let ds? be the euclidean metric on C”*'. We define a metric ds? on 4" X 4, by

ds? drdf
(I—-Inr)In* 2—Inr) r*(1—Inr)*In*2—Inr) '

ds}=

We shall first ask for estimates of the solutions to the equations du=wv on 4™ x 4.
The L? norms with respect to ds? and ds} will be denoted by || ||, and [[ ||,
respectively.

Lemma 1. For any square integrable (m+-1)-form v on (4" X 4, ds?) satisfy-
ing dv=0, and supp vC4" X {zE44]||z| <%} there exist a neighbourhood

U >o0 and a measurable m-form u on U N (4" x 4,), square integrable with respect
to ds?, such that du=v on U N (4" X 4y).
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Proof. We expand v as
v =3 e"(vi+doAv)),
LEZ

where 6=arg f and v/, v/’ are orthogonal to the forms d6 A. Then we have
dvi=0 and iuvi—dovl/=0 for all x. Since deg vi.=m-+1 and deg v{/=m, we
have

(1) lloill. <okl
and
(2) [l <11d0 Aviilf -

Moreover, it is clear that
(3) ol < 11O Ao -
From (2) and (3), the series u':= %()iﬂ‘le"‘“’-v,’/ converges with respect || || to
and || ||, so that [[u'|],<<oo, i]u’||f<ﬂ<>o and
vi+du = vi+doNY .
We put
v§ = at+drA\B,
where « is orthogonal to the forms dr A -.

By assumption we have
a=drAf=0 on r‘l([%, 1)) .

Then, integrating dr A S along the gradient vector field of r, we obtain an
m-form

E=E@r): = g;zdz/\,@

which is defined on U N (4" x 4,) for some neighbourhood U >0 and satisfies
supp ECUNU"X {z € 44| | z| <%}).

Then we have

dE = (d,+d)E = dr \B +f/ dt Nd'B
1/2
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= dr/\,@—l-s; da=dr\f+e,

where d, denotes the exterior derivative with respect to r and we put d’'=d—d,.
The square integrability with respect to ds? follows immediately from the inte-
gral inequality

1/2

(4) s(2—1In )" In~2(2—1n ) | Ss/ g(t)dt |ds

r

1/2 s
gj s~} 2—In 5)2| g g0y s
1/2
4

1/2 1
S s|g(s)]|2ds for rE(O, —2—),

which holds for any continuous function g: (O, %] —C.

Thus it only remains to solve the equation du=d6 Avy’. But it is similar
as above and left to the reader.

Lemma 1 shall be used to prove the vanishing of the middle L? cohomology
around isolated singular points. As we have shown in earlier papers [18]~

[20], the vanishing of higher L? cohomology groups follows from a very general
argument by applying an estimate on complete Kdhler manifolds due to Donnelly
and Fefferman [7].

Lemma 2 Let u be any compactly supported C* r-form on a Kihler manifold
(X, ds?) of dimension n with a global potential function ¢ (i.e. ds*=08¢ on X).
Then

|lul| <4 sup {|9¢|,| pEsupp u} (||dul|+[|d*ull)

whenever r+=n. Here d* denotes the adjoint of d, and ||u|| denotes the L*-norm

of u.

Theorem 3. Let (X, ds®) be a complete Kihler manifold of dimension n and
DC X an open subset. Suppose that there exists a proper C= map ¢: D—>(c,, o)
for some c, &R\ {— oo}, such that

1) The eigenvalues of i08¢ are larger than a positive constant on D.

2) sgplaga|<oo.

Then, for any non-critical value ¢ of ¢ and for any square integrable k-form (resp.
(p, q)-form) v on D,:={xED; p(x)<c} with k>n (resp. p+q>n) and dv=0
(resp. 0v=0), there exists on D, for any c’<c, a square integrable (k—1)-form
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(resp. (p, q—1)-form) u such that du=v (resp. du=0).
Proof. See Theorem 1.1 in [18].

Remark. A metric of type ds? was first introduced by H. Grauert in [8]
to show that every smooth (not necessarily compact) projective variety admits
a complete Kahler metric. A remarkable property of ds? is that it admits a
bounded potential function.

§2. Proof of Theorem

Let (X, ds®) be a compact Kéhler space of pure dimension » with isolated
singular points >3, and let X,=X\>. In virtue of Hironaka’s desingulari-
zation theorem, there exists a Kéhler manifold X and a proper holomorphic
map z: X — X which is a biholomorphism on z~%(Xyx). One can take X so that
E:=="'(3}) is supported on a divisor of simple normal crossings and there
exists an effective divisor E4 on X supported on |E | such that [—Ey] is very
ample (cf. [10]). Similarly as in [17], we have then a positive C* function v on
Xy such that
1) 88 In+ is extended smoothly along E as a metric on a neighbourhood
W DE and —In | W>1.

2) Iny—In|s|?is C= on X, where s is a canonical section of [E4] and |s|
denotes the length of s with respect to some C* metric of the bundle.

Let o be a nonnegative C= function such that supp o&W and p=1on a
neighbourhood UDE. We put

dsy = Nds*+09(p In~ In? ) .

Let z: X—X be as in the hypothesis of Theorem to be proved, and fix a
positive constant N so that ds% is a complete Kéhler metric on Xy. Since ds%
is asymptotically equivalent to the metric of type dsZ near each pE E, we obtain
the following.

Lemma 4. Let UDE be a neighbourhood and let u be a d-closed square

integrable n-form on U\E satisfying supp uUE&U. Then there exists a square
integrable (n—1)-form u on U\E satisfying du=u.

Proof is similar as in Lemma 1.

For any open set V C Xy, we denote by LAV) (resp. L*9(V)) the set of
square integrable k-forms (resp. (p, ¢)-forms) on ¥ with respect to ds’.
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Definition. Let I be as above. We put
Hbp(V): = {f€LNY); df = O} {g € LNV); e L(V) s.t. g = du}
HEf(V): = {f€LP(V); 8f = O} [ {gEL*(V); s L#*X(V) s.t. g = Bu}.
Then we have the following exact sequences:
(4)  lim HE (Xe\K) = Hi(Xy) > Hip(Xy) - lim H (X4 \K)
(5)  lim Hi " (XA\K) = HE*(X) — HE () — lim HEGAK),
where K runs through the compact subsets of Xx. As a consequence we obtain
Lemma 5. Iflién HEG X \K) = liKrn Hb)(X\K)=0
(resp. lim Hs{~' (X \K)=lim H{§(X,\K)=0), then
HYX) == Hy(Xy) (resp. HE (X)) = HEH(X) .

Since the function ¢=In"" In® - satisfies that

809> 0¢d¢p
on a neighbourhood of E, combining Theorem 3 with Lemma 5 we obtain the
isomorphisms
H§(Xy)==<H {)(Xy)
and
H§(Xy) = H{3(X)
for k, p+g>n-+1.

By Poincaré and Serre’s duality, taking the finiteness of dim H$%(Xy)
(p+g>n+1) and dim H”%(Xy) (p+g>n—1) into account (cf. [2]), we have

HYXy)=H {)(X)
and
H?PY(X )= H3/(Xy)

if k, pt+g<n—1.
The proof of Theorem will be finished if we show the following.

Proposition 6.

li{m H?z)(X*\K) =0.
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In fact, from the exact sequence (4) one has
HS (X)=H§* ' (Xy)
hence by the Poincaré duality
HI5 ()= H"(Xy) .
As for the n-th L? cohomology, the map
Hy(Xy) — H)(Xx)
is surjective, therefore the map
Hip(Xs) = H"(Xy)
is injective. Hence we have
H () (Xy)=Im (H3(Xy) — H"(X)) .

Proof of Proposition 6: The L? vanishing shall be reduced to a vanishing
theorem which has nothing to do with L? conditions. We note that the proof
we give below does not use the assumption that Sing |E|=¢. Therefore, the
following is valid for any compact complex space X with isolated singularities
and any desingularization z: X—>X by blowing up.

Lemma. If X\K is homotopically equivalent io E, the homomorphism
H"(X\K) — H"(X4\K)
is a zero map.
Proof. It suffices to show that the map
¢ HYX\K) — H"(X\K)

is surjective. Since dim H (X \K)=dim H"(X\K), the surjectivity will follow
from the injectivity of ¢. Since we may assume that X\ K is an arbitrarily small
neighbourhood of E, we may assume that X\K is biholomorphically equivalent
to an open subset U of a nonsingular projective variety Y such that the image
Y of Y under the blow down along F is projective algebraic. (Artin’s theorem,
cf. [4]). Let ZC Y be a nonsingular divisior which does not intersect with £
and defines an ample divisor on Y. Shrinking U if necessary, we may assume
that Z N U=¢. Then, applying the Morse theory as in Andreotti-Frankel
[1], we have
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HY¥Y\Z)=H(U) for k>n

and that the restriction map
H"(Y\Z) — H"(U)

is surjective.

Sublemma. The restriction map

H"(Y) - H"(U)

is surjective.

Proof. Note that the Green operator commutes with the complex ex-
terior derivatives @ and 8. Since the Gysin map H* %(Z)—H"+(Y) is of type
(1, 1), and Y is Kdhlerian the above property of the Green operator implies the
following. Let v be any d-cosed C~ n-form on Y\Z with logarithmic poles
along Z. Let v=v,,+---+v,, be the decomposition into different types.
Suppose that v, ,=0 for p<k for some integer k. Then there exists a C*= d-
closed n-form »" on Y\ Z, with logarithmic poles along Z, such that v; ,_,| U=0,
v} ;=0 for p<k, and res; (v—2'); ,-,=0. Here v; , and (v—2'), , denote the
(p, q) components of v’ and v—7’, respectively, and res, denotes the residue
along Z. Combining this fact with the surjectivity of H*(Y\Z)—H"(U), the
surjectivity of H"(Y)—H"(U) follows immediately.

Now we proceed to prove the injectivity of ¢.

Let v be a C~ compactly supported d-closed n-form on U, and suppose
that there exists a C* (n—1)-form u on U with du=v. We shall show that the
harmonic representative v, of v as a cohomology class on Y is zero. By
Sublemma, it will then follow that v represents zero in H5(U). Let v,=v,+Lv,
be the decomposition into the primitive and nonprimitive parts. Then

S U, A%,

Y

=S AT/
Y

=S v/\Evﬁ—S v A\*Lv,
v v

=S v/\ﬁv—{—s oALw.
v U

Here w is some C* d-closed (n—2)-form on Y.
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Since Lw=%65 In ¥ Aw on U\E and v is d-exact on U, we have

g oALw=0.
U
Since v, | Lv,, we have
gyvh/\‘ﬂ?v,, = Syvl,/\ivi,.
Thus Lv,=0, which impies that v, is d-exact on U. Note that
AT
J,on
— (__l)n(n+1)/2 S ‘U/\C—'Ut, ,
U

where C denotes the Weil’s operator. Since v,|y is d-exact, Cv,|, must be
d-exact, too, since C is compatible with the canonical spectral sequence which
abuts to H*(E) on the varieties with normal crossings.

Therefore,

S vACv,=0.
174
Thus
S o,N%0, =0
Y

which impiles that v,=0, and the proof of Lemma is completed.
Now we shall finish the proof of Proposition 6. By the Lemma, the image
of the homomorphism

a: lim Hip(X:\K) — lim H"(X5\K)
K

is zero. The injectivity of a follows immediately from Lemma 4. Therefore
lim H?Z)(X*\K)—:O. Q.E.D.
K

Corollaries 1 and 2 are straightforward applications of our theorem.

Remark. In case X is projective algebraic, the corollaries have been
obtained by Navaro Aznar [14] and Morihiko Saito [21] independently by
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different methods. As for the basic results in this direction, see also [5] and [6].
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Added in proof. The author must apologize to the reader that our result is
not so satisfactory. He promises to give a complete result, i.e. one without any
restriction on the singularity, in a forthcoming article.






