An Extension of Hodge Theory to Kähler Spaces with Isolated Singularities of Restricted Type

Ву

Takeo OHSAWA*

Introduction

The present article is a continuation of the author's previous works [15] through [20], where degenerations of Hodge's spectral sequences have been observed on several non-compact Kähler manifolds. Here we shall be concerned with a problem related to a conjecture of Cheeger-Goreski-MacPherson on the coincidence of L^2 cohomology and intersection cohomology of projective varieties (cf. [C-G-M]). Let X be a compact complex space of pure dimension n equipped with a Kähler metric ds^2 , let Σ be the set of singular points of X and let $X_* := X \setminus \Sigma$.

We denote by $H'(X_*)$, $H'_0(X_*)$ and $H'_{(2)}(X_*)$, respectively the *r*-th de Rham cohomology of X_* , the *r*-th de Rham cohomology of X_* with compact support, and the L^2 de Rham cohomology of X_* , all with coefficients in C. Correspondingly $H^{p,q}(X_*)$, $H^{p,q}_0(X_*)$ and $H^{p,q}_{(2)}(X_*)$ shall denote the Dolbeault cohomologies of type (p, q).

Our main result is stated as follows:

Theorem If dim $\sum = 0$, then there exists a complete Kähler metric ds_*^2 on X_* whose Kähler class is the same as that of ds^2 , such that

(1)
$$H_{(2)}^{r}(X_{*}) \cong \begin{cases} H^{r}(X_{*}) & \text{if } r < n \\ Im(H_{0}^{n}(X_{*}) \to H^{n}(X_{*})) & \text{if } r = n \\ H_{0}^{r}(X_{*}) & \text{if } r > n \end{cases}$$

.

(2)
$$H_{(2)}^{p,q}(X_*) \approx \begin{cases} H^{p,q}(X_*) & \text{if } p+q < n-1 \\ H_0^{p,q}(X_*) & \text{if } p+q > n+1 \end{cases},$$

* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

Received July 29, 1987.

if the following condition (*) is satisfied.

(*) dim $\Sigma = 0$ and there exists a desingularization $\pi: \tilde{X} \to X$ by blowing up such that $\pi^{-1}(\Sigma)$ is a disjoint union of nonsingular divisors.

Corollary 1. Under the above situation, the multiplication L by the Kahler class of ds^2 induces the bijections

(3)
$$L^k: H^{n-k}(X_*) \to H^{n+k}_0(X_*), \quad k \neq 0$$

Corollary 2. Let X be as above, and let m be an odd integer. Then

$$\dim_{\boldsymbol{C}} IH^{\boldsymbol{m}}(X) \equiv 0 \qquad mod \ 2 \,,$$

where IH^m denotes the intersection cohomology in the sense of Goreski-MacPherson.

In case dim X=2, M. Nagase [13] has established the relation (1) for the original Kähler metric ds^2 (see also [12]).

For higher dimensional varieties with isolated singularities, L. Saper [22] establishes (1) for certain complete Kähler metrics which are nonequivalent to ours, although he did it under a very restrictive assumption on the singularity as we do here. The publication of the present paper might be admitted because we have proved (1) by a completely different method.

§ 1. L^2 Estimates for the Exterior Derivative

Let $\Delta \subset C$ be the open unit disc centered at the origin, let $\Delta_* = \Delta \setminus \{0\}$, and let (z_1, \dots, z_{m+1}) be the coordinate of C^{m+1} . We put $z = (z_1, \dots, z_{m+1}), |z| = \max |z_j|$ and $f(z) = z_{m+1}$. The modulus of the function f will be denoted by r. Let ds_e^2 be the euclidean metric on C^{m+1} . We define a metric ds_f^2 on $\Delta^m \times \Delta_*$ by

$$ds_f^2 = \frac{ds_e^2}{(1-\ln r)\ln^2(2-\ln r)} + \frac{df d\bar{f}}{r^2(1-\ln r)^2\ln^2(2-\ln r)}.$$

We shall first ask for estimates of the solutions to the equations du=v on $\Delta^m \times \Delta_*$. The L^2 norms with respect to ds_e^2 and ds_f^2 will be denoted by $|| ||_e$ and $|| ||_f$, respectively.

Lemma 1. For any square integrable (m+1)-form v on $(\Delta^m \times \Delta_*, ds_f^2)$ satisfying dv=0, and supp $v \subset \Delta^m \times \{z \in \Delta_* \mid |z| < \frac{1}{2}\}$ there exist a neighbourhood $U \ni o$ and a measurable m-form u on $U \cap (\Delta^m \times \Delta_*)$, square integrable with respect to ds_f^2 , such that du=v on $U \cap (\Delta^m \times \Delta_*)$.

254

Proof. We expand v as

$$v = \sum_{\mu \in \mathbb{Z}} e^{i \,\mu_{\theta}} (v'_{\mu} + d\theta \wedge v''_{\mu}),$$

where $\theta = \arg f$ and v'_{μ} , v''_{μ} are orthogonal to the forms $d\theta \wedge$. Then we have $dv'_{\mu} = 0$ and $i\mu v'_{\mu} - dv''_{\mu} = 0$ for all μ . Since deg $v'_{\mu} = m+1$ and deg $v''_{\mu} = m$, we have

$$(1) ||v'_{\mu}||_{e} \leq ||v'_{\mu}||_{f}$$

and

(2)
$$||v''_{\mu}||_{e} \leq ||d\theta \wedge v''_{\mu}||_{f}$$

Moreover, it is clear that

(3)
$$||v''_{\mu}||_{f} \leq ||d\theta \wedge v''_{\mu}||_{f}$$
.

From (2) and (3), the series $u' := \sum_{\mu \neq 0} i \mu^{-1} e^{i \mu \theta} v_{\mu}^{\prime \prime}$ converges with respect $|| \ ||_f$ to and $|| \ ||_e$ so that $||u'||_e < \infty$, $||u'||_f < \infty$ and

$$v_0^\prime + du^\prime = v_0^\prime + d heta \wedge v_0^{\prime\prime}$$
 .

We put

$$v_0' = \alpha + dr \wedge \beta$$
,

where α is orthogonal to the forms $dr \wedge \cdot$.

By assumption we have

$$\alpha = dr \wedge \beta = 0$$
 on $r^{-1}\left(\left[\frac{1}{2}, 1\right]\right)$.

Then, integrating $dr \wedge \beta$ along the gradient vector field of r, we obtain an *m*-form

$$\xi = \xi(r) := \int_{1/2}^r dt \wedge \beta$$

which is defined on $U \cap (\mathcal{A}^m \times \mathcal{A}_*)$ for some neighbourhood $U \ni 0$ and satisfies supp $\xi \subset U \cap (\mathcal{A}^m \times \{z \in \mathcal{A}_* \mid |z| < \frac{1}{2}\}).$

Then we have

$$d\xi = (d_r + d')\xi = dr \wedge \beta + \int_{1/2}^r dt \wedge d'\beta$$

$$= dr \wedge eta + \int_{1/2}^r d_r \, lpha = dr \wedge eta + lpha$$
,

where d_r denotes the exterior derivative with respect to r and we put $d'=d-d_r$. The square integrability with respect to ds_f^2 follows immediately from the integral inequality

$$(4) \qquad \qquad \int_{r}^{1/2} s^{-1} (2 - \ln s)^{-2} \ln^{-2} (2 - \ln s) \left| \int_{1/2}^{s} g(t) dt \right|^{2} ds$$

$$\leq \int_{r}^{1/2} s^{-1} (2 - \ln s)^{-2} \left| \int_{1/2}^{s} g(t) dt \right|^{2} ds$$

$$\leq 4 \int_{r}^{1/2} s |g(s)|^{2} ds \qquad \text{for} \quad r \in \left(0, \frac{1}{2}\right),$$

which holds for any continuous function $g: \left(0, \frac{1}{2}\right] \rightarrow C$.

Thus it only remains to solve the equation $du = d\theta \wedge v_0'$. But it is similar as above and left to the reader.

Lemma 1 shall be used to prove the vanishing of the middle L^2 cohomology around isolated singular points. As we have shown in earlier papers [18]~ [20], the vanishing of higher L^2 cohomology groups follows from a very general argument by applying an estimate on complete Kähler manifolds due to Donnelly and Fefferman [7].

Lemma 2 Let u be any compactly supported C^{∞} r-form on a Kähler manifold (X, ds^2) of dimension n with a global potential function φ (i.e. $ds^2 = \partial \overline{\partial} \varphi$ on X). Then

 $||u|| \leq 4 \sup \{ |\partial \varphi|_p | p \in \text{supp } u \} (||du|| + ||d^*u||)$

whenever $r \neq n$. Here d^* denotes the adjoint of d, and ||u|| denotes the L²-norm of u.

Theorem 3. Let (X, ds^2) be a complete Kähler manifold of dimension n and $D \subset X$ an open subset. Suppose that there exists a proper C^{∞} map $\varphi: D \rightarrow (c_0, \infty)$ for some $c_0 \in \mathbb{R} \cup \{-\infty\}$, such that

- 1) The eigenvalues of $i\partial \bar{\partial} \varphi$ are larger than a positive constant on D.
- 2) $\sup |\partial \varphi| < \infty$.

Then, for any non-critical value c of φ and for any square integrable k-form (resp. (p, q)-form) v on $D_c := \{x \in D; \varphi(x) < c\}$ with k > n (resp. p+q > n) and dv=0 (resp. $\overline{\partial}v=0$), there exists on $D_{c'}$, for any c' < c, a square integrable (k-1)-form

256

(resp. (p, q-1)-form) u such that du=v (resp. $\bar{\partial}u=v$).

Proof. See Theorem 1.1 in [18].

Remark. A metric of type ds_f^2 was first introduced by H. Grauert in [8] to show that every smooth (not necessarily compact) projective variety admits a complete Kahler metric. A remarkable property of ds_f^2 is that it admits a bounded potential function.

§ 2. Proof of Theorem

Let (X, ds^2) be a compact Kähler space of pure dimension *n* with isolated singular points Σ , and let $X_* = X \setminus \Sigma$. In virtue of Hironaka's desingularization theorem, there exists a Kähler manifold \tilde{X} and a proper holomorphic map $\pi: \tilde{X} \to X$ which is a biholomorphism on $\pi^{-1}(X_*)$. One can take \tilde{X} so that $E:=\pi^{-1}(\Sigma)$ is supported on a divisor of simple normal crossings and there exists an effective divisor E_* on \tilde{X} supported on |E| such that $[-E_*]$ is very ample (cf. [10]). Similarly as in [17], we have then a positive C^{∞} function ψ on X_* such that

1) $\partial \bar{\partial} \ln \psi$ is extended smoothly along *E* as a metric on a neighbourhood $W \supset E$ and $-\ln \psi | W > 1$.

2) $\ln \psi - \ln |s|^2$ is C^{∞} on \tilde{X} , where s is a canonical section of $[E_*]$ and |s| denotes the length of s with respect to some C^{∞} metric of the bundle.

Let ρ be a nonnegative C^{∞} function such that supp $\rho \Subset W$ and $\rho \equiv 1$ on a neighbourhood $U \supset E$. We put

$$ds_*^2 = N ds^2 + \partial \bar{\partial} (\rho \ln^{-1} \ln^2 \psi) \,.$$

Let $\pi: \tilde{X} \to X$ be as in the hypothesis of Theorem to be proved, and fix a positive constant N so that ds_*^2 is a complete Kähler metric on X_* . Since ds_*^2 is asymptotically equivalent to the metric of type ds_f^2 near each $p \in E$, we obtain the following.

Lemma 4. Let $U \supset E$ be a neighbourhood and let u be a d-closed square integrable n-form on $U \setminus E$ satisfying supp $u \cup E \subseteq U$. Then there exists a square integrable (n-1)-form u on $U \setminus E$ satisfying du=u.

Proof is similar as in Lemma 1.

For any open set $V \subset X_*$, we denote by $L^k(V)$ (resp. $L^{p,q}(V)$) the set of square integrable k-forms (resp. (p, q)-forms) on V with respect to ds_*^2 .

TAKEO OHSAWA

Definition. Let V be as above. We put

$$\begin{aligned} H^{b}_{(2)}(V) &:= \left\{ f \in L^{k}(V); \, df = 0 \right\} / \left\{ g \in L^{k}(V); \, \exists u \in L^{k-1}(V) \, s.t. \, g = du \right\} \\ H^{b,q}_{(2)}(V) &:= \left\{ f \in L^{p,q}(V); \, \bar{\partial}f = 0 \right\} / \left\{ g \in L^{p,q}(V); \, \exists u \in L^{p,q-1}(V) \, s.t. \, g = \bar{\partial}u \right\}. \end{aligned}$$

Then we have the following exact sequences:

$$(4) \qquad \lim_{K} H^{k-1}_{(2)}(X_{*} \setminus K) \to H^{k}_{0}(X_{*}) \to H^{k}_{(2)}(X_{*}) \to \lim_{K} H^{k}_{(2)}(X_{*} \setminus K)$$

$$(5) \qquad \lim_{K} H^{\mathfrak{p},\mathfrak{q}-1}(X_{*}\backslash K) \to H^{\mathfrak{p},\mathfrak{q}}_{0}(X_{*}) \to H^{\mathfrak{p},\mathfrak{q}}_{(2)}(X_{*}) \to \lim_{K} H^{\mathfrak{p},\mathfrak{q}}_{(2)}(X_{*}\backslash K) ,$$

where K runs through the compact subsets of X_* . As a consequence we obtain

Lemma 5. If
$$\lim_{K} H^{k-1}_{(2)}(X_* \setminus K) = \lim_{K} H^k_{(2)}(X_* \setminus K) = 0$$

(resp. $\lim_{K} H^{p,q-1}_{(2)}(X_* \setminus K) = \lim_{K} H^{p,q}_{(2)}(X_* \setminus K) = 0$), then
 $H^k_0(X_*) \simeq H^k_{(2)}(X_*)$ (resp. $H^{p,q}_0(X_*) \simeq H^{p,q}_{(2)}(X_*)$).

Since the function $\varphi = \ln^{-1} \ln^2 \psi$ satisfies that

$$\partial \bar{\partial} \varphi \geq \partial \varphi \bar{\partial} \varphi$$

on a neighbourhood of E, combining Theorem 3 with Lemma 5 we obtain the isomorphisms

$$H^k_0(X_*) \simeq H^k_{(2)}(X_*)$$

and

$$H^{p,q}_{0}(X_{*}) \cong H^{p,q}_{(2)}(X_{*})$$

for k, p+q > n+1.

By Poincaré and Serre's duality, taking the finiteness of dim $H_0^{p,q}(X_*)$ (p+q>n+1) and dim $H^{p,q}(X_*)$ (p+q>n-1) into account (cf. [2]), we have

$$H^{k}(X_{*}) \cong H^{k}_{(2)}(X_{*})$$

and

$$H^{p,q}(X_*) \cong H^{p,q}_{(2)}(X_*)$$

if k, p+q < n-1.

The proof of Theorem will be finished if we show the following.

Proposition 6.

$$\lim_{K} H^{n}_{(2)}(X_{*} \setminus K) = 0.$$

In fact, from the exact sequence (4) one has

$$H_{(2)}^{n+1}(X_*) \simeq H_0^{n+1}(X_*)$$

hence by the Poincaré duality

$$H^{n-1}_{(2)}(X_*) \cong H^{n-1}(X_*).$$

As for the *n*-th L^2 cohomology, the map

$$H^n_0(X_*) \to H^n_{(2)}(X_*)$$

is surjective, therefore the map

$$H^n_{(2)}(X_*) \to H^n(X_*)$$

is injective. Hence we have

$$H^n_{(2)}(X_*) \cong \operatorname{Im} \left(H^n_0(X_*) \to H^n(X_*) \right).$$

Proof of Proposition 6: The L^2 vanishing shall be reduced to a vanishing theorem which has nothing to do with L^2 conditions. We note that the proof we give below does not use the assumption that Sing $|E| = \phi$. Therefore, the following is valid for any compact complex space X with isolated singularities and any desingularization $\pi: \tilde{X} \to X$ by blowing up.

Lemma. If $\tilde{X} \setminus K$ is homotopically equivalent to E, the homomorphism

$$H^{n}(\tilde{X} \setminus K) \to H^{n}(X_{*} \setminus K)$$

is a zero map.

Proof. It suffices to show that the map

$$\iota \colon H^n_0(\check{X} \setminus K) \to H^n(\check{X} \setminus K)$$

is surjective. Since dim $H_0^n(\tilde{X}\setminus K) = \dim H^n(\tilde{X}\setminus K)$, the surjectivity will follow from the injectivity of ι . Since we may assume that $\tilde{X}\setminus K$ is an arbitrarily small neighbourhood of E, we may assume that $\tilde{X}\setminus K$ is biholomorphically equivalent to an open subset U of a nonsingular projective variety Y such that the image \hat{Y} of Y under the blow down along E is projective algebraic. (Artin's theorem, cf. [4]). Let $Z \subset Y$ be a nonsingular divisior which does not intersect with Eand defines an ample divisor on \hat{Y} . Shrinking U if necessary, we may assume that $Z \cap U = \phi$. Then, applying the Morse theory as in Andreotti-Frankel [1], we have

$$H^{k}(Y \setminus Z) \cong H(U)$$
 for $k > n$

and that the restriction map

 $H^n(Y \setminus Z) \to H^n(U)$

is surjective.

Sublemma. The restriction map

 $H^n(Y) \to H^n(U)$

is surjective.

Proof. Note that the Green operator commutes with the complex exterior derivatives ∂ and $\bar{\partial}$. Since the Gysin map $H^{n-1}(Z) \to H^{n+1}(Y)$ is of type (1, 1), and Y is Kählerian the above property of the Green operator implies the following. Let v be any d-cosed C^{∞} n-form on $Y \setminus Z$ with logarithmic poles along Z. Let $v = v_{0,n} + \dots + v_{n,0}$ be the decomposition into different types. Suppose that $v_{p,q} = 0$ for $p \leq k$ for some integer k. Then there exists a C^{∞} d-closed n-form v' on $Y \setminus Z$, with logarithmic poles along Z, such that $v'_{k,n-k} | U=0$, $v'_{p,q}=0$ for $p \leq k$, and $\operatorname{res}_Z(v-v')_{k,n-k}=0$. Here $v'_{p,q}$ and $(v-v')_{p,q}$ denote the (p, q) components of v' and v-v', respectively, and res_Z denotes the residue along Z. Combining this fact with the surjectivity of $H^n(Y \setminus Z) \to H^n(U)$, the surjectivity of $H^n(Y) \to H^n(U)$ follows immediately.

Now we proceed to prove the injectivity of ι .

Let v be a C^{∞} compactly supported d-closed n-form on U, and suppose that there exists a C^{∞} (n-1)-form u on U with du=v. We shall show that the harmonic representative v_h of v as a cohomology class on Y is zero. By Sublemma, it will then follow that v represents zero in $H_0^n(U)$. Let $v_h = v_p + Lv_n$ be the decomposition into the primitive and nonprimitive parts. Then

$$\begin{split} & \int_{Y} v_{h} \wedge \overline{*} v_{h} \\ &= \int_{Y} v \wedge \overline{*} v_{h} \\ &= \int_{U} v \wedge \overline{*} v_{p} + \int_{U} v \wedge \overline{*} L v_{n} \\ &= \int_{U} v \wedge_{p} \overline{*} v + \int_{U} v \wedge L w \,. \end{split}$$

Here w is some C^{∞} d-closed (n-2)-form on Y.

260

Since $Lw = \frac{i}{2} \partial \bar{\partial} \ln \psi \wedge w$ on $U \setminus E$ and v is *d*-exact on U, we have

$$\int_U v \wedge L w = 0.$$

Since $v_p \perp L v_n$, we have

$$\int_{Y} v_h \wedge \overline{*} v_h = \int_{Y} v_p \wedge \overline{*} v_p \, .$$

Thus $Lv_{\mu}=0$, which imples that v_{μ} is *d*-exact on *U*. Note that

$$\int_{U} v \wedge \overline{v}_{p}$$
$$= (-1)^{n(n+1)/2} \int_{U} v \wedge \overline{Cv}_{p},$$

where C denotes the Weil's operator. Since $v_p|_U$ is d-exact, $Cv_p|_U$ must be d-exact, too, since C is compatible with the canonical spectral sequence which abuts to $H^*(E)$ on the varieties with normal crossings.

Therefore,

$$\int_{U} v \wedge \overline{Cv_p} = 0 \, .$$

Thus

$$\int_{Y} v_{h} \wedge \overline{*} v_{h} = 0$$

which implies that $v_h = 0$, and the proof of Lemma is completed.

Now we shall finish the proof of Proposition 6. By the Lemma, the image of the homomorphism

$$\alpha: \lim_{K} H^{n}_{(2)}(X_{*} \setminus K) \to \lim_{K} H^{n}(X_{*} \setminus K)$$

is zero. The injectivity of α follows immediately from Lemma 4. Therefore $\lim_{\kappa} H^n_{(2)}(X_* \setminus K) = 0.$ Q.E.D.

Corollaries 1 and 2 are straightforward applications of our theorem.

Remark. In case X is projective algebraic, the corollaries have been obtained by Navaro Aznar [14] and Morihiko Saito [21] independently by

Takeo Ohsawa

different methods. As for the basic results in this direction, see also [5] and [6].

References

- [1] Andreotti, A. and Frankel, T., The second Lefschetz theorem on hyperplane sections, *Global analysis, papers in honor of K. Kodaira,* Univ. of Tokyo press and Univ. of Princeton press, 1969.
- [2] Andreotti, A. and Grauert, H., Théorème de finitude pour la cohomologie des espaces complexes, *Bull. Soc. Math. France* **90** (1962), 193–259.
- [3] Andreotti, A. and Vesentini, E., Carleman estimates for the Laplace-Beltrami equation on complex manifolds, *Publ. Math. IHES* 25 (1965), 81–130.
- [4] Artin, M., Algebraic approximation of structures over complete local rings, Publ. Math. IHES 36 (1969), 23-58.
- [5] Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers, Proceedings of the conference "Analyse et topologie sur les espaces singuliers", juillet 1981, Astérisque 100 (1982).
- [6] Deligne, P., Théorie de Hodge II, Publ. Math. IHES 40 (1971), 5-57.
- [7] Donnelly, H. and Fefferman, C., L²-cohomology and index theorem for the Bergman metric, *Ann. Math.* **118** (1983), 593–618.
- [8] Grauert, H., Characterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik, Math. Ann. 131 (1956), 38–75.
- [9] Grauert, H. and Riemenschneider, O., Kählersche Mannigfaltigkeiten mit hyper-qkonvexem Rand, *Problems in Analysis*, Princeton Univ. Press, 1970.
- [10] Hironaka, H., Flattening theorems in complex analytic geometry, Amer. J. Math. 97 (1975), 503-547.
- [11] Hörmander, L., An Introduction to Complex Analysis in Several Variables, North-Holland, 1973.
- [12] Hsiang, W.C. and Pati, V., L²-cohomology of normal algebraic surfaces I, *Invent. Math.* 81 (1985), 395–412.
- [13] Nagase, M., Remarks on the L²-cohomology of singular algebraic surfaces, preprint.
- [14] Navaro Aznar, V., Sur la théorie de Hodge des variétés algébriques à singularités isolées, Astérisque 130 (1985), 272–307.
- [15] Ohsawa, T., A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds, *Invent. Math.* 63 (1981), 335–354.
- [16] —, Addendum to "A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds", *Invent. Math.* 66 (1982), 393–393.
- [17] —, Vanishing theorems on complete Kähler manifolds, *Publ. RIMS, Kyoto Univ.* 20 (1984), 21–38.
- [18] Ohsawa, T., Hodge spectral sequence on compact Kähler spaces, Publ. RIMS, Kyoto Univ., 23 (1987), 265–274.
- [19] and Takegoshi, K., Hodge spectral sequence on pseudoconvex domains, to appear in *Math. Zeit.*,
- [20] ———, Hodge spectral sequence and symmetry on compact Kähler spaces, Publ. RIMS, Kyoto Univ., 23 (1987), 613–625.
- [21] Saito, Mo., Modules de Hodge polarizables, to appear.
- [22] Saper, L., L²-cohomology and intersection homology of certain algebraic varieties with isolated singularities, *Invent. Math.* 82 (1985), 207–255.
- [C-G-M] Cheeger, J., Goresky, M. and MacPherson, R., L²-cohomology and intersection homology of singular algebraic varieties, *Ann. Math. Stud.* 102, Seminar on Differential Geometry 1982, 303–340.

Added in proof. The author must apologize to the reader that our result is not so satisfactory. He promises to give a complete result, i.e. one without any restriction on the singularity, in a forthcoming article.