On the Extension of \mathcal{L}^2 Holomorphic Functions II

Bу

Takeo OHSAWA*

Introduction

Let (X, ds^2) be a complete Hermitian manifold of dimension n, and let φ be a real-valued C^{∞} function on X. By the theory of L. Hörmander [H], a $\bar{\partial}$ -closed form u on X is $\bar{\partial}$ -exact if it satisfies the estimate

 $|(u, v)_{\varphi}| \leq C_u(||\bar{\partial}v||_{\varphi} + ||\bar{\partial}_{\varphi}^*v||_{\varphi})$

for any compactly supported C^{∞} form ν , where C_u is a number independent of ν , and in many cases the estimate is true for $C_u = \text{const. } ||u||_{\varphi}$. In our previous work [O-T], we have established a new L^2 -inequality involving the $\bar{\partial}$ operator, in which the estimation for C_u is more elaborate. As a consequence, it enabled us to prove the following.

Theorem. Let D be a bounded pseudoconvex domain in \mathbb{C}^n and let $H \subset \mathbb{C}^n$ be a complex hyperplane. Then, every L^2 holomorphic function on $D \cap H$ has an L^2 holomorphic extension to D.

The purpose of the present paper is to formulate and prove a generalized L^2 extension theorem from higher codimensional submanifolds which includes our previous result as a special case, by using our new L^2 inequality.

Our main result is as follows.

Theorem. Let X be a Stein manifold of dimension $n, Y \subset X$ a closed complex submanifold of codimension m, and (E, h) a Nakano-semipositive vector bundle over X. Let φ be any plurisubharmonic function on X and let s_1, \dots, s_m be holomorphic functions on X vanishing on Y. Then, given a holomorphic E-valued (n-m)-form g on Y with

Received August 1, 1987.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

TAKEO OHSAWA

$$|\int_Y e^{-\varphi} h(g) \wedge \bar{g}| < \infty$$
,

there exists for any $\epsilon > 0$, a holomorphic E-valued n-form G_{ϵ} on X which coincides with $g \wedge ds_1 \wedge \cdots \wedge ds_m$ on Y and satisfies

(1)
$$|\int_{X} e^{-\varphi} (1+|s|^2)^{-m-\varepsilon} h(G_{\varepsilon}) \wedge \overline{G}_{\varepsilon}| \leq \varepsilon^{-1} C_m |\int_{Y} e^{-\varphi} h(g) \wedge \overline{g}|$$

where $|s|^2 = \sum_{i=1}^{m} |s_i|^2$ and C_m is a positive number which depends only on m.

To see that one cannot drop ϵ in (1), it suffices to consider the case X=C, $Y=\{0\}$, $\varphi=0$ and g=1.

Among a few direct consequences of Theorem, the following two observations might be of interest.

Corollary 1. Let X be a weakly 1-complete manifold of dimension n which admits a positive line bundle, let s be a holomorphic function on X such that $ds \neq 0$ on $Y:=s^{-1}(0)$, and let (E, h) be a Nakano semipositive vector bundle over X. Then the restriction map

$$\Gamma(X, \mathcal{O}_X(K_X \otimes E)) \to \Gamma(Y, \mathcal{O}_Y(K_X \otimes E))$$

is surjective.

Corollary 2. Let Y be a pure dimensional closed complex submanifold of \mathbb{C}^N , let Ω be a bounded domain of holomorphy, and φ a plurisubharmonic function on Ω . Then, for any holomorphic function f on $\Omega \cap Y$ with

$$\int_{\mathcal{Q}\cap Y} e^{-\varphi} |f|^2 \, dV_Y < \infty$$

there exists a holomorphic extension F to Ω such that

$$\int_{\Omega} e^{-\varphi} |F|^2 dV \leq A \int_{\Omega \cap Y} e^{-\varphi} |f|^2 dV_Y.$$

Here A depends on Y and $\sup \{ ||z||; z \in \mathcal{Q} \}$, but does not depend on f.

In §1 we improve the estimates shown in [O-T] and [O-2], so that one can dispense with auxiliary complete Kähler metrics which we needed before. We shall prove Theorem in §2 by solving $\overline{\partial}$ -equations on a family of strongly pseudoconvex domains and taking a limit of solutions. In case m=1, it amounts to solve the equation

$$\bar{\partial}u = 2\pi ig \wedge [Y]$$

266

with an appropriate L^2 estimate, where [Y] denotes the (1, 1)-current associated to Y. For $m \ge 2$ the limit equation is hard to describe in the framework of distributions, and it might be interesting to know its legitimate description.

§1. Notations and Preliminaries

Let (X, ds^2) be a Kähler manifold of dimension n, (E, h) a Hermitian vector bundle over X and φ a C^{∞} real valued function on X. We shall use the following notations.

$$C^{p,q}(X, E) = \{C^{\infty} \text{ E-valued } (p, q)\text{-forms on } X\}$$

$$C_0^{p,q}(X, E) = \{f \in C^{p,q}(X, E); \text{ supp } f \Subset X\}$$

$$L_{\varphi}^{p,q}(X, E) = \{\text{measurable } E\text{-valued } (p, q)\text{-forms } f \text{ on } X \text{ satisfying}$$

$$\int_X e^{-\varphi} |f|^2 dV_X < \infty\},$$

where |f| denotes the length of f and dV_X denotes the volume form. We denote by $\bar{\partial}: L^{p,q}_{\varphi}(X, E) \rightarrow L^{p,q+1}_{\varphi}(X, E)$ the complex exterior derivative of type (0, 1) defined on

$$Dom \ \bar{\partial} := \{ f \in L^{p,q}_{\varphi}(X, E); \ \bar{\partial} f \in L^{p,q+1}_{\varphi}(X, E) \}$$

The adjoint of $\bar{\partial}$ will be denoted by $\bar{\partial}_{\varphi}^{*}$.

Let $(f, g)_{\varphi}$ be the inner product of $f, g \in L^{p,q}_{\varphi}(X, E)$ associated to the norm

$$||f||_{\varphi} := (\int_X e^{-\varphi} |f|^2 dV_X)^{1/2}.$$

For a (p, q)-form f on X we denote by e(f) the left multiplication by f in the exterior algebra of differential forms on X. The (pointwise) adjoint of e(f) is denoted by $e(f)^*$. We shall denote by ω the fundamental form of ds^2 , and put $\Lambda = e(\omega)^*$. The curvature form of h will be denoted by $\Theta = \sum_{\alpha,\beta} \Theta_{\alpha\beta\nu}^{\kappa} dz^{\alpha} \wedge d\overline{z}^{\beta}$. The left multiplication by Θ to E-valued forms is well-defined and denoted by $e(\Theta)$. (E, h) is said to be Nakano semipositive if the Hermitian form $\sum_{\alpha,\beta,\nu,\mu} (\sum_{\alpha,\beta,\nu,\mu} \Theta_{\alpha\beta\nu}^{\kappa} h_{\kappa\mu}) \xi^{\alpha\nu} \overline{\xi}^{\beta\mu}$ is semipositive. We note that $(f,g)_{\varphi} = i^n (-1)^{n(n-1)/2} \int_X e^{-\varphi} h(f) \wedge \overline{g}$ if $f, g \in L_{\varphi}^{n,0}(X, E)$. In particular $L_{\varphi}^{n,0}(X, E)$ does not depend on the choice of ds^2 . We say X is a weakly 1-complete manifold if there exists a C^{∞} plurisubharmonic function $\varphi: X \rightarrow \mathbb{R}$ such that $X_c := \{x \in X; \varphi(x) < c\}$ is relatively compact for any $c \in \mathbb{R}$. For the basic materials on weakly 1-complete manifolds, see [O-1].

Lemma 1. Let $D \Subset X$ be a strongly pseudoconvex domain with C^{∞} smooth boundary, let φ_0 be a C^{∞} defining function of D, and let ψ be a nonnegative C^{∞} function defined on \overline{D} . Then, for any $\varepsilon > 0$ and a compact subset $K \subseteq D$, there exists a C^{∞} function ψ_K on D satisfying the following properties.

- (i) $\psi \geq \psi_K$ and $\psi \psi_K = \varepsilon$ on K.
- (ii) inf $\psi_{K}=0$ and $D^{c}:=\{x\in D; \psi_{K}(x)\geq c\}$ is compact for all $c\in(-\infty, 0)$.
- (iii) $|d\psi_{K} \wedge d\varphi_{0}| \leq C$, where C does not depend on the choice of K.
- (iv) $\psi \psi_{\kappa}$ is plurisubharmonic.

Proof. Since D is strongly pseudoconvex, we may assume that φ_0 is strictly plurisubharmonic on a neighbourhood of ∂D . Let δ be any positive number satisfying $\delta < -\sup_{K} \varphi_0$ and let λ_{δ} be a C^{∞} function on $(-\infty, 0)$ such that $\lambda_{\delta}(t), \lambda_{\delta}'(t) \ge 0$ for all $t, \lambda_{\delta}'(t) = -t^{-1}$ on $(-\delta/2, 0)$, and $\lambda_{\delta}(t) = 0$ on $(-\infty, -\delta)$. Then, for any $\varepsilon > 0$ and $\tau > 0$ there exists a $\delta_0 > 0$ such that the function

$$arPsi_{\delta, \mathbf{e}}^{ au} := au \lambda_{\delta}(arphi_0) {-} \psi {-} arepsilon$$

satisfies

(*)
$$\partial \bar{\partial} \Phi_{\delta,e}^{\tau} \geq \frac{-\tau}{2\varphi_0} \partial \bar{\partial} \varphi_0 + \frac{1}{4\tau} \partial \Phi_{\delta,e}^{\tau} \bar{\partial} \Phi_{\delta,e}^{\tau} \text{ on } D \setminus D_{-\delta/2}$$

if $0 < \delta < \delta_0$.

Note that $\varphi_{\delta,\mathfrak{e}}^{\tau} < -\varepsilon/2$ on $D_{-\delta/2}$ if $\tau < -\frac{\varepsilon}{2} (\log 2)^{-1}$. Let $\chi: \mathbb{R} \to \mathbb{R}$ be a C^{∞} increasing function such that $\chi(t) = t$ on $(-\infty, -\varepsilon/2)$ and $\chi(t) = -t^{-1}$ on $(2, \infty)$. If we put $\psi_{\mathcal{K}} = -\chi(\varphi_{\delta,\mathfrak{e}}^{\tau})$ for $\delta \ll \tau < -\frac{\varepsilon}{2} (\log 2)^{-1}$, then $\psi_{\mathcal{K}}$ satisfies (i) through (iv). In fact, (i), (ii), (iii) are trivial and (iv) follows from (*).

Proposition 2. Let $D \Subset X$ be a strongly pseudoconvex domain with C^{∞} boundary, and let ψ be a nonnegative C^{∞} function defined on \overline{D} . Then, for any C^{∞} function φ on \overline{D} and a C^{∞} E-valued (n, q)-form u on \overline{D} with $\overline{*u}|_{\partial D} = 0$,

(2)
$$||\sqrt{\psi} \ \bar{\partial}_{\varphi}^{*} u||_{\varphi,D}^{2} + ||\sqrt{\psi} \ \bar{\partial} u||_{\varphi,D}^{2} \\ \geq (ie(\psi(\partial\bar{\partial}\varphi + \Theta) - \partial\bar{\partial}\psi) \ \Lambda u, u)_{\varphi,D} + 2\operatorname{Re}(e(\bar{\partial}\psi) \ \bar{\partial}_{\varphi}^{*} u,$$

where * denotes the Hodge's star operator,

$$\|\sqrt{\psi}\ \bar{\partial}_{\varphi}^* u\|_{\varphi,D}^2 = \int_D \psi e^{-\varphi} |\bar{\partial}_{\varphi}^* u|^2 dV_X, \quad etc.$$

Proof. Let $K \subset D$ be any compact subset and let ψ_K be chosen for ψ as in Lemma 1. Then, for any u as above,

$$(**) \qquad ||\sqrt{\psi_{K}} \,\bar{\partial}_{\varphi}^{*} \,u||_{\varphi,D}^{2} + ||\sqrt{\psi_{K}} \,\bar{\partial}u||_{\varphi,D}^{2} \\ \geq (ie(\psi_{K}(\partial\bar{\partial}\varphi + \Theta) - \partial\bar{\partial}\psi_{K}) \,\Lambda u, \,u)_{\varphi,D} \\ + (e(\bar{\partial}\psi_{K}) \,\bar{\partial}_{\varphi}^{*} \,u, \,u)_{\varphi,D} + (\bar{\partial}e(\bar{\partial}\psi_{K})^{*} \,u, \,u)_{\varphi,D}$$

(cf. [O-2] §1, (6)).

Since $\overline{\ast u}|_{\partial D} = 0$,

$$(\bar{\partial} e(\bar{\partial} \psi_K)^* u, u)_{\varphi,D} = (u, e(\bar{\partial} \psi_K) \, \bar{\partial}_{\varphi}^* u)_{\varphi,D}.$$

By (i) and (iii),

$$||e(\bar{\partial}\psi_K)^* u - e(\bar{\partial}\psi)^* u||_{\varphi,D} \leq \text{const.} ||u||_{\varphi,D\setminus K}$$

By (iv),

$$\begin{array}{l} (ie(\psi_{K}(\partial\bar{\partial}\varphi+\Theta)-\partial\bar{\partial}\psi_{K}) \ \Lambda u, \ u)_{\varphi,D} \\ \geqq (ie(\psi\partial\bar{\partial}\varphi-\partial\bar{\partial}\psi) \ \Lambda u, \ u)_{\varphi,D} \ . \end{array}$$

Thus, taking the limit of the inequality (**) we obtain the desired estimate.

In order to apply the estimate (2) effectively we have to digress a bit into linear algebra.

Let V be a complex vector space of dimension n and let s_1 be a Hermitian form on V. Let $V^* \otimes \mathbb{C} = V^*_+ \oplus V^*_-$ be the decomposition into the $\pm \sqrt{-1}$ eigenspaces of the complex structure and let $V^{*,q}_{s_1}$ be the subspace of $(\bigwedge^n V^*_+) \otimes (\bigwedge^n V^*_-) \subset \bigwedge^{n+q} (V^* \otimes \mathbb{C})$ spanned by the vectors $u \wedge (\bar{u}_1 \wedge \cdots \wedge \bar{u}_q)$, where $u \in \bigwedge^n V^*_+$ and $u_k(\xi) = 0$ for $1 \leq k \leq q$ on $\{\xi \in V \otimes \mathbb{C}; s_1(\xi, \xi) = 0\}$. Let $\{v_1, \dots, v_n\}$ be a basis of V^*_+ such that $s_1 = \sum_{\alpha=1}^l v_{\alpha} \otimes \bar{v}_{\alpha} - \sum_{\beta=l+1}^m v_{\beta} \otimes \bar{v}_{\beta}$. Then $V^{*,q}_{s_1}$ is spanned by $u \wedge (\bar{v}_{i_1} \wedge \cdots \wedge \bar{v}_{i_q})$, where $u \in \bigwedge^n V^*_+$ and $1 \leq i_1 < \cdots < i_q \leq m$. The star operator

$$*_{s_1}: V^{*,q}_{s_1} \to \bigwedge^{n-q} (V^* \otimes \mathbb{C})$$

is defined as a uniquely determined linear map which satisfy

$$*_{s_1}(v_1 \wedge \cdots \wedge v_n \wedge \overline{v_{j_1}} \wedge \cdots \wedge \overline{v_{j_q}})$$

= $v_{j_{q+1}} \wedge \cdots \wedge v_{j_n} \cdot \operatorname{sgn} \begin{bmatrix} 1 \cdots n \\ j_1 \cdots j_n \end{bmatrix} \left(\frac{-i}{2} \right)^n (-n)^{n(n-1)/2}$
 $\times \varepsilon_{j_1} \cdots \varepsilon_{j_q}.$

Here $\varepsilon_j = 1$ if $1 \le j \le l$, $\varepsilon_j = -1$ if $l+1 \le j \le m$ and $\varepsilon_j = 0$ if $m < j \le n$. Then we have a nondegenerate pairing TAKEO OHSAWA

Let ω_{s_1} be the imaginary part of s_1 and denote by $e(\omega_{s_1})$ the multiplication by ω_{s_1} . Let s_2 be any positive Hermitian form on V. We denote by $e(\omega_{s_1})^*$ the adjoint of $e(\omega_{s_1})$ with respect to s_2 . We put

$$\langle u, v \rangle_{s_2} \frac{\omega_{s_2}^n}{n!} = u \wedge \overline{\ast_{s_2} v}$$

$$\langle u, v \rangle_{s_1} \frac{\omega_{s_2}^n}{n!} = u \wedge \overline{\ast_{s_1} v} \quad (v \in V_{s_1}^{*,q}).$$

Then we have

$$\langle v, v \rangle_{s_1} = \langle e(\omega_{s_2}) e(\omega_{s_1})^{-1} v, v \rangle_{s_2}$$
 for $v \in V_{s_1}^{*,1}$

Here $e(\omega_{s_1})^{-1}$ denotes the inverse map of $e(\omega_{s_1})$: $\bigwedge^{n-1} V_+^* \to V_{s_1}^{*,1}$. If s_1 is semipositive, then

$$(3) \qquad |\langle u, v \rangle_{s_2}|^2 \leq \langle e(\omega_{s_1}) e(\omega_{s_2})^* u, u \rangle_{s_2} \langle v, v \rangle_{s_1}$$

for any $u \in \bigwedge^{n+1} (V^* \otimes \mathbb{C})$ and $v \in V^{*,1}_{s_1}$.

Let (W, h_1) be another Hermitian vector space. Then the inner product $\langle v, v \rangle_{s_1}$ is naturally extended to $W \otimes V_{s_1}^{*,1}$, which will be also denoted by $\langle v, v \rangle_{s_1}$. We have similar estimates as (3) for the elements of $W \otimes (\bigwedge^{n+1} V^* \otimes C)$ and $W \otimes V_{s_1}^{*,1}$.

Thus we have the following inequality for the bundle valued forms.

Proposition 3. Let σ be a semipositive (1, 1)-form on X and let $u, v \in L^{n,1}_{\varphi}(X, E)$. If $v(x) \in E_x \otimes (T_{X,x})^{*,1}_{\sigma(x)}$ for any $x \in X$, then

$$|(u, v)_{\varphi}|^{2} \leq (e(\sigma)\Lambda u, u)_{\varphi} \int_{X} e^{-\varphi} \langle v, v \rangle_{\sigma} dV_{X}$$

and

$$\int_X e^{-\varphi} \langle v, v \rangle_{\sigma} \, dV_X = (e(\omega) \; e(\sigma)^{-1} \; v, v)_{\varphi} \, dV_X = (e(\omega) \; v)_{\varphi} \, dV_X$$

To simplify the notation we set

$$L^{n,q}_{\varphi}(X, E)_{\sigma} = \{ v \in L^{n,q}_{\varphi}(X, E); v(x) \in (T_{X,x})^{*,q}_{\sigma} \text{ for any } x \in X \}$$

Proposition 4. Let $D \Subset X$ be a strongly pseudoconvex domain with C^{∞} -smooth

270

boundary, ψ a nonnegative C^{∞} function on \overline{D} , and φ a C^{∞} function on \overline{D} . Suppose that (E, h) is Nakano semipositive and there exists a positive locally bounded function η on D such that

$$\sigma(\eta) := \psi \partial \bar{\partial} \varphi - \partial \bar{\partial} \psi - \eta^2 |\partial \psi|^{-2} \partial \psi \bar{\partial} \psi$$

is semipositive. Then, for any C^{∞} E-valued (n, 1)-form u on \overline{D} with $\overline{*u}|_{\partial D} = 0$ and $v \in L^{n,1}_{\varphi}(D, E)_{\sigma(\eta)}$,

$$\begin{aligned} &|(u, v)_{\varphi, D}|^{2} \leq (e(\omega) \ e(\sigma(\eta))^{-1} \ v, \ v)_{\varphi, D} \\ &\times (||(\sqrt{\psi} + \eta | \partial \psi|) \ \bar{\partial}_{\varphi}^{*} \ u||_{\varphi, D}^{2} + ||\sqrt{\psi} \ \bar{\partial} u||_{\varphi, D}^{n}) \,. \end{aligned}$$

§2. Proof of Theorem

Let the notations be as in the introduction. Since X is a Stein manifold one can find a decreasing sequence of C^{∞} plurisubharmonic functions $\{\varphi_{\mu}\}_{\mu=1}^{\infty}$ which converges to φ almost everywhere. Hence it suffices to prove Theorem in case φ is C^{∞} . Moreover we may assume that $ds_1 \wedge \cdots \wedge ds_m \neq 0$ everywhere. In fact, take an analytic subset $Z \subset X$ of codimension one such that

$$Z \supset \{x; ds_1 \land \cdots \land ds_m \mid x = 0\} .$$

Then it suffices to show the extendability of $g \wedge ds_1 \wedge \cdots \wedge ds_m$ to $X \setminus Z$, since the apparent singularity along Z is improper in virtue of the L^2 condition.

As in [O-T] we fix an increasing family of strongly pseudoconvex domains $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_\mu \subseteq \cdots$ with C^{∞} smooth boundaries such that

$$X=\bigcup_{\mu=1}^{\infty}X_{\mu}.$$

Then it suffices to find the extensions to X_{μ} , since one obtains a desired extension as a weak limit of a subsequence of the extensions to X_{μ} ($\mu \rightarrow \infty$).

Let G be an arbitrary holomorphic extension of $g \wedge ds_1 \wedge \cdots \wedge ds_m$ to X. It certainly exists since X is a Stein manifold. Let $\chi: \mathbb{R} \to \mathbb{R}$ be a C^{∞} function satisfying $\chi(t)=1$ on $(-\infty, 1/2)$ and $\chi(t)=0$ on $(1, \infty)$. For any $\delta > 0$ we put

$$G^{[\delta]} = \begin{cases} \chi(|s|^2/\delta^2) G \\ \text{on} \quad \{x \in X; \ |s(x)| < \delta\} \\ 0 \quad \text{otherwise.} \end{cases}$$

Then $G^{[\delta]}$ is a C^{∞} extension of $g \wedge ds_1 \wedge \cdots \wedge ds_m$. We put

$$v^{\delta} = \bar{\partial} G^{[\delta]}$$
.

Note that $v^8 = 0$ on a neighbourhood of Y. Taking an arbitrary Kähler metric ds_0^2 of X, we fix a metric ds^2 of X by

$$ds^2 = ds_0^2 + 2\partial\bar{\partial} \log \left(1 + |s|^2\right).$$

Then, for any μ one can find a sufficiently small δ_{μ} such that

(4)
$$\int_{X_{\mu}} e^{-\varphi} |s|^{-2m} \delta^{2} |v^{\delta}|^{2} dV_{X}$$
$$\leq C_{m} \int_{Y} e^{-\varphi} |g|^{2} dV_{Y} \quad \text{if} \quad \delta < \delta_{\mu} .$$

Here C_m depends only on *m*. Let $\lambda: \mathbb{R} \to \mathbb{R}$ be a C^{∞} function satisfying $\lambda'(t) \ge 0$, $\lambda''(t) \ge 0$, sup $\lambda'(t) \le 1$, sup $\lambda''(t) < 2/3$, and

$$\lambda(t) = \begin{cases} 0 & \text{on} \quad (-\infty, 0) \\ t-1 & \text{on} \quad (2, \infty) \, . \end{cases}$$

We put $\psi_0 = \lambda(-\log(|s|^2 + \delta^2))$. Then $\partial \bar{\partial} \psi_0 = -\partial \bar{\partial} \log(|s|^2 + \delta^2)$ if $|s|^2 + \delta^2 < e^{-2}$, $\partial \bar{\partial} \psi_0 = 0$ if $|s|^2 + \delta^2 > 1$, and

$$\partial \bar{\partial} \psi_0 \leq \frac{8e^4}{3} \partial \bar{\partial} \log(|s|^2 + 1)$$

if $e^{-2} \le |s|^2 + \delta^2 \le 1$.

On the other hand

$$\partial \psi_0 \, \bar{\partial} \psi_0 \leq (|s|^2 + 1)^2 \, (|s|^2 + \delta^2)^{-1} \, \partial \bar{\partial} \, \log \, (|s|^2 + 1) \, .$$

Thus $|\partial \psi_0|^2$ is estimated from above by $(|s|^2+1)^2 (|s|^2+\delta^2)^{-1}$. For any $\varepsilon > 0$ we put

$$\psi_{\mathfrak{e}} = \psi_0 + \varepsilon^{-1} \Big(\frac{8e^4}{3} + 4 \Big).$$

Then $|\partial \psi_{\epsilon}|^2 \le (|s|^2 + 1)^2 (|s|^2 + \delta^2)^{-1}$ and

$$\psi_{\mathfrak{e}} \leq \alpha_{\mathfrak{e}}(|s|^2 + \delta^2)^{-1},$$

where

$$\alpha_{\varepsilon} = \sup_{|s|<1} \left(|s|^2 + \delta^2 \right) \left(-\log\left(|s|^2 + \delta^2 \right) + \varepsilon^{-1} \left(\frac{8e^4}{3} + 4 \right) \right).$$

We put

$$\varphi_{\varepsilon} = \varphi + 2m \log |s| + \varepsilon \log (|s|^2 + 1)$$

Then

$$\sigma_{\mathfrak{g}} := \psi_{\mathfrak{g}} \, \partial \bar{\partial} \varphi_{\mathfrak{g}} - \partial \bar{\partial} \psi_{\mathfrak{g}} - | \, \partial \psi_{\mathfrak{g}} |^{-2} \, \partial \psi_{\mathfrak{g}} \, \bar{\partial} \psi_{\mathfrak{g}}$$

is semipositive and

$$\sigma_{e} \geq \partial \bar{\partial} \log \left(|s|^{2} + \delta^{2} \right)$$

on $\{x; |s(x)| < \delta\}$.

Combining it with (4) we see that there exists a $\delta'_{\mu} > 0$ such that

$$(e(\omega) e(\sigma_{\varepsilon})^{-1} v^{\delta}, v^{\delta})_{\varphi_{\varepsilon}, X\mu} \leq 4C_{m} \int_{Y} e^{-\varphi_{\varepsilon}} |g|^{2} dV_{Y} \quad \text{if} \quad \delta < \delta'_{\mu} \,.$$

Therefore by Proposition ψ , if $\delta < \delta'_{\mu}$

$$\begin{aligned} &|(u, v^{\delta})_{\varphi_{\varepsilon}, \chi_{\mu}}|^{2} \\ &\leq 4C_{m} \int_{Y} e^{-\varphi_{\varepsilon}} |g|^{2} dV_{Y} \\ &\times \{ ||(\sqrt{\psi_{\varepsilon}} + |\partial\psi_{\varepsilon}|) \bar{\partial}_{\varphi_{\varepsilon}}^{*} u||_{\varphi_{\varepsilon}, \chi_{\mu}}^{2} + ||\sqrt{\psi_{\varepsilon}} \bar{\partial}u||_{\varphi_{\varepsilon}, \chi_{\mu}}^{2} \} \end{aligned}$$

for any C^{∞} E-valued (n, 1)-form u on \bar{X}_{μ} with $\overline{|u|}_{\partial X_{\mu}} = 0$. Since the same estimate also holds for $u \in \text{Dom } \bar{\partial}_{\varphi_{\mathfrak{e}}}^* \cap \text{Dom } \bar{\partial} \cap L^{n,1}_{\varphi_{\mathfrak{e}}}(X_{\mu}, E)$, there exists a solution $b_{\mathfrak{e}}^{\mathfrak{d}}$ to the equation $\bar{\partial}((\sqrt{\psi_{\mathfrak{e}}} + |\partial\psi_{\mathfrak{e}}|) b_{\mathfrak{e}}^{\mathfrak{d}}) = v^{\mathfrak{d}}$ with

$$||b_{\mathfrak{e}}^{\delta}||_{\varphi_{\mathfrak{E}},X\mu}^{2} \leq 4C_{\mathfrak{m}} \int_{Y} e^{-\varphi_{\mathfrak{E}}} |g|^{2} dV_{Y}$$

(cf. [H]).

We put

$$G_{\mathfrak{e}} := G^{\mathfrak{l}\mathfrak{d}\mathfrak{l}} - (\sqrt{\psi_{\mathfrak{e}}} + |\partial\psi_{\mathfrak{e}}|) b^{\mathfrak{d}}_{\mathfrak{e}} \,.$$

Then $G_{\mathfrak{e}}$ is a holomorphic extension of $g \wedge ds_1 \wedge \cdots \wedge ds_m$ to X_{μ} . The verification of the L^2 estimate is left to the reader.

Proof of Corollary 1. Let $\varphi: X \to \mathbb{R}$ be any C^{∞} plurisubharmonic exhaustion function and let (B, a) be a positive line bundle over X. Then, for any $c \in \mathbb{R}, X_c := \{x; \varphi(x) < c\}$ is embeddable into a projective space by holomorphic sections of $B^m(m=m(c) \gg 0)$. In particular there exists a proper analytic subset $Z_c \subset X_c$ such that $Z_c \supset Y$ and $X_c \setminus Z_c$ is a Stein manifold. Let $g \wedge ds \in \Gamma(Y, \mathcal{O}_Y (K_X \otimes E))$ and choose a convex increasing C^{∞} function λ such that

$$g \in L^{n-1,0}_{\lambda(\varphi)}(Y, E)$$

Applying Theorem to the manifolds $X_c \setminus Z_c \supset Y \cap X_c \setminus Z_c$ and $g \mid Y \cap X_c \setminus Z_c$, we

TAKEO OHSAWA

have extensions of $g \wedge ds$ to $X_c \setminus Z_c$ whose norms in $L^{n,0}_{\lambda(\varphi)}(X_c \setminus Z_c, E)$ are dominated by const. $||g||_{\lambda(\varphi)}$. Since the singularities along Z_c are improper, by taking a weak limit of these extended forms in $L^{n,0}_{\lambda(\varphi)}(X, E)$ we obtain a holomorphic extension of $g \wedge ds$ to X.

Remark 1. The assumption that X admits a positive line bundle was only used to ensure the existence of the divisors Z_e . Hence one can replace the existence of a positive bundle in the hypothesis by the existence of a Zariski dense Stein open subset $\mathcal{Q} \subset X$ such that $X \setminus \mathcal{Q}$ does not contain any connected component of Y.

Remark 2. Corollary 1 may be regarded as an extension of Kazama-Nakano's vanishing theorem on weakly 1-complete manifolds (cf. [O-1]). In fact, if E is Nakano-positive then $H^1(X, \mathcal{O}(K_X \otimes E))=0$ so that the surjectivity of the above map follows immediately. H. Skoda [S-2] has established a similar surjectivity theorem on weakly 1-complete manifolds as a generalization of his L^2 corona theorem on pseudoconvex domains in \mathbb{C}^n (cf. [S-1]).

Proof of Corollary 2. Let w_1, \dots, w_k be holomorphic functions on \mathbb{C}^N which generate the stalks of the ideal sheaf of Y at each point of $\overline{\mathbb{Q}}$. Let $m = \operatorname{codim} Y$. Then for each *m*-tuple $(w_{i_1}, \dots, w_{i_m})$ we apply Theorem as follows. Let $\sum_I \subset \mathbb{C}^N$ $(I = (i_1, \dots, i_m))$ be an analytic subset of codimension one which contains the set $\{x \in Y; dw_{i_1} \land \dots \land dw_{i_m}(x) = 0\}$, and let σ_I be a defining function of \sum_I . Then, by Rückert's theorem there exists a $p \in N$ such that for all I

$$\sigma_I^p dz_1 \wedge \dots \wedge dz_N = g_I \wedge dw_{i_1} \wedge \dots \wedge dw_{i_m}$$
 on Y

for some holomorphic (N-m)-form g_I on Y. Here (z_1, \dots, z_N) denotes the coordinate of \mathbb{C}^N . Then $f\sigma_I^p dz_1 \wedge \dots \wedge dz_N$ has an extension G_I to \mathcal{Q} with

$$\left|\int_{\Omega} e^{-\varphi} G_I \wedge \bar{G}_I\right| \leq C_I \left|\int_{Y \cap \Omega} e^{-\varphi} |f|^2 g_I \wedge \bar{g}_I |,$$

where C_I does not depend on f. Let η_I be holomorphic functions on \mathbb{C}^N satisfying

$$\sum_{\substack{I \subset \{1, \cdots, k\} \\ \sharp I = m}} \sigma_I^p \eta_I = 1 \quad \text{on} \quad Y.$$

Then we define a function F by

$$F \, dz_1 \wedge \cdots \wedge dz_n = \sum_{\substack{I \subset \{1, \cdots, k\} \\ \sharp^{I=m}}} \eta_I \, G_I \, .$$

Clearly F is an extension of f with desired properties.

Remark. Corollary 2 is easily generalized to relatively compact pseudoconvex domains of Stein manifolds. The detail is left to the reader.

References

- [H] Hörmander, L., L^2 estimate and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89–152.
- [O-1] Ohsawa, T., Cohomology vanishing theorems on weakly 1-complete manifolds, Publ. RIMS, Kyoto Univ. 19 (1983), 1181–1201.
- [O-2] ——, On the rigidity of noncompact quotients of bounded symmetric domains, to appear in *Publ. Math. Kyoto Univ.*, 23.
- [O-T] Ohsawa, T, and Takegoshi, K., On the extension of L² holomorphic functions, Math. Zeit. 195 (1987), 197–204.
- [S-1] Skoda, H., Application des techniques L² à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. scient. Ec. Norm. Sup., 5 (1972), 545–579.
- [S-2] , Morphismes surjectifs de fibrés vectoriels sémipositifs, Ann. scient. Ec. Norm. Sup., 11 (1978), 577-611.